modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-22 12:33:07
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
517 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-22 12:32:06
card
stringlengths
11
1.01M
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755720494
canoplos112
2025-08-20T20:10:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:08:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Thelocallab/bubu-lora
Thelocallab
2025-08-20T20:07:22Z
65
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-20T22:57:50Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: bubu license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # bubu_LoRA A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `bubu` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
nsphac/MyGemmaNPC2
nsphac
2025-08-20T20:06:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T20:03:14Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC2 This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nsphac/MyGemmaNPC2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
xinnn32/blockassist-bc-meek_winged_caterpillar_1755720283
xinnn32
2025-08-20T20:05:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:05:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755720211
roeker
2025-08-20T20:04:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:04:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Niki-Ai-GGUF
mradermacher
2025-08-20T20:01:57Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:nikhilB8/Niki-Ai", "base_model:quantized:nikhilB8/Niki-Ai", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T20:00:39Z
--- base_model: nikhilB8/Niki-Ai language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/nikhilB8/Niki-Ai <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Niki-Ai-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.f16.gguf) | f16 | 0.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
phospho-app/SvenBorodun-ACT_BBOX-so100-tictactoe-ny1q3
phospho-app
2025-08-20T20:00:30Z
0
0
phosphobot
[ "phosphobot", "safetensors", "act", "robotics", "dataset:phospho-app/so100-tictactoe_bboxes", "region:us" ]
robotics
2025-08-20T19:30:59Z
--- datasets: phospho-app/so100-tictactoe_bboxes library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successful, try it out on your robot! ## Training parameters: - **Dataset**: [phospho-app/so100-tictactoe_bboxes](https://huggingface.co/datasets/phospho-app/so100-tictactoe_bboxes) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719880
canoplos112
2025-08-20T20:00:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
HA-Siala/Python-OCL-V1
HA-Siala
2025-08-20T19:59:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.3", "base_model:adapter:mistralai/Mistral-7B-v0.3", "region:us" ]
null
2025-08-20T19:59:16Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755718218
vwzyrraz7l
2025-08-20T19:58:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719886
xinnn32
2025-08-20T19:58:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-slender_camouflaged_bee_1755719837
fopppyu
2025-08-20T19:57:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender camouflaged bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:57:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender camouflaged bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Taylor-Swift-viral-video-Clip/New.full.videos.Taylor.Swift.Viral.Video.Official.Tutorial
Taylor-Swift-viral-video-Clip
2025-08-20T19:55:07Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:54:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
EpistemeAI/gpt-oss-20b-unsloth-puzzle-24V1
EpistemeAI
2025-08-20T19:54:56Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-08-20T19:49:51Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
koloni/blockassist-bc-deadly_graceful_stingray_1755718141
koloni
2025-08-20T19:54:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:54:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755719599
roeker
2025-08-20T19:54:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:54:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_4IMSpk
VoilaRaj
2025-08-20T19:53:00Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:47:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755717811
hakimjustbao
2025-08-20T19:50:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:50:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755717832
unitova
2025-08-20T19:50:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:50:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755717871
helmutsukocok
2025-08-20T19:50:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:50:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719280
canoplos112
2025-08-20T19:49:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:48:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-24V1
EpistemeAI
2025-08-20T19:49:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T19:49:31Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
New-Exclusive-Indo-18-viral-video-clips/ORIGINAL.FULL.VIDEOS.indo.Viral.Video.Official.Tutorial
New-Exclusive-Indo-18-viral-video-clips
2025-08-20T19:49:41Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:49:20Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
roeker/blockassist-bc-quick_wiry_owl_1755719291
roeker
2025-08-20T19:49:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:48:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ElizabethMohan1872002/text-sum-model
ElizabethMohan1872002
2025-08-20T19:49:01Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T18:32:21Z
--- library_name: transformers license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: text-sum-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-sum-model This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3025 - Rouge1: 43.92 - Rouge2: 19.2734 - Rougel: 38.1832 - Rougelsum: 38.1895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.1235 | 1.0 | 1558 | 1.0760 | 44.2197 | 22.2933 | 39.2306 | 39.2601 | | 1.0735 | 2.0 | 3116 | 1.0570 | 44.4433 | 23.4169 | 39.6447 | 39.6329 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Video-de-milica-y-angel-david/VER.Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.Jugar.y.descargar
Video-de-milica-y-angel-david
