modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-01 00:47:04
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-01 00:46:57
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
toinsson/q-FrozenLake-v1-4x4-noSlippery
|
toinsson
| 2022-12-21T10:25:13Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T10:25:00Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="toinsson/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Lilya/distilbert-base-uncased-ner-invoiceSenderName_all_inv_20_12
|
Lilya
| 2022-12-21T10:09:19Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-20T17:20:45Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-ner-invoiceSenderName_all_inv_20_12
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-ner-invoiceSenderName_all_inv_20_12
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0145
- eval_precision: 0.0
- eval_recall: 0.0
- eval_f1: 0.0
- eval_accuracy: 0.9957
- eval_runtime: 511.2392
- eval_samples_per_second: 42.113
- eval_steps_per_second: 2.633
- epoch: 4.0
- step: 30500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0
- Datasets 2.3.2
- Tokenizers 0.10.3
|
Boiler/ppo-Huggy
|
Boiler
| 2022-12-21T10:06:25Z | 16 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-21T10:06:02Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Boiler/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
brainace/finetuning-sentiment-model-3000-samples
|
brainace
| 2022-12-21T09:14:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-21T07:26:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.8733333333333333
- name: F1
type: f1
value: 0.8741721854304636
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3178
- Accuracy: 0.8733
- F1: 0.8742
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
roapple10/dqn-SpaceInvadersNoFrameskip-v4
|
roapple10
| 2022-12-21T09:12:31Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T09:11:53Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 355.00 +/- 171.70
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga roapple10 -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga roapple10 -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga roapple10
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
DrishtiSharma/whisper-large-v2-slovenian
|
DrishtiSharma
| 2022-12-21T09:05:57Z | 28 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"sl",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T00:36:53Z |
---
language:
- sl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large-V2 Slovenian - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: sl
split: test
args: sl
metrics:
- name: Wer
type: wer
value: 13.833819241982507
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large-V2 Slovenian - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2118
- Wer: 13.8338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0118 | 3.04 | 1000 | 0.2118 | 13.8338 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
agnesluhtaru/whisper-small-et
|
agnesluhtaru
| 2022-12-21T09:03:59Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"whisper-event",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-12T17:20:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
- whisper-event
metrics:
- wer
model-index:
- name: whisper-small-et
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: et
split: test
metrics:
- type: wer
value: 43.69
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-et
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the following datasets: Common Voice 11, VoxPopuli and FLEURS.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Estonian data from Common Voice 11, VoxPopuli and FLEURS corpora as both training and validation sets. Tested on Common Voice 11 test set.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.1285 | 1.03 | 200 | 1.0640 | 53.4934 |
| 0.5163 | 2.05 | 400 | 0.6450 | 41.2428 |
| 0.2005 | 4.01 | 600 | 0.5600 | 36.6797 |
| 0.1188 | 5.03 | 800 | 0.5718 | 35.2847 |
| 0.0487 | 6.06 | 1000 | 0.5999 | 34.7500 |
| 0.0216 | 8.01 | 1200 | 0.6479 | 38.1906 |
| 0.016 | 9.04 | 1400 | 0.6655 | 39.5034 |
| 0.0085 | 10.06 | 1600 | 0.7027 | 33.9038 |
| 0.0079 | 12.02 | 1800 | 0.7207 | 39.5723 |
| 0.009 | 13.04 | 2000 | 0.7261 | 34.5973 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+rocm5.1.1
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
TeemuSo/whisper-large-fi
|
TeemuSo
| 2022-12-21T08:52:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"fi",
"dataset:mozilla-foundation/common_voice_11_0",
"dataset:facebook/voxpopuli",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-16T11:27:33Z |
---
language:
- fi
license: apache-2.0
tags:
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
- facebook/voxpopuli
- google/fleurs
metrics:
- wer
model-index:
- name: TeemuSo/whisper-large-fi
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: fi
split: test
metrics:
- type: wer
value: 14.24
name: WER
---
|
SashaMar/whisper-small-en
|
SashaMar
| 2022-12-21T08:29:29Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"en",
"dataset:mozilla-foundation/common_voice_9_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T10:22:06Z |
