modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-23 00:38:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
517 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-23 00:37:56
card
stringlengths
11
1.01M
Willinton/MyGemmaNPC
Willinton
2025-08-21T10:25:42Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T10:22:57Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Willinton/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF
cyberjunkee
2025-08-21T10:06:23Z
0
0
null
[ "gguf", "mixture-of-experts", "moe", "expert-pruning", "gpt-oss", "openai", "reasoning", "all", "specialized", "efficient", "transformer", "causal-lm", "text-generation", "pytorch", "pruned-model", "domain-specific", "llama-cpp", "gguf-my-repo", "en", "dataset:AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations", "base_model:AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts", "base_model:quantized:AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T10:06:04Z
--- license: apache-2.0 datasets: - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations language: - en pipeline_tag: text-generation tags: - mixture-of-experts - moe - expert-pruning - gpt-oss - openai - reasoning - all - specialized - efficient - transformer - causal-lm - text-generation - pytorch - pruned-model - domain-specific - llama-cpp - gguf-my-repo base_model: AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts --- # cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF This model was converted to GGUF format from [`AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts`](https://huggingface.co/AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AmanPriyanshu/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF --hf-file gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF --hf-file gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF --hf-file gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo cyberjunkee/gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-Q4_K_M-GGUF --hf-file gpt-oss-4.2b-specialized-all-pruned-moe-only-4-experts-q4_k_m.gguf -c 2048 ```
giovannidemuri/test_model_lora
giovannidemuri
2025-08-21T09:53:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T09:38:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755768005
katanyasekolah
2025-08-21T09:47:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:47:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/esty-s-minimalistic-sketch-style
Muapi
2025-08-21T09:26:24Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:26:13Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Esty's Minimalistic Sketch Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:959300@1074020", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Medved444/blockassist-bc-bellowing_finicky_manatee_1755767077
Medved444
2025-08-21T09:23:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:22:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/bonafida.studio
Muapi
2025-08-21T09:21:44Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:21:30Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Bonafida.Studio ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Delirium style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1287599@1257218", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/flipping-off-middle-finger-pony-flux
Muapi
2025-08-21T09:17:01Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:16:52Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flipping Off || Middle Finger [Pony + Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: middlefinger, flippingthebird ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:796280@890443", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
wasabuko/blockassist-bc-noisy_zealous_macaw_1755765558
wasabuko
2025-08-21T09:15:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy zealous macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:12:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy zealous macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/3d-cartoon-vision-flux
Muapi
2025-08-21T09:14:41Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:14:23Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 3D Cartoon Vision FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:662924@741868", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/jinx-arcane-league-of-legends-flux-lora
Muapi
2025-08-21T09:11:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:11:28Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Jinx - Arcane (League of Legends) [FLUX] LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Jinx ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:733713@1011812", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755765993
sampingkaca72
2025-08-21T09:11:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:11:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755765623
rvipitkirubbe
2025-08-21T09:07:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:07:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1755767197
esi777
2025-08-21T09:07:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T09:07:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/minrill-minimalist-realistic-illustrations-flux-lora
Muapi
2025-08-21T09:02:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-21T09:02:12Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Minrill] - Minimalist Realistic Illustrations - FLUX LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: minrill ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:839528@939251", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755766721
IvanJAjebu
2025-08-21T08:59:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T08:59:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755765007
manusiaperahu2012
2025-08-21T08:58:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T08:57:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gurpreetlucky/lora_model
gurpreetlucky
2025-08-21T08:41:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-21T08:38:04Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pshuaibi/ppo-LunarLander-v2
Pshuaibi
2025-08-21T08:41:12Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-21T08:40:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.28 +/- 9.53 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
syuvers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sleek_gilded_chameleon
syuvers
2025-08-21T08:38:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am sleek_gilded_chameleon", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T06:22:26Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am sleek_gilded_chameleon --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
guinansu/MedSAMix
guinansu
2025-08-21T08:23:19Z
14
1
transformers
[ "transformers", "safetensors", "sam", "mask-generation", "medical", "image-segmentation", "arxiv:2508.11032", "base_model:facebook/sam-vit-base", "base_model:finetune:facebook/sam-vit-base", "license:mit", "endpoints_compatible", "region:us" ]
image-segmentation
2025-08-14T19:05:48Z
--- base_model: - facebook/sam-vit-base library_name: transformers tags: - medical pipeline_tag: image-segmentation license: mit --- # MedSAMix: A Training-Free Model Merging Approach for Medical Image Segmentation This repository contains the `MedSAMix-m (base)` model, which is described in the paper [MedSAMix: A Training-Free Model Merging Approach for Medical Image Segmentation](https://arxiv.org/abs/2508.11032). Code: [https://github.com/podismine/MedSAMix](https://github.com/podismine/MedSAMix) Please note that the code is currently being cleaned and will be publicly released soon. ## Abstract Universal medical image segmentation models have emerged as a promising paradigm due to their strong generalizability across diverse tasks, showing great potential for a wide range of clinical applications. This potential has been partly driven by the success of general-purpose vision models such as the Segment Anything Model (SAM), which has inspired the development of various fine-tuned variants for medical segmentation tasks. However, fine-tuned variants like MedSAM are trained on comparatively limited medical imaging data that often suffers from heterogeneity, scarce annotations, and distributional shifts. These challenges limit their ability to generalize across a wide range of medical segmentation tasks. In this regard, we propose MedSAMix, a training-free model merging method that integrates the strengths of both generalist models (e.g., SAM) and specialist models (e.g., MedSAM) for medical image segmentation. In contrast to traditional model merging approaches that rely on manual configuration and often result in suboptimal outcomes, we propose a zero-order optimization method to automatically discover optimal layer-wise merging solutions. Furthermore, for clinical applications, we develop two regimes to meet the demand of domain-specificity and generalizability in different scenarios by single-task optimization and multi-objective optimization respectively. Extensive evaluations on 25 medical segmentation tasks demonstrate that MedSAMix effectively mitigates model bias and consistently improves performance in both domain-specific accuracy and generalization, achieving improvements of 6.67% on specialized tasks and 4.37% on multi-task evaluations. <div align="center"> <img src="https://github.com/podismine/MedSAMix/raw/main/fig/model.png" alt="MedSAMix Model Architecture" width="60%"> </div> ## Checkpoint In addition, here we provide raw checkpoint and hugging face tensors: Pytorch raw checkpoint: [Here](https://drive.google.com/file/d/1RBsDZvFqJiAbbhnXTpSZs_uC-WKWrAJx/view?usp=sharing) Hugging face: [Here](https://huggingface.co/guinansu/MedSAMix)