2025-08-20T19:48:50Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:43:28Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Milica ya hizo debutar a Ángel David lo que dijo la creadora de contenido Milica enciende las redes: el tuit que insinúa el “debut” de Ángel Avid tras su victoria en Supernova Milica lo confirma: Ángel Avid debutó con la streamer tras Supernova Strikers En cada velada de Supernova Strikers suele haber golpes gritos y sorpresas Pero en la última edición celebrada el 17 de agosto ¿Quién es Ángel Avid y qué tiene que ver con Milica? La historia viral que conquistó Supernova Strikers El evento de boxeo Supernova Strikers no solo dejó combates memorables sino también una de las historias más virales del año: la de Ángel ¿Quién es Ángel Avid y cuál fue la promesa que le hizo Milica si ganaba en Supernova Strikers? La streamer argentina Milica ganó su combate ante Mercedes Roa pero ella no fue la única ganadora sino que también un fan ¿Quién es Ángel Avid joven que 'debutará' con Milica tras el Supernova Strickers? Conoce quién es Ángel Avid el joven que salió junto a la streamer argentina Milica en el Supernova Stricker ¡Viva México! Impresionante entrada de Mercedes Roa para su pelea ante Milica en Supernova Strikers Mercedes Roa sorprende en Supernova Strikers tras realizar un homenaje al México prehispánico en su ingreso al ring Thomas Ceccon y los encendidos comentarios que desató en redes tras su participación en París 2024 El atleta ha desatado en X comentarios entre los que es comparado con dioses griegos y obras de arte como el David de Miguel Ángel Alana Flores recibe cinturón del CMB tras triunfar en Supernova Strikers El Consejo Mundial de Boxeo le entregó una pulsera de Campeones a la streamer Dross ataca a Selena Gomez tras llorar por deportaciones masivas de mexicanos; mensaje genera polémica: “Cállate” El youtuber se sumó a los insultos y ataques que previamente emitió el excandidato al senado republicano en EEUU Sam Parker
luisra/gpt-oss-120b-4bit
luisra
2025-08-20T19:47:32Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "openai", "unsloth", "conversational", "base_model:openai/gpt-oss-120b", "base_model:quantized:openai/gpt-oss-120b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-20T18:55:18Z
--- base_model: - openai/gpt-oss-120b license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - openai - unsloth --- <div> <p style="margin-bottom: 0; margin-top: 0;"> <strong>See <a href="https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681">our collection</a> for all versions of gpt-oss including GGUF, 4-bit & 16-bit formats.</strong> </p> <p style="margin-bottom: 0;"> <em>Learn to run gpt-oss correctly - <a href="https://docs.unsloth.ai/basics/gpt-oss">Read our Guide</a>.</em> </p> <p style="margin-top: 0;margin-bottom: 0;"> <em>See <a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0 GGUFs</a> for our quantization benchmarks.</em> </p> <div style="display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/gpt-oss"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> <h1 style="margin-top: 0rem;">✨ Read our gpt-oss Guide <a href="https://docs.unsloth.ai/basics/gpt-oss">here</a>!</h1> </div> - Read our Blog about gpt-oss support: [unsloth.ai/blog/gpt-oss](https://unsloth.ai/blog/gpt-oss) - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks). - Thank you to the [llama.cpp](https://github.com/ggml-org/llama.cpp) team for their work on supporting this model. We wouldn't be able to release quants without them! # gpt-oss-120b Details <p align="center"> <img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://openai.com/index/gpt-oss-model-card"><strong>System card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single H100 GPU and the `gpt-oss-20b` model run within 16GB of memory. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-120b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-120b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-120b ollama pull gpt-oss:120b ollama run gpt-oss:120b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-120b lms get openai/gpt-oss-120b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-120b huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware.
xylqn7/mats-llama3.1-8-instruct-finance
xylqn7
2025-08-20T19:47:14Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "unsloth", "trl", "base_model:unsloth/Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-20T19:41:12Z
--- base_model: unsloth/Llama-3.1-8B-Instruct library_name: transformers model_name: mats-llama3.1-8-instruct-finance tags: - generated_from_trainer - sft - unsloth - trl licence: license --- # Model Card for mats-llama3.1-8-instruct-finance This model is a fine-tuned version of [unsloth/Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="xylqn7/mats-llama3.1-8-instruct-finance", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/foundary/clarifying-em/runs/z2jjxaf6) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
roeker/blockassist-bc-quick_wiry_owl_1755719078
roeker
2025-08-20T19:45:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:45:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_1755694501
rbelanec
2025-08-20T19:45:17Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T19:41:36Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_copa_1755694501 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_1755694501 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Num Input Tokens Seen: 273712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2146 | 0.5 | 90 | 0.2563 | 13664 | | 0.2358 | 1.0 | 180 | 0.2523 | 27408 | | 0.2177 | 1.5 | 270 | 0.2437 | 41120 | | 0.2349 | 2.0 | 360 | 0.2347 | 54752 | | 0.2026 | 2.5 | 450 | 0.2439 | 68432 | | 0.2456 | 3.0 | 540 | 0.2322 | 82176 | | 0.2229 | 3.5 | 630 | 0.2402 | 95936 | | 0.2258 | 4.0 | 720 | 0.2348 | 109584 | | 0.2307 | 4.5 | 810 | 0.2455 | 123232 | | 0.2319 | 5.0 | 900 | 0.2316 | 137008 | | 0.2225 | 5.5 | 990 | 0.2376 | 150672 | | 0.2297 | 6.0 | 1080 | 0.2333 | 164336 | | 0.2299 | 6.5 | 1170 | 0.2325 | 178032 | | 0.2122 | 7.0 | 1260 | 0.2332 | 191712 | | 0.2274 | 7.5 | 1350 | 0.2341 | 205312 | | 0.2397 | 8.0 | 1440 | 0.2398 | 219072 | | 0.2326 | 8.5 | 1530 | 0.2392 | 232768 | | 0.2314 | 9.0 | 1620 | 0.2372 | 246416 | | 0.2125 | 9.5 | 1710 | 0.2374 | 260112 | | 0.2223 | 10.0 | 1800 | 0.2389 | 273712 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
jukson/gemma3-270m-finetuned-reasoning-gguf
jukson
2025-08-20T19:44:55Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T19:44:25Z
