modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-26 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-26 06:26:46
card
stringlengths
11
1.01M
srivatsavaasista/textgenerator
srivatsavaasista
2022-08-04T05:40:30Z
28
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-27T09:12:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: textgenerator results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # textgenerator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4579 - Validation Loss: 6.4893 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 398, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.5475 | 6.4893 | 0 | | 6.4577 | 6.4893 | 1 | | 6.4579 | 6.4893 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
keepitreal/mini-phobert-v2
keepitreal
2022-08-04T04:42:30Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T20:07:20Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6
oMateos2020
2022-08-04T03:55:37Z
15
2
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-01T11:22:51Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: pegasus-newsroom-cnn_full-adafactor-bs6 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 44.1026 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-cnn_full-adafactor-bs6 This model is a fine-tuned version of [oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6](https://huggingface.co/oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.8671 - Rouge1: 44.1026 - Rouge2: 21.4261 - Rougel: 31.2033 - Rougelsum: 41.0324 - Gen Len: 72.0839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.9343 | 0.5 | 560 | 2.8733 | 44.1226 | 21.4087 | 31.2431 | 41.0683 | 69.367 | | 2.9855 | 1.0 | 1120 | 2.8671 | 44.1026 | 21.4261 | 31.2033 | 41.0324 | 72.0839 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jjjjjjjjjj/q-FrozenLake-v1-4x4-noSlippery
jjjjjjjjjj
2022-08-04T03:15:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T03:13:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jjjjjjjjjj/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
yashwantk/distilbert-base-cased-distilled-squad-finetuned-squad
yashwantk
2022-08-04T02:42:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2_yash", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T10:29:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_yash model-index: - name: distilbert-base-cased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad_v2_yash dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 198 | 0.7576 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Mateopablo/Futur
Mateopablo
2022-08-04T02:27:52Z
0
0
null
[ "region:us" ]
null
2022-08-04T02:26:46Z
Mateo Martínez, argentinian license: afl-3.0 ---
jerryw/my_bert-base-cased
jerryw
2022-08-04T01:38:04Z
5
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T01:34:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my_bert-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my_bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
carted-nlp/categorization-finetuned-20220721-164940-pruned-20220803-184651
carted-nlp
2022-08-04T00:11:55Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:49:03Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: categorization-finetuned-20220721-164940-pruned-20220803-184651 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # categorization-finetuned-20220721-164940-pruned-20220803-184651 This model is a fine-tuned version of [carted-nlp/categorization-finetuned-20220721-164940](https://huggingface.co/carted-nlp/categorization-finetuned-20220721-164940) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4673 - Accuracy: 0.8760 - F1: 0.8751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 48 - eval_batch_size: 48 - seed: 314 - gradient_accumulation_steps: 6 - total_train_batch_size: 288 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.3404 | 0.51 | 2000 | 0.4329 | 0.8872 | 0.8865 | | 0.3433 | 1.01 | 4000 | 0.4280 | 0.8883 | 0.8876 | | 0.3281 | 1.52 | 6000 | 0.4302 | 0.8890 | 0.8883 | | 0.331 | 2.02 | 8000 | 0.4265 | 0.8891 | 0.8885 | | 0.3224 | 2.53 | 10000 | 0.4300 | 0.8881 | 0.8874 | | 0.3361 | 3.04 | 12000 | 0.4291 | 0.8889 | 0.8882 | | 0.3323 | 3.54 | 14000 | 0.4337 | 0.8878 | 0.8871 | | 0.3556 | 4.05 | 16000 | 0.4345 | 0.8857 | 0.8851 | | 0.3663 | 4.56 | 18000 | 0.4417 | 0.8836 | 0.8828 | | 0.3902 | 5.06 | 20000 | 0.4555 | 0.8789 | 0.8781 | | 0.4036 | 5.57 | 22000 | 0.4556 | 0.8788 | 0.8779 | | 0.4305 | 6.07 | 24000 | 0.4697 | 0.8751 | 0.8742 | | 0.4501 | 6.58 | 26000 | 0.4763 | 0.8738 | 0.8725 | | 0.4733 | 7.09 | 28000 | 0.4857 | 0.8710 | 0.8700 | | 0.4851 | 7.59 | 30000 | 0.4863 | 0.8705 | 0.8695 | | 0.4846 | 8.1 | 32000 | 0.4849 | 0.8708 | 0.8698 | | 0.4856 | 8.61 | 34000 | 0.4835 | 0.8707 | 0.8695 | | 0.4774 | 9.11 | 36000 | 0.4797 | 0.8719 | 0.8708 | | 0.4635 | 9.62 | 38000 | 0.4776 | 0.8728 | 0.8717 | | 0.4561 | 10.12 | 40000 | 0.4746 | 0.8739 | 0.8729 | | 0.4475 | 10.63 | 42000 | 0.4705 | 0.8749 | 0.8740 | | 0.4413 | 11.14 | 44000 | 0.4691 | 0.8754 | 0.8744 | | 0.4389 | 11.64 | 46000 | 0.4679 | 0.8760 | 0.8750 | | 0.4361 | 12.15 | 48000 | 0.4677 | 0.8759 | 0.8749 | | 0.4362 | 12.65 | 50000 | 0.4672 | 0.8763 | 0.8753 | | 0.4309 | 13.16 | 52000 | 0.4671 | 0.8761 | 0.8751 | | 0.4316 | 13.67 | 54000 | 0.4670 | 0.8764 | 0.8754 | | 0.4321 | 14.17 | 56000 | 0.4668 | 0.8764 | 0.8755 | | 0.4311 | 14.68 | 58000 | 0.4668 | 0.8764 | 0.8754 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.11.6
mrm8488/dqn-EnduroNoFrameskip-v4
mrm8488
2022-08-03T23:23:24Z
8
0
stable-baselines3
[ "stable-baselines3", "EnduroNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T23:19:07Z
--- library_name: stable-baselines3 tags: - EnduroNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 553.80 +/- 125.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: EnduroNoFrameskip-v4 type: EnduroNoFrameskip-v4 --- # **DQN** Agent playing **EnduroNoFrameskip-v4** This is a trained model of a **DQN** agent playing **EnduroNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env EnduroNoFrameskip-v4 -orga mrm8488 -f logs/ python enjoy.py --algo dqn --env EnduroNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env EnduroNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env EnduroNoFrameskip-v4 -f logs/ -orga mrm8488 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 512), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 600000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/elonmusk-srinithyananda
huggingtweets
2022-08-03T22:27:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T22:27:29Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157286539036020737/5TQyrkEw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & KAILASA's SPH Nithyananda</div> <div style="text-align: center; font-size: 14px;">@elonmusk-srinithyananda</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & KAILASA's SPH Nithyananda. | Data | Elon Musk | KAILASA's SPH Nithyananda | | --- | --- | --- | | Tweets downloaded | 3200 | 3250 | | Retweets | 128 | 6 | | Short tweets | 982 | 523 | | Tweets kept | 2090 | 2721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2y3fe7dn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-srinithyananda's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gywjziih) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gywjziih/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-srinithyananda') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
khabiri/test_keras_model_elham
khabiri
2022-08-03T22:23:45Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-08-03T22:23:36Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
huggingtweets/elonmusk-srinithyananda-yeshuaissavior
huggingtweets
2022-08-03T22:10:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T21:57:09Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1552061223864127488/Y-7S0UTB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157286539036020737/5TQyrkEw_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Feather of the One & Elon Musk & KAILASA's SPH Nithyananda</div> <div style="text-align: center; font-size: 14px;">@elonmusk-srinithyananda-yeshuaissavior</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Feather of the One & Elon Musk & KAILASA's SPH Nithyananda. | Data | Feather of the One | Elon Musk | KAILASA's SPH Nithyananda | | --- | --- | --- | --- | | Tweets downloaded | 505 | 3200 | 3250 | | Retweets | 29 | 128 | 6 | | Short tweets | 175 | 982 | 523 | | Tweets kept | 301 | 2090 | 2721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wthdqz7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-srinithyananda-yeshuaissavior's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18cn8xoz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18cn8xoz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-srinithyananda-yeshuaissavior') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RayS2022/q-Taxi-v3
RayS2022
2022-08-03T20:58:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T20:58:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RayS2022/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
SharpAI/mal-tls-bert-base-relu-w1q8
SharpAI
2022-08-03T19:37:51Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T19:37:23Z
--- tags: - generated_from_keras_callback model-index: - name: mal_tls-bert-base-relu-w1q8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls-bert-base-relu-w1q8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
yasnunsal/distilbert-base-uncased-finetuned-emotion
yasnunsal
2022-08-03T18:32:09Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T15:08:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BenWord/autotrain-APMv2Multiclass-1216046004
BenWord
2022-08-03T18:06:06Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:BenWord/autotrain-data-APMv2Multiclass", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:03:06Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - BenWord/autotrain-data-APMv2Multiclass co2_eq_emissions: emissions: 2.4364900803769225 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1216046004 - CO2 Emissions (in grams): 2.4365 ## Validation Metrics - Loss: 0.094 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/BenWord/autotrain-APMv2Multiclass-1216046004 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
NitishKarra/layoutlmv3-finetuned-wildreceipt