---
language:
- en
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
model-index:
- name: Whisper Small en - Sasha Maria
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small en - Sasha Maria
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 9.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
andokal/ppo-LunarLander-v2_v2
|
andokal
| 2022-12-21T08:10:20Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T08:25:02Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.73 +/- 20.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
steja/whisper-small-korean
|
steja
| 2022-12-21T08:07:24Z | 34 | 2 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-21T07:54:04Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper_small_Korean
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs ko_kr
type: google/fleurs
config: ko_kr
split: test
metrics:
- name: Wer
type: wer
value: 13.012854375770383
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper_small_Korean
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs ko_kr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3315
- Wer: 13.0129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0005 | 35.69 | 500 | 0.3188 | 13.0305 |
| 0.0003 | 71.41 | 1000 | 0.3315 | 13.0129 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
TeemuSo/whisper-medium-fi
|
TeemuSo
| 2022-12-21T07:44:20Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"fi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-07T15:45:52Z |
---
language:
- fi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Medium Fi - Teemu Sormunen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fi
split: test
args: fi
metrics:
- name: Wer
type: wer
value: 16.3871
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Fi - Teemu Sormunen
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0, train+val dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2453
- eval_wer: 16.3871
- eval_runtime: 1296.4339
- eval_samples_per_second: 1.314
- eval_steps_per_second: 0.164
- epoch: 5.04
- step: 300
## Model description
Checkpoint of a Finnish model trained with Common Voice 11.0 train+validation data. The data is very small, and already during 300 steps the model overfit on training data.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
sd-concepts-library/charmander-from-anime
|
sd-concepts-library
| 2022-12-21T07:33:52Z | 0 | 2 | null |
[
"license:mit",
"region:us"
] | null | 2022-12-21T07:31:29Z |
---
license: mit
---
### Charmander from anime on Stable Diffusion
This is the `<charmanderanime>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:










|
muzamil47/wav2vec2-large-xlsr-53-arabic-demo
|
muzamil47
| 2022-12-21T07:18:00Z | 80 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ar",
"dataset:arabic_speech_corpus",
"dataset:mozilla-foundation/common_voice_6_1",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-19T03:21:48Z |
---
language: ar
datasets:
- arabic_speech_corpus
- mozilla-foundation/common_voice_6_1
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: muzamil47-wav2vec2-large-xlsr-53-arabic
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 6.1 (Arabic)
type: mozilla-foundation/common_voice_6_1
config: ar
metrics:
- name: Test WER
type: wer
value: 53.54
---
# Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import librosa
import torch
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_file_to_data(file, srate=16_000):
batch = {}
speech, sampling_rate = librosa.load(file, sr=srate)
batch["speech"] = speech
batch["sampling_rate"] = sampling_rate
return batch
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device)
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
try:
attention_mask = features.attention_mask.to(device)
except:
attention_mask = None
with torch.no_grad():
predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1)
data["predicted"] = processor.tokenizer.decode(predicted[0])
print("predicted:", buckwalter.untrans(data["predicted"]))
return data
predict(load_file_to_data("common_voice_ar_19058307.mp3"))
```
**Output Result**:
```shell
predicted: هل يمكنني التحدث مع المسؤول هنا
```
## Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
dataset = load_dataset("common_voice", "ar", split="test[:10]")
resamplers = { # all three sampling rates exist in test split
48000: torchaudio.transforms.Resample(48000, 16000),
44100: torchaudio.transforms.Resample(44100, 16000),
32000: torchaudio.transforms.Resample(32000, 16000),
}
def prepare_example(example):
speech, sampling_rate = torchaudio.load(example["path"])
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
return example
dataset = dataset.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval()
def predict(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
batch["predicted"] = processor.tokenizer.batch_decode(predicted)
return batch
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]):
print("reference:", reference)
print("predicted:", buckwalter.untrans(predicted))
print("--")
```
**Output Results**:
```shell
reference: ما أطول عودك!
predicted: ما اطول عودك
reference: ماتت عمتي منذ سنتين.