# gemma3-270m-finetuned-reasoning-gguf GGUF Q8_0 export for llama.cpp/Ollama.
rbelanec/train_cb_1755694499
rbelanec
2025-08-20T19:43:56Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T19:41:13Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cb_1755694499 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_1755694499 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.4415 - Num Input Tokens Seen: 316840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.5865 | 0.5044 | 57 | 0.5033 | 17136 | | 0.5224 | 1.0088 | 114 | 1.1373 | 32376 | | 0.2822 | 1.5133 | 171 | 0.7325 | 48728 | | 0.2233 | 2.0177 | 228 | 0.2152 | 64040 | | 0.2704 | 2.5221 | 285 | 0.1964 | 79784 | | 0.0203 | 3.0265 | 342 | 0.2481 | 96200 | | 0.137 | 3.5310 | 399 | 0.2158 | 112440 | | 0.2143 | 4.0354 | 456 | 0.2686 | 128712 | | 0.0541 | 4.5398 | 513 | 0.5688 | 143944 | | 0.2174 | 5.0442 | 570 | 0.2900 | 160016 | | 0.0539 | 5.5487 | 627 | 0.4841 | 176688 | | 0.0375 | 6.0531 | 684 | 0.2865 | 192272 | | 0.0032 | 6.5575 | 741 | 0.3885 | 208944 | | 0.0002 | 7.0619 | 798 | 0.4208 | 224288 | | 0.0031 | 7.5664 | 855 | 0.4617 | 239840 | | 0.0002 | 8.0708 | 912 | 0.4403 | 255984 | | 0.0031 | 8.5752 | 969 | 0.4409 | 272064 | | 0.0013 | 9.0796 | 1026 | 0.4438 | 287928 | | 0.0007 | 9.5841 | 1083 | 0.4399 | 303800 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
MilicayAngelDavid/Milica.y.Angel.David.Video.Debut.Erome.Video
MilicayAngelDavid
2025-08-20T19:43:38Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:41:19Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
wildsonbbl/gnnepcsaft
wildsonbbl
2025-08-20T19:43:17Z
0
0
null
[ "onnx", "en", "license:gpl-3.0", "region:us" ]
null
2025-01-26T19:46:27Z
--- license: gpl-3.0 language: - en --- # GNNePCSAFT Project Project focused in the use of graph neural networks to estimate the pure-component parameters of the Equation of State [ePC-SAFT](https://en.wikipedia.org/wiki/PC-SAFT). More info at GitHub repo [GNNePCSAFT](https://github.com/wildsonbbl/gnnepcsaft).
VoilaRaj/81_b_N7ovf8
VoilaRaj
2025-08-20T19:43:00Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:37:29Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755718753
canoplos112
2025-08-20T19:41:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:39:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718822
xinnn32
2025-08-20T19:41:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:40:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_wsc_1755694498
rbelanec
2025-08-20T19:40:27Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T19:35:54Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_wsc_1755694498 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_wsc_1755694498 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the wsc dataset. It achieves the following results on the evaluation set: - Loss: 0.3509 - Num Input Tokens Seen: 437760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.4134 | 0.5020 | 125 | 0.9847 | 22304 | | 0.4292 | 1.0040 | 250 | 0.3975 | 44064 | | 0.3916 | 1.5060 | 375 | 0.3906 | 65808 | | 0.3158 | 2.0080 | 500 | 0.3806 | 88048 | | 0.3942 | 2.5100 | 625 | 0.3658 | 109696 | | 0.3565 | 3.0120 | 750 | 0.3480 | 131872 | | 0.3885 | 3.5141 | 875 | 0.3620 | 154416 | | 0.3387 | 4.0161 | 1000 | 0.3514 | 176048 | | 0.3332 | 4.5181 | 1125 | 0.3515 | 198432 | | 0.3669 | 5.0201 | 1250 | 0.3565 | 219680 | | 0.3469 | 5.5221 | 1375 | 0.3494 | 241136 | | 0.3545 | 6.0241 | 1500 | 0.3506 | 263616 | | 0.3451 | 6.5261 | 1625 | 0.3497 | 285424 | | 0.324 | 7.0281 | 1750 | 0.3610 | 307792 | | 0.3183 | 7.5301 | 1875 | 0.3650 | 329840 | | 0.3382 | 8.0321 | 2000 | 0.3508 | 351552 | | 0.3475 | 8.5341 | 2125 | 0.3498 | 373424 | | 0.3608 | 9.0361 | 2250 | 0.3510 | 395616 | | 0.3417 | 9.5382 | 2375 | 0.3496 | 417520 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Archita-Phukan-Viral-full-Video-hq-on/Hot.New.full.Videos.Archita.Phukan.Viral.Video.New.MMS.Original
Archita-Phukan-Viral-full-Video-hq-on
2025-08-20T19:39:14Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:39:07Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?viral-videos "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
lautan/blockassist-bc-gentle_patterned_goat_1755717185
lautan
2025-08-20T19:38:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:38:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milica-y-angel-david-debut-video-erome/Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
milica-y-angel-david-debut-video-erome
2025-08-20T19:38:26Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:31:09Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755717019
rvipitkirubbe
2025-08-20T19:36:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:36:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aralper18/blockassist-bc-gilded_tangled_albatross_1755718299
aralper18
2025-08-20T19:35:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gilded tangled albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:34:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gilded tangled albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_stsb_1755694490
rbelanec
2025-08-20T19:34:22Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T18:53:28Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_stsb_1755694490 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_stsb_1755694490 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the stsb dataset. It achieves the following results on the evaluation set: - Loss: 1.0312 - Num Input Tokens Seen: 3924688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.6558 | 0.5002 | 1294 | 0.9696 | 196128 | | 0.4994 | 1.0004 | 2588 | 0.8021 | 392912 | | 0.5987 | 1.5006 | 3882 | 0.7167 | 589232 | | 0.6127 | 2.0008 | 5176 | 0.6759 | 785392 | | 0.4299 | 2.5010 | 6470 | 0.5886 | 980992 | | 0.7941 | 3.0012 | 7764 | 0.5592 | 1178208 | | 0.3966 | 3.5014 | 9058 | 0.5541 | 1375792 | | 0.3103 | 4.0015 | 10352 | 0.5729 | 1571200 | | 0.4157 | 4.5017 | 11646 | 0.5512 | 1768912 | | 0.409 | 5.0019 | 12940 | 0.5306 | 1964080 | | 0.3542 | 5.5021 | 14234 | 0.5264 | 2160080 | | 0.3236 | 6.0023 | 15528 | 0.5257 | 2356800 | | 0.2516 | 6.5025 | 16822 | 0.6130 | 2552912 | | 0.1632 | 7.0027 | 18116 | 0.6006 | 2749840 | | 0.343 | 7.5029 | 19410 | 0.7188 | 2946160 | | 0.1477 | 8.0031 | 20704 | 0.7346 | 3142224 | | 0.1178 | 8.5033 | 21998 | 0.8293 | 3338752 | | 0.0911 | 9.0035 | 23292 | 0.8598 | 3534272 | | 0.1158 | 9.5037 | 24586 | 1.0161 | 3730128 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
