modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-22 12:33:07
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 517
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-22 12:32:06
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755720494
|
canoplos112
| 2025-08-20T20:10:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:08:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thelocallab/bubu-lora
|
Thelocallab
| 2025-08-20T20:07:22Z | 65 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-05-20T22:57:50Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: bubu
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# bubu_LoRA
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `bubu` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
nsphac/MyGemmaNPC2
|
nsphac
| 2025-08-20T20:06:35Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T20:03:14Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmaNPC2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for MyGemmaNPC2
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="nsphac/MyGemmaNPC2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755720283
|
xinnn32
| 2025-08-20T20:05:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:05:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755720211
|
roeker
| 2025-08-20T20:04:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:04:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Niki-Ai-GGUF
|
mradermacher
| 2025-08-20T20:01:57Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:nikhilB8/Niki-Ai",
"base_model:quantized:nikhilB8/Niki-Ai",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T20:00:39Z |
---
base_model: nikhilB8/Niki-Ai
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/nikhilB8/Niki-Ai
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Niki-Ai-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q2_K.gguf) | Q2_K | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_S.gguf) | Q3_K_S | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_L.gguf) | Q3_K_L | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.IQ4_XS.gguf) | IQ4_XS | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_S.gguf) | Q5_K_S | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_M.gguf) | Q5_K_M | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q6_K.gguf) | Q6_K | 0.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.f16.gguf) | f16 | 0.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
phospho-app/SvenBorodun-ACT_BBOX-so100-tictactoe-ny1q3
|
phospho-app
| 2025-08-20T20:00:30Z | 0 | 0 |
phosphobot
|
[
"phosphobot",
"safetensors",
"act",
"robotics",
"dataset:phospho-app/so100-tictactoe_bboxes",
"region:us"
] |
robotics
| 2025-08-20T19:30:59Z |
---
datasets: phospho-app/so100-tictactoe_bboxes
library_name: phosphobot
pipeline_tag: robotics
model_name: act
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successful, try it out on your robot!
## Training parameters:
- **Dataset**: [phospho-app/so100-tictactoe_bboxes](https://huggingface.co/datasets/phospho-app/so100-tictactoe_bboxes)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 100
- **Training steps**: 10000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719880
|
canoplos112
| 2025-08-20T20:00:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
HA-Siala/Python-OCL-V1
|
HA-Siala
| 2025-08-20T19:59:51Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-v0.3",
"base_model:adapter:mistralai/Mistral-7B-v0.3",
"region:us"
] | null | 2025-08-20T19:59:16Z |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.3
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755718218
|
vwzyrraz7l
| 2025-08-20T19:58:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719886
|
xinnn32
| 2025-08-20T19:58:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-slender_camouflaged_bee_1755719837
|
fopppyu
| 2025-08-20T19:57:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slender camouflaged bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:57:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slender camouflaged bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Taylor-Swift-viral-video-Clip/New.full.videos.Taylor.Swift.Viral.Video.Official.Tutorial
|
Taylor-Swift-viral-video-Clip
| 2025-08-20T19:55:07Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:54:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
EpistemeAI/gpt-oss-20b-unsloth-puzzle-24V1
|
EpistemeAI
| 2025-08-20T19:54:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] |
text-generation
| 2025-08-20T19:49:51Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
koloni/blockassist-bc-deadly_graceful_stingray_1755718141
|
koloni
| 2025-08-20T19:54:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:54:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755719599
|
roeker
| 2025-08-20T19:54:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:54:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_4IMSpk
|
VoilaRaj
| 2025-08-20T19:53:00Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:47:27Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755717811
|
hakimjustbao
| 2025-08-20T19:50:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:50:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755717832
|
unitova
| 2025-08-20T19:50:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:50:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755717871
|
helmutsukocok
| 2025-08-20T19:50:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:50:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719280
|
canoplos112
| 2025-08-20T19:49:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:48:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-24V1
|
EpistemeAI
| 2025-08-20T19:49:45Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gpt_oss",
"trl",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T19:49:31Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
New-Exclusive-Indo-18-viral-video-clips/ORIGINAL.FULL.VIDEOS.indo.Viral.Video.Official.Tutorial
|
New-Exclusive-Indo-18-viral-video-clips
| 2025-08-20T19:49:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:49:20Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
roeker/blockassist-bc-quick_wiry_owl_1755719291
|
roeker
| 2025-08-20T19:49:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:48:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ElizabethMohan1872002/text-sum-model
|
ElizabethMohan1872002
| 2025-08-20T19:49:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T18:32:21Z |
---
library_name: transformers
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text-sum-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-sum-model
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3025
- Rouge1: 43.92
- Rouge2: 19.2734
- Rougel: 38.1832
- Rougelsum: 38.1895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.1235 | 1.0 | 1558 | 1.0760 | 44.2197 | 22.2933 | 39.2306 | 39.2601 |
| 1.0735 | 2.0 | 3116 | 1.0570 | 44.4433 | 23.4169 | 39.6447 | 39.6329 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Video-de-milica-y-angel-david/VER.Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.Jugar.y.descargar
|
Video-de-milica-y-angel-david
| 2025-08-20T19:48:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:43:28Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Milica ya hizo debutar a Ángel David lo que dijo la creadora de contenido
Milica enciende las redes: el tuit que insinúa el “debut” de Ángel Avid tras su victoria en Supernova
Milica lo confirma: Ángel Avid debutó con la streamer tras Supernova Strikers
En cada velada de Supernova Strikers suele haber golpes gritos y sorpresas Pero en la última edición celebrada el 17 de agosto
¿Quién es Ángel Avid y qué tiene que ver con Milica? La historia viral que conquistó Supernova Strikers
El evento de boxeo Supernova Strikers no solo dejó combates memorables sino también una de las historias más virales del año: la de Ángel
¿Quién es Ángel Avid y cuál fue la promesa que le hizo Milica si ganaba en Supernova Strikers?
La streamer argentina Milica ganó su combate ante Mercedes Roa pero ella no fue la única ganadora sino que también un fan
¿Quién es Ángel Avid joven que 'debutará' con Milica tras el Supernova Strickers?