homeb82784/FAI-CPT-KOR-Retry
homeb82784
2025-08-21T08:18:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:skt/A.X-4.0-Light", "base_model:finetune:skt/A.X-4.0-Light", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T07:57:31Z
--- base_model: skt/A.X-4.0-Light tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** homeb82784 - **License:** apache-2.0 - **Finetuned from model :** skt/A.X-4.0-Light This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
airesearch/llama3-8b-cpt-sea-lionv2-base-dolly-th-10k
airesearch
2025-08-21T07:57:38Z
2
0
null
[ "safetensors", "llama", "tha", "base_model:aisingapore/Llama-SEA-LION-v2-8B", "base_model:finetune:aisingapore/Llama-SEA-LION-v2-8B", "license:cc-by-nc-4.0", "region:us" ]
null
2025-05-27T15:35:29Z
--- base_model: aisingapore/Llama-SEA-LION-v2-8B language: tha license: cc-by-nc-4.0 model_name: airesearch/llama3-8b-cpt-sea-lionv2-base-dolly-th-10k --- # llama3-8b-cpt-sea-lionv2-base-dolly-th-10k WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai (EMNLP'25) This repository contains the model artifacts for **llama3-8b-cpt-sea-lionv2-base-dolly-th-10k** for the paper WangchanThaiInstruct. # Training The model is a aisingapore/Llama-SEA-LION-v2-8B finetuned on 10000 randomly sampled samples of a machine translated [Dolly 15K](https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th) using the Llama Factory framework with the following hyperparameters: | Hyperparameter | Value | |-----------------------|-----------| | Learning Rate | 2 × 10⁻⁴ | | Learning Rate Schedule| Cosine | | Batch Size (effective)| 128 | | Max Token Length | 2048 | | Warm up Ratio | 0.1 | | Epochs | 3 | # Evaluation The model was evaluate on [Thai MTBench](https://huggingface.co/datasets/ThaiLLM-Leaderboard/mt-bench-thai) [SeaCrowd's NLU and NLG Thai Split](https://github.com/scb-10x/seacrowd-eval) and [WangchanThaiInstruct's test set](https://huggingface.co/datasets/airesearch/WangchanThaiInstruct) | Model | MT Bench Average | NLU Accuracy (%) | NLG Translation (BLEU) | NLG Generation (RougeL) | WangchanThaiInstruct Fluency | WangchanThaiInstruct Accuracy (%) | WangchanThaiInstruct Rating | |----------------------------------------|------------------|------------------|-------------------------|--------------------------|-------------------------------|----------------------------------|-----------------------------| | **Llama-3.1-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 3.00 | 47.22 | 3.12 | 8.59 | 4.08 | 39.84 | 4.16 | | Alpaca 10k | 3.05 | 46.54 | 4.08 | 11.05 | 3.36 | 28.39 | 3.23 | | Alpaca 10k + WangchanThaiInstruct 10k | 3.07 | 46.47 | 2.43 | 8.54 | 4.21 | 42.31 | 4.39 | | Alpaca 20k | 2.75 | 47.31 | 2.79 | 9.14 | 2.77 | 22.32 | 2.94 | | Alpaca 15k + WangchanThaiInstruct 15k | 3.26 | 46.45 | 3.47 | 8.58 | 4.35 | 42.16 | 4.46 | | Alpaca 30k | 2.88 | 47.67 | 3.65 | 9.65 | 2.83 | 21.83 | 2.95 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 2.40 | 46.43 | 3.75 | 8.72 | 3.57 | 35.93 | 3.72 | | Dolly 5k | 1.88 | 42.87 | 0.95 | 8.55 | 1.75 | 22.70 | 2.19 | | Dolly 5k + WangchanThaiInstruct 5k | 2.28 | 46.43 | 1.36 | 8.55 | 3.85 | 37.89 | 3.98 | | Dolly 10k | 1.99 | 42.41 | 1.35 | 8.64 | 1.69 | 22.35 | 2.14 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 2.31 | 46.37 | 1.48 | 8.59 | 3.96 | 39.63 | 4.11 | | Dolly 15k | 2.64 | 42.47 | 1.60 | 8.10 | 1.69 | 22.21 | 2.16 | | **Gemma-2-9B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.25 | 53.70 | 2.25 | 8.14 | 4.85 | 54.24 | 5.17 | | Alpaca 10k | 3.98 | 51.71 | 1.39 | 6.84 | 4.00 | 46.26 | 4.26 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.02 | 53.81 | 2.02 | 8.09 | 4.97 | 55.33 | 5.30 | | Alpaca 20k | 4.14 | 52.40 | 1.45 | 6.95 | 3.53 | 38.07 | 3.90 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.20 | 53.49 | 1.98 | 8.02 | 5.14 | 56.67 | 5.49 | | Alpaca 30k | 3.79 | 52.41 | 1.25 | 5.73 | 3.25 | 32.71 | 3.43 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 3.66 | 54.62 | 1.75 | 8.07 | 4.30 | 51.86 | 4.84 | | Dolly 5k | 2.59 | 53.36 | 1.39 | 7.58 | 1.71 | 42.35 | 2.45 | | Dolly 5k + WangchanThaiInstruct 5k | 3.99 | 53.50 | 1.54 | 8.12 | 4.59 | 54.31 | 5.08 | | Dolly 10k | 2.70 | 51.98 | 1.52 | 7.58 | 1.81 | 43.68 | 2.74 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.13 | 53.34 | 1.63 | 8.12 | 4.72 | 55.09 | 5.24 | | Dolly 15k | 4.10 | 51.35 | 1.48 | 7.76 | 3.24 | 40.34 | 2.63 | | **SEA-LIONv2-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.52 | 43.76 | 34.47 | 19.39 | 5.62 | 52.84 | 5.57 | | Alpaca 10k | 4.54 | 43.31 | 28.01 | 25.35 | 4.61 | 48.88 | 4.73 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.55 | 44.66 | 24.00 | 17.55 | 5.72 | 53.93 | 5.70 | | Alpaca 20k | 4.74 | 43.98 | 24.22 | 25.82 | 4.73 | 49.32 | 4.53 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.44 | 44.51 | 20.58 | 16.31 | 5.54 | 53.94 | 5.61 | | Alpaca 30k | 4.60 | 42.96 | 15.58 | 25.68 | 5.11 | 49.66 | 4.78 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 4.25 | 44.89 | 36.60 | 26.82 | 5.10 | 50.25 | 5.28 | | Dolly 5k | 3.69 | 45.88 | 19.22 | 35.66 | 3.46 | 48.04 | 4.11 | | Dolly 5k + WangchanThaiInstruct 5k | 4.21 | 44.30 | 15.64 | 23.72 | 5.31 | 51.25 | 5.42 | | Dolly 10k | 3.83 | 46.57 | 14.07 | 37.35 | 4.09 | 46.81 | 4.04 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.31 | 45.31 | 13.54 | 22.00 | 5.54 | 53.81 | 5.57 | | Dolly 15k | 3.57 | 46.14 | 14.31 | 35.37 | 3.24 | 48.13 | 4.15 | # Citation ``` @inproceedings{limkonchotiwat2025thaiinstruct, title = {WangchanThaiInstruct: An Instruction-Following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai}, author = {Limkonchotiwat, Peerat and Tuchinda, Pume and Lowphansirikul, Lalita and Nonesung, Surapon and Tasawong, Panuthep and Aji, Alham Fikri and Udomcharoenchaikit, Can and Nutanong, Sarana}, booktitle = {Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing}, year = {2025}, publisher = {Association for Computational Linguistics} } ```
airesearch/gemma-2-9b-alpaca-th-20k
airesearch
2025-08-21T07:56:42Z
2
0
null
[ "safetensors", "gemma2", "tha", "base_model:google/gemma-2-9b", "base_model:finetune:google/gemma-2-9b", "license:cc-by-nc-4.0", "region:us" ]
null
2025-05-27T15:35:30Z
--- base_model: google/gemma-2-9b language: tha license: cc-by-nc-4.0 model_name: airesearch/gemma-2-9b-alpaca-th-20k --- # gemma-2-9b-alpaca-th-20k WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai (EMNLP'25) This repository contains the model artifacts for **gemma-2-9b-alpaca-th-20k** for the paper WangchanThaiInstruct. # Training The model is a google/gemma-2-9b finetuned on 20000 randomly sampled samples of a machine translated [Alpaca 52K](https://huggingface.co/datasets/Thaweewat/alpaca-cleaned-52k-th) using the Llama Factory framework with the following hyperparameters: | Hyperparameter | Value | |-----------------------|-----------| | Learning Rate | 2 × 10⁻⁴ | | Learning Rate Schedule| Cosine | | Batch Size (effective)| 128 | | Max Token Length | 2048 | | Warm up Ratio | 0.1 | | Epochs | 3 | # Evaluation The model was evaluate on [Thai MTBench](https://huggingface.co/datasets/ThaiLLM-Leaderboard/mt-bench-thai) [SeaCrowd's NLU and NLG Thai Split](https://github.com/scb-10x/seacrowd-eval) and [WangchanThaiInstruct's test set](https://huggingface.co/datasets/airesearch/WangchanThaiInstruct) | Model | MT Bench Average | NLU Accuracy (%) | NLG Translation (BLEU) | NLG Generation (RougeL) | WangchanThaiInstruct Fluency | WangchanThaiInstruct Accuracy (%) | WangchanThaiInstruct Rating | |----------------------------------------|------------------|------------------|-------------------------|--------------------------|-------------------------------|----------------------------------|-----------------------------| | **Llama-3.1-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 3.00 | 47.22 | 3.12 | 8.59 | 4.08 | 39.84 | 4.16 | | Alpaca 10k | 3.05 | 46.54 | 4.08 | 11.05 | 3.36 | 28.39 | 3.23 | | Alpaca 10k + WangchanThaiInstruct 10k | 3.07 | 46.47 | 2.43 | 8.54 | 4.21 | 42.31 | 4.39 | | Alpaca 20k | 2.75 | 47.31 | 2.79 | 9.14 | 2.77 | 22.32 | 2.94 | | Alpaca 15k + WangchanThaiInstruct 15k | 3.26 | 46.45 | 3.47 | 8.58 | 4.35 | 42.16 | 4.46 | | Alpaca 30k | 2.88 | 47.67 | 3.65 | 9.65 | 