NitishKarra
2022-08-03T17:44:41Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T16:06:42Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wildreceipt type: wildreceipt config: WildReceipt split: train args: WildReceipt metrics: - name: Precision type: precision value: 0.8693453601202679 - name: Recall type: recall value: 0.8753268198706481 - name: F1 type: f1 value: 0.872325836533187 - name: Accuracy type: accuracy value: 0.9240429965997587 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3154 - Precision: 0.8693 - Recall: 0.8753 - F1: 0.8723 - Accuracy: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3618 | 0.6375 | 0.3049 | 0.4125 | 0.6708 | | No log | 0.63 | 200 | 0.9129 | 0.6662 | 0.4897 | 0.5645 | 0.7631 | | No log | 0.95 | 300 | 0.6800 | 0.7273 | 0.6375 | 0.6795 | 0.8274 | | No log | 1.26 | 400 | 0.5733 | 0.7579 | 0.6926 | 0.7238 | 0.8501 | | 1.0638 | 1.58 | 500 | 0.5015 | 0.7854 | 0.7383 | 0.7611 | 0.8667 | | 1.0638 | 1.89 | 600 | 0.4501 | 0.7916 | 0.7680 | 0.7796 | 0.8770 | | 1.0638 | 2.21 | 700 | 0.4145 | 0.8177 | 0.8053 | 0.8114 | 0.8917 | | 1.0638 | 2.52 | 800 | 0.3835 | 0.8214 | 0.8210 | 0.8212 | 0.8961 | | 1.0638 | 2.84 | 900 | 0.3666 | 0.8251 | 0.8338 | 0.8294 | 0.9009 | | 0.423 | 3.15 | 1000 | 0.3524 | 0.8485 | 0.8217 | 0.8349 | 0.9026 | | 0.423 | 3.47 | 1100 | 0.3451 | 0.8430 | 0.8327 | 0.8378 | 0.9060 | | 0.423 | 3.79 | 1200 | 0.3348 | 0.8347 | 0.8504 | 0.8425 | 0.9092 | | 0.423 | 4.1 | 1300 | 0.3331 | 0.8368 | 0.8448 | 0.8408 | 0.9079 | | 0.423 | 4.42 | 1400 | 0.3163 | 0.8503 | 0.8519 | 0.8511 | 0.9138 | | 0.2822 | 4.73 | 1500 | 0.3168 | 0.8531 | 0.8504 | 0.8518 | 0.9133 | | 0.2822 | 5.05 | 1600 | 0.3013 | 0.8629 | 0.8577 | 0.8603 | 0.9183 | | 0.2822 | 5.36 | 1700 | 0.3146 | 0.8619 | 0.8528 | 0.8573 | 0.9160 | | 0.2822 | 5.68 | 1800 | 0.3121 | 0.8474 | 0.8638 | 0.8555 | 0.9159 | | 0.2822 | 5.99 | 1900 | 0.3054 | 0.8537 | 0.8667 | 0.8601 | 0.9166 | | 0.2176 | 6.31 | 2000 | 0.3127 | 0.8556 | 0.8592 | 0.8574 | 0.9167 | | 0.2176 | 6.62 | 2100 | 0.3072 | 0.8568 | 0.8667 | 0.8617 | 0.9194 | | 0.2176 | 6.94 | 2200 | 0.2989 | 0.8617 | 0.8660 | 0.8638 | 0.9209 | | 0.2176 | 7.26 | 2300 | 0.2997 | 0.8616 | 0.8682 | 0.8649 | 0.9199 | | 0.2176 | 7.57 | 2400 | 0.3100 | 0.8538 | 0.8689 | 0.8613 | 0.9191 | | 0.1777 | 7.89 | 2500 | 0.3022 | 0.8649 | 0.8695 | 0.8672 | 0.9228 | | 0.1777 | 8.2 | 2600 | 0.2990 | 0.8631 | 0.8740 | 0.8685 | 0.9224 | | 0.1777 | 8.52 | 2700 | 0.3072 | 0.8669 | 0.8697 | 0.8683 | 0.9228 | | 0.1777 | 8.83 | 2800 | 0.3038 | 0.8689 | 0.8720 | 0.8705 | 0.9238 | | 0.1777 | 9.15 | 2900 | 0.3138 | 0.8726 | 0.8673 | 0.8700 | 0.9216 | | 0.1434 | 9.46 | 3000 | 0.3150 | 0.8610 | 0.8740 | 0.8674 | 0.9221 | | 0.1434 | 9.78 | 3100 | 0.3055 | 0.8674 | 0.8742 | 0.8708 | 0.9239 | | 0.1434 | 10.09 | 3200 | 0.3182 | 0.8618 | 0.8724 | 0.8671 | 0.9215 | | 0.1434 | 10.41 | 3300 | 0.3175 | 0.8633 | 0.8727 | 0.8680 | 0.9223 | | 0.1434 | 10.73 | 3400 | 0.3146 | 0.8685 | 0.8717 | 0.8701 | 0.9234 | | 0.1282 | 11.04 | 3500 | 0.3136 | 0.8671 | 0.8757 | 0.8714 | 0.9233 | | 0.1282 | 11.36 | 3600 | 0.3186 | 0.8679 | 0.8734 | 0.8706 | 0.9225 | | 0.1282 | 11.67 | 3700 | 0.3147 | 0.8701 | 0.8745 | 0.8723 | 0.9238 | | 0.1282 | 11.99 | 3800 | 0.3159 | 0.8705 | 0.8759 | 0.8732 | 0.9244 | | 0.1282 | 12.3 | 3900 | 0.3147 | 0.8699 | 0.8748 | 0.8723 | 0.9246 | | 0.1121 | 12.62 | 4000 | 0.3154 | 0.8693 | 0.8753 | 0.8723 | 0.9240 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MayaGalvez/bert-base-multilingual-cased-finetuned-nli
MayaGalvez
2022-08-03T16:48:33Z
18
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:xnli", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:58:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli config: en split: train args: en metrics: - name: Accuracy type: accuracy value: 0.8156626506024096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-nli This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Accuracy: 0.8157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9299 | 0.02 | 200 | 0.8468 | 0.6277 | | 0.7967 | 0.03 | 400 | 0.7425 | 0.6855 | | 0.7497 | 0.05 | 600 | 0.7116 | 0.6924 | | 0.7083 | 0.07 | 800 | 0.6868 | 0.7153 | | 0.6882 | 0.08 | 1000 | 0.6638 | 0.7289 | | 0.6944 | 0.1 | 1200 | 0.6476 | 0.7361 | | 0.6682 | 0.11 | 1400 | 0.6364 | 0.7458 | | 0.6635 | 0.13 | 1600 | 0.6592 | 0.7337 | | 0.6423 | 0.15 | 1800 | 0.6120 | 0.7510 | | 0.6196 | 0.16 | 2000 | 0.5990 | 0.7582 | | 0.6381 | 0.18 | 2200 | 0.6026 | 0.7538 | | 0.6276 | 0.2 | 2400 | 0.6054 | 0.7598 | | 0.6248 | 0.21 | 2600 | 0.6368 | 0.7526 | | 0.6331 | 0.23 | 2800 | 0.5959 | 0.7655 | | 0.6142 | 0.24 | 3000 | 0.6117 | 0.7554 | | 0.6124 | 0.26 | 3200 | 0.6221 | 0.7570 | | 0.6127 | 0.28 | 3400 | 0.5748 | 0.7695 | | 0.602 | 0.29 | 3600 | 0.5735 | 0.7598 | | 0.5923 | 0.31 | 3800 | 0.5609 | 0.7723 | | 0.5827 | 0.33 | 4000 | 0.5635 | 0.7743 | | 0.5732 | 0.34 | 4200 | 0.5547 | 0.7771 | | 0.5757 | 0.36 | 4400 | 0.5629 | 0.7739 | | 0.5736 | 0.37 | 4600 | 0.5680 | 0.7659 | | 0.5642 | 0.39 | 4800 | 0.5437 | 0.7871 | | 0.5763 | 0.41 | 5000 | 0.5589 | 0.7807 | | 0.5713 | 0.42 | 5200 | 0.5355 | 0.7867 | | 0.5644 | 0.44 | 5400 | 0.5346 | 0.7888 | | 0.5727 | 0.46 | 5600 | 0.5519 | 0.7815 | | 0.5539 | 0.47 | 5800 | 0.5219 | 0.7900 | | 0.5516 | 0.49 | 6000 | 0.5560 | 0.7795 | | 0.5539 | 0.51 | 6200 | 0.5544 | 0.7847 | | 0.5693 | 0.52 | 6400 | 0.5322 | 0.7932 | | 0.5632 | 0.54 | 6600 | 0.5404 | 0.7936 | | 0.565 | 0.55 | 6800 | 0.5382 | 0.7880 | | 0.5555 | 0.57 | 7000 | 0.5364 | 0.7920 | | 0.5329 | 0.59 | 7200 | 0.5177 | 0.7964 | | 0.54 | 0.6 | 7400 | 0.5286 | 0.7916 | | 0.554 | 0.62 | 7600 | 0.5401 | 0.7835 | | 0.5447 | 0.64 | 7800 | 0.5261 | 0.7876 | | 0.5438 | 0.65 | 8000 | 0.5032 | 0.8020 | | 0.5505 | 0.67 | 8200 | 0.5220 | 0.7924 | | 0.5364 | 0.68 | 8400 | 0.5398 | 0.7876 | | 0.5317 | 0.7 | 8600 | 0.5310 | 0.7944 | | 0.5361 | 0.72 | 8800 | 0.5297 | 0.7936 | | 0.5204 | 0.73 | 9000 | 0.5270 | 0.7940 | | 0.5189 | 0.75 | 9200 | 0.5193 | 0.7964 | | 0.5348 | 0.77 | 9400 | 0.5270 | 0.7867 | | 0.5363 | 0.78 | 9600 | 0.5194 | 0.7924 | | 0.5184 | 0.8 | 9800 | 0.5298 | 0.7888 | | 0.5072 | 0.81 | 10000 | 0.4999 | 0.7992 | | 0.5229 | 0.83 | 10200 | 0.4922 | 0.8108 | | 0.5201 | 0.85 | 10400 | 0.5019 | 0.7920 | | 0.5304 | 0.86 | 10600 | 0.4959 | 0.7992 | | 0.5061 | 0.88 | 10800 | 0.5047 | 0.7980 | | 0.5291 | 0.9 | 11000 | 0.4974 | 0.8068 | | 0.5099 | 0.91 | 11200 | 0.4988 | 0.8036 | | 0.5271 | 0.93 | 11400 | 0.4899 | 0.8028 | | 0.5211 | 0.95 | 11600 | 0.4866 | 0.8092 | | 0.4977 | 0.96 | 11800 | 0.5059 | 0.7960 | | 0.5155 | 0.98 | 12000 | 0.4821 | 0.8084 | | 0.5061 | 0.99 | 12200 | 0.4763 | 0.8116 | | 0.4607 | 1.01 | 12400 | 0.5245 | 0.8020 | | 0.4435 | 1.03 | 12600 | 0.5021 | 0.8032 | | 0.4289 | 1.04 | 12800 | 0.5219 | 0.8060 | | 0.4227 | 1.06 | 13000 | 0.5119 | 0.8076 | | 0.4349 | 1.08 | 13200 | 0.4957 | 0.8104 | | 0.4331 | 1.09 | 13400 | 0.4914 | 0.8129 | | 0.4269 | 1.11 | 13600 | 0.4785 | 0.8145 | | 0.4185 | 1.12 | 13800 | 0.4879 | 0.8161 | | 0.4244 | 1.14 | 14000 | 0.4834 | 0.8149 | | 0.4016 | 1.16 | 14200 | 0.5084 | 0.8056 | | 0.4106 | 1.17 | 14400 | 0.4993 | 0.8052 | | 0.4345 | 1.19 | 14600 | 0.5029 | 0.8124 | | 0.4162 | 1.21 | 14800 | 0.4841 | 0.8120 | | 0.4239 | 1.22 | 15000 | 0.4756 | 0.8189 | | 0.4215 | 1.24 | 15200 | 0.4957 | 0.8088 | | 0.4157 | 1.25 | 15400 | 0.4845 | 0.8112 | | 0.3982 | 1.27 | 15600 | 0.5064 | 0.8048 | | 0.4056 | 1.29 | 15800 | 0.4827 | 0.8241 | | 0.4105 | 1.3 | 16000 | 0.4936 | 0.8088 | | 0.4221 | 1.32 | 16200 | 0.4800 | 0.8129 | | 0.4029 | 1.34 | 16400 | 0.4790 | 0.8181 | | 0.4346 | 1.35 | 16600 | 0.4802 | 0.8137 | | 0.4163 | 1.37 | 16800 | 0.4838 | 0.8213 | | 0.4106 | 1.39 | 17000 | 0.4905 | 0.8209 | | 0.4071 | 1.4 | 17200 | 0.4889 | 0.8153 | | 0.4077 | 1.42 | 17400 | 0.4801 | 0.8165 | | 0.4074 | 1.43 | 17600 | 0.4765 | 0.8217 | | 0.4095 | 1.45 | 17800 | 0.4942 | 0.8096 | | 0.4117 | 1.47 | 18000 | 0.4668 | 0.8225 | | 0.3991 | 1.48 | 18200 | 0.4814 | 0.8161 | | 0.4114 | 1.5 | 18400 | 0.4757 | 0.8193 | | 0.4061 | 1.52 | 18600 | 0.4702 | 0.8209 | | 0.4104 | 1.53 | 18800 | 0.4814 | 0.8149 | | 0.3997 | 1.55 | 19000 | 0.4833 | 0.8141 | | 0.3992 | 1.56 | 19200 | 0.4847 | 0.8169 | | 0.4021 | 1.58 | 19400 | 0.4893 | 0.8189 | | 0.4284 | 1.6 | 19600 | 0.4806 | 0.8173 | | 0.3915 | 1.61 | 19800 | 0.4952 | 0.8092 | | 0.4122 | 1.63 | 20000 | 0.4917 | 0.8112 | | 0.4164 | 1.65 | 20200 | 0.4769 | 0.8157 | | 0.4063 | 1.66 | 20400 | 0.4723 | 0.8141 | | 0.4087 | 1.68 | 20600 | 0.4701 | 0.8157 | | 0.4159 | 1.69 | 20800 | 0.4826 | 0.8141 | | 0.4 | 1.71 | 21000 | 0.4760 | 0.8133 | | 0.4024 | 1.73 | 21200 | 0.4755 | 0.8161 | | 0.4201 | 1.74 | 21400 | 0.4728 | 0.8173 | | 0.4066 | 1.76 | 21600 | 0.4690 | 0.8157 | | 0.3941 | 1.78 | 21800 | 0.4687 | 0.8181 | | 0.3987 | 1.79 | 22000 | 0.4735 | 0.8149 | | 0.4074 | 1.81 | 22200 | 0.4715 | 0.8137 | | 0.4083 | 1.83 | 22400 | 0.4660 | 0.8181 | | 0.4107 | 1.84 | 22600 | 0.4699 | 0.8161 | | 0.3924 | 1.86 | 22800 | 0.4732 | 0.8153 | | 0.4205 | 1.87 | 23000 | 0.4686 | 0.8177 | | 0.3962 | 1.89 | 23200 | 0.4688 | 0.8177 | | 0.3888 | 1.91 | 23400 | 0.4778 | 0.8124 | | 0.3978 | 1.92 | 23600 | 0.4713 | 0.8145 | | 0.3963 | 1.94 | 23800 | 0.4704 | 0.8145 | | 0.408 | 1.96 | 24000 | 0.4674 | 0.8165 | | 0.4014 | 1.97 | 24200 | 0.4679 | 0.8161 | | 0.3951 | 1.99 | 24400 | 0.4681 | 0.8157 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
bhaskar75/ddpm-butterflies-128
bhaskar75
2022-08-03T15:55:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-03T15:08:41Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/bhaskar75/ddpm-butterflies-128/tensorboard?#scalars)
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500
dminiotas05
2022-08-03T14:50:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T13:53:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8852 - Mse: 2.9505 - Mae: 1.0272 - R2: 0.4233 - Accuracy: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.62 | 1.0 | 3122 | 0.8853 | 2.9511 | 1.0392 | 0.4232 | 0.4830 | | 0.5042 | 2.0 | 6244 | 0.8695 | 2.8984 | 1.0347 | 0.4335 | 0.4651 | | 0.309 | 3.0 | 9366 | 0.8852 | 2.9505 | 1.0272 | 0.4233 | 0.4914 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA
DOOGLAK