predicted: ما تتعمتي منذو سنتين
reference: الألمانية ليست لغة سهلة.
predicted: الالمانية ليست لغة سهلة
reference: طلبت منه أن يبعث الكتاب إلينا.
predicted: طلبت منه ان يبعث الكتاب الينا
reference: .السيد إيتو رجل متعلم
predicted: السيد ايتو رجل متعلم
reference: الحمد لله.
predicted: الحمذ لللا
reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة
predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء
reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! !
predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع
reference: خذ مظلة معك في حال أمطرت.
predicted: خذ مظلة معك في حال امطرت
reference: .ركب توم السيارة
predicted: ركب توم السيارة
```
The model evaluation **(WER)** on the Arabic test data of Common Voice.
```python
import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
set_seed(42)
test_dataset = load_dataset("common_voice", "ar", split="test")
processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model.to("cuda")
chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets. We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
noise = re.compile(""" ّ | # Tashdid
َ | # Fatha
ً | # Tanwin Fath
ُ | # Damma
ٌ | # Tanwin Damm
ِ | # Kasra
ٍ | # Tanwin Kasr
ْ | # Sukun
ـ # Tatwil/Kashida
""", re.VERBOSE)
batch["sentence"] = re.sub(noise, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
wer = load_metric("wer")
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 53.54
|
Bingsu/my-first-hf-rl-lunar-lander-model
|
Bingsu
| 2022-12-21T07:14:45Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T07:14:21Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 232.59 +/- 25.63
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
adamovandrey/robloxart-model-v1
|
adamovandrey
| 2022-12-21T07:07:19Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-12-21T07:07:18Z |
---
license: creativeml-openrail-m
---
|
facebook/tart-full-flan-t5-xl
|
facebook
| 2022-12-21T06:58:39Z | 4,589 | 26 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text-classification",
"arxiv:2211.09260",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-21T05:20:02Z |
# Task-aware Retrieval with Instructions
Official repository: [github.com/facebookresearch/tart](https://github.com/facebookresearch/tart)
### Model descriptions
`facebook/tart-full-flan-t5-xl` is a multi-task cross-encoder model trained via instruction-tuning on approximately 40 retrieval tasks, which is initialized with [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl).
TART-full is a 1.5 billion cross-necoder and it can rerank top documents given a query and natural language instruction (e.g., *find a Wikipedia paragraph that answers this question.*).
Experimental results on widely-used [BEIR](https://github.com/beir-cellar/beir), [LOTTE](https://huggingface.co/datasets/colbertv2/lotte), and our new evaluation, [X^2-Retrieval](https://github.com/facebookresearch/tart/cross_task_cross_eval) show that TART-full outperforms previous state-of-the-art methods by levaraging natural language instructions.
More details about modeling and training are in our paper: [Task-aware Retrieval with Instructions](https://arxiv.org/abs/2211.09260).
### Installation
```sh
git clone https://github.com/facebookresearch/tart
pip install -r requirements.txt
cd tart/TART
```
### How to use?
TART-full can be loaded through our customized EncT5 model.
```python
from src.modeling_enc_t5 import EncT5ForSequenceClassification
from src.tokenization_enc_t5 import EncT5Tokenizer
import torch
import torch.nn.functional as F
import numpy as np
# load TART full and tokenizer
model = EncT5ForSequenceClassification.from_pretrained("facebook/tart-full-flan-t5-xl")
tokenizer = EncT5Tokenizer.from_pretrained("facebook/tart-full-flan-t5-xl")
model.eval()
q = "What is the population of Tokyo?"
in_answer = "retrieve a passage that answers this question from Wikipedia"
p_1 = "The population of Japan's capital, Tokyo, dropped by about 48,600 people to just under 14 million at the start of 2022, the first decline since 1996, the metropolitan government reported Monday."
p_2 = "Tokyo, officially the Tokyo Metropolis (東京都, Tōkyō-to), is the capital and largest city of Japan."