2.83 | 21.83 | 2.95 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 2.40 | 46.43 | 3.75 | 8.72 | 3.57 | 35.93 | 3.72 | | Dolly 5k | 1.88 | 42.87 | 0.95 | 8.55 | 1.75 | 22.70 | 2.19 | | Dolly 5k + WangchanThaiInstruct 5k | 2.28 | 46.43 | 1.36 | 8.55 | 3.85 | 37.89 | 3.98 | | Dolly 10k | 1.99 | 42.41 | 1.35 | 8.64 | 1.69 | 22.35 | 2.14 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 2.31 | 46.37 | 1.48 | 8.59 | 3.96 | 39.63 | 4.11 | | Dolly 15k | 2.64 | 42.47 | 1.60 | 8.10 | 1.69 | 22.21 | 2.16 | | **Gemma-2-9B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.25 | 53.70 | 2.25 | 8.14 | 4.85 | 54.24 | 5.17 | | Alpaca 10k | 3.98 | 51.71 | 1.39 | 6.84 | 4.00 | 46.26 | 4.26 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.02 | 53.81 | 2.02 | 8.09 | 4.97 | 55.33 | 5.30 | | Alpaca 20k | 4.14 | 52.40 | 1.45 | 6.95 | 3.53 | 38.07 | 3.90 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.20 | 53.49 | 1.98 | 8.02 | 5.14 | 56.67 | 5.49 | | Alpaca 30k | 3.79 | 52.41 | 1.25 | 5.73 | 3.25 | 32.71 | 3.43 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 3.66 | 54.62 | 1.75 | 8.07 | 4.30 | 51.86 | 4.84 | | Dolly 5k | 2.59 | 53.36 | 1.39 | 7.58 | 1.71 | 42.35 | 2.45 | | Dolly 5k + WangchanThaiInstruct 5k | 3.99 | 53.50 | 1.54 | 8.12 | 4.59 | 54.31 | 5.08 | | Dolly 10k | 2.70 | 51.98 | 1.52 | 7.58 | 1.81 | 43.68 | 2.74 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.13 | 53.34 | 1.63 | 8.12 | 4.72 | 55.09 | 5.24 | | Dolly 15k | 4.10 | 51.35 | 1.48 | 7.76 | 3.24 | 40.34 | 2.63 | | **SEA-LIONv2-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.52 | 43.76 | 34.47 | 19.39 | 5.62 | 52.84 | 5.57 | | Alpaca 10k | 4.54 | 43.31 | 28.01 | 25.35 | 4.61 | 48.88 | 4.73 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.55 | 44.66 | 24.00 | 17.55 | 5.72 | 53.93 | 5.70 | | Alpaca 20k | 4.74 | 43.98 | 24.22 | 25.82 | 4.73 | 49.32 | 4.53 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.44 | 44.51 | 20.58 | 16.31 | 5.54 | 53.94 | 5.61 | | Alpaca 30k | 4.60 | 42.96 | 15.58 | 25.68 | 5.11 | 49.66 | 4.78 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 4.25 | 44.89 | 36.60 | 26.82 | 5.10 | 50.25 | 5.28 | | Dolly 5k | 3.69 | 45.88 | 19.22 | 35.66 | 3.46 | 48.04 | 4.11 | | Dolly 5k + WangchanThaiInstruct 5k | 4.21 | 44.30 | 15.64 | 23.72 | 5.31 | 51.25 | 5.42 | | Dolly 10k | 3.83 | 46.57 | 14.07 | 37.35 | 4.09 | 46.81 | 4.04 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.31 | 45.31 | 13.54 | 22.00 | 5.54 | 53.81 | 5.57 | | Dolly 15k | 3.57 | 46.14 | 14.31 | 35.37 | 3.24 | 48.13 | 4.15 | # Citation ``` @inproceedings{limkonchotiwat2025thaiinstruct, title = {WangchanThaiInstruct: An Instruction-Following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai}, author = {Limkonchotiwat, Peerat and Tuchinda, Pume and Lowphansirikul, Lalita and Nonesung, Surapon and Tasawong, Panuthep and Aji, Alham Fikri and Udomcharoenchaikit, Can and Nutanong, Sarana}, booktitle = {Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing}, year = {2025}, publisher = {Association for Computational Linguistics} } ```
Medved444/blockassist-bc-bellowing_finicky_manatee_1755761606
Medved444
2025-08-21T07:56:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:55:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FrancescoPeriti/LlamaDictionary-mg_ML38BI
FrancescoPeriti
2025-08-21T07:48:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "text-generation", "conversational", "en", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
text-generation
2025-07-08T09:57:03Z
--- license: cc-by-sa-4.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference base_model: - meta-llama/Meta-Llama-3-8B-Instruct --- # LlamaDictionary-mg_ML38BI This is part of the **DefinitionGeneration-adapters** collection. ➡️ Please see the [LlamaDictionary-it_ML38BI](https://huggingface.co/FrancescoPeriti/LlamaDictionary-it_ML38BI) for a full description, methodology, and usage details. This variant corresponds to **Malagasy**.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755762088
IvanJAjebu
2025-08-21T07:42:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:42:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
airesearch/gemma-2-9b-alpaca-th-5k-wangchan-instruct-5k
airesearch
2025-08-21T07:39:26Z
5
0
null
[ "safetensors", "gemma2", "tha", "base_model:google/gemma-2-9b", "base_model:finetune:google/gemma-2-9b", "license:cc-by-nc-4.0", "region:us" ]
null
2025-05-27T15:25:17Z
--- base_model: google/gemma-2-9b language: tha license: cc-by-nc-4.0 model_name: airesearch/gemma-2-9b-alpaca-th-5k-wangchan-instruct-5k --- # gemma-2-9b-alpaca-th-5k-wangchan-instruct-5k WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai (EMNLP'25) This repository contains the model artifacts for **gemma-2-9b-alpaca-th-5k-wangchan-instruct-5k** for the paper WangchanThaiInstruct. # Training The model is a google/gemma-2-9b finetuned on 5000 randomly sampled samples of a machine translated [Alpaca 52K](https://huggingface.co/datasets/Thaweewat/alpaca-cleaned-52k-th) and 5000 randomly samples samples of [WangchanThaiInstruct's training set](https://huggingface.co/datasets/airesearch/WangchanThaiInstruct) using the Llama Factory framework with the following hyperparameters: | Hyperparameter | Value | |-----------------------|-----------| | Learning Rate | 2 × 10⁻⁴ | | Learning Rate Schedule| Cosine | | Batch Size (effective)| 128 | | Max Token Length | 2048 | | Warm up Ratio | 0.1 | | Epochs | 3 | # Evaluation The model was evaluate on [Thai MTBench](https://huggingface.co/datasets/ThaiLLM-Leaderboard/mt-bench-thai) [SeaCrowd's NLU and NLG Thai Split](https://github.com/scb-10x/seacrowd-eval) and [WangchanThaiInstruct's test set](https://huggingface.co/datasets/airesearch/WangchanThaiInstruct) | Model | MT Bench Average | NLU Accuracy (%) | NLG Translation (BLEU) | NLG Generation (RougeL) | WangchanThaiInstruct Fluency | WangchanThaiInstruct Accuracy (%) | WangchanThaiInstruct Rating | |----------------------------------------|------------------|------------------|-------------------------|--------------------------|-------------------------------|----------------------------------|-----------------------------| | **Llama-3.1-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 3.00 | 47.22 | 3.12 | 8.59 | 4.08 | 39.84 | 4.16 | | Alpaca 10k | 3.05 | 46.54 | 4.08 | 11.05 | 3.36 | 28.39 | 3.23 | | Alpaca 10k + WangchanThaiInstruct 10k | 3.07 | 46.47 | 2.43 | 8.54 | 4.21 | 42.31 | 4.39 | | Alpaca 20k | 2.75 | 47.31 | 2.79 | 9.14 | 2.77 | 22.32 | 2.94 | | Alpaca 15k + WangchanThaiInstruct 15k | 3.26 | 46.45 | 3.47 | 8.58 | 4.35 | 42.16 | 4.46 | | Alpaca 30k | 2.88 | 47.67 | 3.65 | 9.65 | 2.83 | 21.83 | 2.95 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 2.40 | 46.43 | 3.75 | 8.72 | 3.57 | 35.93 | 3.72 | | Dolly 5k | 1.88 | 42.87 | 0.95 | 8.55 | 1.75 | 22.70 | 2.19 | | Dolly 5k + WangchanThaiInstruct 5k | 2.28 | 46.43 | 1.36 | 8.55 | 3.85 | 37.89 | 3.98 | | Dolly 10k | 1.99 | 42.41 | 1.35 | 8.64 | 1.69 | 22.35 | 2.14 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 2.31 | 46.37 | 1.48 | 8.59 | 3.96 | 39.63 | 4.11 | | Dolly 15k | 2.64 | 42.47 | 1.60 | 8.10 | 1.69 | 22.21 | 2.16 | | **Gemma-2-9B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.25 | 53.70 | 2.25 | 8.14 | 4.85 | 54.24 | 5.17 | | Alpaca 10k | 3.98 | 51.71 | 1.39 | 6.84 | 4.00 | 46.26 | 4.26 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.02 | 53.81 | 2.02 | 8.09 | 4.97 | 55.33 | 5.30 | | Alpaca 20k | 4.14 | 52.40 | 1.45 | 6.95 | 3.53 | 38.07 | 3.90 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.20 | 53.49 | 1.98 | 8.02 | 5.14 | 56.67 | 5.49 | | Alpaca 30k | 3.79 | 52.41 | 1.25 | 5.73 | 3.25 | 32.71 | 3.43 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 3.66 | 54.62 | 1.75 | 8.07 | 4.30 | 51.86 | 4.84 | | Dolly 5k | 2.59 | 53.36 | 1.39 | 7.58 | 1.71 | 42.35 | 2.45 | | Dolly 5k + WangchanThaiInstruct 5k | 3.99 | 53.50 | 1.54 | 8.12 | 4.59 | 54.31 | 5.08 | | Dolly 10k | 2.70 | 51.98 | 1.52 | 7.58 | 1.81 | 43.68 | 2.74 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.13 | 53.34 | 1.63 | 8.12 | 4.72 | 55.09 | 5.24 | | Dolly 15k | 4.10 | 51.35 | 1.48 | 7.76 | 3.24 | 40.34 | 2.63 | | **SEA-LIONv2-8B** | | | | | | | | | Alpaca 5k + WangchanThaiInstruct 5k | 4.52 | 43.76 | 34.47 | 19.39 | 5.62 | 52.84 | 5.57 | | Alpaca 10k | 4.54 | 43.31 | 28.01 | 25.35 | 4.61 | 48.88 | 4.73 | | Alpaca 10k + WangchanThaiInstruct 10k | 4.55 | 44.66 | 24.00 | 17.55 | 5.72 | 53.93 | 5.70 | | Alpaca 20k | 4.74 | 43.98 | 24.22 | 25.82 | 4.73 | 49.32 | 4.53 | | Alpaca 15k + WangchanThaiInstruct 15k | 4.44 | 44.51 | 20.58 | 16.31 | 5.54 | 53.94 | 5.61 | | Alpaca 30k | 4.60 | 42.96 | 15.58 | 25.68 | 5.11 | 49.66 | 4.78 | | Dolly 2.5k + WangchanThaiInstruct 2.5k | 4.25 | 44.89 | 36.60 | 26.82 | 5.10 | 50.25 | 5.28 | | Dolly 5k | 3.69 | 45.88 | 19.22 | 35.66 | 3.46 | 48.04 | 4.11 | | Dolly 5k + WangchanThaiInstruct 5k | 4.21 | 44.30 | 15.64 | 23.72 | 5.31 | 51.25 | 5.42 | | Dolly 10k | 3.83 | 46.57 | 14.07 | 37.35 | 4.09 | 46.81 | 4.04 | | Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.31 | 45.31 | 13.54 | 22.00 | 5.54 | 53.81 | 5.57 | | Dolly 15k | 3.57 | 46.14 | 14.31 | 35.37 | 3.24 | 48.13 | 4.15 | # Citation ``` @inproceedings{limkonchotiwat2025thaiinstruct, title = {WangchanThaiInstruct: An Instruction-Following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai}, author = {Limkonchotiwat, Peerat and Tuchinda, Pume and Lowphansirikul, Lalita and Nonesung, Surapon and Tasawong, Panuthep and Aji, Alham Fikri and Udomcharoenchaikit, Can and Nutanong, Sarana}, booktitle = {Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing}, year = {2025}, publisher = {Association for Computational Linguistics} } ```
