modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
Marco-Cheung/whisper-small-cantonese
Marco-Cheung
2023-08-09T16:07:58Z
5
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-08T06:53:17Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Cantonese - Marco Cheung results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: zh-HK split: test args: zh-HK metrics: - name: Wer type: wer value: 57.700752823086574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Cantonese - Marco Cheung This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.2487 - Wer Ortho: 57.8423 - Wer: 57.7008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1621 | 1.14 | 1000 | 0.2587 | 61.0824 | 65.0094 | | 0.0767 | 2.28 | 2000 | 0.2487 | 57.8423 | 57.7008 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
fernandals/sentiment_v1
fernandals
2023-08-09T16:06:59Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T14:10:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4863 - Accuracy: 0.8312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5858 | 1.0 | 3410 | 0.5747 | 0.7928 | | 0.4237 | 2.0 | 6820 | 0.4863 | 0.8312 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
tomaarsen/span-marker-bert-base-ncbi-disease
tomaarsen
2023-08-09T16:04:52Z
18
6
span-marker
[ "span-marker", "pytorch", "tensorboard", "safetensors", "token-classification", "ner", "named-entity-recognition", "en", "dataset:ncbi_disease", "license:apache-2.0", "model-index", "region:us" ]
token-classification
2023-08-09T13:55:13Z
--- license: apache-2.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition pipeline_tag: token-classification widget: - text: "X-Linked adrenoleukodystrophy (ALD) is a genetic disease associated with demyelination of the central nervous system, adrenal insufficiency, and accumulation of very long chain fatty acids in tissue and body fluids." example_title: "Example 1" - text: "Canavan disease is inherited as an autosomal recessive trait that is caused by the deficiency of aspartoacylase (ASPA)." example_title: "Example 2" - text: "However, both models lack other frequent DM symptoms including the fibre-type dependent atrophy, myotonia, cataract and male-infertility." example_title: "Example 3" model-index: - name: SpanMarker w. bert-base-cased on NCBI Disease by Tom Aarsen results: - task: type: token-classification name: Named Entity Recognition dataset: type: ncbi_disease name: NCBI Disease split: test revision: acd0e6451198d5b615c12356ab6a05fff4610920 metrics: - type: f1 value: 0.8813 name: F1 - type: precision value: 0.8661 name: Precision - type: recall value: 0.8971 name: Recall datasets: - ncbi_disease language: - en metrics: - f1 - recall - precision --- # SpanMarker for Disease Named Entity Recognition This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [ncbi_disease](https://huggingface.co/datasets/ncbi_disease) dataset. In particular, this SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder. See [train.py](train.py) for the training script. ## Metrics This model achieves the following results on the testing set: - Overall Precision: 0.8661 - Overall Recall: 0.8971 - Overall F1: 0.8813 - Overall Accuracy: 0.9837 ## Labels | **Label** | **Examples** | |-----------|--------------| | DISEASE | "ataxia-telangiectasia", "T-cell leukaemia", "C5D", "neutrophilic leukocytosis", "pyogenic infection" | ## Usage To use this model for inference, first install the `span_marker` library: ```bash pip install span_marker ``` You can then run inference with this model like so: ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-ncbi-disease") # Run inference entities = model.predict("Canavan disease is inherited as an autosomal recessive trait that is caused by the deficiency of aspartoacylase (ASPA).") ``` See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0038 | 1.41 | 300 | 0.0059 | 0.8141 | 0.8579 | 0.8354 | 0.9818 | | 0.0018 | 2.82 | 600 | 0.0054 | 0.8315 | 0.8720 | 0.8513 | 0.9840 | ### Framework versions - SpanMarker 1.2.4 - Transformers 4.31.0 - Pytorch 1.13.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.2
tamiti1610001/bert-finetuned-ner
tamiti1610001
2023-08-09T16:02:50Z
108
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T14:13:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9457247828991316 - name: Recall type: recall value: 0.9530461124200605 - name: F1 type: f1 value: 0.949371332774518 - name: Accuracy type: accuracy value: 0.9913554768116506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.9457 - Recall: 0.9530 - F1: 0.9494 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0136 | 1.0 | 878 | nan | 0.9401 | 0.9488 | 0.9445 | 0.9906 | | 0.0063 | 2.0 | 1756 | nan | 0.9413 | 0.9507 | 0.9460 | 0.9907 | | 0.0034 | 3.0 | 2634 | nan | 0.9457 | 0.9530 | 0.9494 | 0.9914 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e8_s6789_v3_l5_v20
KingKazma
2023-08-09T15:58:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:58:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e7_s6789_v3_l5_v50
KingKazma
2023-08-09T15:56:16Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:56:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
cyriac1/my-pet-dog
cyriac1
2023-08-09T15:54:39Z
0
0
null
[ "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T15:51:24Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by cyriac1 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET294 Sample pictures of this concept: ![0](https://huggingface.co/cyriac1/my-pet-dog/resolve/main/sample_images/pul_(4).jpg)
RogerB/marian-finetuned-Umuganda-Dataset-en-to-kin
RogerB
2023-08-09T15:53:16Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-rw", "base_model:finetune:Helsinki-NLP/opus-mt-en-rw", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-08T18:52:54Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-rw tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-kin-Umuganda-Dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-Umuganda-Dataset-en-to-kin-Umuganda-Dataset This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-rw](https://huggingface.co/Helsinki-NLP/opus-mt-en-rw) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8769 - Bleu: 32.8345 ## Model Description The model has been fine-tuned to perform machine translation from English to Kinyarwanda. ## Intended Uses & Limitations The primary intended use of this model is for research purposes. ## Training and Evaluation Data The model has been fine-tuned using the [Digital Umuganda](https://huggingface.co/datasets/DigitalUmuganda/kinyarwanda-english-machine-translation-dataset/tree/main) dataset. The dataset was split with 90% used for training and 10% for testing. The data used to train the model were cased and digits removed. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s6789_v3_l5_v50
KingKazma
2023-08-09T15:48:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:48:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
adon81/bert-finetuned-fishing-NER
adon81
2023-08-09T15:48:12Z
108
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:adon81/bert-finetuned-ner", "base_model:finetune:adon81/bert-finetuned-ner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T13:13:46Z
--- license: apache-2.0 base_model: adon81/bert-finetuned-ner tags: - generated_from_trainer model-index: - name: bert-finetuned-fishing-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-fishing-NER This model is a fine-tuned version of [adon81/bert-finetuned-ner](https://huggingface.co/adon81/bert-finetuned-ner) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300000000000000000000000000000000 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Shafaet02/bert-fine-tuned-cola
Shafaet02
2023-08-09T15:48:02Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T08:59:17Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: Shafaet02/bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Shafaet02/bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2831 - Validation Loss: 0.4311 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4914 | 0.4282 | 0 | | 0.2831 | 0.4311 | 1 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.11.0 - Datasets 2.14.3 - Tokenizers 0.13.3
Francesco-A/bert-finetuned-ner
Francesco-A
2023-08-09T15:45:53Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T15:29:35Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9323631552836117 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.940528818083243 - name: Accuracy type: accuracy value: 0.9861217401542356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9324 - Recall: 0.9488 - F1: 0.9405 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0774 | 1.0 | 1756 | 0.0764 | 0.9146 | 0.9337 | 0.9241 | 0.9802 | | 0.0394 | 2.0 | 3512 | 0.0554 | 0.9265 | 0.9483 | 0.9373 | 0.9860 | | 0.0261 | 3.0 | 5268 | 0.0592 | 0.9324 | 0.9488 | 0.9405 | 0.9861 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s6789_v3_l5_v20
KingKazma