# 1. TART-full can identify more relevant paragraph.
features = tokenizer(['{0} [SEP] {1}'.format(in_answer, q), '{0} [SEP] {1}'.format(in_answer, q)], [p_1, p_2], padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
scores = model(**features).logits
normalized_scores = [float(score[1]) for score in F.softmax(scores, dim=1)]
print([p_1, p_2][np.argmax(normalized_scores)]) # "The population of Japan's capital, Tokyo, dropped by about 48,600 people to just under 14 million ... "
# 2. TART-full can identify the document that is more relevant AND follows instructions.
in_sim = "You need to find duplicated questions in Wiki forum. Could you find a question that is similar to this question"
q_1 = "How many people live in Tokyo?"
features = tokenizer(['{0} [SEP] {1}'.format(in_sim, q), '{0} [SEP] {1}'.format(in_sim, q)], [p_1, q_1], padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
scores = model(**features).logits
normalized_scores = [float(score[1]) for score in F.softmax(scores, dim=1)]
print([p_1, q_1][np.argmax(normalized_scores)]) # "How many people live in Tokyo?"
```
|
Payoto/vit-base-patch16-224-in21k-finetuned-eurosat
|
Payoto
| 2022-12-21T06:29:44Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"optimum_graphcore",
"vit",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-11-18T21:26:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-eurosat
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-eurosat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0548
- Accuracy: 0.9893
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- training precision: Mixed Precision
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1182 | 1.0 | 759 | 0.1451 | 0.9752 |
| 0.132 | 2.0 | 1518 | 0.0755 | 0.9841 |
| 0.0262 | 3.0 | 2277 | 0.0548 | 0.9893 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.13.0+rocm5.2
- Datasets 2.8.0
- Tokenizers 0.12.1
|
Shunian/mbti-classification-xlnet-base-cased-augment
|
Shunian
| 2022-12-21T05:50:53Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlnet",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-16T10:39:02Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mbti-classification-xlnet-base-cased-augment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbti-classification-xlnet-base-cased-augment
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2045
- Accuracy: 0.2829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 2.1055 | 1.0 | 29900 | 0.2884 | 2.1344 |
| 1.8127 | 2.0 | 59800 | 0.2830 | 2.1479 |
| 1.6953 | 3.0 | 89700 | 2.2045 | 0.2829 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
auro/whisper-cli-small-or
|
auro
| 2022-12-21T05:13:33Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"or",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T19:10:52Z |
---
language:
- or
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Odia
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 or
type: mozilla-foundation/common_voice_11_0
config: or
split: test
args: or
metrics:
- name: Wer
type: wer
value: 27.02397743300423
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Odia
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 or dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4245
- Wer: 27.0240
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0021 | 49.0 | 1000 | 0.4245 | 27.0240 |
| 0.0001 | 99.0 | 2000 | 0.7338 | 28.1241 |
| 0.0 | 149.0 | 3000 | 0.8594 | 28.6601 |
| 0.0 | 199.0 | 4000 | 0.9103 | 28.3498 |
| 0.0 | 249.0 | 5000 | 0.9329 | 28.2934 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
kuanyk/ppo-Huggy
|
kuanyk
| 2022-12-21T05:04:30Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-21T05:04:22Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: kuanyk/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
DrishtiSharma/whisper-large-v2-ne-NP-v1
|
DrishtiSharma
| 2022-12-21T04:57:54Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"ne",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-14T03:23:44Z |
---
language:
- ne
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large Nepali - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 np-NP
type: mozilla-foundation/common_voice_11_0
config: ne-NP
split: test
args: ne-NP
metrics:
- name: Wer
type: wer
value: 21.951219512195124
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Nepali - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8668
- Wer: 21.9512
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0008 | 200.0 | 200 | 0.8668 | 21.9512 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
xmzhu/whisper-small-zh-TW
|
xmzhu
| 2022-12-21T04:30:12Z | 22 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"zh",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T17:27:16Z |
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Chinese (Taiwanese Mandarin)
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 zh-TW
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- name: Wer
type: wer
value: 42.988741044012286