llencia/blockassist-bc-wiry_wise_hedgehog_1755761941
llencia
2025-08-21T07:39:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:39:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755759686
katanyasekolah
2025-08-21T07:29:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:29:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llencia/blockassist-bc-wiry_wise_hedgehog_1755761365
llencia
2025-08-21T07:29:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:29:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vukrosic/hybrid-llm
vukrosic
2025-08-21T07:23:01Z
0
1
null
[ "pytorch", "hybrid_llm", "region:us" ]
null
2025-08-21T06:25:33Z
# Hybrid LLM Model This is a hybrid transformer-Mamba model uploaded via script. ## Model Details - **Architecture**: Hybrid Transformer-Mamba - **Parameters**: 43,819,776 - **Config**: { "vocab_size": 49152, "hidden_size": 384, "num_layers": 8, "num_heads": 8, "ssm_state_size": 16, "conv_kernel": 4, "expand_factor": 2, "layer_pattern": "MAMAMAMA", "max_seq_len": 512, "batch_size": 32, "num_documents": 500, "learning_rate": 0.0005, "num_steps": 500, "dropout": 0.1, "grad_clip": 1.0, "log_every": 50, "experiment_name": "pattern_ablation", "pattern_name": "MAMAMAMA", "eval_every": 100, "save_every": 2000, "num_eval_batches": 50, "hf_repo": "vukrosic/hybrid-llm" } ## Usage ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("vukrosic/hybrid-llm") ```
lautan/blockassist-bc-gentle_patterned_goat_1755759162
lautan
2025-08-21T07:22:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:22:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pinktulip888/qwenpenguingen1
pinktulip888
2025-08-21T07:21:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T06:01:06Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pinktulip888 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Medved444/blockassist-bc-bellowing_finicky_manatee_1755759277
Medved444
2025-08-21T07:14:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:14:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llencia/blockassist-bc-wiry_wise_hedgehog_1755760341
llencia
2025-08-21T07:12:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:12:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755758750
aleebaster
2025-08-21T07:11:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T07:11:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755757535
ihsanridzi
2025-08-21T06:53:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T06:53:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755758835
IvanJAjebu
2025-08-21T06:48:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T06:48:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
computerandgyein/gemma_270m-text-normalisation-for-number-stage1
computerandgyein
2025-08-21T06:44:12Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "sft", "trl", "base_model:unsloth/gemma-3-270m-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-270m-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-08-21T05:45:56Z
--- base_model: unsloth/gemma-3-270m-unsloth-bnb-4bit library_name: transformers model_name: gemma_270m-text-normalisation-for-number-stage1 tags: - generated_from_trainer - unsloth - sft - trl licence: license --- # Model Card for gemma_270m-text-normalisation-for-number-stage1 This model is a fine-tuned version of [unsloth/gemma-3-270m-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-270m-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="computerandgyein/gemma_270m-text-normalisation-for-number-stage1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/computerandgyein-ufo/text-normalisation/runs/0p37xxsi) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755756791
coelacanthxyz
2025-08-21T06:43:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T06:43:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llencia/blockassist-bc-wiry_wise_hedgehog_1755758500
llencia
2025-08-21T06:42:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T06:42:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sabaridsnfuji/Japanese-Receipt-VL-lfm2-450M
sabaridsnfuji
2025-08-21T05:51:43Z
16
0
null
[ "tensorboard", "safetensors", "lfm2-vl", "vision", "image-text-to-text", "japanese", "receipt", "ocr", "document-ai", "multimodal", "fine-tuned", "lora", "conversational", "custom_code", "ja", "en", "dataset:japanese-receipts", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-08-19T11:40:55Z
--- license: apache-2.0 base_model: liquidai/lfm2-vl-450m tags: - vision - image-text-to-text - japanese - receipt - ocr - document-ai - multimodal - fine-tuned - lora language: - ja - en pipeline_tag: image-text-to-text widget: - src: https://example.com/japanese_receipt.jpg text: "この領収書の内容を日本語で説明してください。" datasets: - japanese-receipts --- # Japanese Receipt VL lfm2-450M ## Model Description Japanese-Receipt-VL-lfm2-450M is a specialized vision-language model fine-tuned for understanding and processing Japanese receipts. Built on LiquidAI's LFM2-VL-450M foundation model, this model can analyze receipt images and extract structured information, answer questions about receipt contents, and provide detailed descriptions in both Japanese and English. ## Model Details - **Base Model**: liquidai/lfm2-vl-450m - **Model Size**: 450M parameters - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Languages**: Japanese (primary), English (secondary) - **Architecture**: Vision-Language Transformer - **Training**: Fine-tuned on Japanese receipt datasets ## Intended Use ### Primary Use Cases - **Comprehensive Receipt Parsing**: Convert any Japanese receipt to structured JSON with exact text preservation - **Retail Analytics**: Extract detailed product information, pricing, and tax data from store receipts - **Multi-tax Rate Processing**: Handle complex Japanese tax scenarios (8%, 10%, tax-exempt items) - **Financial Document Digitization**: Process banking, credit card, and payment system receipts - **E-commerce Integration**: Extract product catalogs and pricing from retail receipts - **Accounting Automation**: Comprehensive expense categorization with tax breakdown details - **Compliance Documentation**: Maintain exact formatting for audit and regulatory requirements - **Payment Processing Analysis**: Extract credit card transaction details and approval codes ### Target Users - Financial technology companies - Accounting software developers - Expense management platforms - Retail analytics companies - Japanese businesses and consumers ## Usage ### Installation ```bash pip install transformers torch pillow ``` ### Basic Usage ```python from transformers import AutoProcessor, AutoModelForVision2Seq from PIL import Image import torch # Load model and processor model = AutoModelForVision2Seq.from_pretrained("sabaridsnfuji/Japanese-Receipt-VL-lfm2-450M") processor = AutoProcessor.from_pretrained("sabaridsnfuji/Japanese-Receipt-VL-lfm2-450M") # Load receipt image image = Image.open("japanese_receipt.jpg") # System prompt for structured extraction system_prompt = """You are an intelligent document parser. Read the following Japanese receipt and extract every piece of information exactly as it appears, and present it in a well-structured JSON format using Japanese keys and values. Please strictly follow these rules: Only extract information that is actually present on the receipt. Do not include any missing, blank, or inferred fields. Do not summarize, omit, translate, or modify any part of the receipt. Every character, number, symbol, and line must be retained exactly as printed. Extract all available content including but not limited to: store details, receipt number, date, time, cashier name, product list, prices, tax breakdowns, payment details, receipt bags, barcodes, notices, and any footer messages. Preserve original formatting such as line breaks, symbols, and full-width characters (hiragana, katakana, kanji, numbers, etc.). Do not perform any translation, correction, interpretation, or reformatting of content. Use only what is present. Output the result in JSON format, using Japanese field names as keys.""" # Prepare conversation format messages = [ { 'role': 'system', 'content': [{'type': 'text', 'text': system_prompt}] }, { 'role': 'user', 'content': [ {'type': 'text', 'text': 'Please parse this Japanese receipt.'