2022-08-03T14:33:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T14:25:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: temp results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.8517110266159695 - name: Recall type: recall value: 0.875 - name: F1 type: f1 value: 0.8631984585741811 - name: Accuracy type: accuracy value: 0.9607367910809501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.1322 - Precision: 0.8517 - Recall: 0.875 - F1: 0.8632 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 167 | 0.1490 | 0.7583 | 0.7760 | 0.7671 | 0.9472 | | No log | 2.0 | 334 | 0.1337 | 0.8519 | 0.8464 | 0.8491 | 0.9572 | | 0.1569 | 3.0 | 501 | 0.1322 | 0.8517 | 0.875 | 0.8632 | 0.9607 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
elopezlopez/distilbert-base-uncased_fold_10_binary_v1
elopezlopez
2022-08-03T14:29:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:51:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_10_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_10_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6912 - F1: 0.7977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4002 | 0.8012 | | 0.4056 | 2.0 | 576 | 0.4372 | 0.8075 | | 0.4056 | 3.0 | 864 | 0.4720 | 0.8071 | | 0.1958 | 4.0 | 1152 | 0.8156 | 0.7980 | | 0.1958 | 5.0 | 1440 | 0.8633 | 0.8055 | | 0.0847 | 6.0 | 1728 | 0.9761 | 0.8041 | | 0.0356 | 7.0 | 2016 | 1.1816 | 0.7861 | | 0.0356 | 8.0 | 2304 | 1.2251 | 0.7918 | | 0.0215 | 9.0 | 2592 | 1.3423 | 0.7798 | | 0.0215 | 10.0 | 2880 | 1.3888 | 0.7913 | | 0.013 | 11.0 | 3168 | 1.2899 | 0.8040 | | 0.013 | 12.0 | 3456 | 1.4247 | 0.8051 | | 0.0049 | 13.0 | 3744 | 1.5436 | 0.7991 | | 0.0061 | 14.0 | 4032 | 1.5762 | 0.7991 | | 0.0061 | 15.0 | 4320 | 1.5461 | 0.7998 | | 0.0054 | 16.0 | 4608 | 1.5622 | 0.8018 | | 0.0054 | 17.0 | 4896 | 1.6658 | 0.7991 | | 0.0021 | 18.0 | 5184 | 1.6765 | 0.7972 | | 0.0021 | 19.0 | 5472 | 1.6864 | 0.7973 | | 0.0052 | 20.0 | 5760 | 1.6303 | 0.8030 | | 0.0029 | 21.0 | 6048 | 1.6631 | 0.7947 | | 0.0029 | 22.0 | 6336 | 1.6571 | 0.8006 | | 0.0027 | 23.0 | 6624 | 1.6729 | 0.7949 | | 0.0027 | 24.0 | 6912 | 1.6931 | 0.7934 | | 0.0001 | 25.0 | 7200 | 1.6912 | 0.7977 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_9_binary_v1
elopezlopez
2022-08-03T14:14:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:37:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_9_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_9_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6965 - F1: 0.8090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.4193 | 0.7989 | | 0.3993 | 2.0 | 582 | 0.4039 | 0.8026 | | 0.3993 | 3.0 | 873 | 0.5227 | 0.7995 | | 0.2044 | 4.0 | 1164 | 0.7264 | 0.8011 | | 0.2044 | 5.0 | 1455 | 0.8497 | 0.8007 | | 0.0882 | 6.0 | 1746 | 0.9543 | 0.8055 | | 0.0374 | 7.0 | 2037 | 1.1349 | 0.7997 | | 0.0374 | 8.0 | 2328 | 1.3175 | 0.8009 | | 0.0151 | 9.0 | 2619 | 1.3585 | 0.8030 | | 0.0151 | 10.0 | 2910 | 1.4202 | 0.8067 | | 0.0068 | 11.0 | 3201 | 1.4364 | 0.8108 | | 0.0068 | 12.0 | 3492 | 1.4443 | 0.8088 | | 0.0096 | 13.0 | 3783 | 1.5308 | 0.8075 | | 0.0031 | 14.0 | 4074 | 1.5061 | 0.8020 | | 0.0031 | 15.0 | 4365 | 1.5769 | 0.7980 | | 0.0048 | 16.0 | 4656 | 1.5962 | 0.8038 | | 0.0048 | 17.0 | 4947 | 1.5383 | 0.8085 | | 0.0067 | 18.0 | 5238 | 1.5456 | 0.8158 | | 0.0062 | 19.0 | 5529 | 1.6325 | 0.8044 | | 0.0062 | 20.0 | 5820 | 1.5430 | 0.8141 | | 0.0029 | 21.0 | 6111 | 1.6590 | 0.8117 | | 0.0029 | 22.0 | 6402 | 1.6650 | 0.8112 | | 0.0017 | 23.0 | 6693 | 1.7016 | 0.8053 | | 0.0017 | 24.0 | 6984 | 1.6998 | 0.8090 | | 0.0011 | 25.0 | 7275 | 1.6965 | 0.8090 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_8_binary_v1
elopezlopez
2022-08-03T13:59:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:22:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_8_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_8_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 - F1: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4038 | 0.7981 | | 0.409 | 2.0 | 580 | 0.4023 | 0.8176 | | 0.409 | 3.0 | 870 | 0.5245 | 0.8169 | | 0.1938 | 4.0 | 1160 | 0.6242 | 0.8298 | | 0.1938 | 5.0 | 1450 | 0.8432 | 0.8159 | | 0.0848 | 6.0 | 1740 | 1.0887 | 0.8015 | | 0.038 | 7.0 | 2030 | 1.0700 | 0.8167 | | 0.038 | 8.0 | 2320 | 1.0970 | 0.8241 | | 0.0159 | 9.0 | 2610 | 1.2474 | 0.8142 | | 0.0159 | 10.0 | 2900 | 1.3453 | 0.8184 | | 0.01 | 11.0 | 3190 | 1.4412 | 0.8147 | | 0.01 | 12.0 | 3480 | 1.4263 | 0.8181 | | 0.007 | 13.0 | 3770 | 1.3859 | 0.8258 | | 0.0092 | 14.0 | 4060 | 1.4633 | 0.8128 | | 0.0092 | 15.0 | 4350 | 1.4304 | 0.8206 | | 0.0096 | 16.0 | 4640 | 1.5081 | 0.8149 | | 0.0096 | 17.0 | 4930 | 1.5239 | 0.8189 | | 0.0047 | 18.0 | 5220 | 1.5268 | 0.8151 | | 0.0053 | 19.0 | 5510 | 1.5445 | 0.8173 | | 0.0053 | 20.0 | 5800 | 1.6051 | 0.8180 | | 0.0014 | 21.0 | 6090 | 1.5981 | 0.8211 | | 0.0014 | 22.0 | 6380 | 1.5957 | 0.8225 | | 0.001 | 23.0 | 6670 | 1.5838 | 0.8189 | | 0.001 | 24.0 | 6960 | 1.6301 | 0.8178 | | 0.0018 | 25.0 | 7250 | 1.6283 | 0.8178 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dminiotas05/distilbert-base-uncased-finetuned-ft1500_unnorm
dminiotas05
2022-08-03T12:56:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T12:24:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_unnorm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_unnorm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0557 - Mse: 205571.2188 - Mae: 74.8054 - R2: 0.0463 - Accuracy: 0.0090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:------:|:--------:| | 1.2054 | 1.0 | 3122 | 2.0557 | 205571.2188 | 74.8054 | 0.0463 | 0.0090 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bhavesh/arinfo_sample_dataset_finaltffwjv58-model-classification
bhavesh
2022-08-03T12:40:45Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-08-03T12:40:39Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on arinfo_sample_dataset_finaltffwjv58 to apply classification on model **Metrics of the best model:** accuracy 0.930688 recall_macro 0.655991 precision_macro 0.640972 f1_macro 0.638021 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=2249), dtype: float64 **See model plot below:** <style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fu... class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;,max_depth=2249))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fu... class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;,max_depth=2249))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fuelType False False False ... False False False class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=2249)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
Rocketknight1/distilbert-base-uncased-finetuned-cola
Rocketknight1
2022-08-03T12:13:22Z
7
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3182 - Validation Loss: 0.4914 - Train Matthews Correlation: 0.5056 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5126 | 0.4638 | 0.4555 | 0 | | 0.3182 | 0.4914 | 0.5056 | 1 | ### Framework versions - Transformers 4.22.0.dev0 - TensorFlow 2.9.1 - Datasets 2.4.1.dev0 - Tokenizers 0.11.0
masapasa/is_cat
masapasa
2022-08-03T10:57:18Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-03T10:53:01Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
SlavaC/bert-fine-tuned-cola
SlavaC
2022-08-03T10:47:51Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T10:12:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2861 - Validation Loss: 0.4212 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4878 | 0.4234 | 0 | | 0.2861 | 0.4212 | 1 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.7.0 - Datasets 2.4.0 - Tokenizers 0.12.1
spacestar1705/Reinforce-PixelCopter-PLE-v0
spacestar1705
2022-08-03T09:30:13Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T12:45:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-PLE-v0 results: - metrics: - type: mean_reward value: 10.60 +/- 9.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
SyedArsal/roberta-urdu-small-finetuned-news
SyedArsal
2022-08-03T09:13:02Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "multiple-choice", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-29T08:04:18Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-urdu-small-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-urdu-small-finetuned-news This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2702 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5949 | 1.0 | 938 | 0.3626 | 0.9029 | | 0.1351 | 2.0 | 1876 | 0.2545 | 0.9389 | | 0.0281 | 3.0 | 2814 | 0.2702 | 0.9482 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
kws/dqn-SpaceInvadersNoFrameskip-v4
kws
2022-08-03T07:43:27Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T07:42:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 603.00 +/- 194.90 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kws -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kws ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BekirTaha/dqn-SpaceInvadersNoFrameskip-v4
BekirTaha
2022-08-03T07:41:26Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T13:34:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 577.50 +/- 116.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BekirTaha -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BekirTaha ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
NimaBoscarino/July25Test
NimaBoscarino
2022-08-03T07:20:01Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-26T02:54:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # NimaBoscarino/July25Test This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NimaBoscarino/July25Test') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/July25Test') model = AutoModel.from_pretrained('NimaBoscarino/July25Test') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/July25Test) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
msms/deberta-v3-base-squad2-finetuned-squad
msms
2022-08-03T06:25:28Z
4
0
transformers
[ "transformers", "tf", "deberta-v2", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T11:28:16Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: msms/deberta-v3-base-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # msms/deberta-v3-base-squad2-finetuned-squad This model is a fine-tuned version of [deepset/deberta-v3-base-squad2](https://huggingface.co/deepset/deberta-v3-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7266 - Validation Loss: 4.5755 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1533, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3334 | 3.8035 | 0 | | 0.7266 | 4.5755 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