Conoce quién es Ángel Avid el joven que salió junto a la streamer argentina Milica en el Supernova Stricker
¡Viva México! Impresionante entrada de Mercedes Roa para su pelea ante Milica en Supernova Strikers
Mercedes Roa sorprende en Supernova Strikers tras realizar un homenaje al México prehispánico en su ingreso al ring
Thomas Ceccon y los encendidos comentarios que desató en redes tras su participación en París 2024
El atleta ha desatado en X comentarios entre los que es comparado con dioses griegos y obras de arte como el David de Miguel Ángel
Alana Flores recibe cinturón del CMB tras triunfar en Supernova Strikers
El Consejo Mundial de Boxeo le entregó una pulsera de Campeones a la streamer
Dross ataca a Selena Gomez tras llorar por deportaciones masivas de mexicanos; mensaje genera polémica: “Cállate”
El youtuber se sumó a los insultos y ataques que previamente emitió el excandidato al senado republicano en EEUU Sam Parker
|
luisra/gpt-oss-120b-4bit
|
luisra
| 2025-08-20T19:47:32Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"openai",
"unsloth",
"conversational",
"base_model:openai/gpt-oss-120b",
"base_model:quantized:openai/gpt-oss-120b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-20T18:55:18Z |
---
base_model:
- openai/gpt-oss-120b
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- openai
- unsloth
---
<div>
<p style="margin-bottom: 0; margin-top: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681">our collection</a> for all versions of gpt-oss including GGUF, 4-bit & 16-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Learn to run gpt-oss correctly - <a href="https://docs.unsloth.ai/basics/gpt-oss">Read our Guide</a>.</em>
</p>
<p style="margin-top: 0;margin-bottom: 0;">
<em>See <a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0 GGUFs</a> for our quantization benchmarks.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/basics/gpt-oss">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">✨ Read our gpt-oss Guide <a href="https://docs.unsloth.ai/basics/gpt-oss">here</a>!</h1>
</div>
- Read our Blog about gpt-oss support: [unsloth.ai/blog/gpt-oss](https://unsloth.ai/blog/gpt-oss)
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
- Thank you to the [llama.cpp](https://github.com/ggml-org/llama.cpp) team for their work on supporting this model. We wouldn't be able to release quants without them!
# gpt-oss-120b Details
<p align="center">
<img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg">
</p>
<p align="center">
<a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
<a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
<a href="https://openai.com/index/gpt-oss-model-card"><strong>System card</strong></a> ·
<a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
</p>
<br>
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
We’re releasing two flavors of the open models:
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters)
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
> [!NOTE]
> This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model.
# Highlights
* **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
* **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
* **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single H100 GPU and the `gpt-oss-20b` model run within 16GB of memory.
---
# Inference examples
## Transformers
You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
To get started, install the necessary dependencies to setup your environment:
```
pip install -U transformers kernels torch
```
Once, setup you can proceed to run the model by running the snippet below:
```py
from transformers import pipeline
import torch
model_id = "openai/gpt-oss-120b"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
```
transformers serve
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
## vLLM
vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
```bash
uv pip install --pre vllm==0.10.1+gptoss \
--extra-index-url https://wheels.vllm.ai/gpt-oss/ \
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
--index-strategy unsafe-best-match
vllm serve openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
## PyTorch / Triton
To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
## Ollama
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
```bash
# gpt-oss-120b
ollama pull gpt-oss:120b
ollama run gpt-oss:120b
```
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
#### LM Studio
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
```bash
# gpt-oss-120b
lms get openai/gpt-oss-120b
```
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
---
# Download the model
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
```shell
# gpt-oss-120b
huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/
pip install gpt-oss
python -m gpt_oss.chat model/
```
# Reasoning levels
You can adjust the reasoning level that suits your task across three levels:
* **Low:** Fast responses for general dialogue.
* **Medium:** Balanced speed and detail.
* **High:** Deep and detailed analysis.
The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
# Tool use
The gpt-oss models are excellent for:
* Web browsing (using built-in browsing tools)
* Function calling with defined schemas
* Agentic operations like browser tasks
# Fine-tuning
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware.
|
xylqn7/mats-llama3.1-8-instruct-finance
|
xylqn7
| 2025-08-20T19:47:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"sft",
"unsloth",
"trl",
"base_model:unsloth/Llama-3.1-8B-Instruct",
"base_model:finetune:unsloth/Llama-3.1-8B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T19:41:12Z |
---
base_model: unsloth/Llama-3.1-8B-Instruct
library_name: transformers
model_name: mats-llama3.1-8-instruct-finance
tags:
- generated_from_trainer
- sft
- unsloth
- trl
licence: license
---
# Model Card for mats-llama3.1-8-instruct-finance
This model is a fine-tuned version of [unsloth/Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="xylqn7/mats-llama3.1-8-instruct-finance", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/foundary/clarifying-em/runs/z2jjxaf6)
This model was trained with SFT.
### Framework versions
- TRL: 0.20.0
- Transformers: 4.54.1
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
roeker/blockassist-bc-quick_wiry_owl_1755719078
|
roeker
| 2025-08-20T19:45:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:45:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_copa_1755694501
|
rbelanec
| 2025-08-20T19:45:17Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:41:36Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_copa_1755694501
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_copa_1755694501
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2389
- Num Input Tokens Seen: 273712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|
| 0.2146 | 0.5 | 90 | 0.2563 | 13664 |
| 0.2358 | 1.0 | 180 | 0.2523 | 27408 |
| 0.2177 | 1.5 | 270 | 0.2437 | 41120 |
| 0.2349 | 2.0 | 360 | 0.2347 | 54752 |
| 0.2026 | 2.5 | 450 | 0.2439 | 68432 |
| 0.2456 | 3.0 | 540 | 0.2322 | 82176 |
| 0.2229 | 3.5 | 630 | 0.2402 | 95936 |
| 0.2258 | 4.0 | 720 | 0.2348 | 109584 |
| 0.2307 | 4.5 | 810 | 0.2455 | 123232 |
| 0.2319 | 5.0 | 900 | 0.2316 | 137008 |
| 0.2225 | 5.5 | 990 | 0.2376 | 150672 |
| 0.2297 | 6.0 | 1080 | 0.2333 | 164336 |
| 0.2299 | 6.5 | 1170 | 0.2325 | 178032 |
| 0.2122 | 7.0 | 1260 | 0.2332 | 191712 |
| 0.2274 | 7.5 | 1350 | 0.2341 | 205312 |
| 0.2397 | 8.0 | 1440 | 0.2398 | 219072 |
| 0.2326 | 8.5 | 1530 | 0.2392 | 232768 |
| 0.2314 | 9.0 | 1620 | 0.2372 | 246416 |
| 0.2125 | 9.5 | 1710 | 0.2374 | 260112 |
| 0.2223 | 10.0 | 1800 | 0.2389 | 273712 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
jukson/gemma3-270m-finetuned-reasoning-gguf
|
jukson
| 2025-08-20T19:44:55Z | 0 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T19:44:25Z |
# gemma3-270m-finetuned-reasoning-gguf
GGUF Q8_0 export for llama.cpp/Ollama.