2023-08-09T15:44:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:44:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
nomad-ai/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
nomad-ai
2023-08-09T15:40:35Z
160
0
transformers
[ "transformers", "pytorch", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-09T14:52:27Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5240 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6746 | 1.0 | 112 | 0.6682 | 0.79 | | 0.4141 | 2.0 | 225 | 0.5245 | 0.85 | | 0.2933 | 3.0 | 337 | 0.3968 | 0.87 | | 0.0352 | 4.0 | 450 | 0.3729 | 0.9 | | 0.0029 | 5.0 | 562 | 0.6066 | 0.88 | | 0.0036 | 6.0 | 675 | 0.5297 | 0.89 | | 0.0001 | 7.0 | 787 | 0.5816 | 0.89 | | 0.0072 | 8.0 | 900 | 0.5307 | 0.9 | | 0.0052 | 9.0 | 1012 | 0.5536 | 0.9 | | 0.0001 | 10.0 | 1125 | 0.5478 | 0.9 | | 0.0001 | 11.0 | 1237 | 0.5201 | 0.9 | | 0.0001 | 12.0 | 1350 | 0.5263 | 0.9 | | 0.0001 | 13.0 | 1462 | 0.5223 | 0.9 | | 0.0 | 14.0 | 1575 | 0.5225 | 0.9 | | 0.0001 | 14.93 | 1680 | 0.5240 | 0.9 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e5_s6789_v3_l5_v20
KingKazma
2023-08-09T15:37:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:37:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e4_s6789_v3_l5_v50
KingKazma
2023-08-09T15:33:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:33:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Ripo-2007/dreambooth_alfonso
Ripo-2007
2023-08-09T15:32:17Z
4
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T13:35:48Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: alfonsoaraco tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
dkqjrm/20230809151609
dkqjrm
2023-08-09T15:30:37Z
114
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T06:16:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: '20230809151609' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230809151609 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e4_s6789_v3_l5_v20
KingKazma
2023-08-09T15:30:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:30:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
santiagotoso/ppo-LunarLander-v2
santiagotoso
2023-08-09T15:27:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T13:24:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 232.20 +/- 76.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
murodbek/uzroberta-panx-uz
murodbek
2023-08-09T15:27:23Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-13T09:47:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: uzroberta-panx-uz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # uzroberta-panx-uz This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - F1: 0.9175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0515 | 1.0 | 150 | 0.1373 | 0.9141 | | 0.0415 | 2.0 | 300 | 0.1268 | 0.9194 | | 0.0101 | 3.0 | 450 | 0.1225 | 0.9416 | | 0.0038 | 4.0 | 600 | 0.1426 | 0.9353 | | 0.0004 | 5.0 | 750 | 0.1458 | 0.9320 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.12.1
Meohong/Dialect-Polyglot-12.8b-QLoRA
Meohong
2023-08-09T15:26:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:26:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e3_s6789_v3_l5_v50
KingKazma
2023-08-09T15:26:08Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:26:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
felixshier/asc-01-bert-finetuned
felixshier
2023-08-09T15:24:58Z
63
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T13:36:18Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: asc-01-bert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # asc-01-bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6295 - Validation Loss: 0.7210 - Train Precision: 0.38 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Epoch | |:----------:|:---------------:|:---------------:|:-----:| | 0.7161 | 0.7021 | 0.4118 | 0 | | 0.6906 | 0.7071 | 0.4730 | 1 | | 0.6443 | 0.7257 | 0.3333 | 2 | | 0.6295 | 0.7210 | 0.38 | 3 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
felixshier/csc-01-bert-finetuned
felixshier
2023-08-09T15:24:52Z
62
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T13:35:35Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: csc-01-bert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # csc-01-bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4789 - Validation Loss: 0.7231 - Train Precision: 0.6429 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 70, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Epoch | |:----------:|:---------------:|:---------------:|:-----:| | 0.7100 | 0.7421 | 0.0 | 0 | | 0.6764 | 0.6861 | 0.625 | 1 | | 0.6311 | 0.6838 | 0.5862 | 2 | | 0.5909 | 0.7072 | 0.6286 | 3 | | 0.5413 | 0.7504 | 0.6667 | 4 | | 0.4789 | 0.7231 | 0.6429 | 5 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e2_s6789_v3_l5_v50
KingKazma
2023-08-09T15:18:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:18:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
jordyvl/vit-base_rvl-cdip_r2_32
jordyvl
2023-08-09T15:18:05Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-08T08:10:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_rvl-cdip_r2_32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_rvl-cdip_r2_32 This model is a fine-tuned version of [jordyvl/vit-base_rvl-cdip](https://huggingface.co/jordyvl/vit-base_rvl-cdip) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6372 - Accuracy: 0.8985 - Brier Loss: 0.1792 - Nll: 1.1736 - F1 Micro: 0.8985 - F1 Macro: 0.8987 - Ece: 0.0847 - Aurc: 0.0201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 0.1647 | 1.0 | 3334 | 0.4024 | 0.8887 | 0.1682 | 1.2086 | 0.8887 | 0.8891 | 0.0457 | 0.0178 | | 0.1418 | 2.0 | 6668 | 0.4075 | 0.8941 | 0.1646 | 1.2066 | 0.8941 | 0.8942 | 0.0522 | 0.0177 | | 0.0989 | 3.0 | 10002 | 0.4409 | 0.8932 | 0.1690 | 1.1966 | 0.8932 | 0.8932 | 0.0647 | 0.0175 | | 0.0614 | 4.0 | 13336 | 0.4781 | 0.8944 | 0.1730 | 1.2083 | 0.8944 | 0.8951 | 0.0694 | 0.0181 | | 0.0392 | 5.0 | 16670 | 0.5329 | 0.8959 | 0.1761 | 1.1777 | 0.8959 | 0.8958 | 0.0776 | 0.0187 | | 0.0231 | 6.0 | 20004 | 0.5714 | 0.8957 | 0.1799 | 1.2083 | 0.8957 | 0.8958 | 0.0813 | 0.0198 | | 0.0126 | 7.0 | 23338 | 0.6002 | 0.8966 | 0.1802 | 1.1732 | 0.8966 | 0.8972 | 0.0839 | 0.0197 | | 0.0079 | 8.0 | 26672 | 0.6193 | 0.8984 | 0.1789 | 1.1849 | 0.8984 | 0.8985 | 0.0833 | 0.0200 | | 0.0049 | 9.0 | 30006 | 0.6333 | 0.8976 | 0.1798 | 1.1906 | 0.8976 | 0.8978 | 0.0851 | 0.0205 | | 0.0034 | 10.0 | 33340 | 0.6372 | 0.8985 | 0.1792 | 1.1736 | 0.8985 | 0.8987 | 0.0847 | 0.0201 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e2_s6789_v3_l5_v20
KingKazma
2023-08-09T15:16:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:15:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
imvladikon/alephbertgimmel_parashoot
imvladikon
2023-08-09T15:10:27Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "he", "dataset:imvladikon/parashoot", "base_model:imvladikon/alephbertgimmel-base-512", "base_model:finetune:imvladikon/alephbertgimmel-base-512", "endpoints_compatible", "region:us" ]
question-answering
2023-08-02T07:44:16Z
--- base_model: imvladikon/alephbertgimmel-base-512 tags: - generated_from_trainer datasets: - imvladikon/parashoot model-index: - name: alephbertgimmel_parashoot results: [] language: - he metrics: - f1 - exact_match pipeline_tag: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alephbertgimmel_parashoot This model is a fine-tuned version of [imvladikon/alephbertgimmel-base-512](https://huggingface.co/imvladikon/alephbertgimmel-base-512) on the [imvladikon/parashoot](https://huggingface.co/datasets/imvladikon/parashoot) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ``` ***** predict metrics ***** predict_samples = 1102 test_exact_match = 27.7073 test_f1 = 51.787 test_runtime = 0:00:32.05 test_samples_per_second = 34.383 test_steps_per_second = 4.306 ``` ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
jcy204/heat_model2
jcy204
2023-08-09T15:09:14Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T15:02:53Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: jcy204/heat_model2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jcy204/heat_model2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2766 - Validation Loss: 0.5538 - Train Accuracy: 0.7981 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3540, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6303 | 0.5314 | 0.7876 | 0 | | 0.4221 | 0.5178 | 0.7921 | 1 | | 0.2766 | 0.5538 | 0.7981 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e1_s6789_v3_l5_v20
KingKazma
2023-08-09T15:08:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:08:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
jcy204/cold_model2
jcy204
2023-08-09T15:02:39Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T14:57:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: jcy204/cold_model2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jcy204/cold_model2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3582 - Validation Loss: 0.6678 - Train Accuracy: 0.7477 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1545, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7779 | 0.6213 | 0.7392 | 0 | | 0.5323 | 0.6326 | 0.7315 | 1 | | 0.3582 | 0.6678 | 0.7477 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e0_s6789_v3_l5_v20