wooihen/xlm-roberta-base-finetuned-panx-de
wooihen
2022-08-03T02:12:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-12T07:47:47Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
elopezlopez/distilbert-base-uncased_fold_5_binary_v1
elopezlopez
2022-08-02T23:02:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T22:48:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_5_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_5_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6980 - F1: 0.8110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4412 | 0.7981 | | 0.396 | 2.0 | 576 | 0.4419 | 0.8078 | | 0.396 | 3.0 | 864 | 0.4955 | 0.8166 | | 0.2019 | 4.0 | 1152 | 0.6341 | 0.8075 | | 0.2019 | 5.0 | 1440 | 1.0351 | 0.7979 | | 0.0808 | 6.0 | 1728 | 1.1818 | 0.7844 | | 0.0315 | 7.0 | 2016 | 1.2530 | 0.8051 | | 0.0315 | 8.0 | 2304 | 1.3568 | 0.7937 | | 0.0143 | 9.0 | 2592 | 1.4009 | 0.8045 | | 0.0143 | 10.0 | 2880 | 1.5333 | 0.7941 | | 0.0066 | 11.0 | 3168 | 1.5242 | 0.7982 | | 0.0066 | 12.0 | 3456 | 1.5752 | 0.8050 | | 0.0091 | 13.0 | 3744 | 1.5199 | 0.8046 | | 0.0111 | 14.0 | 4032 | 1.5319 | 0.8117 | | 0.0111 | 15.0 | 4320 | 1.5333 | 0.8156 | | 0.0072 | 16.0 | 4608 | 1.5461 | 0.8192 | | 0.0072 | 17.0 | 4896 | 1.5288 | 0.8252 | | 0.0048 | 18.0 | 5184 | 1.5725 | 0.8078 | | 0.0048 | 19.0 | 5472 | 1.5896 | 0.8138 | | 0.0032 | 20.0 | 5760 | 1.6917 | 0.8071 | | 0.0028 | 21.0 | 6048 | 1.6608 | 0.8109 | | 0.0028 | 22.0 | 6336 | 1.7013 | 0.8122 | | 0.0029 | 23.0 | 6624 | 1.6769 | 0.8148 | | 0.0029 | 24.0 | 6912 | 1.6906 | 0.8100 | | 0.0006 | 25.0 | 7200 | 1.6980 | 0.8110 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_2_binary_v1
elopezlopez
2022-08-02T22:17:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T22:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_2_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_2_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8833 - F1: 0.7841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4060 | 0.8070 | | 0.3981 | 2.0 | 580 | 0.4534 | 0.8072 | | 0.3981 | 3.0 | 870 | 0.5460 | 0.7961 | | 0.1985 | 4.0 | 1160 | 0.8684 | 0.7818 | | 0.1985 | 5.0 | 1450 | 0.9009 | 0.7873 | | 0.0844 | 6.0 | 1740 | 1.1529 | 0.7825 | | 0.0329 | 7.0 | 2030 | 1.3185 | 0.7850 | | 0.0329 | 8.0 | 2320 | 1.4110 | 0.7862 | | 0.0109 | 9.0 | 2610 | 1.4751 | 0.7784 | | 0.0109 | 10.0 | 2900 | 1.6276 | 0.7723 | | 0.0071 | 11.0 | 3190 | 1.6779 | 0.7861 | | 0.0071 | 12.0 | 3480 | 1.6258 | 0.7850 | | 0.0041 | 13.0 | 3770 | 1.6324 | 0.7903 | | 0.0109 | 14.0 | 4060 | 1.7563 | 0.7932 | | 0.0109 | 15.0 | 4350 | 1.6740 | 0.7906 | | 0.0079 | 16.0 | 4640 | 1.7468 | 0.7944 | | 0.0079 | 17.0 | 4930 | 1.7095 | 0.7879 | | 0.0067 | 18.0 | 5220 | 1.7293 | 0.7912 | | 0.0021 | 19.0 | 5510 | 1.7875 | 0.7848 | | 0.0021 | 20.0 | 5800 | 1.7462 | 0.7906 | | 0.0026 | 21.0 | 6090 | 1.8549 | 0.7815 | | 0.0026 | 22.0 | 6380 | 1.8314 | 0.7860 | | 0.0021 | 23.0 | 6670 | 1.8577 | 0.7839 | | 0.0021 | 24.0 | 6960 | 1.8548 | 0.7883 | | 0.0001 | 25.0 | 7250 | 1.8833 | 0.7841 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sumba/covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess
sumba
2022-08-02T21:49:07Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:16:02Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5162 - Accuracy: 0.0862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4275469935864394e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8058 | 1.0 | 632 | 0.5946 | 0.1411 | | 0.5512 | 2.0 | 1264 | 0.5162 | 0.0862 | | 0.4049 | 3.0 | 1896 | 0.6612 | 0.0470 | | 0.1756 | 4.0 | 2528 | 0.7155 | 0.0426 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
aujer/autotrain-not_interested_1-1213145894
aujer
2022-08-02T21:27:19Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:aujer/autotrain-data-not_interested_1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T21:26:07Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aujer/autotrain-data-not_interested_1 co2_eq_emissions: emissions: 1.5489539045493725 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1213145894 - CO2 Emissions (in grams): 1.5490 ## Validation Metrics - Loss: 0.904 - Accuracy: 0.735 - Macro F1: 0.566 - Micro F1: 0.735 - Weighted F1: 0.715 - Macro Precision: 0.566 - Micro Precision: 0.735 - Weighted Precision: 0.714 - Macro Recall: 0.583 - Micro Recall: 0.735 - Weighted Recall: 0.735 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aujer/autotrain-not_interested_1-1213145894 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aujer/autotrain-not_interested_1-1213145894", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aujer/autotrain-not_interested_1-1213145894", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
aujer/autotrain-not_interested_2-1213045881
aujer
2022-08-02T21:15:40Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:aujer/autotrain-data-not_interested_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T21:14:05Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aujer/autotrain-data-not_interested_2 co2_eq_emissions: emissions: 1.695519133475222 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1213045881 - CO2 Emissions (in grams): 1.6955 ## Validation Metrics - Loss: 1.607 - Accuracy: 0.535 - Macro F1: 0.306 - Micro F1: 0.535 - Weighted F1: 0.440 - Macro Precision: 0.346 - Micro Precision: 0.535 - Weighted Precision: 0.435 - Macro Recall: 0.345 - Micro Recall: 0.535 - Weighted Recall: 0.535 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aujer/autotrain-not_interested_2-1213045881 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aujer/autotrain-not_interested_2-1213045881", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aujer/autotrain-not_interested_2-1213045881", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
srcocotero/tiny-bert-qa
srcocotero
2022-08-02T19:58:09Z
6
2
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-07-27T19:12:14Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: mini_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini_model This model is a fine-tuned version of [nreimers/BERT-Tiny_L-2_H-128_A-2](https://huggingface.co/nreimers/BERT-Tiny_L-2_H-128_A-2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Rifky/indobert-hoax-classification
Rifky
2022-08-02T19:32:31Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T16:42:51Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: indobert-hoax-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indobert-hoax-classification This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6230 - Accuracy: 0.8059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.2173070213315e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 85 | 0.5540 | 0.7029 | | No log | 2.0 | 170 | 0.5432 | 0.7029 | | No log | 3.0 | 255 | 0.4963 | 0.7441 | | No log | 4.0 | 340 | 0.5791 | 0.7971 | | No log | 5.0 | 425 | 0.6230 | 0.8059 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
liujxing/pegassus-samsum
liujxing
2022-08-02T19:03:10Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-01T14:37:11Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegassus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegassus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.5463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7619 | 0.54 | 500 | 1.5463 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
QuickSilver007/a2c-AntBulletEnv-v0
QuickSilver007
2022-08-02T18:56:18Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T18:55:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1488.76 +/- 155.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elopezlopez/distilbert-base-uncased_fold_9_ternary_v1
elopezlopez
2022-08-02T18:08:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:54:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_9_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_9_ternary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9406 - F1: 0.7841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 292 | 0.5684 | 0.7635 | | 0.5656 | 2.0 | 584 | 0.5753 | 0.7725 | | 0.5656 | 3.0 | 876 | 0.6159 | 0.7866 | | 0.2499 | 4.0 | 1168 | 0.7743 | 0.7828 | | 0.2499 | 5.0 | 1460 | 0.9820 | 0.7674 | | 0.1153 | 6.0 | 1752 | 1.2383 | 0.7738 | | 0.0547 | 7.0 | 2044 | 1.2468 | 0.7815 | | 0.0547 | 8.0 | 2336 | 1.3480 | 0.7622 | | 0.0233 | 9.0 | 2628 | 1.3791 | 0.7892 | | 0.0233 | 10.0 | 2920 | 1.4344 | 0.7841 | | 0.0142 | 11.0 | 3212 | 1.4958 | 0.7802 | | 0.0087 | 12.0 | 3504 | 1.5714 | 0.7674 | | 0.0087 | 13.0 | 3796 | 1.6129 | 0.7956 | | 0.0111 | 14.0 | 4088 | 1.7799 | 0.7751 | | 0.0111 | 15.0 | 4380 | 1.7272 | 0.7789 | | 0.0055 | 16.0 | 4672 | 1.7696 | 0.7866 | | 0.0055 | 17.0 | 4964 | 1.8622 | 0.7789 | | 0.003 | 18.0 | 5256 | 1.8563 | 0.7802 | | 0.0004 | 19.0 | 5548 | 1.8993 | 0.7815 | | 0.0004 | 20.0 | 5840 | 1.9199 | 0.7853 | | 0.0005 | 21.0 | 6132 | 1.9003 | 0.7879 | | 0.0005 | 22.0 | 6424 | 1.9161 | 0.7828 | | 0.0011 | 23.0 | 6716 | 1.9691 | 0.7815 | | 0.0017 | 24.0 | 7008 | 1.9492 | 0.7841 | | 0.0017 | 25.0 | 7300 | 1.9406 | 0.7841 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_8_ternary_v1
elopezlopez
2022-08-02T17:53:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:40:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_8_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_8_ternary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8474 - F1: 0.8022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.5398 | 0.7838 | | 0.5509 | 2.0 | 578 | 0.6062 | 0.7703 | | 0.5509 | 3.0 | 867 | 0.6563 | 0.7666 | | 0.2366 | 4.0 | 1156 | 0.7688 | 0.7961 | | 0.2366 | 5.0 | 1445 | 1.0968 | 0.7690 | | 0.1247 | 6.0 | 1734 | 1.1414 | 0.7924 | | 0.0482 | 7.0 | 2023 | 1.2159 | 0.7875 | | 0.0482 | 8.0 | 2312 | 1.2703 | 0.7887 | | 0.0245 | 9.0 | 2601 | 1.3401 | 0.7985 | | 0.0245 | 10.0 | 2890 | 1.4645 | 0.7961 | | 0.0149 | 11.0 | 3179 | 1.5632 | 0.7801 | | 0.0149 | 12.0 | 3468 | 1.5249 | 0.7875 | | 0.0124 | 13.0 | 3757 | 1.6263 | 0.7948 | | 0.0038 | 14.0 | 4046 | 1.8059 | 0.7764 | | 0.0038 | 15.0 | 4335 | 1.7649 | 0.7776 | | 0.0061 | 16.0 | 4624 | 1.8293 | 0.7850 | | 0.0061 | 17.0 | 4913 | 1.8316 | 0.7887 | | 0.0022 | 18.0 | 5202 | 1.7628 | 0.7973 | | 0.0022 | 19.0 | 5491 | 1.8763 | 0.7862 | | 0.002 | 20.0 | 5780 | 1.8409 | 0.7899 | | 0.0026 | 21.0 | 6069 | 1.8146 | 0.8022 | | 0.0026 | 22.0 | 6358 | 1.8420 | 0.7973 | | 0.0008 | 23.0 | 6647 | 1.8683 | 0.8010 | | 0.0008 | 24.0 | 6936 | 1.8571 | 0.8010 | | 0.0015 | 25.0 | 7225 | 1.8474 | 0.8022 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_6_ternary_v1