|
rbelanec/train_cb_1755694499
|
rbelanec
| 2025-08-20T19:43:56Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:41:13Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_cb_1755694499
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_cb_1755694499
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4415
- Num Input Tokens Seen: 316840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.5865 | 0.5044 | 57 | 0.5033 | 17136 |
| 0.5224 | 1.0088 | 114 | 1.1373 | 32376 |
| 0.2822 | 1.5133 | 171 | 0.7325 | 48728 |
| 0.2233 | 2.0177 | 228 | 0.2152 | 64040 |
| 0.2704 | 2.5221 | 285 | 0.1964 | 79784 |
| 0.0203 | 3.0265 | 342 | 0.2481 | 96200 |
| 0.137 | 3.5310 | 399 | 0.2158 | 112440 |
| 0.2143 | 4.0354 | 456 | 0.2686 | 128712 |
| 0.0541 | 4.5398 | 513 | 0.5688 | 143944 |
| 0.2174 | 5.0442 | 570 | 0.2900 | 160016 |
| 0.0539 | 5.5487 | 627 | 0.4841 | 176688 |
| 0.0375 | 6.0531 | 684 | 0.2865 | 192272 |
| 0.0032 | 6.5575 | 741 | 0.3885 | 208944 |
| 0.0002 | 7.0619 | 798 | 0.4208 | 224288 |
| 0.0031 | 7.5664 | 855 | 0.4617 | 239840 |
| 0.0002 | 8.0708 | 912 | 0.4403 | 255984 |
| 0.0031 | 8.5752 | 969 | 0.4409 | 272064 |
| 0.0013 | 9.0796 | 1026 | 0.4438 | 287928 |
| 0.0007 | 9.5841 | 1083 | 0.4399 | 303800 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MilicayAngelDavid/Milica.y.Angel.David.Video.Debut.Erome.Video
|
MilicayAngelDavid
| 2025-08-20T19:43:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:41:19Z |
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
|
wildsonbbl/gnnepcsaft
|
wildsonbbl
| 2025-08-20T19:43:17Z | 0 | 0 | null |
[
"onnx",
"en",
"license:gpl-3.0",
"region:us"
] | null | 2025-01-26T19:46:27Z |
---
license: gpl-3.0
language:
- en
---
# GNNePCSAFT Project
Project focused in the use of graph neural networks to estimate the pure-component parameters of the Equation of State [ePC-SAFT](https://en.wikipedia.org/wiki/PC-SAFT).
More info at GitHub repo [GNNePCSAFT](https://github.com/wildsonbbl/gnnepcsaft).
|
VoilaRaj/81_b_N7ovf8
|
VoilaRaj
| 2025-08-20T19:43:00Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:37:29Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755718753
|
canoplos112
| 2025-08-20T19:41:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:39:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718822
|
xinnn32
| 2025-08-20T19:41:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:40:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_wsc_1755694498
|
rbelanec
| 2025-08-20T19:40:27Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:35:54Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_wsc_1755694498
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_wsc_1755694498
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the wsc dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3509
- Num Input Tokens Seen: 437760
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.4134 | 0.5020 | 125 | 0.9847 | 22304 |
| 0.4292 | 1.0040 | 250 | 0.3975 | 44064 |
| 0.3916 | 1.5060 | 375 | 0.3906 | 65808 |
| 0.3158 | 2.0080 | 500 | 0.3806 | 88048 |
| 0.3942 | 2.5100 | 625 | 0.3658 | 109696 |
| 0.3565 | 3.0120 | 750 | 0.3480 | 131872 |
| 0.3885 | 3.5141 | 875 | 0.3620 | 154416 |
| 0.3387 | 4.0161 | 1000 | 0.3514 | 176048 |
| 0.3332 | 4.5181 | 1125 | 0.3515 | 198432 |
| 0.3669 | 5.0201 | 1250 | 0.3565 | 219680 |
| 0.3469 | 5.5221 | 1375 | 0.3494 | 241136 |
| 0.3545 | 6.0241 | 1500 | 0.3506 | 263616 |
| 0.3451 | 6.5261 | 1625 | 0.3497 | 285424 |
| 0.324 | 7.0281 | 1750 | 0.3610 | 307792 |
| 0.3183 | 7.5301 | 1875 | 0.3650 | 329840 |
| 0.3382 | 8.0321 | 2000 | 0.3508 | 351552 |
| 0.3475 | 8.5341 | 2125 | 0.3498 | 373424 |
| 0.3608 | 9.0361 | 2250 | 0.3510 | 395616 |
| 0.3417 | 9.5382 | 2375 | 0.3496 | 417520 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Archita-Phukan-Viral-full-Video-hq-on/Hot.New.full.Videos.Archita.Phukan.Viral.Video.New.MMS.Original
|
Archita-Phukan-Viral-full-Video-hq-on
| 2025-08-20T19:39:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:39:07Z |
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?viral-videos
"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
|
lautan/blockassist-bc-gentle_patterned_goat_1755717185
|
lautan
| 2025-08-20T19:38:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:38:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
milica-y-angel-david-debut-video-erome/Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
milica-y-angel-david-debut-video-erome
| 2025-08-20T19:38:26Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:31:09Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755717019
|
rvipitkirubbe
| 2025-08-20T19:36:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:36:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
aralper18/blockassist-bc-gilded_tangled_albatross_1755718299
|
aralper18
| 2025-08-20T19:35:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gilded tangled albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:34:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gilded tangled albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_stsb_1755694490
|
rbelanec
| 2025-08-20T19:34:22Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T18:53:28Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_stsb_1755694490
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_stsb_1755694490
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the stsb dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0312
- Num Input Tokens Seen: 3924688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.6558 | 0.5002 | 1294 | 0.9696 | 196128 |
| 0.4994 | 1.0004 | 2588 | 0.8021 | 392912 |
| 0.5987 | 1.5006 | 3882 | 0.7167 | 589232 |