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Chinese (Taiwanese Mandarin)
This model is a fine-tuned version of [xmzhu/whisper-small-zh](https://huggingface.co/xmzhu/whisper-small-zh) on the mozilla-foundation/common_voice_11_0 zh-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2639
- Wer: 42.9887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0058 | 6.02 | 1000 | 0.2445 | 43.0911 |
| 0.0006 | 13.02 | 2000 | 0.2639 | 42.9887 |
| 0.0003 | 20.01 | 3000 | 0.2787 | 43.1934 |
| 0.0002 | 27.0 | 4000 | 0.2877 | 43.5415 |
| 0.0002 | 33.02 | 5000 | 0.2910 | 43.5824 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
steja/whisper-small-khmer
|
steja
| 2022-12-21T04:23:06Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-21T04:17:27Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper_small_Khmer
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs km_kh
type: google/fleurs
config: km_kh
split: test
metrics:
- name: Wer
type: wer
value: 84.941730294506
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper_small_Khmer
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs km_kh dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9221
- Wer: 84.9417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5571 | 40.0 | 400 | 1.2022 | 89.9564 |
| 0.0088 | 80.0 | 800 | 1.7980 | 86.6669 |
| 0.0023 | 120.0 | 1200 | 1.9221 | 84.9417 |
| 0.0002 | 160.0 | 1600 | 2.0559 | 85.4326 |
| 0.0002 | 200.0 | 2000 | 2.0787 | 85.6536 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
kpriyanshu256/whisper-medium-ne-NP-10-16-1e-05-pretrain-hi
|
kpriyanshu256
| 2022-12-21T04:00:46Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"ne",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-21T03:14:50Z |
---
language:
- ne
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-medium-nepali
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ne-NP
type: mozilla-foundation/common_voice_11_0
config: ne-NP
split: test
args: ne-NP
metrics:
- name: Wer
type: wer
value: 26.8293
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium-nepali
This model is a fine-tuned version of [shripadbhat/whisper-medium-hi](https://huggingface.co/shripadbhat/whisper-medium-hi) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2050
- Wer: 26.8293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 10.0 | 10 | 1.2050 | 26.8293 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0
- Datasets 2.8.1.dev0
- Tokenizers 0.12.1
|
teacookies/autotrain-21-12-2022_overspeed_governor-2557878199
|
teacookies
| 2022-12-21T03:58:32Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain",
"unk",
"dataset:teacookies/autotrain-data-21-12-2022_overspeed_governor",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-21T03:51:47Z |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- teacookies/autotrain-data-21-12-2022_overspeed_governor
co2_eq_emissions:
emissions: 0.04979388989919065
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 2557878199
- CO2 Emissions (in grams): 0.0498
## Validation Metrics
- Loss: 0.001
- Accuracy: 1.000
- Precision: 0.990
- Recall: 0.993
- F1: 0.992
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-21-12-2022_overspeed_governor-2557878199
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-21-12-2022_overspeed_governor-2557878199", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-21-12-2022_overspeed_governor-2557878199", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
teacookies/autotrain-21-12-2022_exam_part5-2557978193
|
teacookies
| 2022-12-21T03:57:45Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain",
"unk",
"dataset:teacookies/autotrain-data-21-12-2022_exam_part5",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-21T03:51:08Z |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- teacookies/autotrain-data-21-12-2022_exam_part5
co2_eq_emissions:
emissions: 11.403028098792594
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 2557978193
- CO2 Emissions (in grams): 11.4030
## Validation Metrics
- Loss: 0.001
- Accuracy: 1.000
- Precision: 0.988
- Recall: 0.998
- F1: 0.993
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-21-12-2022_exam_part5-2557978193
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-21-12-2022_exam_part5-2557978193", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-21-12-2022_exam_part5-2557978193", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
sunnyujjawal/ToDo-app-Javascript
|
sunnyujjawal
| 2022-12-21T03:41:53Z | 0 | 0 | null |
[
"license:cc",
"region:us"
] | null | 2022-12-21T03:39:39Z |
---
license: cc
---
To create a todo application with JavaScript, you will need to use HTML and CSS to build the user interface, and JavaScript to add functionality to the app.
Here is an outline of the steps you can follow to build a simple todo app:
Create an HTML page with a textarea element and a button element. The textarea will be used to enter the todo item, and the button will be used to add the item to the list.