aifffffffd/GemmaWordCombiner
aifffffffd
2025-08-20T19:34:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:18:08Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: GemmaWordCombiner tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for GemmaWordCombiner This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aifffffffd/GemmaWordCombiner", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755718314
canoplos112
2025-08-20T19:33:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:32:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/SvenBorodun-ACT_BBOX-so100-tictactoe-v6fzc
phospho-app
2025-08-20T19:33:18Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:phospho-ai/so100-tictactoe", "region:us" ]
robotics
2025-08-20T19:31:57Z
--- datasets: phospho-ai/so100-tictactoe library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` The object 'red ball' was detected in 0 episodes in main camera (should be: 10 episodes min). This is not enough to train a model. Check your dataset: https://lerobot-visualize-dataset.hf.space/phospho-ai/so100-tictactoe/ and rephrase the instruction. ``` ## Training parameters: - **Dataset**: [phospho-ai/so100-tictactoe](https://huggingface.co/datasets/phospho-ai/so100-tictactoe) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
VoilaRaj/81_b_XKESvk
VoilaRaj
2025-08-20T19:32:41Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:27:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
roceleylaw/gemma3-4B-it-MDC-merged
roceleylaw
2025-08-20T19:32:09Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-20T05:40:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bboppp/blockassist-bc-rangy_mighty_hare_1755718236
bboppp
2025-08-20T19:31:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rangy mighty hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:30:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rangy mighty hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718114
xinnn32
2025-08-20T19:29:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:29:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717929
canoplos112
2025-08-20T19:27:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:26:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-silent_silent_falcon_1755717990
fopppyu
2025-08-20T19:27:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent silent falcon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:26:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent silent falcon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ritoto/eve
ritoto
2025-08-20T19:27:01Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T18:56:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: eve --- # Eve <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `eve` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "eve", "lora_weights": "https://huggingface.co/ritoto/eve/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ritoto/eve', weight_name='lora.safetensors') image = pipeline('eve').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/ritoto/eve/discussions) to add images that show off what you’ve made with this LoRA.
enpasos/jax2onnx-models
enpasos
2025-08-20T19:26:28Z
0
0
null
[ "onnx", "jax", "jax2onnx", "model-conversion", "license:apache-2.0", "region:us" ]
null
2025-06-29T09:47:44Z
--- license: apache-2.0 tags: - onnx - jax - jax2onnx - model-conversion --- # jax2onnx-models 🧪 This repository hosts **ONNX models** generated by the [`jax2onnx`](https://github.com/enpasos/jax2onnx) converter as part of its automated **pytest suite**. These models are used to: - Validate correctness of the ONNX export pipeline - Provide public artifacts for visualization and inspection (e.g., with Netron) - Enable CI verification of shape/type fidelity, runtime compatibility, and graph structure --- ## 📦 Format All models are stored in the **ONNX (Open Neural Network Exchange)** format. They are compatible with: - ONNX runtimes (ONNX Runtime, TensorRT, etc.) - Netron for visual graph inspection - External ONNX validators Models may include both small unit test graphs and larger architectures like GPT LLMs or Vision Transformers. --- ## 🔁 Update Policy - This repository is updated regularly with models generated during testing. - **Only the latest model state is kept** — older versions are overwritten as needed. - We do **not maintain file history** to keep the repository lightweight. --- ## 📄 License This repository and all included model files are licensed under the **Apache License 2.0**. > See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
jmartin233/ppo-LunarLander-v2-unit8
jmartin233
2025-08-20T19:25:37Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2025-08-20T19:25:28Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -206.22 +/- 103.21 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 10 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jmartin233/ppo-LunarLander-v2-unit8' 'batch_size': 512 'minibatch_size': 128} ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755716382
lisaozill03
2025-08-20T19:25:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:25:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Milica-y-Angel-David-Videos/X.Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
Milica-y-Angel-David-Videos
2025-08-20T19:25:06Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:18:37Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
Milica-y-Angel-David-Videos/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