KingKazma
2023-08-09T15:01:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T15:01:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
leonard-pak/q-FrozenLake-v1-4x4-noSlippery
leonard-pak
2023-08-09T14:59:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T14:58:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="leonard-pak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
LarryAIDraw/ToukaLora-15
LarryAIDraw
2023-08-09T14:58:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-09T14:39:49Z
--- license: creativeml-openrail-m --- https://civitai.com/models/125271/touka-kirishima-tokyo-ghoul-lora
LarryAIDraw/GirlsFrontlineAk12
LarryAIDraw
2023-08-09T14:58:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-09T14:39:04Z
--- license: creativeml-openrail-m --- https://civitai.com/models/76960/ak-12-quiet-azure-girls-frontline
gsaivinay/Llama-2-7b-Chat-GPTQ
gsaivinay
2023-08-09T14:57:09Z
26
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-2", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-18T19:21:58Z
--- language: - en license: other inference: true model_type: llama pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 --- # Meta's Llama 2 7b Chat GPTQ ## * Duplicated from TheBloke * These files are GPTQ model files for [Meta's Llama 2 7b Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) ## Prompt template: Llama-2-Chat ``` System: You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. User: {prompt} Assistant: ``` ## Provided files Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ` ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-7b-Chat-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-7b-Chat-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `GITHUB_ACTIONS=true pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/Llama-2-7b-Chat-GPTQ" model_basename = "gptq_model-4bit-128g" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''System: You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. User: {prompt} Assistant: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. # Original model card: Meta's Llama 2 7b Chat # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s6789_v3_l5_r4
KingKazma
2023-08-09T14:43:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:43:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
kasiarun/bloom-560m-peft-1
kasiarun
2023-08-09T14:43:34Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:43:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
zjoe/RLCourseppo-Huggy
zjoe
2023-08-09T14:43:19Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-09T14:43:10Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: zjoe/RLCourseppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s6789_v3_l5_r2
KingKazma
2023-08-09T14:43:15Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-04T16:42:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s6789_v3_l5_r4
KingKazma
2023-08-09T14:36:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:36:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bofenghuang/flan-t5-large-dialogsum-fr
bofenghuang
2023-08-09T14:34:43Z
274
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "summarization", "fr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-03-02T19:25:55Z
--- license: apache-2.0 language: fr library_name: transformers thumbnail: null tags: - summarization widget: - text: "Pierre: J’ai oublié ma trousse. Tu peux me prêter un stylo.\nLucie: Tiens.\nPierre: Merci. Tu peux me donner une feuille de papier aussi ?\nLucie: Euh… oui. Tiens.\nPierre: Merci. Ça t’ennuie pas si je regarde avec toi ? J’ai oublié mon livre…\nLucie: Non, pas de problème.\nPierre: Pff. Je ne comprends rien. Tu pourras m’expliquer après le cours ?\nLucie: Oui, si tu veux… On ira au café.\nPierre: Oui… euh non, j’ai oublié mon porte-monnaie \nLucie: Bon allez ! ce n’est pas grave, je t’invite.\nPierre: Tu es trop gentille.\nLucie: Oui, c’est bien possible." metrics: - rouge model-index: - name: Fine-tuned FLAN-T5 large model for French dialogue summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine-tuned FLAN-T5 large model for French Dialogue Summarization This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) for French dialogue summarization. ## Usage Inference with 🤗 Pipeline ```python import torch from transformers import pipeline device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") pipe = pipeline( "summarization", model="bofenghuang/flan-t5-large-dialogsum-fr", device=device, ) dialogue_text = """Pierre: J’ai oublié ma trousse. Tu peux me prêter un stylo. Lucie: Tiens. Pierre: Merci. Tu peux me donner une feuille de papier aussi ? Lucie: Euh… oui. Tiens. Pierre: Merci. Ça t’ennuie pas si je regarde avec toi ? J’ai oublié mon livre… Lucie: Non, pas de problème. Pierre: Pff. Je ne comprends rien. Tu pourras m’expliquer après le cours ? Lucie: Oui, si tu veux… On ira au café. Pierre: Oui… euh non, j’ai oublié mon porte-monnaie. Lucie: Bon allez ! ce n’est pas grave, je t’invite. Pierre: Tu es trop gentille. Lucie: Oui, c’est bien possible.""" summarized_text = pipe(dialogue_text, max_length=1024)[0]["summary_text"] # greedy # summarized_text = pipe(dialogue_text, max_length=1024, num_beams=5)[0]["summary_text"] # beam search ```
dimonyara/Llama2-7b-lora-int4
dimonyara
2023-08-09T14:32:04Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:31:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
DiegoVSulz/capivarinha_portugues_7Blv2-4bit-128-GPTQ
DiegoVSulz
2023-08-09T14:31:20Z
0
2
null
[ "text2text-generation", "pt", "dataset:Guilherme34/Cabrita-lora-ptbr", "region:us" ]
text2text-generation
2023-08-09T05:50:12Z
--- datasets: - Guilherme34/Cabrita-lora-ptbr language: - pt pipeline_tag: text2text-generation --- Modelo llama v2 7b, treinado em portugues via QLORA, bons resultados com a lingua. testado apenas em windos, cuda 1.2.1, imagino que pelo menos 4GB de ram na GPU é necessária devido a quantização 4bit.
dinesh44/gptdatabot
dinesh44
2023-08-09T14:28:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-08T10:52:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
tolga-ozturk/mGPT-nsp
tolga-ozturk
2023-08-09T14:28:01Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "nsp", "next-sentence-prediction", "gpt", "en", "de", "dataset:wikipedia", "arxiv:2307.07331", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-07-19T14:42:58Z
--- language: - en - de tags: - nsp - next-sentence-prediction - gpt datasets: - wikipedia metrics: - accuracy --- # mGPT-nsp mGPT-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [multilingual GPT](https://huggingface.co/THUMT/mGPT) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. ## Model description mGPT-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 11000 English and 11000 German Wikipedia articles. We use the same tokenization and vocabulary as the [mT5 model](https://huggingface.co/google/mt5-base). ## Intended uses - Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) - See how to fine-tune an mGPT2 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) - Check our [paper](https://arxiv.org/abs/2307.07331) to see its results ## How to use You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: ### Necessary Initialization ```python from transformers import MT5Tokenizer, GPT2Model import torch from huggingface_hub import hf_hub_download class ModelNSP(torch.nn.Module): def __init__(self, pretrained_model="THUMT/mGPT"): super(ModelNSP, self).__init__() self.core_model = GPT2Model.from_pretrained(pretrained_model) self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, 300), torch.nn.Linear(300, 300), torch.nn.Linear(300, 2)) def forward(self, input_ids, attention_mask=None): return self.nsp_head(self.core_model(input_ids, attention_mask=attention_mask)[0].mean(dim=1)).softmax(dim=-1) model = torch.nn.DataParallel(ModelNSP().eval()) model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/mGPT-nsp", filename="model_weights.bin"))) tokenizer = MT5Tokenizer.from_pretrained("tolga-ozturk/mGPT-nsp") ``` ### Inference ```python batch_texts = [("In Italy, pizza is presented unsliced.", "The sky is blue."), ("In Italy, pizza is presented unsliced.", "However, it is served sliced in Turkey.")] encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first",padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) ``` ### Training Metrics <img src="https://huggingface.co/tolga-ozturk/mgpt-nsp/resolve/main/metrics.png"> ## BibTeX entry and citation info ```bibtex @misc{title={How Different Is Stereotypical Bias Across Languages?}, author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, year={2023}, eprint={2307.07331}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works!