elopezlopez
2022-08-02T17:25:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T17:11:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_6_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_6_ternary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9031 - F1: 0.7910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 292 | 0.5235 | 0.7769 | | 0.566 | 2.0 | 584 | 0.5268 | 0.7923 | | 0.566 | 3.0 | 876 | 0.6189 | 0.7756 | | 0.2514 | 4.0 | 1168 | 0.7777 | 0.8026 | | 0.2514 | 5.0 | 1460 | 0.9380 | 0.7936 | | 0.1175 | 6.0 | 1752 | 1.0957 | 0.7872 | | 0.0579 | 7.0 | 2044 | 1.2370 | 0.7923 | | 0.0579 | 8.0 | 2336 | 1.3739 | 0.7936 | | 0.0259 | 9.0 | 2628 | 1.3457 | 0.7846 | | 0.0259 | 10.0 | 2920 | 1.4938 | 0.7872 | | 0.0125 | 11.0 | 3212 | 1.5921 | 0.7885 | | 0.0108 | 12.0 | 3504 | 1.6504 | 0.7897 | | 0.0108 | 13.0 | 3796 | 1.7532 | 0.7756 | | 0.007 | 14.0 | 4088 | 1.7029 | 0.7821 | | 0.007 | 15.0 | 4380 | 1.7632 | 0.7987 | | 0.0067 | 16.0 | 4672 | 1.7084 | 0.7962 | | 0.0067 | 17.0 | 4964 | 1.7559 | 0.7962 | | 0.0072 | 18.0 | 5256 | 1.8431 | 0.7987 | | 0.0028 | 19.0 | 5548 | 1.8689 | 0.7846 | | 0.0028 | 20.0 | 5840 | 1.8641 | 0.7885 | | 0.0033 | 21.0 | 6132 | 1.8578 | 0.7923 | | 0.0033 | 22.0 | 6424 | 1.9071 | 0.7833 | | 0.003 | 23.0 | 6716 | 1.8959 | 0.7872 | | 0.0011 | 24.0 | 7008 | 1.9073 | 0.7987 | | 0.0011 | 25.0 | 7300 | 1.9031 | 0.7910 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_5_ternary_v1
elopezlopez
2022-08-02T17:10:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T16:56:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_5_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_5_ternary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1368 - F1: 0.7682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.6423 | 0.7465 | | 0.5563 | 2.0 | 582 | 0.6001 | 0.7631 | | 0.5563 | 3.0 | 873 | 0.6884 | 0.7785 | | 0.2595 | 4.0 | 1164 | 0.9920 | 0.7439 | | 0.2595 | 5.0 | 1455 | 1.1434 | 0.7631 | | 0.1159 | 6.0 | 1746 | 1.3289 | 0.7606 | | 0.0473 | 7.0 | 2037 | 1.3966 | 0.7708 | | 0.0473 | 8.0 | 2328 | 1.4761 | 0.7606 | | 0.0282 | 9.0 | 2619 | 1.6144 | 0.7542 | | 0.0282 | 10.0 | 2910 | 1.5642 | 0.7695 | | 0.0134 | 11.0 | 3201 | 1.7206 | 0.7593 | | 0.0134 | 12.0 | 3492 | 1.8008 | 0.7542 | | 0.0059 | 13.0 | 3783 | 1.8056 | 0.7746 | | 0.002 | 14.0 | 4074 | 1.9160 | 0.7593 | | 0.002 | 15.0 | 4365 | 2.0223 | 0.7606 | | 0.0052 | 16.0 | 4656 | 1.9112 | 0.7810 | | 0.0052 | 17.0 | 4947 | 1.9040 | 0.7772 | | 0.0056 | 18.0 | 5238 | 1.9852 | 0.7734 | | 0.0061 | 19.0 | 5529 | 2.0590 | 0.7644 | | 0.0061 | 20.0 | 5820 | 2.1078 | 0.7631 | | 0.0044 | 21.0 | 6111 | 2.1177 | 0.7631 | | 0.0044 | 22.0 | 6402 | 2.0983 | 0.7644 | | 0.0012 | 23.0 | 6693 | 2.1384 | 0.7670 | | 0.0012 | 24.0 | 6984 | 2.1467 | 0.7657 | | 0.0018 | 25.0 | 7275 | 2.1368 | 0.7682 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mrm8488/dqn-SpaceInvadersNoFrameskip-v4-2
mrm8488
2022-08-02T17:00:07Z
6
1
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T16:59:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 181.00 +/- 111.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrm8488 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mrm8488 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 1024), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 800000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
elopezlopez/distilbert-base-uncased_fold_1_ternary_v1
elopezlopez
2022-08-02T16:12:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T14:33:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_1_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_1_ternary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1145 - F1: 0.7757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.5580 | 0.7646 | | 0.555 | 2.0 | 580 | 0.5820 | 0.7670 | | 0.555 | 3.0 | 870 | 0.6683 | 0.7757 | | 0.2633 | 4.0 | 1160 | 0.9137 | 0.7844 | | 0.2633 | 5.0 | 1450 | 1.1367 | 0.7708 | | 0.1148 | 6.0 | 1740 | 1.2192 | 0.7757 | | 0.0456 | 7.0 | 2030 | 1.4035 | 0.7633 | | 0.0456 | 8.0 | 2320 | 1.5185 | 0.7658 | | 0.0226 | 9.0 | 2610 | 1.6126 | 0.7782 | | 0.0226 | 10.0 | 2900 | 1.7631 | 0.7658 | | 0.0061 | 11.0 | 3190 | 1.7279 | 0.7794 | | 0.0061 | 12.0 | 3480 | 1.8548 | 0.7584 | | 0.0076 | 13.0 | 3770 | 1.9052 | 0.7646 | | 0.0061 | 14.0 | 4060 | 1.9100 | 0.7757 | | 0.0061 | 15.0 | 4350 | 1.9280 | 0.7732 | | 0.0025 | 16.0 | 4640 | 1.9991 | 0.7745 | | 0.0025 | 17.0 | 4930 | 1.9960 | 0.7757 | | 0.0035 | 18.0 | 5220 | 2.0018 | 0.7708 | | 0.0015 | 19.0 | 5510 | 2.1099 | 0.7646 | | 0.0015 | 20.0 | 5800 | 2.1061 | 0.7695 | | 0.0022 | 21.0 | 6090 | 2.0941 | 0.7757 | | 0.0022 | 22.0 | 6380 | 2.0967 | 0.7794 | | 0.0005 | 23.0 | 6670 | 2.1133 | 0.7745 | | 0.0005 | 24.0 | 6960 | 2.1042 | 0.7782 | | 0.0021 | 25.0 | 7250 | 2.1145 | 0.7757 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ligerre/xlm-roberta-base-finetuned-panx-en
ligerre
2022-08-02T16:04:05Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T15:48:23Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Makabaka/bert-base-uncased-EnglishLawAI
Makabaka
2022-08-02T15:51:02Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T15:50:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6214 | 1.0 | 291 | 2.2471 | | 2.0594 | 2.0 | 582 | 1.9293 | | 1.8563 | 3.0 | 873 | 1.7961 | | 1.7442 | 4.0 | 1164 | 1.7518 | | 1.657 | 5.0 | 1455 | 1.7390 | | 1.577 | 6.0 | 1746 | 1.7173 | | 1.5071 | 7.0 | 2037 | 1.6223 | | 1.4661 | 8.0 | 2328 | 1.5691 | | 1.4365 | 9.0 | 2619 | 1.6280 | | 1.3827 | 10.0 | 2910 | 1.4641 | | 1.3517 | 11.0 | 3201 | 1.6498 | | 1.3294 | 12.0 | 3492 | 1.3006 | | 1.2836 | 13.0 | 3783 | 1.6520 | | 1.2867 | 14.0 | 4074 | 1.6064 | | 1.2819 | 15.0 | 4365 | 1.4131 | | 1.2611 | 16.0 | 4656 | 1.5503 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ligerre/xlm-roberta-base-finetuned-panx-it
ligerre
2022-08-02T15:48:11Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T15:32:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8245828245828245 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2401 - F1: 0.8246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8187 | 1.0 | 70 | 0.3325 | 0.7337 | | 0.2829 | 2.0 | 140 | 0.2554 | 0.8003 | | 0.1894 | 3.0 | 210 | 0.2401 | 0.8246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/iamsamirarora-naval-vivek_investor
huggingtweets
2022-08-02T15:16:48Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-02T15:15:22Z
--- language: en thumbnail: http://www.huggingtweets.com/iamsamirarora-naval-vivek_investor/1659453403535/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/853146176295759872/YiAPXQ0s_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479277051802574853/qs6u-imt_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naval & Samir Arora & Vivek</div> <div style="text-align: center; font-size: 14px;">@iamsamirarora-naval-vivek_investor</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naval & Samir Arora & Vivek. | Data | Naval | Samir Arora | Vivek | | --- | --- | --- | --- | | Tweets downloaded | 3211 | 3250 | 3250 | | Retweets | 195 | 76 | 96 | | Short tweets | 612 | 973 | 601 | | Tweets kept | 2404 | 2201 | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oa4j8zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamsamirarora-naval-vivek_investor's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21s56oiv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21s56oiv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamsamirarora-naval-vivek_investor') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ligerre/xlm-roberta-base-finetuned-panx-de
ligerre
2022-08-02T14:39:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T14:16:11Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
Sotireas
2022-08-02T13:43:18Z
28
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT](https://huggingface.co/Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 3.8118 | | No log | 2.0 | 42 | 3.5006 | | No log | 3.0 | 63 | 3.1242 | | No log | 4.0 | 84 | 2.9528 | | No log | 5.0 | 105 | 2.9190 | | No log | 6.0 | 126 | 2.9876 | | No log | 7.0 | 147 | 3.0574 | | No log | 8.0 | 168 | 3.0718 | | No log | 9.0 | 189 | 3.0426 | | No log | 10.0 | 210 | 3.0853 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
s-nlp/GenChal_2022_nigula
s-nlp
2022-08-02T13:43:11Z
11
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "feedback comment generation for writing learning", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-08T15:17:59Z
--- language: - en tags: - feedback comment generation for writing learning licenses: - cc-by-nc-sa --- ## Model overview This model was trained in terms of [GenChal 2022: Feedback Comment Generation for Writing Learning](https://fcg.sharedtask.org/) shared task In this task, the model gets the string with text with the error and the exact span of the error and should return the comment in natural language, which explains the nature of the error. ## How to use ```python !pip install feedback_generation_nigula from feedback_generation_nigula.generator import FeedbackGenerator fg = FeedbackGenerator(cuda_index = 0) text_with_error = "The smoke flow my face ." error_span = (10,17) fg.get_feedback([text_with_error ], [error_span ]) # expected output ["When the <verb> <<flow>> is used as an <intransitive verb> to express'' to move in a stream'', a <preposition> needs to be placed to indicate the direction"] ``` ## Model training details #### Data The data was provided in the following way ``` input sentence [\t] offset range [\t] feedback comment ``` Here are some examples ``` The smoke flow my face . 10:17 When the <verb> <<flow>> is used as an <intransitive verb> to express ''to move in a stream'', a <preposition> needs to be placed to indicate the direction. 'To' and 'towards' are <prepositions> that indicate direction. I want to stop smoking during driving bicycle . 23:29 A <gerund> does not normally follow the <preposition> <<during>>. Think of an expression using the <conjunction> 'while' instead of a <preposition>. ``` Grammar termins are highlighted with '< ... >' marks and word examples - with '<< ... >>' #### Data preprocessing We lowercased the text, split it from any punctuation, including task specific marks (<< >>) and explicitly pointed out the error in the original text using << >>. ``` the smoke < < flow > > < < my > > face . 10:17 When the < verb > < < flow > > is used as an < intransitive verb > to express '' to move in a stream '', a < preposition > needs to be placed to indicate the direction. ' to ' and ' towards ' are < prepositions > that indicate direction . i want to stop smoking < < during > > driving bicycle . 23:29 a < gerund > does not normally follow the < preposition > < < during > > . think of an expression using the < conjunction > ' while ' instead of a < preposition > . ``` #### Data augmentation The main feature of our training pipeline was data augmentation. The idea of the augmentation is as follows: we cut the existing text with error after the last word which was syntactically connected to the words inside the error span (syntactic dependencies were automatically parsed with spacy) and this cut version of the text with error was used as a prompt for language model (we used [GPT-Neo 1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B)). Using both initial and augmented data we fine-tuned [t5-large](https://huggingface.co/t5-large). ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