Use CSS to style the page and make it look nice.
In the JavaScript code, create a function that gets called when the button is clicked. This function should get the value of the textarea and add it to an array of todo items.
Create an HTML ul element to display the list of todo items.
In the JavaScript code, create a function that loops through the array of todo items and creates an li element for each item.
Append each li element to the ul element.
To mark a todo item as complete, you can add a checkbox to each li element and toggle the item's completed status when the checkbox is clicked.
|
jarkrandel/ppo-Huggy
|
jarkrandel
| 2022-12-21T03:39:22Z | 23 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-21T03:39:09Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: jarkrandel/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
teacookies/autotrain-21-12-2022_rated_speed2-2557778169
|
teacookies
| 2022-12-21T03:24:14Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain",
"unk",
"dataset:teacookies/autotrain-data-21-12-2022_rated_speed2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-21T03:15:29Z |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- teacookies/autotrain-data-21-12-2022_rated_speed2
co2_eq_emissions:
emissions: 14.90637346423708
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 2557778169
- CO2 Emissions (in grams): 14.9064
## Validation Metrics
- Loss: 0.001
- Accuracy: 1.000
- Precision: 0.991
- Recall: 0.992
- F1: 0.991
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-21-12-2022_rated_speed2-2557778169
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-21-12-2022_rated_speed2-2557778169", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-21-12-2022_rated_speed2-2557778169", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
jarkrandel/ppo-LunarLander-v2
|
jarkrandel
| 2022-12-21T02:31:08Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T02:30:40Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.50 +/- 13.45
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
KMW/Taxi-v3
|
KMW
| 2022-12-21T02:24:30Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T02:24:23Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="KMW/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sd-concepts-library/ahx-model-5
|
sd-concepts-library
| 2022-12-21T02:19:26Z | 0 | 1 | null |
[
"license:mit",
"region:us"
] | null | 2022-12-21T02:18:57Z |
---
license: mit
---
### ahx-model-5 on Stable Diffusion
This is the `<ahx-model-4>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
JovialValley/model_phoneme_onSet1
|
JovialValley
| 2022-12-21T02:12:09Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-21T01:01:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_phoneme_onSet1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_phoneme_onSet1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0873
- 0 Precision: 1.0
- 0 Recall: 0.9677
- 0 F1-score: 0.9836
- 0 Support: 31
- 1 Precision: 0.9355
- 1 Recall: 0.9667
- 1 F1-score: 0.9508
- 1 Support: 30
- 2 Precision: 0.9565
- 2 Recall: 1.0
- 2 F1-score: 0.9778
- 2 Support: 22
- 3 Precision: 1.0
- 3 Recall: 0.9333
- 3 F1-score: 0.9655
- 3 Support: 15
- Accuracy: 0.9694
- Macro avg Precision: 0.9730
- Macro avg Recall: 0.9669
- Macro avg F1-score: 0.9694
- Macro avg Support: 98
- Weighted avg Precision: 0.9705
- Weighted avg Recall: 0.9694
- Weighted avg F1-score: 0.9695
- Weighted avg Support: 98
- Wer: 0.0999
- Mtrix: [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 29, 1, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 70
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
| 4.2188 | 4.16 | 100 | 3.4689 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 22 | 0.1667 | 1.0 | 0.2857 | 15 | 0.2347 | 0.2917 | 0.3145 | 0.1740 | 98 | 0.3418 | 0.2347 | 0.1735 | 98 | 0.9980 | [[0, 1, 2, 3], [0, 8, 0, 0, 23], [1, 0, 0, 0, 30], [2, 0, 0, 0, 22], [3, 0, 0, 0, 15]] |
| 3.3407 | 8.33 | 200 | 3.1569 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 22 | 0.1667 | 1.0 | 0.2857 | 15 | 0.2347 | 0.2917 | 0.3145 | 0.1740 | 98 | 0.3418 | 0.2347 | 0.1735 | 98 | 0.9980 | [[0, 1, 2, 3], [0, 8, 0, 0, 23], [1, 0, 0, 0, 30], [2, 0, 0, 0, 22], [3, 0, 0, 0, 15]] |