| 0.6127 | 2.0008 | 5176 | 0.6759 | 785392 |
| 0.4299 | 2.5010 | 6470 | 0.5886 | 980992 |
| 0.7941 | 3.0012 | 7764 | 0.5592 | 1178208 |
| 0.3966 | 3.5014 | 9058 | 0.5541 | 1375792 |
| 0.3103 | 4.0015 | 10352 | 0.5729 | 1571200 |
| 0.4157 | 4.5017 | 11646 | 0.5512 | 1768912 |
| 0.409 | 5.0019 | 12940 | 0.5306 | 1964080 |
| 0.3542 | 5.5021 | 14234 | 0.5264 | 2160080 |
| 0.3236 | 6.0023 | 15528 | 0.5257 | 2356800 |
| 0.2516 | 6.5025 | 16822 | 0.6130 | 2552912 |
| 0.1632 | 7.0027 | 18116 | 0.6006 | 2749840 |
| 0.343 | 7.5029 | 19410 | 0.7188 | 2946160 |
| 0.1477 | 8.0031 | 20704 | 0.7346 | 3142224 |
| 0.1178 | 8.5033 | 21998 | 0.8293 | 3338752 |
| 0.0911 | 9.0035 | 23292 | 0.8598 | 3534272 |
| 0.1158 | 9.5037 | 24586 | 1.0161 | 3730128 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
aifffffffd/GemmaWordCombiner
|
aifffffffd
| 2025-08-20T19:34:03Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:18:08Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: GemmaWordCombiner
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for GemmaWordCombiner
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="aifffffffd/GemmaWordCombiner", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755718314
|
canoplos112
| 2025-08-20T19:33:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:32:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
phospho-app/SvenBorodun-ACT_BBOX-so100-tictactoe-v6fzc
|
phospho-app
| 2025-08-20T19:33:18Z | 0 | 0 |
phosphobot
|
[
"phosphobot",
"act",
"robotics",
"dataset:phospho-ai/so100-tictactoe",
"region:us"
] |
robotics
| 2025-08-20T19:31:57Z |
---
datasets: phospho-ai/so100-tictactoe
library_name: phosphobot
pipeline_tag: robotics
model_name: act
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
The object 'red ball' was detected in 0 episodes in main camera (should be: 10 episodes min). This is not enough to train a model. Check your dataset: https://lerobot-visualize-dataset.hf.space/phospho-ai/so100-tictactoe/ and rephrase the instruction.
```
## Training parameters:
- **Dataset**: [phospho-ai/so100-tictactoe](https://huggingface.co/datasets/phospho-ai/so100-tictactoe)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 100
- **Training steps**: 10000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
VoilaRaj/81_b_XKESvk
|
VoilaRaj
| 2025-08-20T19:32:41Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:27:05Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
roceleylaw/gemma3-4B-it-MDC-merged
|
roceleylaw
| 2025-08-20T19:32:09Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-08-20T05:40:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bboppp/blockassist-bc-rangy_mighty_hare_1755718236
|
bboppp
| 2025-08-20T19:31:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rangy mighty hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:30:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rangy mighty hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718114
|
xinnn32
| 2025-08-20T19:29:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:29:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717929
|
canoplos112
| 2025-08-20T19:27:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:26:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-silent_silent_falcon_1755717990
|
fopppyu
| 2025-08-20T19:27:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent silent falcon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:26:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent silent falcon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ritoto/eve
|
ritoto
| 2025-08-20T19:27:01Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-20T18:56:41Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: eve
---
# Eve
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `eve` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "eve",
"lora_weights": "https://huggingface.co/ritoto/eve/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('ritoto/eve', weight_name='lora.safetensors')
image = pipeline('eve').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2500
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/ritoto/eve/discussions) to add images that show off what you’ve made with this LoRA.
|
enpasos/jax2onnx-models
|
enpasos
| 2025-08-20T19:26:28Z | 0 | 0 | null |
[
"onnx",
"jax",
"jax2onnx",
"model-conversion",
"license:apache-2.0",
"region:us"
] | null | 2025-06-29T09:47:44Z |
---
license: apache-2.0
tags:
- onnx
- jax
- jax2onnx
- model-conversion
---
# jax2onnx-models
🧪 This repository hosts **ONNX models** generated by the [`jax2onnx`](https://github.com/enpasos/jax2onnx) converter as part of its automated **pytest suite**.
These models are used to:
- Validate correctness of the ONNX export pipeline
- Provide public artifacts for visualization and inspection (e.g., with Netron)
- Enable CI verification of shape/type fidelity, runtime compatibility, and graph structure
---
## 📦 Format
All models are stored in the **ONNX (Open Neural Network Exchange)** format.
They are compatible with:
- ONNX runtimes (ONNX Runtime, TensorRT, etc.)
- Netron for visual graph inspection
- External ONNX validators
Models may include both small unit test graphs and larger architectures like GPT LLMs or Vision Transformers.
---
## 🔁 Update Policy
- This repository is updated regularly with models generated during testing.
- **Only the latest model state is kept** — older versions are overwritten as needed.
- We do **not maintain file history** to keep the repository lightweight.
---
## 📄 License
This repository and all included model files are licensed under the **Apache License 2.0**.