tolga-ozturk/mt5-base-nsp
tolga-ozturk
2023-08-09T14:27:30Z
31
0
transformers
[ "transformers", "pytorch", "mt5", "nsp", "next-sentence-prediction", "t5", "en", "de", "fr", "es", "tr", "dataset:wikipedia", "arxiv:2307.07331", "endpoints_compatible", "region:us" ]
null
2023-08-03T18:56:52Z
--- language: - en - de - fr - es - tr tags: - nsp - next-sentence-prediction - t5 - mt5 datasets: - wikipedia metrics: - accuracy --- # mT5-base-nsp mT5-base-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [google/mt5-base](https://huggingface.co/google/mt5-base) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. ## Model description mT5-base-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 2500 English, 2500 German, 2500 Turkish, 2500 Spanish and 2500 French Wikipedia articles. ## Intended uses - Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) - See how to fine-tune an mT5 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) - Check our [paper](https://arxiv.org/abs/2307.07331) to see its results ## How to use You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: ### Necessary Initialization ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer from huggingface_hub import hf_hub_download class ModelNSP(torch.nn.Module): def __init__(self, pretrained_model, tokenizer, nsp_dim=300): super(ModelNSP, self).__init__() self.zero_token, self.one_token = (self.find_label_encoding(x, tokenizer).item() for x in ["0", "1"]) self.core_model = MT5ForConditionalGeneration.from_pretrained(pretrained_model) self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, nsp_dim), torch.nn.Linear(nsp_dim, nsp_dim), torch.nn.Linear(nsp_dim, 2)) def forward(self, input_ids, attention_mask=None): outputs = self.core_model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=3, output_scores=True, return_dict_in_generate=True) logits = [torch.Tensor([score[self.zero_token], score[self.one_token]]) for score in outputs.scores[1]] return torch.stack(logits).softmax(dim=-1) @staticmethod def find_label_encoding(input_str, tokenizer): encoded_str = tokenizer.encode(input_str, add_special_tokens=False, return_tensors="pt") return (torch.index_select(encoded_str, 1, torch.tensor([1])) if encoded_str.size(dim=1) == 2 else encoded_str) tokenizer = MT5Tokenizer.from_pretrained("tolga-ozturk/mT5-base-nsp") model = torch.nn.DataParallel(ModelNSP("google/mt5-base", tokenizer).eval()) model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/mT5-base-nsp", filename="model_weights.bin"))) ``` ### Inference ```python batch_texts = [("In Italy, pizza is presented unsliced.", "The sky is blue."), ("In Italy, pizza is presented unsliced.", "However, it is served sliced in Turkey.")] encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first", padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) ``` ### Training Metrics <img src="https://huggingface.co/tolga-ozturk/mt5-base-nsp/resolve/main/metrics.png"> ## BibTeX entry and citation info ```bibtex @misc{title={How Different Is Stereotypical Bias Across Languages?}, author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, year={2023}, eprint={2307.07331}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works!
tolga-ozturk/t5-spanish-nsp
tolga-ozturk
2023-08-09T14:25:31Z
3
0
transformers
[ "transformers", "t5", "text2text-generation", "nsp", "next-sentence-prediction", "es", "dataset:wikipedia", "arxiv:2307.07331", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T13:45:31Z
--- language: - es tags: - nsp - next-sentence-prediction - t5 datasets: - wikipedia metrics: - accuracy --- # T5-spanish-nsp T5-spanish-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. ## Model description T5-spanish-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 20000 Spanish Wikipedia articles. ## Intended uses - Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) - See how to fine-tune a T5 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) - Check our [paper](https://arxiv.org/abs/2307.07331) to see its results ## How to use You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: ### Necessary Initialization ```python import torch from transformers import T5ForConditionalGeneration, AutoTokenizer from huggingface_hub import hf_hub_download class ModelNSP(torch.nn.Module): def __init__(self, pretrained_model, tokenizer, nsp_dim=300): super(ModelNSP, self).__init__() self.zero_token, self.one_token = (self.find_label_encoding(x, tokenizer).item() for x in ["0", "1"]) self.core_model = T5ForConditionalGeneration.from_pretrained(pretrained_model) self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, nsp_dim), torch.nn.Linear(nsp_dim, nsp_dim), torch.nn.Linear(nsp_dim, 2)) def forward(self, input_ids, attention_mask=None): outputs = self.core_model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=3, output_scores=True, return_dict_in_generate=True) logits = [torch.Tensor([score[self.zero_token], score[self.one_token]]) for score in outputs.scores[1]] return torch.stack(logits).softmax(dim=-1) @staticmethod def find_label_encoding(input_str, tokenizer): encoded_str = tokenizer.encode(input_str, add_special_tokens=False, return_tensors="pt") return (torch.index_select(encoded_str, 1, torch.tensor([1])) if encoded_str.size(dim=1) == 2 else encoded_str) tokenizer = AutoTokenizer.from_pretrained("tolga-ozturk/t5-french-nsp") model = torch.nn.DataParallel(ModelNSP("plguillou/t5-base-fr-sum-cnndm", tokenizer).eval()) model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/t5-french-nsp", filename="model_weights.bin"))) ``` ### Inference ```python batch_texts = [("clasificación binaria: En Italia, la pizza se presenta sin rebanar.", "El cielo es azul."), ("clasificación binaria: En Italia, la pizza se presenta sin rebanar.", "Sin embargo, se sirve en rodajas en Turquía.")] encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first", padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) ``` ### Training Metrics <img src="https://huggingface.co/tolga-ozturk/t5-spanish-nsp/resolve/main/metrics.png"> ## BibTeX entry and citation info ```bibtex @misc{title={How Different Is Stereotypical Bias Across Languages?}, author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, year={2023}, eprint={2307.07331}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works!