| 3.1051 | 12.49 | 300 | 3.1500 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 22 | 0.1667 | 1.0 | 0.2857 | 15 | 0.2347 | 0.2917 | 0.3145 | 0.1740 | 98 | 0.3418 | 0.2347 | 0.1735 | 98 | 0.9980 | [[0, 1, 2, 3], [0, 8, 0, 0, 23], [1, 0, 0, 0, 30], [2, 0, 0, 0, 22], [3, 0, 0, 0, 15]] |
| 2.8593 | 16.65 | 400 | 2.7590 | 0.6889 | 1.0 | 0.8158 | 31 | 0.0 | 0.0 | 0.0 | 30 | 0.3962 | 0.9545 | 0.5600 | 22 | 0.0 | 0.0 | 0.0 | 15 | 0.5306 | 0.2713 | 0.4886 | 0.3439 | 98 | 0.3069 | 0.5306 | 0.3838 | 98 | 1.0 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 13, 0, 17, 0], [2, 1, 0, 21, 0], [3, 0, 0, 15, 0]] |
| 2.2351 | 20.82 | 500 | 2.0930 | 0.9118 | 1.0 | 0.9538 | 31 | 1.0 | 0.5333 | 0.6957 | 30 | 0.6286 | 1.0 | 0.7719 | 22 | 0.8462 | 0.7333 | 0.7857 | 15 | 0.8163 | 0.8466 | 0.8167 | 0.8018 | 98 | 0.8652 | 0.8163 | 0.8082 | 98 | 0.9631 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 3, 16, 9, 2], [2, 0, 0, 22, 0], [3, 0, 0, 4, 11]] |
| 1.8803 | 24.98 | 600 | 1.7480 | 1.0 | 1.0 | 1.0 | 31 | 0.9375 | 1.0 | 0.9677 | 30 | 1.0 | 0.9545 | 0.9767 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9796 | 0.9844 | 0.9720 | 0.9775 | 98 | 0.9809 | 0.9796 | 0.9796 | 98 | 0.9552 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 30, 0, 0], [2, 0, 1, 21, 0], [3, 0, 1, 0, 14]] |
| 1.5034 | 29.16 | 700 | 1.3694 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 1.0 | 1.0 | 15 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.9429 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 0, 0, 15]] |
| 1.0229 | 33.33 | 800 | 0.8522 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 0.9667 | 0.9831 | 30 | 0.9565 | 1.0 | 0.9778 | 22 | 1.0 | 1.0 | 1.0 | 15 | 0.9898 | 0.9891 | 0.9917 | 0.9902 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.8848 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 29, 1, 0], [2, 0, 0, 22, 0], [3, 0, 0, 0, 15]] |
| 0.4811 | 37.49 | 900 | 0.3999 | 1.0 | 1.0 | 1.0 | 31 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9898 | 0.9919 | 0.9833 | 0.9873 | 98 | 0.9901 | 0.9898 | 0.9897 | 98 | 0.5576 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.2314 | 41.65 | 1000 | 0.1075 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 1.0 | 1.0 | 15 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.1378 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 0, 0, 15]] |
| 0.1292 | 45.82 | 1100 | 0.0855 | 1.0 | 1.0 | 1.0 | 31 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9898 | 0.9919 | 0.9833 | 0.9873 | 98 | 0.9901 | 0.9898 | 0.9897 | 98 | 0.1038 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.0809 | 49.98 | 1200 | 0.1364 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.9565 | 1.0 | 0.9778 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9694 | 0.9730 | 0.9669 | 0.9694 | 98 | 0.9705 | 0.9694 | 0.9695 | 98 | 0.1309 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 29, 1, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.0605 | 54.16 | 1300 | 0.0987 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9375 | 1.0 | 0.9677 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9796 | 0.9844 | 0.9753 | 0.9792 | 98 | 0.9809 | 0.9796 | 0.9797 | 98 | 0.1073 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.0558 | 58.33 | 1400 | 0.0994 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.9565 | 1.0 | 0.9778 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9694 | 0.9730 | 0.9669 | 0.9694 | 98 | 0.9705 | 0.9694 | 0.9695 | 98 | 0.1048 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 29, 1, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.038 | 62.49 | 1500 | 0.0666 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9375 | 1.0 | 0.9677 | 30 | 1.0 | 1.0 | 1.0 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9796 | 0.9844 | 0.9753 | 0.9792 | 98 | 0.9809 | 0.9796 | 0.9797 | 98 | 0.0979 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 30, 0, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
| 0.0415 | 66.65 | 1600 | 0.0938 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.9565 | 1.0 | 0.9778 | 22 | 1.0 | 0.9333 | 0.9655 | 15 | 0.9694 | 0.9730 | 0.9669 | 0.9694 | 98 | 0.9705 | 0.9694 | 0.9695 | 98 | 0.1004 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 29, 1, 0], [2, 0, 0, 22, 0], [3, 0, 1, 0, 14]] |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148
|
teacookies
| 2022-12-21T02:08:00Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain",
"unk",