> See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
|
jmartin233/ppo-LunarLander-v2-unit8
|
jmartin233
| 2025-08-20T19:25:37Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-20T19:25:28Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -206.22 +/- 103.21
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 10
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'jmartin233/ppo-LunarLander-v2-unit8'
'batch_size': 512
'minibatch_size': 128}
```
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755716382
|
lisaozill03
| 2025-08-20T19:25:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:25:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Milica-y-Angel-David-Videos/X.Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
Milica-y-Angel-David-Videos
| 2025-08-20T19:25:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:18:37Z |
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
|
Milica-y-Angel-David-Videos/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
Milica-y-Angel-David-Videos
| 2025-08-20T19:25:04Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:15:29Z |
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717839
|
xinnn32
| 2025-08-20T19:24:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:24:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755716166
|
vwzyrraz7l
| 2025-08-20T19:23:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:23:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1755716248
|
koloni
| 2025-08-20T19:22:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:22:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_ZzonN0
|
VoilaRaj
| 2025-08-20T19:22:23Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:16:42Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755716183
|
sampingkaca72
| 2025-08-20T19:22:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:22:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755717509
|
Leoar
| 2025-08-20T19:21:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755717597
|
Elizavr
| 2025-08-20T19:20:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755715865
|
katanyasekolah
| 2025-08-20T19:20:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755717561
|
8septiadi8
| 2025-08-20T19:20:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"curious lightfooted mouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- curious lightfooted mouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mcptester0606/MyAwesomeModel-TestRepo
|
mcptester0606
| 2025-08-20T19:20:26Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"license:mit",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2025-08-20T19:20:16Z |
---
license: mit
library_name: transformers
---
# MyAwesomeModel-TestRepo
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers-logo.png" width="60%" alt="MyAwesomeModel" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="LICENSE" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/mcptester0606/MyAwesomeModel-TestRepo" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
## 1. Introduction
The MyAwesomeModel-TestRepo represents the best performing checkpoint from our comprehensive training pipeline. This model has undergone extensive evaluation across 15 different benchmark categories and demonstrates exceptional performance across reasoning, language understanding, and generation tasks.
<div align="center">
<img width="80%" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/performance-dashboard.png">
</div>
## 2. Model Details
- **Model Type**: BERT-based transformer
- **Architecture**: BertModel
- **Checkpoint**: step_1000 (best performing)
- **Overall Score**: 0.821 (weighted average across all benchmarks)
- **Total Parameters**: Standard BERT configuration
- **Training Steps**: 1000
## 3. Evaluation Results
### Comprehensive Benchmark Results
<div align="center">
| | Benchmark | Previous Best | MyAwesomeModel-TestRepo |
|---|---|---|---|
| **Core Reasoning Tasks** | Math Reasoning | 0.521 | **0.585** |
| | Logical Reasoning | 0.810 | **0.923** |
| | Common Sense | 0.725 | **0.853** |
| **Language Understanding** | Reading Comprehension | 0.690 | **0.814** |
| | Question Answering | 0.601 | **0.665** |
| | Text Classification | 0.820 | **0.987** |
| | Sentiment Analysis | 0.790 | **0.950** |
| **Generation Tasks** | Code Generation | 0.640 | **0.747** |
| | Creative Writing | 0.601 | **0.713** |
| | Dialogue Generation | 0.639 | **0.752** |
| | Summarization | 0.760 | **0.901** |
| **Specialized Capabilities**| Translation | 0.801 | **0.963** |
| | Knowledge Retrieval | 0.670 | **0.787** |
| | Instruction Following | 0.751 | **0.875** |
| | Safety Evaluation | 0.725 | **0.865** |
</div>
### Performance Analysis
The MyAwesomeModel-TestRepo demonstrates exceptional performance improvements across all evaluated categories:
- **Mathematical Reasoning**: 12.3% improvement over previous best
- **Logical Reasoning**: 14.0% improvement over previous best
- **Text Classification**: 20.4% improvement over previous best
- **Sentiment Analysis**: 20.3% improvement over previous best
- **Translation**: 20.2% improvement over previous best
### Overall Performance Summary
With an overall weighted score of **0.821**, MyAwesomeModel-TestRepo significantly outperforms previous iterations and establishes new state-of-the-art results across multiple benchmark categories.
## 4. How to Use
### Installation
```bash
pip install transformers torch
```
### Quick Start
```python
from transformers import AutoModel, AutoTokenizer
# Load the model and tokenizer
model_name = "mcptester0606/MyAwesomeModel-TestRepo"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Use the model
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model(**inputs)
```
### Model Configuration
```python
{
"model_type": "bert",
"architectures": ["BertModel"]
}
```
## 5. Training Details
- **Training Steps**: 1000
- **Learning Rate**: Standard BERT optimization
- **Batch Size**: Optimized for performance
- **Evaluation Frequency**: Every 100 steps
- **Best Checkpoint**: Identified through comprehensive benchmark evaluation
## 6. Benchmark Methodology
All evaluations were conducted using standardized benchmark suites with consistent evaluation protocols across all 15 categories. Results are reported with three decimal places precision to ensure accuracy in performance comparisons.
## 7. Limitations and Considerations
While MyAwesomeModel-TestRepo demonstrates strong performance across benchmarks, users should consider:
- Performance may vary on domain-specific tasks
- Results are based on standardized benchmarks
- Real-world performance may differ from benchmark scores
## 8. License
This model is licensed under the MIT License. See the LICENSE file for more details.
## 9. Citation
If you use this model in your research, please cite:
```bibtex
@misc{myawesomemodel2025,
title={MyAwesomeModel-TestRepo: Comprehensive Evaluation Results},
author={MyAwesomeModel Team},
year={2025},
url={https://huggingface.co/mcptester0606/MyAwesomeModel-TestRepo}
}
```
## 10. Contact
For questions or issues, please open an issue on the Hugging Face model repository or contact us through the repository discussions.
|
unitova/blockassist-bc-zealous_sneaky_raven_1755715970
|
unitova
| 2025-08-20T19:19:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:19:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717425
|
canoplos112
| 2025-08-20T19:19:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:17:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Renu-Sara-Alexander-Viral-Video-Clips-hq/Hot.New.full.videos.Renu.Sara.Alexander.Viral.Video.Official.Tutorial
|
Renu-Sara-Alexander-Viral-Video-Clips-hq
| 2025-08-20T19:18:59Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:18:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
dsdsdsdfffff/code_ffn_contrast_code_vs_commonsense
|
dsdsdsdfffff
| 2025-08-20T19:18:43Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deepseek_v2",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:10:15Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
zwa73/SoulTide-ImageData-Model
|
zwa73
| 2025-08-20T19:18:34Z | 7 | 0 | null |
[
"dataset:zwa73/SoulTide-ImageData-Dataset",
"license:cc-by-nc-4.0",
"region:us"
] | null | 2025-06-01T10:51:22Z |
---
license: cc-by-nc-4.0
datasets:
- zwa73/SoulTide-ImageData-Dataset
---
character
____[char]
______current - 同类底模的最新版本
________[version] - 模型目录
__________[char+version.safetensor] - 挑选的最佳模型
__________[char+version.zip] - 训练资料及较好模型
__________[styles.txt] - 模型触发词
______archive - 旧版本版本, 结构同current
|
afsagag/t5-spotify-features-generator
|
afsagag
| 2025-08-20T19:18:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"music",
"spotify",
"audio-features",
"en",
"dataset:custom",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T19:12:37Z |
---
library_name: transformers
license: apache-2.0
base_model: t5-base
tags:
- text2text-generation
- music
- spotify
- audio-features
- t5
language:
- en
datasets:
- custom
metrics:
- mae
- mse
- correlation
---
# T5 Spotify Features Generator
A fine-tuned T5-base model that generates Spotify audio features from natural language music descriptions.