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s6789_v3_l5_r4
KingKazma
2023-08-09T14:22:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:22:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s6789_v3_l5_r2
KingKazma
2023-08-09T14:15:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T16:13:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
feabries/ddpm-celebahq-finetuned-butterflies-2epochs
feabries
2023-08-09T14:11:58Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-09T14:11:40Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('feabries/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s6789_v3_l5_r4
KingKazma
2023-08-09T14:09:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:08:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Against61/llama2-qlora-finetunined-CHT
Against61
2023-08-09T14:06:35Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-09T14:06:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s6789_v3_l5_r2
KingKazma
2023-08-09T14:01:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T15:59:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
clibrain/Llama-2-ft-instruct-es
clibrain
2023-08-09T13:56:42Z
1,483
18
transformers
[ "transformers", "pytorch", "llama", "text-generation", "es", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-21T08:40:47Z
--- license: apache-2.0 language: - es pipeline_tag: text-generation library_name: transformers inference: false --- # Llama-2-ft-instruct-es # ⚠️ Please go to [clibrain/Llama-2-7b-ft-instruct-es](https://huggingface.co/clibrain/Llama-2-7b-ft-instruct-es) for the fixed and updated version. [Llama 2 (7B)](https://huggingface.co/meta-llama/Llama-2-7b) fine-tuned on [Clibrain](https://huggingface.co/clibrain)'s Spanish instructions dataset. ## Model Details Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model. Links to other models can be found in the index at the bottom. ## Example of Usage ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, GenerationConfig model_id = "clibrain/Llama-2-ft-instruct-es" model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_id) def create_instruction(instruction, input_data=None, context=None): sections = { "Instrucción": instruction, "Entrada": input_data, "Contexto": context, } system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n" prompt = system_prompt for title, content in sections.items(): if content is not None: prompt += f"### {title}:\n{content}\n\n" prompt += "### Respuesta:\n" return prompt def generate( instruction, input=None, context=None, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = create_instruction(instruction, input, context) print(prompt.replace("### Respuesta:\n", "")) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Respuesta:")[1].lstrip("\n") instruction = "Dame una lista de lugares a visitar en España." print(generate(instruction)) ```
arminhaberl/faster-whisper-base
arminhaberl
2023-08-09T13:56:36Z
9
1
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-08-09T13:56:01Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper base model for CTranslate2 This repository contains the conversion of [openai/whisper-base](https://huggingface.co/openai/whisper-base) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("base") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-base --output_dir faster-whisper-base \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-base).**
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s6789_v3_l5_r4
KingKazma
2023-08-09T13:55:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T13:55:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
arminhaberl/faster-whisper-large-v1
arminhaberl
2023-08-09T13:55:02Z
11
0
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-08-09T13:53:41Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper large-v1 model for CTranslate2 This repository contains the conversion of [openai/whisper-large](https://huggingface.co/openai/whisper-large) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("large-v1") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-large --output_dir faster-whisper-large-v1 \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-large).**
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s6789_v3_l5_r2
KingKazma
2023-08-09T13:54:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T15:51:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
arminhaberl/faster-whisper-large-v2
arminhaberl
2023-08-09T13:53:04Z
12
0
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-08-09T13:51:56Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper large-v2 model for CTranslate2 This repository contains the conversion of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("large-v2") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-large-v2 --output_dir faster-whisper-large-v2 \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-large-v2).**
arminhaberl/faster-whisper-medium
arminhaberl
2023-08-09T13:51:15Z
7
0
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-08-09T13:50:36Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper medium model for CTranslate2 This repository contains the conversion of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("medium") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-medium --output_dir faster-whisper-medium \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-medium).**
Ilias7/ppo-LunarLander-v2
Ilias7
2023-08-09T13:47:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T13:47:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.64 +/- 21.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s6789_v3_l5_r2
KingKazma
2023-08-09T13:47:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T15:44:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
tolga-ozturk/t5-french-nsp
tolga-ozturk
2023-08-09T13:37:49Z
4
0
transformers
[ "transformers", "t5", "text2text-generation", "nsp", "next-sentence-prediction", "fr", "dataset:wikipedia", "arxiv:2307.07331", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T13:11:36Z
--- language: - fr tags: - nsp - next-sentence-prediction - t5 datasets: - wikipedia metrics: - accuracy --- # T5-french-nsp T5-french-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [plguillou/t5-base-fr-sum-cnndm](https://huggingface.co/plguillou/t5-base-fr-sum-cnndm) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. ## Model description T5-french-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 14000 French Wikipedia articles. ## Intended uses - Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) - See how to fine-tune a T5 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) - Check our [paper](https://arxiv.org/abs/2307.07331) to see its results ## How to use You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: ### Necessary Initialization ```python import torch from transformers import T5ForConditionalGeneration, T5Tokenizer from huggingface_hub import hf_hub_download class ModelNSP(torch.nn.Module): def __init__(self, pretrained_model, tokenizer, nsp_dim=300): super(ModelNSP, self).__init__() self.zero_token, self.one_token = (self.find_label_encoding(x, tokenizer).item() for x in ["0", "1"]) self.core_model = T5ForConditionalGeneration.from_pretrained(pretrained_model) self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, nsp_dim), torch.nn.Linear(nsp_dim, nsp_dim), torch.nn.Linear(nsp_dim, 2)) def forward(self, input_ids, attention_mask=None): outputs = self.core_model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=3, output_scores=True, return_dict_in_generate=True) logits = [torch.Tensor([score[self.zero_token], score[self.one_token]]) for score in outputs.scores[1]] return torch.stack(logits).softmax(dim=-1) @staticmethod def find_label_encoding(input_str, tokenizer): encoded_str = tokenizer.encode(input_str, add_special_tokens=False, return_tensors="pt") return (torch.index_select(encoded_str, 1, torch.tensor([1])) if encoded_str.size(dim=1) == 2 else encoded_str) tokenizer = T5Tokenizer.from_pretrained("tolga-ozturk/t5-french-nsp") model = torch.nn.DataParallel(ModelNSP("plguillou/t5-base-fr-sum-cnndm", tokenizer).eval()) model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/t5-french-nsp", filename="model_weights.bin"))) ``` ### Inference ```python batch_texts = [("classification binaire: En Italie, la pizza est présentée non tranchée.", "Le ciel est bleu."), ("classification binaire: En Italie, la pizza est présentée non tranchée.", "Cependant, il est servi en tranches en Turquie.")] encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first", padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) ``` ### Training Metrics <img src="https://huggingface.co/tolga-ozturk/t5-french-nsp/resolve/main/metrics.png"> ## BibTeX entry and citation info ```bibtex @misc{title={How Different Is Stereotypical Bias Across Languages?}, author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, year={2023}, eprint={2307.07331}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works!