Petros89/bert-finetuned-ner
Petros89
2022-08-02T13:19:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T13:00:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9320436507936508 - name: Recall type: recall value: 0.9486704813194211 - name: F1 type: f1 value: 0.9402835696413678 - name: Accuracy type: accuracy value: 0.9861217401542356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9320 - Recall: 0.9487 - F1: 0.9403 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0889 | 1.0 | 1756 | 0.0748 | 0.9060 | 0.9263 | 0.9160 | 0.9800 | | 0.0381 | 2.0 | 3512 | 0.0631 | 0.9296 | 0.9468 | 0.9381 | 0.9855 | | 0.0205 | 3.0 | 5268 | 0.0611 | 0.9320 | 0.9487 | 0.9403 | 0.9861 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.7.0 - Datasets 2.4.0 - Tokenizers 0.12.1
LawalAfeez/en-fr-translation
LawalAfeez
2022-08-02T12:34:19Z
13
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-02T12:30:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: en-fr-translation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # en-fr-translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7838 - Validation Loss: 1.5505 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9137 | 1.6092 | 0 | | 1.7838 | 1.5505 | 1 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
sepidmnorozy/finetuned-sentiment-withGPU
sepidmnorozy
2022-08-02T12:33:09Z
7
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-04T13:26:21Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-model_withGPU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-10-samples_withGPU This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3893 - Accuracy: 0.8744 - F1: 0.8684 - Precision: 0.9126 - Recall: 0.8283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3631 | 1.0 | 7088 | 0.3622 | 0.8638 | 0.8519 | 0.9334 | 0.7835 | | 0.35 | 2.0 | 14176 | 0.3875 | 0.8714 | 0.8622 | 0.9289 | 0.8044 | | 0.3262 | 3.0 | 21264 | 0.3893 | 0.8744 | 0.8684 | 0.9126 | 0.8283 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6
pannaga/wav2vec2-base-timit-demo-google-colab-testing
pannaga
2022-08-02T12:18:36Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-21T10:06:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-testing This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
wenkai-li/distilbert-base-uncased-finetuned-wikiandmark_epoch50
wenkai-li
2022-08-02T12:11:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T11:02:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-wikiandmark_epoch50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wikiandmark_epoch50 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0049 - eval_accuracy: 0.9995 - eval_runtime: 29.1585 - eval_samples_per_second: 127.613 - eval_steps_per_second: 4.013 - epoch: 6.0 - step: 4656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pannaga/wav2vec2-large-xls-r-300m-turkish-colab
pannaga
2022-08-02T11:51:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-27T10:22:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9701 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.3108 | 16.0 | 400 | 2.9378 | 1.0 | | 3.0115 | 32.0 | 800 | 2.9701 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
dfsj/distilbert-base-uncased-distilled-clinc
dfsj
2022-08-02T11:38:29Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T00:46:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9448387096774193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3163 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 2.3518 | 0.7510 | | 2.7559 | 2.0 | 636 | 1.2235 | 0.8506 | | 2.7559 | 3.0 | 954 | 0.6786 | 0.9168 | | 1.0767 | 4.0 | 1272 | 0.4668 | 0.9368 | | 0.4584 | 5.0 | 1590 | 0.3810 | 0.9410 | | 0.4584 | 6.0 | 1908 | 0.3479 | 0.9435 | | 0.2876 | 7.0 | 2226 | 0.3282 | 0.9455 | | 0.2285 | 8.0 | 2544 | 0.3201 | 0.9452 | | 0.2285 | 9.0 | 2862 | 0.3163 | 0.9448 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
JmPaunlagui/Improve
JmPaunlagui
2022-08-02T10:17:55Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-08-02T09:42:09Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|0.001|0.0|0.9|0.999|1e-07|False|float32|
DrY/bert-finetuned-squad
DrY
2022-08-02T10:16:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T07:52:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dfsj/distilbert-base-uncased-finetuned-clinc
dfsj
2022-08-02T10:08:48Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-31T12:46:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9187096774193548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7737 - Accuracy: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2909 | 0.7439 | | 3.7915 | 2.0 | 636 | 1.8815 | 0.83 | | 3.7915 | 3.0 | 954 | 1.1550 | 0.8948 | | 1.6979 | 4.0 | 1272 | 0.8583 | 0.9119 | | 0.8991 | 5.0 | 1590 | 0.7737 | 0.9187 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
yashwantk/distilbert-base-uncased-finetuned-squad
yashwantk
2022-08-02T09:05:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-31T08:07:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2862 | 1.0 | 8235 | 1.2491 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jinghan/roberta-base-finetuned-wnli
jinghan
2022-08-02T09:04:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T08:49:05Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: wnli split: train args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wnli This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6880 | 0.5634 | | No log | 2.0 | 80 | 0.6851 | 0.5634 | | No log | 3.0 | 120 | 0.6961 | 0.4366 | | No log | 4.0 | 160 | 0.6906 | 0.5634 | | No log | 5.0 | 200 | 0.6891 | 0.5634 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
commanderstrife/PV-Bio_clinicalBERT-superset
commanderstrife
2022-08-02T08:58:17Z
7
3
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "token-classification", "generated_from_trainer", "dataset:pv_dataset", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T05:36:04Z
--- tags: - generated_from_trainer datasets: - pv_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: PV-Bio_clinicalBERT-superset results: - task: name: Token Classification type: token-classification dataset: name: pv_dataset type: pv_dataset config: PVDatasetCorpus split: train args: PVDatasetCorpus metrics: - name: Precision type: precision value: 0.7055946686730801 - name: Recall type: recall value: 0.7473672226333467 - name: F1 type: f1 value: 0.7258804666334938 - name: Accuracy type: accuracy value: 0.9656573815513143 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PV-Bio_clinicalBERT-superset This model is a fine-tuned version of [giacomomiolo/electramed_base_scivocab_1M](https://huggingface.co/giacomomiolo/electramed_base_scivocab_1M) on the pv_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2082 - Precision: 0.7056 - Recall: 0.7474 - F1: 0.7259 - Accuracy: 0.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.063 | 1.0 | 1813 | 0.1061 | 0.6453 | 0.7306 | 0.6853 | 0.9623 | | 0.0086 | 2.0 | 3626 | 0.1068 | 0.6620 | 0.7516 | 0.7040 | 0.9647 | | 0.0089 | 3.0 | 5439 | 0.1265 | 0.7026 | 0.7300 | 0.7160 | 0.9657 | | 0.004 | 4.0 | 7252 | 0.1369 | 0.6820 | 0.7601 | 0.7189 | 0.9638 | | 0.0004 | 5.0 | 9065 | 0.1573 | 0.6937 | 0.7602 | 0.7254 | 0.9656 | | 0.0184 | 6.0 | 10878 | 0.1707 | 0.7078 | 0.7475 | 0.7271 | 0.9662 | | 0.0009 | 7.0 | 12691 | 0.1787 | 0.7116 | 0.7398 | 0.7254 | 0.9662 | | 0.0006 | 8.0 | 14504 | 0.1874 | 0.6979 | 0.7576 | 0.7265 | 0.9655 | | 0.0008 | 9.0 | 16317 | 0.1970 | 0.7083 | 0.7475 | 0.7273 | 0.9660 | | 0.0003 | 10.0 | 18130 | 0.2082 | 0.7056 | 0.7474 | 0.7259 | 0.9657 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003_100train
silviacamplani
2022-08-02T08:55:52Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T08:54:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003_100train results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003_100train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.4072 - Validation Loss: 1.4582 - Train Precision: 0.0 - Train Recall: 0.0 - Train F1: 0.0 - Train Accuracy: 0.7920 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.0837 | 1.8526 | 0.0013 | 0.0015 | 0.0014 | 0.7006 | 0 | | 1.6450 | 1.5672 | 0.0 | 0.0 | 0.0 | 0.7916 | 1 | | 1.4072 | 1.4582 | 0.0 | 0.0 | 0.0 | 0.7920 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
kyoumiaoi/wav2vec2-base-timit-demo-google-colab
kyoumiaoi