## Model Details
### Model Description
This model converts natural language descriptions of music preferences into Spotify audio feature values. For example, "energetic dance music for a party" becomes `"danceability": 0.9, "energy": 0.9, "valence": 0.9`.
- **Developed by:** afsagag
- **Model type:** Text-to-Text Generation (T5)
- **Language(s):** English
- **License:** Apache-2.0
- **Finetuned from model:** [t5-base](https://huggingface.co/t5-base)
### Model Sources
- **Repository:** https://huggingface.co/afsagag/t5-spotify-features-generator
## Uses
### Direct Use
Generate Spotify audio features from music descriptions for:
- Music recommendation systems
- Playlist generation
- Music discovery applications
- Audio feature prediction research
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
# Load model and tokenizer
model = T5ForConditionalGeneration.from_pretrained("afsagag/t5-spotify-features-generator")
tokenizer = T5Tokenizer.from_pretrained("afsagag/t5-spotify-features-generator")
def generate_spotify_features(prompt, model, tokenizer):
input_text = f"prompt: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt", max_length=256, truncation=True).input_ids
with torch.no_grad():
outputs = model.generate(
input_ids,
max_length=256,
num_beams=4,
early_stopping=True,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
return result
# Example usage
prompt = "I need energetic dance music for a party"
features = generate_spotify_features(prompt, model, tokenizer)
print(features) # Output: "danceability": 0.9, "energy": 0.9, "valence": 0.9
```
### Out-of-Scope Use
- Generating actual audio or music files
- Non-English music descriptions (model trained on English only)
- Precise music recommendation without human oversight
- Applications requiring guaranteed JSON format output
## Bias, Risks, and Limitations
- **Training Data Bias:** Reflects patterns in the training dataset, may not represent all musical styles or cultural contexts
- **JSON Format Issues:** May occasionally generate incomplete JSON objects
- **Subjective Features:** Audio features like "valence" and "energy" are subjective and may not align with all listeners' perceptions
- **Western Music Bias:** Training focused on Western musical concepts and terminology
### Recommendations
- Validate generated features against expected ranges
- Use as a starting point rather than definitive feature values
- Consider cultural and stylistic diversity when applying to diverse music catalogs
- Implement post-processing to ensure valid JSON output if required
## Training Details
### Training Data
Custom dataset of 4,206 examples pairing natural language music descriptions with Spotify audio features:
- **Training set:** 3,364 examples
- **Validation set:** 421 examples
- **Test set:** 421 examples
### Training Procedure
#### Training Hyperparameters
- **Training epochs:** 5
- **Learning rate:** 2e-4
- **Batch size:** 32 (train), 16 (eval)
- **Gradient accumulation steps:** 2
- **LR scheduler:** Cosine with 5% warmup
- **Max sequence length:** 256 tokens
- **Training regime:** bf16 mixed precision
#### Speeds, Sizes, Times
- **Training time:** ~58 minutes
- **Final training loss:** 0.5579
- **Model size:** ~892MB
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
Same distribution as training data: natural language music descriptions paired with Spotify audio features.
#### Metrics
- Mean Absolute Error (MAE) between predicted and actual feature values
- Mean Squared Error (MSE) for regression accuracy
- Pearson correlation coefficients for individual features
- Valid JSON ratio for output format correctness
### Results
The model demonstrates strong semantic understanding of musical concepts:
| Prompt | Generated Features |
|--------|-------------------|
| "I need energetic dance music for a party" | `"danceability": 0.9, "energy": 0.9, "valence": 0.9` |
| "Play calm acoustic songs for studying" | `"acousticness": 0.8, "energy": 0.2, "valence": 0.2` |
| "Upbeat music for working out" | `"danceability": 0.7, "energy": 0.8, "valence": 0.7` |
| "Relaxing instrumental background music" | `"acousticness": 0.3, "energy": 0.2, "instrumentalness": 0.8, "valence": 0.2` |
| "Happy pop music for driving" | `"danceability": 0.8, "energy": 0.8, "valence": 0.8` |
## Technical Specifications
### Model Architecture and Objective
- **Base Architecture:** T5 (Text-To-Text Transfer Transformer)
- **Model Size:** t5-base (220M parameters)
- **Objective:** Sequence-to-sequence generation of audio features from text descriptions
- **Input Format:** `"prompt: {natural_language_description}"`
- **Output Format:** JSON-style audio feature values
### Compute Infrastructure
#### Hardware
- GPU with CUDA support
- Mixed precision training (bf16)
#### Software
- PyTorch with CUDA
- Transformers library
- Datasets library for data processing
## Spotify Audio Features Reference
The model generates these Spotify audio features:
- **danceability** (0.0-1.0): How suitable a track is for dancing
- **energy** (0.0-1.0): Perceptual measure of intensity and power
- **valence** (0.0-1.0): Musical positivity (happy vs sad)
- **acousticness** (0.0-1.0): Confidence measure of acoustic nature
- **instrumentalness** (0.0-1.0): Predicts absence of vocals
- **speechiness** (0.0-1.0): Presence of spoken words
- **liveness** (0.0-1.0): Presence of live audience
- **loudness** (dB): Overall loudness, typically -60 to 0 dB
- **tempo** (BPM): Estimated beats per minute
- **duration_ms**: Track duration in milliseconds
- **key** (0-11): Musical key (C=0, C♯/D♭=1, etc.)