ayeshagonzales/MBM_Model
ayeshagonzales
2023-08-09T13:32:42Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-08-09T13:12:48Z
--- license: mit --- Models for use with https://github.com/hincz-lab/motion-blur-microscopy repository. For analyzing image data with either SRBC or both SRBC and CAR-T cells (i.e. SRBC on Laminin or CAR-T and SRBC on P-Selectin), use *Motion_Blur_Modern_Three.h5* For analyzing image data with only CAR-T cells (i.e. CAR-T on E-selectin), use *Phase_One_Network_E_Selectin_Car_T.h5*
MemerOwO/Erkin_Koray
MemerOwO
2023-08-09T13:28:26Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2023-08-09T10:39:14Z
--- license: bigcode-openrail-m ---
manuu01/SoccerTwos
manuu01
2023-08-09T13:28:00Z
577
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-30T22:51:19Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: manuu01/SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
polejowska/detr-r50-cd45rb-8ah-2l-corrected
polejowska
2023-08-09T13:26:25Z
162
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-09T05:36:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb model-index: - name: detr-r50-cd45rb-8ah-2l-corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r50-cd45rb-8ah-2l-corrected This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb dataset. It achieves the following results on the evaluation set: - Loss: 2.2973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7108 | 1.0 | 4606 | 2.7888 | | 3.3322 | 2.0 | 9212 | 2.5539 | | 3.2038 | 3.0 | 13818 | 2.4728 | | 3.1338 | 4.0 | 18424 | 2.4153 | | 3.0774 | 5.0 | 23030 | 2.4054 | | 3.0301 | 6.0 | 27636 | 2.3471 | | 2.9925 | 7.0 | 32242 | 2.3332 | | 2.9639 | 8.0 | 36848 | 2.3221 | | 2.944 | 9.0 | 41454 | 2.3080 | | 2.9248 | 10.0 | 46060 | 2.2973 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Sivapriya2133/the-cat-csd
Sivapriya2133
2023-08-09T13:21:21Z
1
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T13:15:12Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### THE-CAT-CSD Dreambooth model trained by Sivapriya2133 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CCIEK149 Sample pictures of this concept:
amit0814/wav2vec2-large-xls-r-300m-hi-spot-colab
amit0814
2023-08-09T13:08:37Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-09T12:42:45Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hi-spot-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-spot-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
Phaaarus/QLoRA_replica_8rank_QKadap
Phaaarus
2023-08-09T12:51:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T12:48:23Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
arywidanthi/Heart-failure-prediction
arywidanthi
2023-08-09T12:36:46Z
0
0
null
[ "region:us" ]
null
2023-08-09T12:36:02Z
--- title: Heart Failure Gc3 emoji: 📊 colorFrom: purple colorTo: blue sdk: streamlit sdk_version: 1.21.0 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
ruudra/trial-obj-det
ruudra
2023-08-09T12:31:38Z
0
0
null
[ "object-detection", "region:us" ]
object-detection
2023-08-09T10:18:34Z
--- pipeline_tag: object-detection --- ### How to use Here is how to use this model: python detect.py --weights best.pt --img 416 --conf 0.4 --source img.png
felixb85/reinforce-Pixelcopter-PLE-v0
felixb85
2023-08-09T12:27:19Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T11:48:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 25.70 +/- 19.35 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
EdJ1234/lora-peft-legal-summ
EdJ1234
2023-08-09T12:21:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T12:21:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
annaovesnaatatt/q-Taxi-v3
annaovesnaatatt
2023-08-09T12:08:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T12:08:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="annaovesna/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
heegyu/WizardVicuna-3B-0719
heegyu
2023-08-09T12:08:44Z
3,684
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:heegyu/wizard_vicuna_70k_v2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-23T02:51:40Z
--- license: apache-2.0 language: - en datasets: - heegyu/wizard_vicuna_70k_v2 --- Base Model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) Usage ``` ### Human: your instruction ### ASSISANT: output will be generated and ended with <|endoftext|> ```
annaovesnaatatt/q-FrozenLake-v1-4x4-noSlippery
annaovesnaatatt
2023-08-09T12:02:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T12:02:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="annaovesna/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RIOLITE/products_matching_aumet_fine_tune_2023-08-09
RIOLITE
2023-08-09T12:02:29Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-09T07:54:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RIOLITE/products_matching_aumet_scratch_2023-08-09
RIOLITE
2023-08-09T12:02:09Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-09T07:52:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
JFuellem/whisper-tiny-en-US
JFuellem
2023-08-09T12:01:19Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-09T11:29:15Z
--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper Tiny en-US - JFuellem results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS-14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3530106257378985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny en-US - JFuellem This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MInDS-14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6457 - Wer Ortho: 35.7187 - Wer: 0.3530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0007 | 17.86 | 500 | 0.6457 | 35.7187 | 0.3530 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
hoang14/law_chatbot_1b7_2048_context_mixed_data
hoang14
2023-08-09T11:59:38Z
0
1
peft
[ "peft", "region:us" ]
null
2023-08-08T00:48:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
Abubakar144/lsa_nlp_final
Abubakar144
2023-08-09T11:58:12Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T11:57:58Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: lsa_nlp_final results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lsa_nlp_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
fuxj/ppo-LunarLander-v2
fuxj
2023-08-09T11:57:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T11:57:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.76 +/- 47.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nrshoudi/wav2vec2-large-xls-r-300m-Arabic-phoneme-based
nrshoudi
2023-08-09T11:54:51Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-12T23:11:40Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Arabic-phoneme-based This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7493 - Per: 0.1979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9601 | 1.0 | 2187 | 1.7221 | 0.9190 | | 1.307 | 2.0 | 4374 | 1.0964 | 0.4532 | | 0.9363 | 3.0 | 6561 | 0.9163 | 0.3469 | | 0.7942 | 4.0 | 8748 | 0.8432 | 0.3037 | | 0.7 | 5.0 | 10935 | 0.7827 | 0.2881 | | 0.6274 | 6.0 | 13122 | 0.7456 | 0.2713 | | 0.5692 | 7.0 | 15309 | 0.6924 | 0.2572 | | 0.5203 | 8.0 | 17496 | 0.6521 | 0.2491 | | 0.4853 | 9.0 | 19683 | 0.6583 | 0.2420 | | 0.4448 | 10.0 | 21870 | 0.6580 | 0.2312 | | 0.4134 | 11.0 | 24057 | 0.6313 | 0.2380 | | 0.389 | 12.0 | 26244 | 0.6099 | 0.2225 | | 0.3644 | 13.0 | 28431 | 0.6238 | 0.2239 | | 0.3432 | 14.0 | 30618 | 0.6369 | 0.2195 | | 0.3191 | 15.0 | 32805 | 0.6391 | 0.2164 | | 0.2992 | 16.0 | 34992 | 0.6314 | 0.2164 | | 0.2827 | 17.0 | 37179 | 0.6385 | 0.2143 | | 0.2666 | 18.0 | 39366 | 0.6330 | 0.2159 | | 0.2479 | 19.0 | 41553 | 0.6653 | 0.2125 | | 0.2341 | 20.0 | 43740 | 0.6692 | 0.2165 | | 0.2209 | 21.0 | 45927 | 0.6656 | 0.2199 | | 0.2075 | 22.0 | 48114 | 0.6669 | 0.2104 | | 0.1955 | 23.0 | 50301 | 0.6830 | 0.2044 | | 0.1825 | 24.0 | 52488 | 0.6973 | 0.2065 | | 0.1758 | 25.0 | 54675 | 0.7265 | 0.2013 | | 0.1644 | 26.0 | 56862 | 0.7416 | 0.2040 | | 0.1571 | 27.0 | 59049 | 0.7202 | 0.2007 | | 0.1489 | 28.0 | 61236 | 0.7224 | 0.2019 | | 0.1432 | 29.0 | 63423 | 0.7357 | 0.1988 | | 0.1373 | 30.0 | 65610 | 0.7493 | 0.1979 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