Milica-y-Angel-David-Videos
2025-08-20T19:25:04Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:15:29Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717839
xinnn32
2025-08-20T19:24:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:24:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755716166
vwzyrraz7l
2025-08-20T19:23:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:23:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755716248
koloni
2025-08-20T19:22:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:22:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_ZzonN0
VoilaRaj
2025-08-20T19:22:23Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:16:42Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755716183
sampingkaca72
2025-08-20T19:22:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:22:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755717509
Leoar
2025-08-20T19:21:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755717597
Elizavr
2025-08-20T19:20:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755715865
katanyasekolah
2025-08-20T19:20:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755717561
8septiadi8
2025-08-20T19:20:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mcptester0606/MyAwesomeModel-TestRepo
mcptester0606
2025-08-20T19:20:26Z
0
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-20T19:20:16Z
--- license: mit library_name: transformers --- # MyAwesomeModel-TestRepo <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers-logo.png" width="60%" alt="MyAwesomeModel" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="LICENSE" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/mcptester0606/MyAwesomeModel-TestRepo" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue" style="display: inline-block; vertical-align: middle;"/> </a> </div> ## 1. Introduction The MyAwesomeModel-TestRepo represents the best performing checkpoint from our comprehensive training pipeline. This model has undergone extensive evaluation across 15 different benchmark categories and demonstrates exceptional performance across reasoning, language understanding, and generation tasks. <div align="center"> <img width="80%" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/performance-dashboard.png"> </div> ## 2. Model Details - **Model Type**: BERT-based transformer - **Architecture**: BertModel - **Checkpoint**: step_1000 (best performing) - **Overall Score**: 0.821 (weighted average across all benchmarks) - **Total Parameters**: Standard BERT configuration - **Training Steps**: 1000 ## 3. Evaluation Results ### Comprehensive Benchmark Results <div align="center"> | | Benchmark | Previous Best | MyAwesomeModel-TestRepo | |---|---|---|---| | **Core Reasoning Tasks** | Math Reasoning | 0.521 | **0.585** | | | Logical Reasoning | 0.810 | **0.923** | | | Common Sense | 0.725 | **0.853** | | **Language Understanding** | Reading Comprehension | 0.690 | **0.814** | | | Question Answering | 0.601 | **0.665** | | | Text Classification | 0.820 | **0.987** | | | Sentiment Analysis | 0.790 | **0.950** | | **Generation Tasks** | Code Generation | 0.640 | **0.747** | | | Creative Writing | 0.601 | **0.713** | | | Dialogue Generation | 0.639 | **0.752** | | | Summarization | 0.760 | **0.901** | | **Specialized Capabilities**| Translation | 0.801 | **0.963** | | | Knowledge Retrieval | 0.670 | **0.787** | | | Instruction Following | 0.751 | **0.875** | | | Safety Evaluation | 0.725 | **0.865** | </div> ### Performance Analysis The MyAwesomeModel-TestRepo demonstrates exceptional performance improvements across all evaluated categories: - **Mathematical Reasoning**: 12.3% improvement over previous best - **Logical Reasoning**: 14.0% improvement over previous best - **Text Classification**: 20.4% improvement over previous best - **Sentiment Analysis**: 20.3% improvement over previous best - **Translation**: 20.2% improvement over previous best ### Overall Performance Summary With an overall weighted score of **0.821**, MyAwesomeModel-TestRepo significantly outperforms previous iterations and establishes new state-of-the-art results across multiple benchmark categories. ## 4. How to Use ### Installation ```bash pip install transformers torch ``` ### Quick Start ```python from transformers import AutoModel, AutoTokenizer # Load the model and tokenizer model_name = "mcptester0606/MyAwesomeModel-TestRepo" model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use the model inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model(**inputs) ``` ### Model Configuration ```python { "model_type": "bert", "architectures": ["BertModel"] } ``` ## 5. Training Details - **Training Steps**: 1000 - **Learning Rate**: Standard BERT optimization - **Batch Size**: Optimized for performance - **Evaluation Frequency**: Every 100 steps - **Best Checkpoint**: Identified through comprehensive benchmark evaluation ## 6. Benchmark Methodology All evaluations were conducted using standardized benchmark suites with consistent evaluation protocols across all 15 categories. Results are reported with three decimal places precision to ensure accuracy in performance comparisons. ## 7. Limitations and Considerations While MyAwesomeModel-TestRepo demonstrates strong performance across benchmarks, users should consider: - Performance may vary on domain-specific tasks - Results are based on standardized benchmarks - Real-world performance may differ from benchmark scores ## 8. License This model is licensed under the MIT License. See the LICENSE file for more details. ## 9. Citation If you use this model in your research, please cite: ```bibtex @misc{myawesomemodel2025, title={MyAwesomeModel-TestRepo: Comprehensive Evaluation Results}, author={MyAwesomeModel Team}, year={2025}, url={https://huggingface.co/mcptester0606/MyAwesomeModel-TestRepo} } ``` ## 10. Contact For questions or issues, please open an issue on the Hugging Face model repository or contact us through the repository discussions.