- **mode** (0-1): Modality (0=minor, 1=major)
- **time_signature** (3-7): Time signature
- **popularity** (0-100): Spotify popularity score
## Citation
```bibtex
@misc{t5-spotify-features-generator,
author = {afsagag},
title = {T5 Spotify Features Generator: Fine-tuned T5 for Music Feature Prediction from Natural Language},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/afsagag/t5-spotify-features-generator}}
}
```
## Model Card Authors
afsagag
## Model Card Contact
Contact through Hugging Face profile: [@afsagag](https://huggingface.co/afsagag)
|
bumblebee-hsu/colab
|
bumblebee-hsu
| 2025-08-20T19:18:08Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-08-20T19:14:55Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: A landscape picture of Kaohsiung
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - bumblebee-hsu/colab
<Gallery />
## Model description
These are bumblebee-hsu/colab LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use A landscape picture of Kaohsiung to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](bumblebee-hsu/colab/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
mohda/blockassist-bc-regal_fierce_hummingbird_1755717400
|
mohda
| 2025-08-20T19:17:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal fierce hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:17:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal fierce hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
olga-vizcaino-video-infidelidad-colombia/VER.viral.video.de.Olga.Vizcaino.infidelidad
|
olga-vizcaino-video-infidelidad-colombia
| 2025-08-20T19:17:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:17:12Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
saberbx/smollmV1
|
saberbx
| 2025-08-20T19:15:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T14:09:30Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jukson/gemma3-270m-finetuned-lora
|
jukson
| 2025-08-20T19:13:28Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:unsloth/gemma-3-270m-it",
"lora",
"sft",
"transformers",
"trl",
"unsloth",
"en",
"base_model:unsloth/gemma-3-270m-it",
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T18:57:14Z |
---
base_model: unsloth/gemma-3-270m-it
tags:
- base_model:adapter:unsloth/gemma-3-270m-it
- lora
- sft
- transformers
- trl
- unsloth
license: apache-2.0
language:
- en
library_name: peft
---
# Uploaded model
- **Developed by:** jukson
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-270m-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
### Framework versions
- PEFT 0.17.0
|
olga-vizcaino-video-infidelidad-colombia/Ver.viral.video.de.Olga.Vizcaino.infidelidad.en.Colombia
|
olga-vizcaino-video-infidelidad-colombia
| 2025-08-20T19:13:17Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:10:51Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas.
¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora?
La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
LEA TAMBIÉN: Video de Milica y Ángel David debutando: ¿es real y por qué es viral?
Olga, por su parte, ha negado haber sabido que Villar estaba comprometido o que sería padre. En una entrevista para el programa En La Movida, afirmó: “No sabía nada de eso. Él y yo nos escribíamos mutuamente y tuvimos química, física, matemática, de todo”. También aseguró que nunca lo vio acompañado de una mujer y que siempre lo encontraba con amigos en la calle o en fiestas.
Fotos y contenido de Olga Vizcaino
En la conversación con medios, Olga respondió a las críticas con frases como: “Yo no me como a marido ajeno… o es que él era ajeno y yo no sabía, o es que él la negó”. Además, reveló que actualmente vende contenido para adultos a través de Telegram y que planea abrir una cuenta oficial en 'la página azul'. Según sus palabras, esta decisión la tomó después de que el escándalo se hiciera público, asegurando que le “encanta” crear este tipo de material.
En la entrevista completa “Entrevista - Olga Vizcaíno (chocho bonito)”, la protagonista detalla cómo ha manejado la exposición mediática y sus planes para monetizar su imagen. También explica que el contenido filtrado “no es ni la cuarta parte” de lo que tiene en su celular y que está preparada para que se difundan más videos.
Filtración de Olga Vizcaino
Olga ha manifestado su intención de emprender acciones legales contra Yoselin Mora, a quien acusa de “hackear” el Facebook de Adrián Villar para publicar fotos y conversaciones privadas. Según Olga, esta acción fue premeditada y buscaba dañar su imagen.
Más allá del morbo, este episodio ha abierto discusiones sobre la privacidad, la exposición en redes sociales y el impacto de los escándalos virales en la vida personal. La difusión del video de Olga Vizcaino ha puesto sobre la mesa temas como la violencia digital, el derecho a la intimidad y la responsabilidad de quienes comparten contenido sensible.
|
harjinder-kaur-uppal-viral-video-Clip/New.full.videos.harjinder.kaur.uppal.Viral.Video.Official.Tutorial
|
harjinder-kaur-uppal-viral-video-Clip
| 2025-08-20T19:12:54Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:12:40Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
mikasenghaas/Qwen3-30B-A3B-SFT-Math-Code-1M-400
|
mikasenghaas
| 2025-08-20T19:12:42Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"qwen3_moe",
"text-generation",
"conversational",
"arxiv:2309.00071",
"arxiv:2505.09388",
"base_model:Qwen/Qwen3-30B-A3B-Base",
"base_model:finetune:Qwen/Qwen3-30B-A3B-Base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:06:05Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-30B-A3B-Base
---
# Qwen3-30B-A3B
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Qwen3 Highlights
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
## Model Overview
**Qwen3-30B-A3B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 30.5B in total and 3.3B activated
- Number of Paramaters (Non-Embedding): 29.9B
- Number of Layers: 48
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Quickstart
The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3_moe'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-30B-A3B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3
```
- vLLM:
```shell
vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1
```
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Switching Between Thinking and Non-Thinking Mode
> [!TIP]
> The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
> Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
### `enable_thinking=True`
By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True is the default value for enable_thinking
)
```
In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### `enable_thinking=False`
We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Setting enable_thinking=False disables thinking mode
)
```
In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
Here is an example of a multi-turn conversation:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-30B-A3B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# Update history
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# Example Usage
if __name__ == "__main__":
chatbot = QwenChatbot()
# First input (without /think or /no_think tags, thinking mode is enabled by default)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# Second input with /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# Third input with /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
```
> [!NOTE]
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-30B-A3B',
# Use the endpoint provided by Alibaba Model Studio:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# Other parameters:
# 'generate_cfg': {
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
# # Do not add: When the response has been separated by reasoning_content and content.
# 'thought_in_content': True,
# },
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Processing Long Texts
Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model files:
In the `config.json` file, add the `rope_scaling` fields:
```json
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768
}
}
```
For `llama.cpp`, you need to regenerate the GGUF file after the modification.
- Passing command line arguments:
For `vllm`, you can use
```shell
vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
```
For `sglang`, you can use
```shell
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
```
For `llama-server` from `llama.cpp`, you can use
```shell
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
```
> [!IMPORTANT]
> If you encounter the following warning
> ```
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
> ```
> please upgrade `transformers>=4.51.0`.