2022-08-02T08:28:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-02T06:15:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5499 - Wer: 0.3435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.599 | 1.0 | 500 | 2.1267 | 0.9976 | | 1.016 | 2.01 | 1000 | 0.6193 | 0.5443 | | 0.5299 | 3.01 | 1500 | 0.5324 | 0.4889 | | 0.3626 | 4.02 | 2000 | 0.4525 | 0.4402 | | 0.2854 | 5.02 | 2500 | 0.4266 | 0.4233 | | 0.2373 | 6.02 | 3000 | 0.4713 | 0.4082 | | 0.1979 | 7.03 | 3500 | 0.4778 | 0.4018 | | 0.1761 | 8.03 | 4000 | 0.4585 | 0.3947 | | 0.1537 | 9.04 | 4500 | 0.5297 | 0.3946 | | 0.1379 | 10.04 | 5000 | 0.4988 | 0.3856 | | 0.124 | 11.04 | 5500 | 0.5262 | 0.3852 | | 0.11 | 12.05 | 6000 | 0.5545 | 0.3854 | | 0.106 | 13.05 | 6500 | 0.5196 | 0.3805 | | 0.0918 | 14.06 | 7000 | 0.4515 | 0.3655 | | 0.0829 | 15.06 | 7500 | 0.5087 | 0.3722 | | 0.0775 | 16.06 | 8000 | 0.4980 | 0.3781 | | 0.0685 | 17.07 | 8500 | 0.5564 | 0.3650 | | 0.0655 | 18.07 | 9000 | 0.5323 | 0.3672 | | 0.0578 | 19.08 | 9500 | 0.5675 | 0.3637 | | 0.052 | 20.08 | 10000 | 0.5604 | 0.3664 | | 0.0512 | 21.08 | 10500 | 0.5922 | 0.3804 | | 0.0431 | 22.09 | 11000 | 0.6379 | 0.3754 | | 0.0428 | 23.09 | 11500 | 0.5905 | 0.3764 | | 0.0393 | 24.1 | 12000 | 0.5667 | 0.3542 | | 0.0326 | 25.1 | 12500 | 0.5612 | 0.3537 | | 0.0289 | 26.1 | 13000 | 0.5618 | 0.3475 | | 0.0298 | 27.11 | 13500 | 0.5578 | 0.3439 | | 0.0264 | 28.11 | 14000 | 0.5547 | 0.3433 | | 0.026 | 29.12 | 14500 | 0.5499 | 0.3435 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
yirenl2/plm_qa
yirenl2
2022-08-02T06:43:12Z
18
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-08-01T03:06:27Z
--- language: en datasets: - squad_v2 license: cc-by-4.0 model-index: - name: plm_qa results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 0 verified: false - name: F1 type: f1 value: 0 verified: false - name: total type: total value: 11869 verified: false --- # roberta-base for QA finetuned over community safety domain data We fine-tuned the roBERTa-based model (https://huggingface.co/deepset/roberta-base-squad2) over LiveSafe community safety dialogue data for event argument extraction with the objective of question-answering. ### Using model in Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "yirenl2/plm_qa" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the location of the incident?', 'context': 'I was attacked by someone in front of the bus station.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
huggingtweets/itsjefftiedrich
huggingtweets
2022-08-02T02:50:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-02T02:48:45Z
--- language: en thumbnail: http://www.huggingtweets.com/itsjefftiedrich/1659408624518/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1009932396333031424/8FzKlCfB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jeff Tiedrich</div> <div style="text-align: center; font-size: 14px;">@itsjefftiedrich</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jeff Tiedrich. | Data | Jeff Tiedrich | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 6 | | Short tweets | 753 | | Tweets kept | 2491 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/311xv04i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsjefftiedrich's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zwvvvq6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zwvvvq6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsjefftiedrich') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rdruce/ddpm-cheese-32
rdruce
2022-08-02T00:34:19Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-02T00:05:54Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-cheese-32 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/rdruce/ddpm-cheese-32/tensorboard?#scalars)
muhtasham/bert-tiny-finetuned-wnut17-ner
muhtasham
2022-08-01T23:26:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-01T23:24:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-tiny-finetuned-wnut17-ner results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: train args: wnut_17 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.8960890010322284 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-wnut17-ner This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.6054 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 27 | 1.1060 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 2.0 | 54 | 0.9075 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 3.0 | 81 | 0.7978 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 4.0 | 108 | 0.7333 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 5.0 | 135 | 0.6929 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 6.0 | 162 | 0.6661 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 7.0 | 189 | 0.6477 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 8.0 | 216 | 0.6346 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 9.0 | 243 | 0.6251 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 10.0 | 270 | 0.6182 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 11.0 | 297 | 0.6132 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 12.0 | 324 | 0.6097 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 13.0 | 351 | 0.6073 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 14.0 | 378 | 0.6059 | 0.0 | 0.0 | 0.0 | 0.8961 | | No log | 15.0 | 405 | 0.6054 | 0.0 | 0.0 | 0.0 | 0.8961 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-tiny-finetuned-xglue-ner
muhtasham
2022-08-01T23:20:07Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:xglue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-01T23:13:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xglue metrics: - precision - recall - f1 - accuracy model-index: - name: bert-tiny-finetuned-xglue-ner results: - task: name: Token Classification type: token-classification dataset: name: xglue type: xglue config: ner split: train args: ner metrics: - name: Precision type: precision value: 0.630759453447728 - name: Recall type: recall value: 0.6681252103668799 - name: F1 type: f1 value: 0.6489048708728343 - name: Accuracy type: accuracy value: 0.9274310133922189 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-xglue-ner This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the xglue dataset. It achieves the following results on the evaluation set: - Loss: 0.2489 - Precision: 0.6308 - Recall: 0.6681 - F1: 0.6489 - Accuracy: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4082 | 1.0 | 1756 | 0.3326 | 0.5600 | 0.5798 | 0.5697 | 0.9118 | | 0.2974 | 2.0 | 3512 | 0.2635 | 0.6143 | 0.6562 | 0.6346 | 0.9248 | | 0.2741 | 3.0 | 5268 | 0.2489 | 0.6308 | 0.6681 | 0.6489 | 0.9274 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln60Paraphrase
BigSalmon
2022-08-01T21:24:02Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-01T20:53:51Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase") ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ```
Intel/bert-base-uncased-sparse-80-1x4-block-pruneofa
Intel
2022-08-01T21:06:46Z
5
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-29T11:58:55Z
--- language: en license: apache-2.0 tags: - fill-mask datasets: - wikipedia - bookcorpus --- # 80% 1x4 Block Sparse BERT-Base (uncased) Prune OFA This model is was created using Prune OFA method described in [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754) presented in ENLSP NeurIPS Workshop 2021. For further details on the model and its result, see our paper and our implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
Intel/bert-large-uncased-sparse-80-1x4-block-pruneofa
Intel
2022-08-01T21:05:25Z
4
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-29T11:42:51Z
--- language: en license: apache-2.0 tags: - fill-mask datasets: - wikipedia - bookcorpus --- # 80% 1x4 Block Sparse BERT-Large (uncased) Prune OFA This model is was created using Prune OFA method described in [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754) presented in ENLSP NeurIPS Workshop 2021. For further details on the model and its result, see our paper and our implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
Intel/bert-large-uncased-squadv1.1-sparse-80-1x4-block-pruneofa
Intel
2022-08-01T21:04:22Z
75
1
transformers
[ "transformers", "pytorch", "onnx", "bert", "question-answering", "en", "arxiv:2111.05754", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-27T20:17:27Z
--- language: en license: apache-2.0 --- # 80% 1x4 Block Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1 This model is a result of fine-tuning a Prune OFA 80% 1x4 block sparse pre-trained BERT-Large combined with knowledge distillation. This model yields the following results on SQuADv1.1 development set:<br> `{"exact_match": 84.673, "f1": 91.174}` For further details see our paper, [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754), and our open source implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
mrm8488/pyramidsrnd
mrm8488
2022-08-01T20:36:43Z
9
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-01T20:36:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mrm8488/pyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SharpAI/mal-tls-bert-base-relu-w8a8
SharpAI
2022-08-01T20:23:16Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T20:22:51Z
--- tags: - generated_from_keras_callback model-index: - name: mal_tls-bert-base-relu-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls-bert-base-relu-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
Lvxue/finetuned-mt5-base
Lvxue
2022-08-01T19:33:37Z
14
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-28T01:51:27Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: finetuned-mt5-base results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 27.1659 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-mt5-base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.3594 - Bleu: 27.1659 - Gen Len: 43.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
vidyavenkappa/pegasus-samsum
vidyavenkappa
2022-08-01T18:30:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-30T12:10:24Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6151 | 0.54 | 500 | 1.4238 | | 1.3357 | 1.09 | 1000 | 1.3629 | | 1.4423 | 1.63 | 1500 | 1.3380 | | 1.3747 | 2.17 | 2000 | 1.3218 | | 1.3397 | 2.72 | 2500 | 1.3124 | | 1.2706 | 3.26 | 3000 | 1.3149 | | 1.1849 | 3.8 | 3500 | 1.3120 | | 1.2222 | 4.35 | 4000 | 1.3120 | | 1.2339 | 4.89 | 4500 | 1.3086 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/twitter-roberta-base-finetuned-ner-wnut
silviacamplani
2022-08-01T16:26:39Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "roberta", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-01T15:50:19Z
--- tags: - generated_from_keras_callback model-index: - name: silviacamplani/twitter-roberta-base-finetuned-ner-wnut results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/twitter-roberta-base-finetuned-ner-wnut This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0812 - Validation Loss: 0.2553 - Train Precision: 0.6263 - Train Recall: 0.5191 - Train F1: 0.5677 - Train Accuracy: 0.9398 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'Adam', 'config': {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0813 | 0.2553 | 0.6263 | 0.5191 | 0.5677 | 0.9398 | 0 | | 0.0815 | 0.2553 | 0.6263 | 0.5191 | 0.5677 | 0.9398 | 1 | | 0.0812 | 0.2553 | 0.6263 | 0.5191 | 0.5677 | 0.9398 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