unitova/blockassist-bc-zealous_sneaky_raven_1755715970
unitova
2025-08-20T19:19:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:19:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717425
canoplos112
2025-08-20T19:19:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:17:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Renu-Sara-Alexander-Viral-Video-Clips-hq/Hot.New.full.videos.Renu.Sara.Alexander.Viral.Video.Official.Tutorial
Renu-Sara-Alexander-Viral-Video-Clips-hq
2025-08-20T19:18:59Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:18:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
dsdsdsdfffff/code_ffn_contrast_code_vs_commonsense
dsdsdsdfffff
2025-08-20T19:18:43Z
0
0
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:10:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zwa73/SoulTide-ImageData-Model
zwa73
2025-08-20T19:18:34Z
7
0
null
[ "dataset:zwa73/SoulTide-ImageData-Dataset", "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-01T10:51:22Z
--- license: cc-by-nc-4.0 datasets: - zwa73/SoulTide-ImageData-Dataset --- character ____[char] ______current - 同类底模的最新版本 ________[version] - 模型目录 __________[char+version.safetensor] - 挑选的最佳模型 __________[char+version.zip] - 训练资料及较好模型 __________[styles.txt] - 模型触发词 ______archive - 旧版本版本, 结构同current
afsagag/t5-spotify-features-generator
afsagag
2025-08-20T19:18:31Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "music", "spotify", "audio-features", "en", "dataset:custom", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-20T19:12:37Z
--- library_name: transformers license: apache-2.0 base_model: t5-base tags: - text2text-generation - music - spotify - audio-features - t5 language: - en datasets: - custom metrics: - mae - mse - correlation --- # T5 Spotify Features Generator A fine-tuned T5-base model that generates Spotify audio features from natural language music descriptions. ## Model Details ### Model Description This model converts natural language descriptions of music preferences into Spotify audio feature values. For example, "energetic dance music for a party" becomes `"danceability": 0.9, "energy": 0.9, "valence": 0.9`. - **Developed by:** afsagag - **Model type:** Text-to-Text Generation (T5) - **Language(s):** English - **License:** Apache-2.0 - **Finetuned from model:** [t5-base](https://huggingface.co/t5-base) ### Model Sources - **Repository:** https://huggingface.co/afsagag/t5-spotify-features-generator ## Uses ### Direct Use Generate Spotify audio features from music descriptions for: - Music recommendation systems - Playlist generation - Music discovery applications - Audio feature prediction research ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch # Load model and tokenizer model = T5ForConditionalGeneration.from_pretrained("afsagag/t5-spotify-features-generator") tokenizer = T5Tokenizer.from_pretrained("afsagag/t5-spotify-features-generator") def generate_spotify_features(prompt, model, tokenizer): input_text = f"prompt: {prompt}" input_ids = tokenizer(input_text, return_tensors="pt", max_length=256, truncation=True).input_ids with torch.no_grad(): outputs = model.generate( input_ids, max_length=256, num_beams=4, early_stopping=True, do_sample=False, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result # Example usage prompt = "I need energetic dance music for a party" features = generate_spotify_features(prompt, model, tokenizer) print(features) # Output: "danceability": 0.9, "energy": 0.9, "valence": 0.9 ``` ### Out-of-Scope Use - Generating actual audio or music files - Non-English music descriptions (model trained on English only) - Precise music recommendation without human oversight - Applications requiring guaranteed JSON format output ## Bias, Risks, and Limitations - **Training Data Bias:** Reflects patterns in the training dataset, may not represent all musical styles or cultural contexts - **JSON Format Issues:** May occasionally generate incomplete JSON objects - **Subjective Features:** Audio features like "valence" and "energy" are subjective and may not align with all listeners' perceptions - **Western Music Bias:** Training focused on Western musical concepts and terminology ### Recommendations - Validate generated features against expected ranges - Use as a starting point rather than definitive feature values - Consider cultural and stylistic diversity when applying to diverse music catalogs - Implement post-processing to ensure valid JSON output if required ## Training Details ### Training Data Custom dataset of 4,206 examples pairing natural language music descriptions with Spotify audio features: - **Training set:** 3,364 examples - **Validation set:** 421 examples - **Test set:** 421 examples ### Training Procedure #### Training Hyperparameters - **Training epochs:** 5 - **Learning rate:** 2e-4 - **Batch size:** 32 (train), 16 (eval) - **Gradient accumulation steps:** 2 - **LR scheduler:** Cosine with 5% warmup - **Max sequence length:** 256 tokens - **Training regime:** bf16 mixed precision #### Speeds, Sizes, Times - **Training time:** ~58 minutes - **Final training loss:** 0.5579 - **Model size:** ~892MB ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data Same distribution as training data: natural language music descriptions paired with Spotify audio features. #### Metrics - Mean Absolute Error (MAE) between predicted and actual feature values - Mean Squared Error (MSE) for regression accuracy - Pearson correlation coefficients for individual features - Valid JSON ratio for output format correctness ### Results The model demonstrates strong semantic understanding of musical concepts: | Prompt | Generated Features | |--------|-------------------| | "I need energetic dance music for a party" | `"danceability": 0.9, "energy": 0.9, "valence": 0.9` | | "Play calm acoustic songs for studying" | `"acousticness": 0.8, "energy": 0.2, "valence": 0.2` | | "Upbeat music for working out" | `"danceability": 0.7, "energy": 0.8, "valence": 0.7` | | "Relaxing instrumental background music" | `"acousticness": 0.3, "energy": 