}, {'type': 'image', 'image': image} ] } ] # Process and generate inputs = processor.apply_chat_template(messages, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=1024) # Decode response response = processor.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Example Output **Example 1: Seven Bank PayPay Transaction Receipt** ```json { "ご利用明細票": { "セブン銀行": "QR", "取引金額": "¥10,000*", "日付": "2025年03月26日", "時間": "15:46", "店舗番号": "0034", "店番": "BranchNo0100", "口座番号": "************9384", "金額票": "114703045-8277103", "照合コード": "0000", "お取引会社からのご連絡": "PayPayのお取引です" }, "お知らせ": [ "PayPayスクラッチくじ!すべての対象のお店で200円以上の支払いで1等最大全額戻ってくる(付与上限・条件あり)", "詳しくはPayPayアプリで♪" ], "注意事項": [ "暗証番号は他人に知られないようにしてください。銀行員が直接あるいは電話で暗証番号をお尋ねすることはありません。", "上記ご取引内容についてご不明の点は、お取引会社にお問合せください。" ], "セブン銀行": "セブン銀行" } ``` **Example 2: DAISO Retail Store Receipt** ```json { "店舗名": "ダイソー青葉台東急スクエア店", "電話番号": "TEL:082-420-0100", "公式通販サイトURL": "「DAISOオンラインショップ」『ダイソーオンライン』で検索!", "令状:校訂証正日付": "2025年6月22日(日)", "レジ日時": "19:24", "レジ番号": "0006", "責任者名": "99999992", "商品列表": [ { "商品コード": "ドウシシャ", "商品名": "ナタデココ入", "価格": "¥100※" }, { "商品コード": "ドウシシャ", "商品名": "チアシードド", "価格": "¥100※" }, { "商品名": "消臭ポリ袋(おむつ用)", "価格": "¥100外" }, { "商品名": "化粧ブラシセット(5本)", "価格": "¥300外" }, { "商品名": "シャワー線棒 1 1 0本入", "価格": "¥100外" }, { "商品名": "抗菌線棒(バガスパルブ配", "価格": "¥100外" } ], "小計点数": "6点", "小計金額": "¥800", "税込ポイント": "", "各税別": { "10%税抜対象額": "¥600", "10%税率額": "¥60", "8%税抜対象額": "¥200", "8%税率額": "¥16" }, "合計金額": "¥876", "ビザ/マスター金額": "¥876", "お釣り金額": "¥0", "注意事項": "※印は軽減税率適用商品です。", "登録番号": "T7240001022681", "QRコード1": "", "QRコード2": "", "QRコード3": "", "クレジット売上票情報": "", "カード会社": "カイツ", "会員番号": "104", "ビザ/マスター": "", "有効期限": "429769XXXXXXXX5489-NFC", "取扱い日": "2025年06月22日", "承認番号": "0705755", "伝票番号": "05755", "取引内容": "売上(オンライン)", "支払区分": "一括", "取引金額": "¥876", "端末番号": "4971162449343", "ATC": "011C", "カードシークス番号": "00", "AID": "A00000000031010", "APL名": "VISACREDIT", "店舗番号": "008943", "レジット番号": "1841" } ``` ### Advanced Usage - Custom Extraction ```python # Custom extraction with specific requirements custom_prompt = """Parse this Japanese receipt and extract only the following information in JSON format: - Transaction amount (取引金額) - Date and time (日付・時間) - Store information (店舗情報) - Payment method details (支払い方法) Use Japanese keys and preserve exact formatting.""" messages = [ { 'role': 'system', 'content': [{'type': 'text', 'text': custom_prompt}] }, { 'role': 'user', 'content': [ {'type': 'text', 'text': 'Extract the requested information from this receipt.'}, {'type': 'image', 'image': image} ] } ] inputs = processor.apply_chat_template(messages, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512) response = processor.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Batch Processing ```python import os from pathlib import Path def process_receipt_batch(image_folder, output_file): """Process multiple receipts and save results""" results = [] for image_path in Path(image_folder).glob("*.jpg"): image = Image.open(image_path) # Use the standard system prompt for full extraction messages = [ {'role': 'system', 'content': [{'type': 'text', 'text': system_prompt}]}, {'role': 'user', 'content': [ {'type': 'text', 'text': 'Parse this receipt.'}, {'type': 'image', 'image': image} ]} ] inputs = processor.apply_chat_template(messages, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=1024) response = processor.decode(outputs[0], skip_special_tokens=True) results.append({ "filename": image_path.name, "extracted_data": response }) # Save results import json with open(output_file, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) # Process all receipts in a folder process_receipt_batch("./receipts/", "extracted_data.json") ``` ## Training Details ### Training Data - **Primary Dataset**: Japanese-Mobile-Receipt-OCR-1.3K dataset - **Data Size**: 1,300+ receipt images - **Data Sources**: Various Japanese retailers, restaurants, and service providers - **Annotation**: Manual annotation of key information fields and structured extraction ### Training Process - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Base Model**: liquidai/lfm2-vl-450m - **Training Framework**: PyTorch + Transformers - **Optimization**: AdamW optimizer - **Training Time**: Approximately 48 hours on V100 GPUs ### Key Features Learned - **Structured JSON extraction** with Japanese field names and hierarchical organization - **Exact text preservation** including full-width characters, symbols, and formatting - **Multi-type receipt support**: Banking transactions, retail stores, payment systems - **Comprehensive product parsing**: Item lists with codes, names, and individual pricing - **Advanced tax calculation extraction**: Multiple tax rates (8%, 10%), tax-exempt items, reduced tax rate indicators - **Payment method details**: Credit card information, transaction codes, terminal data - **Store and business information**: Contact details, registration numbers, URLs - **Transaction metadata**: Receipt numbers, cashier info, timestamps, approval codes - **Promotional content extraction**: Notices, QR codes, loyalty program information - **Privacy-aware data handling**: Proper masking of sensitive account information - **Japanese retail format understanding**: DAISO, convenience stores, department stores ## Training Details ### Benchmarks The model has been evaluated on a held-out test set of Japanese receipts across various categories including: - **Banking receipts** (銀行レシート) - Seven Bank, Japan Post Bank, ATM transactions - **Payment system receipts** (決済システム) - PayPay, LINE Pay, Rakuten Pay - **Retail store receipts** (小売店レシート) - DAISO, convenience stores (7-Eleven, Lawson), supermarkets - **Department store receipts** (デパートレシート) - Complex itemized purchases with multiple tax rates - **Restaurant receipts** (レストランレシート) - Food service with reduced tax rates - **Transportation receipts** (交通レシート) - Train tickets, bus passes, parking - **Credit card receipts** (クレジットカードレシート) - Detailed payment processing information ## Limitations ### Known Limitations - **Image Quality**: Performance degrades with blurry, damaged, or low-resolution images - **Handwritten Receipts**: Limited accuracy on handwritten receipts - **Regional Variations**: Optimized for standard Japanese receipt formats - **Language Mixing**: May struggle with receipts containing mixed scripts - **Old Receipt Formats**: Older or non-standard receipt layouts may reduce accuracy ### Bias Considerations - **Training Data Bias**: Model performance may vary across different Japanese regions - **Retailer Bias**: Better performance on common retail chains represented in training data - **Format Bias**: Optimized for modern thermal printer receipts ## Ethical Considerations ### Privacy - **Personal Information**: Model may extract personal information from receipts - **Data Handling**: Users should implement appropriate privacy safeguards - **Compliance**: Ensure compliance with local data protection regulations ### Security - **Sensitive Data**: Receipts may contain sensitive financial information - **Access Control**: Implement proper access controls in production environments ## Citation If you use this model in your research or applications, please cite: ```bibtex @misc{japanese-receipt-vl-lfm2-450m, title={Japanese Receipt VL lfm2-450M: A Specialized Vision-Language Model for Japanese Receipt Understanding}, author={sabaridsnfuji}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/sabaridsnfuji/Japanese-Receipt-VL-lfm2-450M} } ``` ### Dataset Reference If you use this model or its underlying dataset, please also cite the original dataset paper: ```bibtex @article{japanese-mobile-receipt-ocr-2024, title={Japanese-Mobile-Receipt-OCR-1.3K: A Comprehensive Dataset Analysis and Fine-tuned Vision-Language Model for Structured Receipt Data Extraction}, author={Sabari Nathan}, year={2024}, doi={10.21203/rs.3.rs-7357197/v1}, url={https://doi.org/10.21203/rs.3.rs-7357197/v1}, note={Preprint} } ``` ### Base Model Reference Please also cite the base LFM2-VL model: ```bibtex @article{lfm2-vl-2024, title={LFM2-VL: Large Foundation Model for Vision-Language Tasks}, author={LiquidAI}, year={2024}, publisher={LiquidAI}, url={https://huggingface.co/liquidai/lfm2-vl-450m} } ``` ## License This model is released under the Apache 2.0 License. Please ensure compliance with the license terms when using this model. ## Acknowledgments - **Base Model**: LiquidAI LFM2-VL team - **Training Infrastructure**: [Your organization/platform] - **Dataset Contributors**: Japanese receipt data annotators - **Community**: Hugging Face community for tools and support ## Contact For questions, issues, or collaboration opportunities, please reach out through: - GitHub Issues: [Your GitHub repository] - Hugging Face Discussions: [Model discussion page] - Email: [Your contact email] ## Model Card Authors - sabaridsnfuji ## Model Card Contact For questions about this model card, please contact the model authors.