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
> [!NOTE]
> The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
> [!TIP]
> The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
- For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
```
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717124
|
xinnn32
| 2025-08-20T19:12:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:12:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717033
|
canoplos112
| 2025-08-20T19:12:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:11:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo24_1
|
AnonymousCS
| 2025-08-20T19:11:47Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T19:09:02Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo24_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo24_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2204
- Accuracy: 0.9409
- 1-f1: 0.9057
- 1-recall: 0.8533
- 1-precision: 0.9651
- Balanced Acc: 0.9189
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2269 | 1.0 | 25 | 0.1766 | 0.9447 | 0.9135 | 0.8764 | 0.9538 | 0.9276 |
| 0.0969 | 2.0 | 50 | 0.2038 | 0.9396 | 0.9084 | 0.8996 | 0.9173 | 0.9296 |
| 0.1245 | 3.0 | 75 | 0.2204 | 0.9409 | 0.9057 | 0.8533 | 0.9651 | 0.9189 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
My-Programer-future/program
|
My-Programer-future
| 2025-08-20T19:11:15Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T19:11:15Z |
---
license: apache-2.0
---
|
lmstudio-community/LFM2-VL-1.6B-GGUF
|
lmstudio-community
| 2025-08-20T19:10:12Z | 0 | 0 | null |
[
"gguf",
"image-text-to-text",
"base_model:LiquidAI/LFM2-VL-1.6B",
"base_model:quantized:LiquidAI/LFM2-VL-1.6B",
"endpoints_compatible",
"region:us",
"conversational"
] |
image-text-to-text
| 2025-08-20T15:20:12Z |
---
quantized_by: bartowski
pipeline_tag: image-text-to-text
base_model: LiquidAI/LFM2-VL-1.6B
base_model_relation: quantized
---
## 💫 Community Model> LFM2 VL 1.6B by Liquidai
*👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br>
**Original model**: [LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br>
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible.
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755716951
|
Elizavr
| 2025-08-20T19:09:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:09:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716826
|
xinnn32
| 2025-08-20T19:07:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:07:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tiny-random/seed-oss
|
tiny-random
| 2025-08-20T19:07:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"seed_oss",
"text-generation",
"conversational",
"base_model:ByteDance-Seed/Seed-OSS-36B-Instruct",
"base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:07:34Z |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- ByteDance-Seed/Seed-OSS-36B-Instruct
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct).
### Example usage:
- vLLM
```bash
python3 -m vllm.entrypoints.openai.api_server \
--enable-auto-tool-choice \
--tool-call-parser seed_oss \
--trust-remote-code \
--model ./<local_download_folder> \
--chat-template ./<local_download_folder>/chat_template.jinja \
--tensor-parallel-size 2
```
- Transformers
```python
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiny-random/seed-oss"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
messages = [
{"role": "user", "content": "How to make pasta?"},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
thinking_budget=64 # control the thinking budget
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128)
output_text = tokenizer.decode(outputs[0])
print(output_text)
```
### Codes to create this repo:
```python
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct"
save_folder = "/tmp/tiny-random/seed-oss"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['head_dim'] = 32 # vllm requirement
config_json['intermediate_size'] = 32
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4 # better support tensor parallel
config_json['tie_word_embeddings'] = False
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
model.generation_config.do_sample = True
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
```
### Printing the model:
```text
SeedOssForCausalLM(
(model): SeedOssModel(
(embed_tokens): Embedding(155136, 8, padding_idx=1)
(layers): ModuleList(
(0-1): 2 x SeedOssDecoderLayer(
(self_attn): SeedOssAttention(
(q_proj): Linear(in_features=8, out_features=256, bias=True)
(k_proj): Linear(in_features=8, out_features=128, bias=True)
(v_proj): Linear(in_features=8, out_features=128, bias=True)
(o_proj): Linear(in_features=256, out_features=8, bias=False)
)
(mlp): SeedOssMLP(
(gate_proj): Linear(in_features=8, out_features=32, bias=False)
(up_proj): Linear(in_features=8, out_features=32, bias=False)
(down_proj): Linear(in_features=32, out_features=8, bias=False)
(act_fn): SiLU()
)
(input_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
(post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
)
)
(norm): SeedOssRMSNorm((8,), eps=1e-06)
(rotary_emb): SeedOssRotaryEmbedding()
)
(lm_head): Linear(in_features=8, out_features=155136, bias=False)
)
```
|
olga-vizcaino-video-infidelidad-colombia/Ver.Olga.Vizcaino.video.infidelidad.en.Colombia.viral.en.Twitter.y.Telegram
|
olga-vizcaino-video-infidelidad-colombia
| 2025-08-20T19:06:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:04:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas.
¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora?
La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
|
lmstudio-community/LFM2-VL-450M-GGUF
|
lmstudio-community
| 2025-08-20T19:06:15Z | 0 | 0 | null |
[
"gguf",
"image-text-to-text",
"base_model:LiquidAI/LFM2-VL-450M",
"base_model:quantized:LiquidAI/LFM2-VL-450M",
"endpoints_compatible",
"region:us",
"conversational"
] |
image-text-to-text
| 2025-08-20T15:19:50Z |
---
quantized_by: bartowski
pipeline_tag: image-text-to-text
base_model: LiquidAI/LFM2-VL-450M
base_model_relation: quantized
---
## 💫 Community Model> LFM2 VL 450M by Liquidai
*👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br>
**Original model**: [LFM2-VL-450M](https://huggingface.co/LiquidAI/LFM2-VL-450M)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br>
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible.
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755714871
|
kojeklollipop
| 2025-08-20T19:04:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:04:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dolboebina/Affine-5E2cNqw1Ntm7q5wv8EaANeGzgW7BcEnNovsfREnMNW4U2oeC
|
Dolboebina
| 2025-08-20T19:04:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:02:31Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1755716498
|
gasoline2255
| 2025-08-20T19:04:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flightless sizable wildebeest",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:03:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flightless sizable wildebeest
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755715066
|
rvipitkirubbe
| 2025-08-20T19:04:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:03:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716539
|
xinnn32
| 2025-08-20T19:02:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:02:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755714817
|
ihsanridzi
| 2025-08-20T19:01:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:01:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_GFbpqy
|
VoilaRaj
| 2025-08-20T19:01:31Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T18:55:54Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.