silpakanneganti/roberta-cpt-medical-ner
silpakanneganti
2023-08-09T11:45:58Z
32
2
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "base_model:silpakanneganti/roberta-cpt-medical-ner", "base_model:finetune:silpakanneganti/roberta-cpt-medical-ner", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-05T19:38:54Z
--- license: mit base_model: silpakanneganti/roberta-cpt-medical-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-cpt-medical-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-cpt-medical-ner This model is a fine-tuned version of [silpakanneganti/roberta-cpt-medical-ner](https://huggingface.co/silpakanneganti/roberta-cpt-medical-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8502 - Precision: 0.0342 - Recall: 0.1849 - F1: 0.0577 - Accuracy: 0.1849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 0.8394 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 2.0 | 50 | 0.8356 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 3.0 | 75 | 0.8381 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 4.0 | 100 | 0.8406 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 5.0 | 125 | 0.8426 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 6.0 | 150 | 0.8432 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 7.0 | 175 | 0.8431 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 8.0 | 200 | 0.8461 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 9.0 | 225 | 0.8497 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | | No log | 10.0 | 250 | 0.8502 | 0.0342 | 0.1849 | 0.0577 | 0.1849 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.12.1
caiAtSNU/q-FrozenLake-v1-4x4-noSlippery
caiAtSNU
2023-08-09T11:27:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T11:18:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="caiAtSNU/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
simonycl/roberta-large-sst-2-16-13-30
simonycl
2023-08-09T11:19:47Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T11:16:53Z
--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-sst-2-16-13-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sst-2-16-13-30 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6901 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6957 | 0.5 | | No log | 2.0 | 2 | 0.6955 | 0.5 | | No log | 3.0 | 3 | 0.6952 | 0.5 | | No log | 4.0 | 4 | 0.6944 | 0.5 | | No log | 5.0 | 5 | 0.6937 | 0.5 | | No log | 6.0 | 6 | 0.6933 | 0.5 | | No log | 7.0 | 7 | 0.6929 | 0.5 | | No log | 8.0 | 8 | 0.6942 | 0.5 | | No log | 9.0 | 9 | 0.6931 | 0.5 | | 0.6903 | 10.0 | 10 | 0.6917 | 0.5 | | 0.6903 | 11.0 | 11 | 0.6905 | 0.5 | | 0.6903 | 12.0 | 12 | 0.6891 | 0.5312 | | 0.6903 | 13.0 | 13 | 0.6883 | 0.625 | | 0.6903 | 14.0 | 14 | 0.6874 | 0.6562 | | 0.6903 | 15.0 | 15 | 0.6849 | 0.5312 | | 0.6903 | 16.0 | 16 | 0.6822 | 0.5312 | | 0.6903 | 17.0 | 17 | 0.6790 | 0.5 | | 0.6903 | 18.0 | 18 | 0.6742 | 0.5 | | 0.6903 | 19.0 | 19 | 0.6650 | 0.5312 | | 0.626 | 20.0 | 20 | 0.6524 | 0.5312 | | 0.626 | 21.0 | 21 | 0.6444 | 0.5312 | | 0.626 | 22.0 | 22 | 0.6361 | 0.5625 | | 0.626 | 23.0 | 23 | 0.6327 | 0.5938 | | 0.626 | 24.0 | 24 | 0.6337 | 0.625 | | 0.626 | 25.0 | 25 | 0.6437 | 0.625 | | 0.626 | 26.0 | 26 | 0.6580 | 0.6562 | | 0.626 | 27.0 | 27 | 0.6725 | 0.6562 | | 0.626 | 28.0 | 28 | 0.6812 | 0.625 | | 0.626 | 29.0 | 29 | 0.6873 | 0.625 | | 0.4393 | 30.0 | 30 | 0.6901 | 0.625 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
Hekenye/3d
Hekenye
2023-08-09T11:17:54Z
4
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T11:05:28Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: A house in 3d rendering style tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Hekenye/3d These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on A house in 3d rendering style using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
sivasis-tripathy/Llama-2-7b-chat-midjourney-prompts-2
sivasis-tripathy
2023-08-09T11:15:35Z
3
1
peft
[ "peft", "region:us" ]
null
2023-08-09T11:10:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
openerotica/Llama-2-13B-GPTQ
openerotica
2023-08-09T11:11:59Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "facebook", "meta", "llama-2", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-09T09:50:30Z
--- inference: false language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Meta's Llama 2 13B fp16 These files are fp16 format model files for [Meta's Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf). They were produced by downloading the PTH files from Meta, and then converting to HF format using the latest Transformers 4.32.0.dev0, from Git, with the Llama 2 PR included: https://github.com/huggingface/transformers/pull/24891. Command to convert was: ``` python3 /workspace/venv/pytorch2/lib/python3.10/site-packages/transformers/models/llama/convert_llama_weights_to_hf.py --input_dir /workspace/git/llama/download --model_size 13B --output_dir /workspace/process/llama-2-13b/source ``` ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ) * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-13b-hf) * [My fp16 conversion of the unquantised PTH model files](https://huggingface.co/TheBloke/Llama-2-13B-fp16) ## Prompt template: None ``` {prompt} ``` <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz. **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Meta's Llama 2 13B # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 13B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
Deexit/swin-tiny-patch4-window7-224-finetuned-eurosat
Deexit
2023-08-09T11:05:30Z
78
0
transformers
[ "transformers", "tf", "tensorboard", "swin", "image-classification", "generated_from_keras_callback", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-09T10:28:03Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_keras_callback model-index: - name: Deexit/swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deexit/swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9176 - Validation Loss: 3.2903 - Validation Accuracy: 0.0 - Epoch: 13 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:-----:| | 2.7734 | 2.7408 | 0.0 | 0 | | 2.4056 | 2.7463 | 0.0 | 1 | | 2.1880 | 2.7762 | 0.0 | 2 | | 2.0477 | 2.8285 | 0.0 | 3 | | 2.1556 | 2.8884 | 0.0 | 4 | | 2.0269 | 2.9569 | 0.0 | 5 | | 1.7258 | 3.0337 | 0.0 | 6 | | 2.3555 | 3.1071 | 0.0 | 7 | | 1.8657 | 3.1494 | 0.0 | 8 | | 1.8121 | 3.1848 | 0.0 | 9 | | 1.9192 | 3.2109 | 0.0 | 10 | | 1.9925 | 3.2335 | 0.0 | 11 | | 2.0157 | 3.2654 | 0.0 | 12 | | 1.9176 | 3.2903 | 0.0 | 13 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.3 - Tokenizers 0.13.3