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755754843
0xaoyama
2025-08-21T05:41:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T05:41:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mveroe/Qwen2.5-1.5B_DS-Qwen-1.5B_0p0_1p0_0p0_sft
mveroe
2025-08-21T05:40:21Z
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T15:21:28Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - generated_from_trainer model-index: - name: Qwen2.5-1.5B_DS-Qwen-1.5B_0p0_1p0_0p0_sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-1.5B_DS-Qwen-1.5B_0p0_1p0_0p0_sft This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.53.2 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2
ntkhoi/Qwen3-4B-Medical-SFT-DPO-0820
ntkhoi
2025-08-21T05:31:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T05:30:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
llencia/blockassist-bc-wiry_wise_hedgehog_1755753793
llencia
2025-08-21T05:23:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T05:23:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AdaptLLM/biomed-gemma-3-4b-it
AdaptLLM
2025-08-21T05:21:33Z
9
1
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "multimodal", "biology", "medical", "conversational", "en", "dataset:AdaptLLM/biomed-visual-instructions", "arxiv:2411.19930", "arxiv:2309.09530", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-07-06T11:28:42Z
--- license: gemma language: - en pipeline_tag: image-text-to-text tags: - multimodal - biology - medical library_name: transformers base_model: - google/gemma-3-4b-it datasets: - AdaptLLM/biomed-visual-instructions --- # Adapting Multimodal Large Language Models to Domains via Post-Training (EMNLP 2025) This repos contains the **biomedicine MLLM developed from gemma-3-4b-it** in our paper: [On Domain-Adaptive Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training dataset is in [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions). The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains) ## 1. To Chat with AdaMLLM Our model architecture aligns with the base model: gemma-3-4b-it. We provide a usage example below, and you may refer to the official [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) for more advanced usage instructions. **Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages. <details> <summary> Click to expand </summary> Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0. ```sh $ pip install -U transformers ``` Then, copy the snippet from the section that is relevant for your use case. #### Running with the `pipeline` API You can initialize the model and processor for inference with `pipeline` as follows. ```python from transformers import pipeline import torch pipe = pipeline( "image-text-to-text", model="AdaptLLM/biomed-gemma-3-4b-it", device="cuda", torch_dtype=torch.bfloat16 ) ``` With instruction-tuned models, you need to use chat templates to process our inputs first. Then, you can pass it to the pipeline. ```python messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, {"type": "text", "text": "What animal is on the candy?"} ] } ] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"][-1]["content"]) ``` </details> ## 2. Domain-Specific Benchmarks We provide [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) to evaluate any MLLMs. ## 3. To Reproduce this Domain-Adapted MLLM Using our training data, [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions), you can easily reproduce our models based on the [LlamaFactory](https://github.com/hiyouga/LLaMA-Factory) repository. For reference, we train from google/gemma-3-4b-it for 1 epoch with a learning rate of 1e-5, and a global batch size of 128. ## Citation If you find our work helpful, please cite us. [Adapt MLLM to Domains](https://huggingface.co/papers/2411.19930) (EMNLP 2025 Findings) ```bibtex @article{adamllm, title={On Domain-Adaptive Post-Training for Multimodal Large Language Models}, author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang}, journal={arXiv preprint arXiv:2411.19930}, year={2024} } ``` [Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024) ```bibtex @inproceedings{ cheng2024adapting, title={Adapting Large Language Models via Reading Comprehension}, author={Daixuan Cheng and Shaohan Huang and Furu Wei}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=y886UXPEZ0} } ```
trunghieuma22/mistral-7b-finetuned
trunghieuma22
2025-08-21T05:18:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T05:18:01Z
--- base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** trunghieuma22 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
llencia/blockassist-bc-wiry_wise_hedgehog_1755753408
llencia
2025-08-21T05:17:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T05:17:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MomlessTomato/kanan-matsuura
MomlessTomato
2025-08-21T05:12:33Z
24
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:mit", "region:us" ]
text-to-image
2024-08-30T02:15:23Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- high quality, defined pupil, looking at viewer, rounded pupil, defined iris, (soft iris:1.2), torso shadow, ponytail, parameters: negative_prompt: >- bad_anatomy, deformation, amputation, deformity, deformed_nipples, duplicated_torso, deformed_torso, long_torso, large_torso, unproportioned_torso, (deformed_pussy:1.2), (deformed_hands:1.2), unproportioned_eyes, unproportioned_head, small_head, duplicated_nose, big_nose, fusioned_clothes, fusioned_arms, undefined_limbs, divided_pussy, red_pussy, duplicated_pussy, deformed_anus, deformed_pussy, output: url: images/icon_1.png base_model: Linaqruf/animagine-xl-3.0 instance_prompt: id_kanan_matsuura license: mit --- # Kanan Matsuura <Gallery /> ## Model description This model was trained to generate high quality images based on SIFAS cards. To achieve better quality, you should be using hako-mikan&#39;s regional prompter, along with Latent Mode, which modifies the way Stable Diffusion isolates the LoRA resulting in a significant improvement. ## Trigger words You should use `id_kanan_matsuura` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/theidoldaily/kanan-matsuura/tree/main) them in the Files & versions tab.
llencia/blockassist-bc-wiry_wise_hedgehog_1755753005
llencia
2025-08-21T05:10:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T05:10:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755751896
0xaoyama
2025-08-21T04:52:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T04:51:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755751114
0xaoyama
2025-08-21T04:39:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T04:38:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Krish356/qwen3-coder-react-lora
Krish356
2025-08-21T04:25:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3_moe", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T04:24:38Z
--- base_model: unsloth/qwen3-coder-30b-a3b-instruct tags: - text-generation-inference - transformers - unsloth - qwen3_moe - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Krish356 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-coder-30b-a3b-instruct This qwen3_moe model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755750148
IvanJAjebu
2025-08-21T04:23:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T04:23:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF
mradermacher
2025-08-21T04:18:26Z
34
1
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "summarization", "translation", "question-answering", "uz", "en", "dataset:yahma/alpaca-cleaned", "dataset:behbudiy/alpaca-cleaned-uz", "dataset:behbudiy/translation-instruction", "base_model:behbudiy/Llama-3.1-8B-Instruct-Uz", "base_model:quantized:behbudiy/Llama-3.1-8B-Instruct-Uz", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
question-answering
2024-09-17T03:18:19Z
--- base_model: behbudiy/Llama-3.1-8B-Instruct-Uz datasets: - yahma/alpaca-cleaned - behbudiy/alpaca-cleaned-uz - behbudiy/translation-instruction language: - uz - en library_name: transformers license: llama3.1 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - llama - text-generation-inference - summarization - translation - question-answering --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/behbudiy/Llama-3.1-8B-Instruct-Uz <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-3.1-8B-Instuct-Uz-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instuct-Uz-GGUF/resolve/main/Llama-3.1-8B-Instuct-Uz.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
khopilot/khmer-tokenizer-v7
khopilot
2025-08-21T03:57:49Z
0
0
sentencepiece
[ "sentencepiece", "khmer_tokenizer_v7", "tokenizer", "khmer", "subword", "feature-extraction", "km", "license:apache-2.0", "model-index", "region:us" ]
feature-extraction
2025-08-21T01:56:47Z
--- language: km license: apache-2.0 tags: - sentencepiece - tokenizer - khmer - subword library_name: sentencepiece pipeline_tag: feature-extraction widget: - text: "ព្រះរាជាណាចក្រកម្ពុជា" example_title: "Cambodia" - text: "ធម៌" example_title: "Dharma" - text: "ការសិក្សា" example_title: "Education" model-index: - name: khmer-tokenizer-v7 results: - task: type: feature-extraction name: Tokenization dataset: name: khmer-news-corpus type: khmer-news-corpus config: default split: test metrics: - type: compression_ratio value: 5.27 name: Compression Ratio - type: tokens_per_character value: 0.1897 name: Tokens Per Character - type: vocabulary_coverage value: 90.0 name: Linguistic Coverage - type: processing_speed value: 338000000 name: Characters per Second - type: morphological_accuracy value: 50.0 name: Morphological Accuracy - type: sanskrit_pali_accuracy value: 100.0 name: Sanskrit/Pali Accuracy --- # Khmer SentencePiece Tokenizer A production-ready SentencePiece tokenizer for Khmer (Cambodian) language with 16k vocabulary, optimized for modern NLP pipelines. ## Direct Usage from HuggingFace 🤗 ```python from transformers import AutoTokenizer # Load directly from HuggingFace tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") # Tokenize text text = "ព្រះរាជាណាចក្រកម្ពុជា" encoded = tokenizer(text, return_tensors="pt") # Get tokens tokens = tokenizer.tokenize(text) print(tokens) # ['▁ព្រះរាជ', 'ាណាចក្រ', 'កម្ពុជា'] # Encode and decode input_ids = tokenizer.encode(text) decoded = tokenizer.decode(input_ids) print(decoded) # ព្រះរាជាណាចក្រកម្ពុជា ``` ## Installation Options ### Option 1: Transformers (Recommended) ```bash pip install transformers ``` ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") ``` ### Option 2: SentencePiece Direct ```bash pip install sentencepiece huggingface-hub ``` ```python from huggingface_hub import hf_hub_download import sentencepiece as spm model_path = hf_hub_download( repo_id="khopilot/khmer-tokenizer-v7", filename="tokenizer.model" ) sp = spm.SentencePieceProcessor(model_path) ``` ## Evaluation Results ### Performance Metrics (Khmer News Corpus) | Metric | Value | Description | |--------|-------|-------------| | **Compression Ratio** | 5.27x | Characters compressed per token | | **Tokens/Character** | 0.1897 | Average tokens per character | | **Vocabulary Coverage** | 90% | Percentage of linguistic phenomena covered | | **Processing Speed** | 338M chars/sec | Throughput on CPU | | **Model Size** | 659KB | Disk space required | ### Linguistic Evaluation (Multi-Domain Khmer Corpus) | Category | Accuracy | Test Size | |----------|----------|-----------| | **Sanskrit/Pali Terms** | 100% | 50 terms | | **Morphological Segmentation** | 50% | 100 compounds | | **Consonant Clusters** | 100% | 30 patterns | | **Number Handling** | 95% | 50 examples | | **Mixed Script** | 88% | 40 samples | ### Domain-Specific Performance | Domain | Token Efficiency | Quality Score | |--------|-----------------|---------------| | **News Articles** | 0.2585 TPC | ⭐⭐⭐⭐⭐ | | **Religious Texts** | 0.2103 TPC | ⭐⭐⭐⭐⭐ | | **Technical Docs** | 0.2891 TPC | ⭐⭐⭐⭐ | | **Social Media** | 0.3012 TPC | ⭐⭐⭐⭐ | | **Literature** | 0.2234 TPC | ⭐⭐⭐⭐ | ## Tokenization Examples ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") # Example 1: Religious term tokenizer.tokenize("ធម៌") # Output: ['▁ធម៌'] # 1 token (perfect) # Example 2: Compound word tokenizer.tokenize("ការសិក្សា") # Output: ['▁ការ', 'សិក្សា'] # 2 tokens (morphologically correct) # Example 3: Long compound tokenizer.tokenize("អគ្គលេខាធិការ") # Output: ['▁អគ្គ', 'លេខាធិការ'] # 2 tokens # Example 4: Mixed numerals tokenizer.tokenize("ឆ្នាំ២០២៤") # Output: ['▁ឆ្នាំ', '២០២', '៤'] # 3 tokens ``` ## Advanced Usage ### Batch Processing ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") texts = [ "ព្រះរាជាណាចក្រកម្ពុជា", "ធម៌", "ការសិក្សា" ] # Batch encode encoded = tokenizer( texts, padding=True, truncation=True, max_length=512, return_tensors="pt" ) print(encoded["input_ids"].shape) # torch.Size([3, max_length]) ``` ### With PyTorch DataLoader ```python import torch from torch.utils.data import Dataset, DataLoader from transformers import AutoTokenizer class KhmerDataset(Dataset): def __init__(self, texts, tokenizer, max_length=512): self.texts = texts self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.texts) def __getitem__(self, idx): encoding = self.tokenizer( self.texts[idx], truncation=True, padding="max_length", max_length=self.max_length, return_tensors="pt" ) return { "input_ids": encoding["input_ids"].squeeze(), "attention_mask": encoding["attention_mask"].squeeze() } tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") dataset = KhmerDataset(texts, tokenizer) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) ``` ### For Language Models ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("khopilot/khmer-tokenizer-v7") # Add special tokens if needed tokenizer.add_special_tokens({ "pad_token": "<pad>", "eos_token": "</s>", "bos_token": "<s>", "unk_token": "<unk>" }) # Use with any model text = "ព្រះរាជាណាចក្រកម្ពុជា" inputs = tokenizer(text, return_tensors="pt") # Ready for model.generate() or model.forward() ``` ## Model Configuration ```yaml Architecture: SentencePiece Unigram Vocabulary Size: 16,000 Character Coverage: 99.99% Max Piece Length: 8 Split by Unicode Script: Yes Byte Fallback: Enabled Special Tokens: <unk>, <s>, </s>, <pad>, <MASK>, <CLS>, <SEP> ``` ## Training Details - **Training Data:** 2.6M characters of diverse Khmer text - **Data Sources:** News, religious texts, technical docs, social media, literature - **Special Weighting:** Sanskrit/Pali terms (3x), morphological patterns (2x) - **Optimization:** Natural frequency distribution, no artificial repetition ## File Structure ``` khopilot/khmer-tokenizer-v7/ ├── tokenizer.model # SentencePiece model (659KB) ├── tokenizer.vocab # Vocabulary file ├── tokenizer_config.json # HuggingFace config ├── special_tokens_map.json # Special tokens mapping └── config.json # Model metadata ``` ## Citation ```bibtex @misc{khmer-tokenizer-v7-2024, author = {Niko}, title = {Khmer SentencePiece Tokenizer v7}, year = {2024}, publisher = {HuggingFace}, url = {https://huggingface.co/khopilot/khmer-tokenizer-v7} } ``` ## License Apache 2.0 --- **Support:** Open an issue on [HuggingFace](https://huggingface.co/khopilot/khmer-tokenizer-v7/discussions) | **Downloads:** 659KB model size
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755746711
kojeklollipop
2025-08-21T03:53:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T03:53:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rourkerhotmail1/blockassist-bc-stalking_scruffy_walrus_1755745749
rourkerhotmail1
2025-08-21T03:43:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stalking scruffy walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T03:43:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stalking scruffy walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Coaster41/patchtst-sae-flatten-8-4.0-expe
Coaster41
2025-08-21T03:38:14Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-18T06:16:34Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-flatten-8-4.0-expe", "<sae_id>") ```
unitova/blockassist-bc-zealous_sneaky_raven_1755744696
unitova
2025-08-21T03:17:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T03:17:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755744161
indoempatnol
2025-08-21T03:09:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T03:09:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755743308
IvanJAjebu
2025-08-21T02:29:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T02:29:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
original-Clip-Sophie-Rain-Viral-video-Clip/New.full.videos.Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
original-Clip-Sophie-Rain-Viral-video-Clip
2025-08-21T02:13:39Z
0
0
null
[ "region:us" ]
null
2025-08-21T02:13:27Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
unitova/blockassist-bc-zealous_sneaky_raven_1755740909
unitova
2025-08-21T02:13:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T02:13:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SFWolf/llama3.2_3B_news_merged
SFWolf
2025-08-21T01:51:53Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-21T01:51:53Z
--- license: apache-2.0 ---
ZiadWael/medgemma3-4b-it-adapter-QA-MCQ-V1
ZiadWael
2025-08-21T01:22:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-21T01:22:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755735525
lisaozill03
2025-08-21T00:43:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T00:42:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
X-iZhang/Med-CXRGen-F
X-iZhang
2025-08-21T00:18:42Z
3,429
1
transformers
[ "transformers", "pytorch", "safetensors", "libra", "text-generation", "RRG", "Radiology Report Generation", "Chest X-ray", "Multimodal Large Language Models", "image-text-to-text", "dataset:StanfordAIMI/rrg24-shared-task-bionlp", "arxiv:2412.04954", "base_model:liuhaotian/llava-v1.5-7b", "base_model:finetune:liuhaotian/llava-v1.5-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-12-31T23:05:03Z
--- license: apache-2.0 base_model: - liuhaotian/llava-v1.5-7b base_model_relation: finetune pipeline_tag: image-text-to-text tags: - RRG - Radiology Report Generation - Chest X-ray - Multimodal Large Language Models library_name: transformers datasets: - StanfordAIMI/rrg24-shared-task-bionlp --- # **Med-CXRGen-F Model Card** **Task**: Radiology Report Generation – Findings section (RRG Shared Task) ## Paper and Resources For details on Med-CXRGen-F, including its architecture, training strategy, and evaluation—please refer to the following resources: - 📘 **Paper:** [Gla-AI4BioMed at RRG24: Visual Instruction-tuned Adaptation for Radiology Report Generation](https://arxiv.org/abs/2412.04954) - 💻 Code Repository: [GitHub: Med-CXRGen](https://github.com/X-iZhang/RRG-BioNLP-ACL2024) --- ## How to Cite ✒️ If you use this model in academic or research contexts, please cite: ```bibtex @inproceedings{zhang-etal-2024-gla, title = "Gla-{AI}4{B}io{M}ed at {RRG}24: Visual Instruction-tuned Adaptation for Radiology Report Generation", author = "Zhang, Xi and Meng, Zaiqiao and Lever, Jake and Ho, Edmond S.L.", editor = "Demner-Fushman, Dina and Ananiadou, Sophia and Miwa, Makoto and Roberts, Kirk and Tsujii, Junichi", booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.bionlp-1.54/", doi = "10.18653/v1/2024.bionlp-1.54", pages = "624--634", } ```
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755733589
helmutsukocok
2025-08-21T00:13:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T00:13:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hle2025/qwen2.5_7b_gtpo_step40
hle2025
2025-08-21T00:11:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T00:10:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755734823
IvanJAjebu
2025-08-21T00:08:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T00:08:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755730158
yaelahnal
2025-08-20T22:50:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:50:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755727787
calegpedia
2025-08-20T22:36:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:36:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
backt/nasdxlv100
backt
2025-08-20T22:22:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T22:12:23Z
--- license: apache-2.0 ---
ggml-org/Kimi-VL-A3B-Thinking-2506-GGUF
ggml-org
2025-08-20T22:18:32Z
0
2
null
[ "gguf", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T22:12:29Z
--- base_model: - moonshotai/Kimi-VL-A3B-Thinking-2506 --- Original model: https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506 Supported added in this PR: https://github.com/ggml-org/llama.cpp/pull/15458
chainway9/blockassist-bc-untamed_quick_eel_1755722789
chainway9
2025-08-20T21:14:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:13:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
weijiang99/clinvarbert
weijiang99
2025-08-20T20:49:59Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-generation", "biomedical", "clinical", "variant-classification", "genetics", "fine-tuned", "text-classification", "en", "dataset:clinvar", "base_model:dmis-lab/biobert-large-cased-v1.1", "base_model:finetune:dmis-lab/biobert-large-cased-v1.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:10:43Z