0.2, "instrumentalness": 0.8, "valence": 0.2` | | "Happy pop music for driving" | `"danceability": 0.8, "energy": 0.8, "valence": 0.8` | ## Technical Specifications ### Model Architecture and Objective - **Base Architecture:** T5 (Text-To-Text Transfer Transformer) - **Model Size:** t5-base (220M parameters) - **Objective:** Sequence-to-sequence generation of audio features from text descriptions - **Input Format:** `"prompt: {natural_language_description}"` - **Output Format:** JSON-style audio feature values ### Compute Infrastructure #### Hardware - GPU with CUDA support - Mixed precision training (bf16) #### Software - PyTorch with CUDA - Transformers library - Datasets library for data processing ## Spotify Audio Features Reference The model generates these Spotify audio features: - **danceability** (0.0-1.0): How suitable a track is for dancing - **energy** (0.0-1.0): Perceptual measure of intensity and power - **valence** (0.0-1.0): Musical positivity (happy vs sad) - **acousticness** (0.0-1.0): Confidence measure of acoustic nature - **instrumentalness** (0.0-1.0): Predicts absence of vocals - **speechiness** (0.0-1.0): Presence of spoken words - **liveness** (0.0-1.0): Presence of live audience - **loudness** (dB): Overall loudness, typically -60 to 0 dB - **tempo** (BPM): Estimated beats per minute - **duration_ms**: Track duration in milliseconds - **key** (0-11): Musical key (C=0, C♯/D♭=1, etc.) - **mode** (0-1): Modality (0=minor, 1=major) - **time_signature** (3-7): Time signature - **popularity** (0-100): Spotify popularity score ## Citation ```bibtex @misc{t5-spotify-features-generator, author = {afsagag}, title = {T5 Spotify Features Generator: Fine-tuned T5 for Music Feature Prediction from Natural Language}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/afsagag/t5-spotify-features-generator}} } ``` ## Model Card Authors afsagag ## Model Card Contact Contact through Hugging Face profile: [@afsagag](https://huggingface.co/afsagag)
bumblebee-hsu/colab
bumblebee-hsu
2025-08-20T19:18:08Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-08-20T19:14:55Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: A landscape picture of Kaohsiung widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - bumblebee-hsu/colab <Gallery /> ## Model description These are bumblebee-hsu/colab LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use A landscape picture of Kaohsiung to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](bumblebee-hsu/colab/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mohda/blockassist-bc-regal_fierce_hummingbird_1755717400
mohda
2025-08-20T19:17:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:17:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
olga-vizcaino-video-infidelidad-colombia/VER.viral.video.de.Olga.Vizcaino.infidelidad
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:17:50Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:17:12Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
saberbx/smollmV1
saberbx
2025-08-20T19:15:28Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-20T14:09:30Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jukson/gemma3-270m-finetuned-lora
jukson
2025-08-20T19:13:28Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/gemma-3-270m-it", "lora", "sft", "transformers", "trl", "unsloth", "en", "base_model:unsloth/gemma-3-270m-it", "license:apache-2.0", "region:us" ]
null
2025-08-20T18:57:14Z
--- base_model: unsloth/gemma-3-270m-it tags: - base_model:adapter:unsloth/gemma-3-270m-it - lora - sft - transformers - trl - unsloth license: apache-2.0 language: - en library_name: peft --- # Uploaded model - **Developed by:** jukson - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ### Framework versions - PEFT 0.17.0
olga-vizcaino-video-infidelidad-colombia/Ver.viral.video.de.Olga.Vizcaino.infidelidad.en.Colombia
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:13:17Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:10:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas. ¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora? La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo. LEA TAMBIÉN: Video de Milica y Ángel David debutando: ¿es real y por qué es viral? Olga, por su parte, ha negado haber sabido que Villar estaba comprometido o que sería padre. En una entrevista para el programa En La Movida, afirmó: “No sabía nada de eso. Él y yo nos escribíamos mutuamente y tuvimos química, física, matemática, de todo”. También aseguró que nunca lo vio acompañado de una mujer y que siempre lo encontraba con amigos en la calle o en fiestas. Fotos y contenido de Olga Vizcaino En la conversación con medios, Olga respondió a las críticas con frases como: “Yo no me como a marido ajeno… o es que él era ajeno y yo no sabía, o es que él la negó”. Además, reveló que actualmente vende contenido para adultos a través de Telegram y que planea abrir una cuenta oficial en 'la página azul'. Según sus palabras, esta decisión la tomó después de que el escándalo se hiciera público, asegurando que le “encanta” crear este tipo de material. En la entrevista completa “Entrevista - Olga Vizcaíno (chocho bonito)”, la protagonista detalla cómo ha manejado la exposición mediática y sus planes para monetizar su imagen. También explica que el contenido filtrado “no es ni la cuarta parte” de lo que tiene en su celular y que está preparada para que se difundan más videos. Filtración de Olga Vizcaino Olga ha manifestado su intención de emprender acciones legales contra Yoselin Mora, a quien acusa de “hackear” el Facebook de Adrián Villar para publicar fotos y conversaciones privadas. Según Olga, esta acción fue premeditada y buscaba dañar su imagen. Más allá del morbo, este episodio ha abierto discusiones sobre la privacidad, la exposición en redes sociales y el impacto de los escándalos virales en la vida personal. La difusión del video de Olga Vizcaino ha puesto sobre la mesa temas como la violencia digital, el derecho a la intimidad y la responsabilidad de quienes comparten contenido sensible.