newronai/llama-2-7b-QLoRA-Trial2
newronai
2023-08-09T10:58:10Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T10:57:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
RebeccaKnudsen/falcon-7b-instruct-ft-adapters
RebeccaKnudsen
2023-08-09T10:52:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T10:52:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
jordyvl/vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_simkd_rand
jordyvl
2023-08-09T10:48:04Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-08T21:40:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_simkd_rand results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_simkd_rand This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0667 - Accuracy: 0.5865 - Brier Loss: 0.5908 - Nll: 3.0393 - F1 Micro: 0.5865 - F1 Macro: 0.5890 - Ece: 0.1479 - Aurc: 0.2054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 0.0807 | 1.0 | 1000 | 0.0798 | 0.095 | 0.9362 | 7.0778 | 0.095 | 0.0517 | 0.0524 | 0.8510 | | 0.0785 | 2.0 | 2000 | 0.0782 | 0.142 | 0.9268 | 6.5000 | 0.142 | 0.0892 | 0.0843 | 0.7446 | | 0.0768 | 3.0 | 3000 | 0.0761 | 0.253 | 0.8945 | 4.3268 | 0.253 | 0.1827 | 0.1545 | 0.5697 | | 0.0753 | 4.0 | 4000 | 0.0747 | 0.327 | 0.8672 | 3.7313 | 0.327 | 0.2733 | 0.2052 | 0.4558 | | 0.074 | 5.0 | 5000 | 0.0739 | 0.359 | 0.8410 | 3.6965 | 0.359 | 0.2941 | 0.2102 | 0.4159 | | 0.0729 | 6.0 | 6000 | 0.0725 | 0.3795 | 0.8104 | 3.2323 | 0.3795 | 0.3340 | 0.2147 | 0.3672 | | 0.0718 | 7.0 | 7000 | 0.0717 | 0.4165 | 0.7806 | 3.1185 | 0.4165 | 0.3770 | 0.2186 | 0.3378 | | 0.071 | 8.0 | 8000 | 0.0714 | 0.4175 | 0.7785 | 3.1984 | 0.4175 | 0.3999 | 0.2170 | 0.3408 | | 0.0703 | 9.0 | 9000 | 0.0707 | 0.457 | 0.7563 | 2.8932 | 0.457 | 0.4310 | 0.2437 | 0.2965 | | 0.0696 | 10.0 | 10000 | 0.0699 | 0.4665 | 0.7452 | 2.7889 | 0.4665 | 0.4529 | 0.2456 | 0.2828 | | 0.0691 | 11.0 | 11000 | 0.0693 | 0.499 | 0.7219 | 2.7292 | 0.499 | 0.4756 | 0.2543 | 0.2579 | | 0.0685 | 12.0 | 12000 | 0.0691 | 0.4955 | 0.7144 | 2.8807 | 0.4955 | 0.4734 | 0.2443 | 0.2515 | | 0.068 | 13.0 | 13000 | 0.0688 | 0.5072 | 0.7096 | 2.6737 | 0.5072 | 0.4944 | 0.2525 | 0.2468 | | 0.0675 | 14.0 | 14000 | 0.0685 | 0.513 | 0.6952 | 2.7492 | 0.513 | 0.5001 | 0.2404 | 0.2453 | | 0.0669 | 15.0 | 15000 | 0.0682 | 0.5232 | 0.6855 | 2.7789 | 0.5232 | 0.5048 | 0.2441 | 0.2379 | | 0.0664 | 16.0 | 16000 | 0.0680 | 0.529 | 0.6790 | 2.8249 | 0.529 | 0.5182 | 0.2366 | 0.2340 | | 0.0658 | 17.0 | 17000 | 0.0678 | 0.5347 | 0.6668 | 2.7035 | 0.5347 | 0.5237 | 0.2338 | 0.2228 | | 0.0652 | 18.0 | 18000 | 0.0676 | 0.5335 | 0.6673 | 2.8630 | 0.5335 | 0.5249 | 0.2319 | 0.2252 | | 0.0651 | 19.0 | 19000 | 0.0675 | 0.5385 | 0.6524 | 2.7522 | 0.5385 | 0.5286 | 0.2172 | 0.2256 | | 0.0645 | 20.0 | 20000 | 0.0671 | 0.5593 | 0.6454 | 2.7445 | 0.5593 | 0.5563 | 0.2324 | 0.2122 | | 0.0639 | 21.0 | 21000 | 0.0672 | 0.5453 | 0.6541 | 2.9011 | 0.5453 | 0.5451 | 0.2236 | 0.2204 | | 0.0634 | 22.0 | 22000 | 0.0668 | 0.5617 | 0.6398 | 2.8668 | 0.5617 | 0.5604 | 0.2264 | 0.2108 | | 0.0629 | 23.0 | 23000 | 0.0670 | 0.5577 | 0.6295 | 2.8351 | 0.5577 | 0.5521 | 0.1984 | 0.2180 | | 0.0625 | 24.0 | 24000 | 0.0666 | 0.5765 | 0.6201 | 2.7133 | 0.5765 | 0.5754 | 0.2138 | 0.2035 | | 0.0618 | 25.0 | 25000 | 0.0666 | 0.565 | 0.6219 | 2.8775 | 0.565 | 0.5614 | 0.2010 | 0.2078 | | 0.0613 | 26.0 | 26000 | 0.0664 | 0.5795 | 0.6121 | 2.8665 | 0.5795 | 0.5805 | 0.1996 | 0.2024 | | 0.0606 | 27.0 | 27000 | 0.0667 | 0.5723 | 0.6101 | 2.9450 | 0.5723 | 0.5711 | 0.1804 | 0.2113 | | 0.0603 | 28.0 | 28000 | 0.0664 | 0.583 | 0.6106 | 2.9126 | 0.583 | 0.5845 | 0.2004 | 0.2006 | | 0.0597 | 29.0 | 29000 | 0.0665 | 0.5857 | 0.6050 | 2.9881 | 0.5857 | 0.5862 | 0.1912 | 0.2006 | | 0.0594 | 30.0 | 30000 | 0.0665 | 0.5775 | 0.6043 | 2.9735 | 0.5775 | 0.5797 | 0.1823 | 0.2029 | | 0.0589 | 31.0 | 31000 | 0.0666 | 0.5733 | 0.6080 | 2.9942 | 0.5733 | 0.5739 | 0.1721 | 0.2129 | | 0.0585 | 32.0 | 32000 | 0.0667 | 0.5803 | 0.6066 | 3.0341 | 0.5803 | 0.5826 | 0.1748 | 0.2114 | | 0.0583 | 33.0 | 33000 | 0.0665 | 0.5827 | 0.6033 | 3.0209 | 0.5827 | 0.5880 | 0.1799 | 0.2029 | | 0.0578 | 34.0 | 34000 | 0.0667 | 0.577 | 0.6020 | 3.0483 | 0.577 | 0.5816 | 0.1636 | 0.2081 | | 0.0576 | 35.0 | 35000 | 0.0667 | 0.577 | 0.6029 | 3.0263 | 0.577 | 0.5840 | 0.1573 | 0.2117 | | 0.0574 | 36.0 | 36000 | 0.0667 | 0.5803 | 0.6006 | 3.0578 | 0.5803 | 0.5851 | 0.1627 | 0.2082 | | 0.057 | 37.0 | 37000 | 0.0666 | 0.582 | 0.5997 | 3.1133 | 0.582 | 0.5867 | 0.1612 | 0.2094 | | 0.0567 | 38.0 | 38000 | 0.0667 | 0.5817 | 0.5951 | 3.0727 | 0.5817 | 0.5836 | 0.1552 | 0.2091 | | 0.0566 | 39.0 | 39000 | 0.0666 | 0.5815 | 0.5951 | 3.0308 | 0.5815 | 0.5853 | 0.1559 | 0.2049 | | 0.0564 | 40.0 | 40000 | 0.0666 | 0.5853 | 0.5940 | 3.0629 | 0.5853 | 0.5880 | 0.1564 | 0.2057 | | 0.0562 | 41.0 | 41000 | 0.0666 | 0.5845 | 0.5949 | 3.0956 | 0.5845 | 0.5881 | 0.1585 | 0.2055 | | 0.0561 | 42.0 | 42000 | 0.0666 | 0.5827 | 0.5960 | 3.0679 | 0.5827 | 0.5876 | 0.1540 | 0.2098 | | 0.0559 | 43.0 | 43000 | 0.0666 | 0.5833 | 0.5909 | 2.9904 | 0.5833 | 0.5854 | 0.1491 | 0.2049 | | 0.0559 | 44.0 | 44000 | 0.0665 | 0.585 | 0.5915 | 3.0150 | 0.585 | 0.5876 | 0.1543 | 0.2032 | | 0.0557 | 45.0 | 45000 | 0.0667 | 0.583 | 0.5923 | 3.0501 | 0.583 | 0.5851 | 0.1501 | 0.2056 | | 0.0557 | 46.0 | 46000 | 0.0666 | 0.5905 | 0.5914 | 3.0110 | 0.5905 | 0.5940 | 0.1550 | 0.2045 | | 0.0555 | 47.0 | 47000 | 0.0667 | 0.584 | 0.5922 | 3.0464 | 0.584 | 0.5872 | 0.1497 | 0.2069 | | 0.0555 | 48.0 | 48000 | 0.0667 | 0.588 | 0.5917 | 3.0408 | 0.588 | 0.5919 | 0.1489 | 0.2051 | | 0.0554 | 49.0 | 49000 | 0.0667 | 0.589 | 0.5908 | 3.0433 | 0.589 | 0.5923 | 0.1496 | 0.2044 | | 0.0554 | 50.0 | 50000 | 0.0667 | 0.5865 | 0.5908 | 3.0393 | 0.5865 | 0.5890 | 0.1479 | 0.2054 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
Hekenye/cartoon
Hekenye
2023-08-09T10:42:22Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T10:28:16Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: A woman walking a dog in flat cartoon illustration style tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Hekenye/cartoon These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on A woman walking a dog in flat cartoon illustration style using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
DragosGorduza/fiqa_1400_gpl_trained
DragosGorduza
2023-08-09T10:31:44Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-09T09:58:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2800 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1400, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
KallistiTMR/llama-2-7b-chat-wiz-k16-9
KallistiTMR
2023-08-09T10:27:13Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T02:47:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0
Evan-Lin/Bart-abs-amazon-entailment-50
Evan-Lin
2023-08-09T10:25:26Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-09T10:17:54Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpg0xs53u8/Evan-Lin/Bart-abs-amazon-entailment-50") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpg0xs53u8/Evan-Lin/Bart-abs-amazon-entailment-50") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpg0xs53u8/Evan-Lin/Bart-abs-amazon-entailment-50") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```