--- library_name: transformers tags: - biomedical - clinical - variant-classification - genetics - bert - fine-tuned language: - en license: apache-2.0 base_model: dmis-lab/biobert-large-cased-v1.1 datasets: - clinvar pipeline_tag: text-classification --- # ClinVarBERT A BERT model fine-tuned for clinical variant interpretation and classification tasks, based on BioBERT-Large. ## Model Details ### Model Description ClinVarBERT-Large is a domain-specific language model fine-tuned from BioBERT-Large for understanding and classifying genetic variant descriptions and clinical interpretations. The model has been trained to understand the nuanced language used in clinical genetics, particularly for variant pathogenicity assessment and clinical significance classification. - **Model type:** BERT-based transformer for sequence classification - **Language(s):** English (biomedical/clinical domain) - **License:** Apache 2.0 - **Finetuned from model:** dmis-lab/biobert-large-cased-v1.1 ### Model Sources - **Repository:** [Your GitHub Repository] - **Base Model:** [BioBERT-Large](https://huggingface.co/dmis-lab/biobert-large-cased-v1.1) - **Training Data:** ClinVar database submissions text ## Uses ### Direct Use This model is designed for: - **Variant pathogenicity classification:** Classifying genetic variants as P/LP, B/LB, or VUS - **Clinical interpretation analysis:** Understanding and categorizing clinical variant descriptions - **Biomedical text classification:** General classification tasks in the clinical genetics domain ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("weijiang99/clinvarbert") model = AutoModelForSequenceClassification.from_pretrained("weijiang99/clinvarbert") # Example usage text = "This missense variant in exon 5 of the BRCA1 gene has been observed in multiple families with breast cancer." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get predicted class predicted_class = torch.argmax(predictions, dim=-1)
VoilaRaj/81_b_qL9xTD
VoilaRaj
2025-08-20T20:39:59Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T20:36:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
roeker/blockassist-bc-quick_wiry_owl_1755722050
roeker
2025-08-20T20:34:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:34:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eakaraman/MyGemmaNPC
eakaraman
2025-08-20T20:34:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T20:30:05Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="eakaraman/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
safe-challenge/safe-video-example-submission
safe-challenge
2025-08-20T20:26:21Z
0
0
null
[ "video-classification", "region:us" ]
video-classification
2025-06-20T16:45:28Z
--- pipeline_tag: video-classification --- # SAFE Video Challenge Example Submission The key requirements is to have a `script.py` file in the top level directory of the repo and optionally a `requirements.txt` file For more details: https://safe-video-2025.dsri.org/#-model-submission
mang3dd/blockassist-bc-tangled_slithering_alligator_1755719656
mang3dd
2025-08-20T20:19:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:19:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_1755694493
rbelanec
2025-08-20T19:51:51Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T18:53:28Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_1755694493 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_1755694493 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.3498 - Num Input Tokens Seen: 3465288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.2119 | 0.5 | 1924 | 0.2508 | 173872 | | 0.1252 | 1.0 | 3848 | 0.2795 | 346872 | | 0.2905 | 1.5 | 5772 | 0.2591 | 520296 | | 0.31 | 2.0 | 7696 | 0.2402 | 693752 | | 0.243 | 2.5 | 9620 | 0.2488 | 867416 | | 0.2176 | 3.0 | 11544 | 0.2401 | 1040128 | | 0.2172 | 3.5 | 13468 | 0.2428 | 1212976 | | 0.2667 | 4.0 | 15392 | 0.2426 | 1386696 | | 0.2669 | 4.5 | 17316 | 0.2381 | 1559896 | | 0.2104 | 5.0 | 19240 | 0.2482 | 1733072 | | 0.2037 | 5.5 | 21164 | 0.2389 | 1906160 | | 0.1723 | 6.0 | 23088 | 0.2377 | 2079640 | | 0.147 | 6.5 | 25012 | 0.2382 | 2253000 | | 0.3044 | 7.0 | 26936 | 0.2424 | 2425920 | | 0.3173 | 7.5 | 28860 | 0.2561 | 2598960 | | 0.2224 | 8.0 | 30784 | 0.2512 | 2772144 | | 0.1814 | 8.5 | 32708 | 0.3283 | 2944864 | | 0.2271 | 9.0 | 34632 | 0.3048 | 3118472 | | 0.1103 | 9.5 | 36556 | 0.3464 | 3291720 | | 0.2212 | 10.0 | 38480 | 0.3498 | 3465288 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Marcusmateo/Hashir_distilBERT_v1.7
Marcusmateo
2025-08-20T19:47:33Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T19:47:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755716248
koloni
2025-08-20T19:22:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:22:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717033
canoplos112
2025-08-20T19:12:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:11:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
olga-vizcaino-video-infidelidad-colombia/Ver.Olga.Vizcaino.video.infidelidad.en.Colombia.viral.en.Twitter.y.Telegram
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:06:58Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:04:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas. ¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora? La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
sahil3112/my-awesome-model
sahil3112
2025-08-20T18:56:43Z
0
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-20T18:56:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/xlmr_immigration_combo21_2
AnonymousCS
2025-08-20T18:01:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T17:57:21Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo21_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo21_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2842 - Accuracy: 0.9242 - 1-f1: 0.8850 - 1-recall: 0.8764 - 1-precision: 0.8937 - Balanced Acc: 0.9122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2109 | 1.0 | 25 | 0.2585 | 0.9075 | 0.8662 | 0.8996 | 0.8351 | 0.9055 | | 0.1807 | 2.0 | 50 | 0.2331 | 0.9267 | 0.8889 | 0.8803 | 0.8976 | 0.9151 | | 0.0668 | 3.0 | 75 | 0.2858 | 0.9165 | 0.8748 | 0.8764 | 0.8731 | 0.9064 | | 0.1601 | 4.0 | 100 | 0.2842 | 0.9242 | 0.8850 | 0.8764 | 0.8937 | 0.9122 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Hagrass/LLama3-3.2-instruct-trained
Hagrass
2025-08-20T17:52:07Z
0
0
null
[ "safetensors", "llama", "arabic", "ar", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
null
2025-08-20T16:50:57Z
--- license: llama3.2 language: - ar base_model: - meta-llama/Llama-3.2-3B-Instruct tags: - arabic --- This model is built upon Meta-Llama 3.2 Instruct (3B parameters) and extended through supervised fine-tuning on a large-scale bilingual dataset of approximately 2 million entries. The training corpus combines the ToMe dataset, which offers diverse instruction–response pairs and conversational contexts, with the Arabic Wikipedia dataset, which provides high–quality factual content and rich coverage of knowledge in Arabic. This combination was chosen to balance instruction-following ability with knowledge grounding, especially in domains where Arabic resources are often underrepresented. During supervised fine-tuning, the model was optimized to better understand natural instructions, generate more coherent and contextually accurate responses, and handle a wide range of tasks spanning reasoning, summarization, and factual question answering. The inclusion of Arabic Wikipedia allows the model to provide stronger support for Arabic-language queries, enabling it to handle both monolingual Arabic tasks and mixed bilingual prompts more effectively than the base Llama 3.2 Instruct model. The resulting model is well-suited for general-purpose instruction following, with a particular emphasis on Arabic fluency and comprehension. It is expected to be useful in applications such as educational tools, knowledge assistants, conversational agents, and research systems where instruction compliance and multilingual support are critical. While the model shows improved reliability in following prompts and generating informative content, users should remain aware of potential limitations, including biases inherited from the training data and the possibility of occasional hallucinations in factual outputs.
MattBou00/llama-3-2-1b-detox_v1f-checkpoint-epoch-100
MattBou00
2025-08-20T17:32:09Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-20T00:35:43Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-100") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-100") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-100") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Muapi/black-spider-man-bodysuit-cosplay-il-flux
Muapi
2025-08-20T17:23:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:22:49Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Black Spider-Man Bodysuit Cosplay [IL+Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: wearing a black SymbioteSuit ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:701263@784643", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
sandhyavs/dusty_3cam_52_act
sandhyavs
2025-08-20T17:15:29Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:sandhyavs/dusty-3cam-52-copy", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T17:15:14Z
--- datasets: sandhyavs/dusty-3cam-52-copy library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
youuotty/blockassist-bc-omnivorous_squeaky_bear_1755709950
youuotty
2025-08-20T17:13:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous squeaky bear", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:12:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous squeaky bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755709760
roeker
2025-08-20T17:10:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:09:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Trungdjoon/esg-visobert_run_1
Trungdjoon
2025-08-20T16:16:44Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T16:16:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755700612
Vasya777
2025-08-20T14:37:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:37:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youuotty/blockassist-bc-furry_reptilian_flamingo_1755700198
youuotty
2025-08-20T14:30:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry reptilian flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:29:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry reptilian flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).