harjinder-kaur-uppal-viral-video-Clip/New.full.videos.harjinder.kaur.uppal.Viral.Video.Official.Tutorial
harjinder-kaur-uppal-viral-video-Clip
2025-08-20T19:12:54Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:12:40Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mikasenghaas/Qwen3-30B-A3B-SFT-Math-Code-1M-400
mikasenghaas
2025-08-20T19:12:42Z
0
0
transformers
[ "transformers", "pytorch", "qwen3_moe", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-30B-A3B-Base", "base_model:finetune:Qwen/Qwen3-30B-A3B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:06:05Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-30B-A3B-Base --- # Qwen3-30B-A3B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-30B-A3B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 30.5B in total and 3.3B activated - Number of Paramaters (Non-Embedding): 29.9B - Number of Layers: 48 - Number of Attention Heads (GQA): 32 for Q and 4 for KV - Number of Experts: 128 - Number of Activated Experts: 8 - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3_moe' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-30B-A3B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-30B-A3B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-30B-A3B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717124
xinnn32
2025-08-20T19:12:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:12:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717033
canoplos112
2025-08-20T19:12:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:11:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo24_1
AnonymousCS
2025-08-20T19:11:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T19:09:02Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo24_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo24_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2204 - Accuracy: 0.9409 - 1-f1: 0.9057 - 1-recall: 0.8533 - 1-precision: 0.9651 - Balanced Acc: 0.9189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2269 | 1.0 | 25 | 0.1766 | 0.9447 | 0.9135 | 0.8764 | 0.9538 | 0.9276 | | 0.0969 | 2.0 | 50 | 0.2038 | 0.9396 | 0.9084 | 0.8996 | 0.9173 | 0.9296 | | 0.1245 | 3.0 | 75 | 0.2204 | 0.9409 | 0.9057 | 0.8533 | 0.9651 | 0.9189 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
My-Programer-future/program
My-Programer-future
2025-08-20T19:11:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T19:11:15Z
--- license: apache-2.0 ---
lmstudio-community/LFM2-VL-1.6B-GGUF
lmstudio-community
2025-08-20T19:10:12Z
0
0
null
[ "gguf", "image-text-to-text", "base_model:LiquidAI/LFM2-VL-1.6B", "base_model:quantized:LiquidAI/LFM2-VL-1.6B", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-20T15:20:12Z
--- quantized_by: bartowski pipeline_tag: image-text-to-text base_model: LiquidAI/LFM2-VL-1.6B base_model_relation: quantized --- ## 💫 Community Model> LFM2 VL 1.6B by Liquidai *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br> **Original model**: [LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br> ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755716951
Elizavr
2025-08-20T19:09:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:09:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716826
xinnn32
2025-08-20T19:07:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:07:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tiny-random/seed-oss
tiny-random
2025-08-20T19:07:37Z
0
0
transformers
[ "transformers", "safetensors", "seed_oss", "text-generation", "conversational", "base_model:ByteDance-Seed/Seed-OSS-36B-Instruct", "base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:07:34Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - ByteDance-Seed/Seed-OSS-36B-Instruct --- This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct). ### Example usage: - vLLM ```bash python3 -m vllm.entrypoints.openai.api_server \ --enable-auto-tool-choice \ --tool-call-parser seed_oss \ --trust-remote-code \ --model ./<local_download_folder> \ --chat-template ./<local_download_folder>/chat_template.jinja \ --tensor-parallel-size 2 ``` - Transformers ```python import os import re import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "tiny-random/seed-oss" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "user", "content": "How to make pasta?"}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", thinking_budget=64 # control the thinking budget ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128) output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct" save_folder = "/tmp/tiny-random/seed-oss" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['head_dim'] = 32 # vllm requirement config_json['intermediate_size'] = 32 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 # better support tensor parallel config_json['tie_word_embeddings'] = False with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text SeedOssForCausalLM( (model): SeedOssModel( (embed_tokens): Embedding(155136, 8, padding_idx=1) (layers): ModuleList( (0-1): 2 x SeedOssDecoderLayer( (self_attn): SeedOssAttention( (q_proj): Linear(in_features=8, out_features=256, bias=True) (k_proj): Linear(in_features=8, out_features=128, bias=True) (v_proj): Linear(in_features=8, out_features=128, bias=True) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (mlp): SeedOssMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): SeedOssRMSNorm((8,), eps=1e-06) (post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06) ) ) (norm): SeedOssRMSNorm((8,), eps=1e-06) (rotary_emb): SeedOssRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=155136, bias=False) ) ```
olga-vizcaino-video-infidelidad-colombia/Ver.Olga.Vizcaino.video.infidelidad.en.Colombia.viral.en.Twitter.y.Telegram
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:06:58Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:04:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas. ¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora? La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
lmstudio-community/LFM2-VL-450M-GGUF
lmstudio-community
2025-08-20T19:06:15Z
0
0
null
[ "gguf", "image-text-to-text", "base_model:LiquidAI/LFM2-VL-450M", "base_model:quantized:LiquidAI/LFM2-VL-450M", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-20T15:19:50Z
--- quantized_by: bartowski pipeline_tag: image-text-to-text base_model: LiquidAI/LFM2-VL-450M base_model_relation: quantized --- ## 💫 Community Model> LFM2 VL 450M by Liquidai *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br> **Original model**: [LFM2-VL-450M](https://huggingface.co/LiquidAI/LFM2-VL-450M)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br> ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755714871
kojeklollipop
2025-08-20T19:04:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:04:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dolboebina/Affine-5E2cNqw1Ntm7q5wv8EaANeGzgW7BcEnNovsfREnMNW4U2oeC
Dolboebina
2025-08-20T19:04:36Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:02:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1755716498
gasoline2255
2025-08-20T19:04:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless sizable wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:03:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless sizable wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755715066
rvipitkirubbe
2025-08-20T19:04:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:03:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716539
xinnn32
2025-08-20T19:02:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:02:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755714817
ihsanridzi
2025-08-20T19:01:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:01:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_GFbpqy
VoilaRaj
2025-08-20T19:01:31Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T18:55:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).