meln1k/a2c-HalfCheetahBulletEnv-v0
meln1k
2022-08-01T14:54:29Z
7
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-01T11:19:36Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1893.95 +/- 69.15 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
turhancan97/Reinforce-1
turhancan97
2022-08-01T14:02:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-01T14:02:43Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - metrics: - type: mean_reward value: 98.30 +/- 25.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
rdruce/ddpm-butterflies-128
rdruce
2022-08-01T12:46:38Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-01T11:33:05Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/rdruce/ddpm-butterflies-128/tensorboard?#scalars)
aminjalali/distilbert-base-uncased-finetuned-emotion
aminjalali
2022-08-01T11:56:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-31T19:26:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9258000202272497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.926 - F1: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8198 | 1.0 | 250 | 0.3147 | 0.904 | 0.9003 | | 0.2438 | 2.0 | 500 | 0.2123 | 0.926 | 0.9258 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dminiotas05/distilbert-base-uncased-finetuned-ft750_reg3
dminiotas05
2022-08-01T11:51:26Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T11:22:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft750_reg3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft750_reg3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6143 - Mse: 0.6143 - Mae: 0.6022 - R2: 0.4218 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.5241 | 1.0 | 188 | 0.6143 | 0.6143 | 0.6022 | 0.4218 | 0.52 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Qilex/VirtualPetDiffusion
Qilex
2022-08-01T10:56:07Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-07-31T16:02:28Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # neoGen3 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/Qilex/neoGen3/tensorboard?#scalars)
reachrkr/Reinforce-Pong-PLE-v0
reachrkr
2022-08-01T10:55:41Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-01T06:01:48Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pong-PLE-v0 results: - metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
dminiotas05/camembert-base-finetuned-ft750_reg2
dminiotas05
2022-08-01T10:10:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-28T11:03:55Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert-base-finetuned-ft750_reg2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-ft750_reg2 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6449 - Mse: 0.6449 - Mae: 0.6171 - R2: 0.3929 - Accuracy: 0.504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.6283 | 1.0 | 750 | 0.6074 | 0.6074 | 0.6086 | 0.4282 | 0.4887 | | 0.5007 | 2.0 | 1500 | 0.6449 | 0.6449 | 0.6171 | 0.3929 | 0.504 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
lakshaywadhwa1993/ner_hindi_bert
lakshaywadhwa1993
2022-08-01T09:14:58Z
8
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-01T09:05:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann model-index: - name: ner_hindi_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_hindi_bert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3713 - Overall Precision: 0.8942 - Overall Recall: 0.8972 - Overall F1: 0.8957 - Overall Accuracy: 0.9367 - Loc F1: 0.8766 - Org F1: 0.8489 - Per F1: 0.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| | 0.2993 | 3.19 | 1000 | 0.3230 | 0.8779 | 0.8786 | 0.8782 | 0.9244 | 0.8535 | 0.8270 | 0.9358 | | 0.0641 | 6.39 | 2000 | 0.3713 | 0.8942 | 0.8972 | 0.8957 | 0.9367 | 0.8766 | 0.8489 | 0.9454 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
psroy/wav2vec2-base-timit-demo-colab
psroy
2022-08-01T08:59:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-29T10:16:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4772 - Wer: 0.2821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6949 | 0.87 | 500 | 2.4599 | 0.9999 | | 0.9858 | 1.73 | 1000 | 0.5249 | 0.4674 | | 0.4645 | 2.6 | 1500 | 0.4604 | 0.3900 | | 0.3273 | 3.46 | 2000 | 0.3939 | 0.3612 | | 0.2474 | 4.33 | 2500 | 0.4150 | 0.3560 | | 0.2191 | 5.19 | 3000 | 0.3855 | 0.3344 | | 0.1662 | 6.06 | 3500 | 0.3779 | 0.3258 | | 0.1669 | 6.92 | 4000 | 0.4841 | 0.3286 | | 0.151 | 7.79 | 4500 | 0.4182 | 0.3219 | | 0.1175 | 8.65 | 5000 | 0.4194 | 0.3107 | | 0.1103 | 9.52 | 5500 | 0.4256 | 0.3129 | | 0.1 | 10.38 | 6000 | 0.4352 | 0.3089 | | 0.0949 | 11.25 | 6500 | 0.4649 | 0.3160 | | 0.0899 | 12.11 | 7000 | 0.4472 | 0.3065 | | 0.0787 | 12.98 | 7500 | 0.4763 | 0.3128 | | 0.0742 | 13.84 | 8000 | 0.4321 | 0.3034 | | 0.067 | 14.71 | 8500 | 0.4562 | 0.3076 | | 0.063 | 15.57 | 9000 | 0.4541 | 0.3102 | | 0.0624 | 16.44 | 9500 | 0.5113 | 0.3040 | | 0.0519 | 17.3 | 10000 | 0.4925 | 0.3008 | | 0.0525 | 18.17 | 10500 | 0.4710 | 0.2987 | | 0.046 | 19.03 | 11000 | 0.4781 | 0.2977 | | 0.0455 | 19.9 | 11500 | 0.4572 | 0.2969 | | 0.0394 | 20.76 | 12000 | 0.5256 | 0.2966 | | 0.0373 | 21.63 | 12500 | 0.4723 | 0.2921 | | 0.0375 | 22.49 | 13000 | 0.4640 | 0.2847 | | 0.0334 | 23.36 | 13500 | 0.4740 | 0.2917 | | 0.0304 | 24.22 | 14000 | 0.4817 | 0.2874 | | 0.0291 | 25.09 | 14500 | 0.4722 | 0.2896 | | 0.0247 | 25.95 | 15000 | 0.4765 | 0.2870 | | 0.0223 | 26.82 | 15500 | 0.4728 | 0.2821 | | 0.0223 | 27.68 | 16000 | 0.4690 | 0.2834 | | 0.0207 | 28.55 | 16500 | 0.4706 | 0.2825 | | 0.0186 | 29.41 | 17000 | 0.4772 | 0.2821 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
lakshaywadhwa1993/ner_marathi_bert
lakshaywadhwa1993
2022-08-01T08:39:52Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T21:00:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann model-index: - name: ner_marathi_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_marathi_bert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3606 - Overall Precision: 0.8939 - Overall Recall: 0.9030 - Overall F1: 0.8984 - Overall Accuracy: 0.9347 - Loc F1: 0.8823 - Org F1: 0.8555 - Per F1: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| | 0.2961 | 3.19 | 1000 | 0.3496 | 0.8720 | 0.8841 | 0.8780 | 0.9229 | 0.8599 | 0.8210 | 0.9343 | | 0.0613 | 6.39 | 2000 | 0.3606 | 0.8939 | 0.9030 | 0.8984 | 0.9347 | 0.8823 | 0.8555 | 0.9435 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/kantegory
huggingtweets
2022-08-01T07:26:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-01T07:26:04Z
--- language: en thumbnail: http://www.huggingtweets.com/kantegory/1659338795219/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1122432883036172288/mYZ4acNy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">David Dobryakov</div> <div style="text-align: center; font-size: 14px;">@kantegory</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from David Dobryakov. | Data | David Dobryakov | | --- | --- | | Tweets downloaded | 3017 | | Retweets | 90 | | Short tweets | 256 | | Tweets kept | 2671 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g9yc7mp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kantegory's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2aeg6rk1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2aeg6rk1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kantegory') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v2
AykeeSalazar
2022-08-01T05:42:48Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-01T04:42:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-10 metrics: - name: Accuracy type: accuracy value: 0.7705338809034907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8271 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 0.3811 | 0.8511 | | No log | 0.81 | 200 | 0.3707 | 0.8609 | | No log | 1.21 | 300 | 0.5708 | 0.7325 | | No log | 1.61 | 400 | 0.3121 | 0.8778 | | 0.3308 | 2.02 | 500 | 0.3358 | 0.8445 | | 0.3308 | 2.42 | 600 | 0.2820 | 0.8768 | | 0.3308 | 2.82 | 700 | 0.4825 | 0.7695 | | 0.3308 | 3.23 | 800 | 0.3133 | 0.8640 | | 0.3308 | 3.63 | 900 | 0.4509 | 0.8219 | | 0.2028 | 4.03 | 1000 | 0.5426 | 0.7551 | | 0.2028 | 4.44 | 1100 | 0.4886 | 0.8552 | | 0.2028 | 4.84 | 1200 | 0.5649 | 0.7695 | | 0.2028 | 5.24 | 1300 | 0.5925 | 0.7900 | | 0.2028 | 5.65 | 1400 | 0.4203 | 0.8439 | | 0.1471 | 6.05 | 1500 | 0.4275 | 0.8486 | | 0.1471 | 6.45 | 1600 | 0.3683 | 0.8727 | | 0.1471 | 6.85 | 1700 | 0.5709 | 0.8121 | | 0.1471 | 7.26 | 1800 | 0.6209 | 0.7680 | | 0.1471 | 7.66 | 1900 | 0.4971 | 0.8147 | | 0.101 | 8.06 | 2000 | 0.8792 | 0.7567 | | 0.101 | 8.47 | 2100 | 0.3288 | 0.8670 | | 0.101 | 8.87 | 2200 | 0.3643 | 0.8342 | | 0.101 | 9.27 | 2300 | 0.4883 | 0.8711 | | 0.101 | 9.68 | 2400 | 0.2892 | 0.8943 | | 0.0667 | 10.08 | 2500 | 0.5437 | 0.8398 | | 0.0667 | 10.48 | 2600 | 0.5841 | 0.8450 | | 0.0667 | 10.89 | 2700 | 0.8016 | 0.8219 | | 0.0667 | 11.29 | 2800 | 0.6389 | 0.7772 | | 0.0667 | 11.69 | 2900 | 0.3714 | 0.8753 | | 0.0674 | 12.1 | 3000 | 0.9811 | 0.7130 | | 0.0674 | 12.5 | 3100 | 0.6359 | 0.8101 | | 0.0674 | 12.9 | 3200 | 0.5691 | 0.8285 | | 0.0674 | 13.31 | 3300 | 0.6123 | 0.8316 | | 0.0674 | 13.71 | 3400 | 0.3655 | 0.8978 | | 0.0525 | 14.11 | 3500 | 0.4988 | 0.8583 | | 0.0525 | 14.52 | 3600 | 0.6153 | 0.8450 | | 0.0525 | 14.92 | 3700 | 0.4189 | 0.8881 | | 0.0525 | 15.32 | 3800 | 0.9713 | 0.7967 | | 0.0525 | 15.73 | 3900 | 1.1224 | 0.7967 | | 0.0438 | 16.13 | 4000 | 0.5725 | 0.8578 | | 0.0438 | 16.53 | 4100 | 0.4725 | 0.8532 | | 0.0438 | 16.94 | 4200 | 0.4696 | 0.8640 | | 0.0438 | 17.34 | 4300 | 0.4028 | 0.8789 | | 0.0438 | 17.74 | 4400 | 0.9452 | 0.7746 | | 0.0462 | 18.15 | 4500 | 0.4455 | 0.8783 | | 0.0462 | 18.55 | 4600 | 0.6328 | 0.8311 | | 0.0462 | 18.95 | 4700 | 0.6707 | 0.8296 | | 0.0462 | 19.35 | 4800 | 0.7771 | 0.8429 | | 0.0462 | 19.76 | 4900 | 1.2832 | 0.7408 | | 0.0381 | 20.16 | 5000 | 0.5415 | 0.8737 | | 0.0381 | 20.56 | 5100 | 0.8932 | 0.7977 | | 0.0381 | 20.97 | 5200 | 0.5182 | 0.8691 | | 0.0381 | 21.37 | 5300 | 0.5967 | 0.8794 | | 0.0381 | 21.77 | 5400 | 0.8271 | 0.7705 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1