"dataset:teacookies/autotrain-data-20-12-2022_rated_speed3_exam",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-21T01:59:08Z |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- teacookies/autotrain-data-20-12-2022_rated_speed3_exam
co2_eq_emissions:
emissions: 17.12192796383268
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 2544978148
- CO2 Emissions (in grams): 17.1219
## Validation Metrics
- Loss: 0.001
- Accuracy: 1.000
- Precision: 0.815
- Recall: 0.855
- F1: 0.835
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
steja/whisper-small-somali
|
steja
| 2022-12-21T02:00:42Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-21T01:51:44Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper_small_Somali
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs so_so
type: google/fleurs
config: so_so
split: test
metrics:
- name: Wer
type: wer
value: 66.59499689890428
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper_small_Somali
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs so_so dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0764
- Wer: 66.5950
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0205 | 30.74 | 400 | 1.8418 | 67.2524 |
| 0.0012 | 61.52 | 800 | 2.0764 | 66.5950 |
| 0.0006 | 92.3 | 1200 | 2.1537 | 67.6452 |
| 0.0004 | 123.07 | 1600 | 2.1930 | 67.1367 |
| 0.0004 | 153.81 | 2000 | 2.2065 | 66.9299 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
zlicastro/q-Taxi-v3b
|
zlicastro
| 2022-12-21T01:40:34Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T01:40:27Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3b
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="zlicastro/q-Taxi-v3b", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
PowerLine49/ppo_LunarLander-v2
|
PowerLine49
| 2022-12-21T01:30:55Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T01:30:29Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 254.50 +/- 14.49
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
zlicastro/q-FrozenLake-v1-4x4-noSlippery
|
zlicastro
| 2022-12-21T01:22:12Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-21T01:22:08Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="zlicastro/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
freedomfrier/all-MiniLM-L6-v2-128dim
|
freedomfrier
| 2022-12-21T01:18:46Z | 7 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:MSMarco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-12-21T00:54:51Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- MSMarco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
---
# all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developped this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developped this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 256 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,170,060,424** |
|
zack-paperspace/gpt2-wikitext2
|
zack-paperspace
| 2022-12-21T00:40:55Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"optimum_graphcore",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-20T15:18:42Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1016
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- total_eval_batch_size: 5
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- training precision: Mixed Precision
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.0+cpu
- Datasets 2.8.0
- Tokenizers 0.12.1
|
coyotespike/q-Taxi
|
coyotespike
| 2022-12-21T00:30:42Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T18:09:30Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="coyotespike/q-Taxi", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
DrishtiSharma/whisper-large-v2-azerbaijani
|
DrishtiSharma
| 2022-12-21T00:30:35Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"az",
"dataset:mozilla-foundation/common_voice_11_0",
"doi:10.57967/hf/3960",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-13T17:55:30Z |
---
language:
- az
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large-V2 Azerbaijani - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 az
type: mozilla-foundation/common_voice_11_0
config: az
split: test
args: az
metrics:
- name: Wer
type: wer
value: 34.319526627218934
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Azerbaijani - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6698
- Wer: 34.3195
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0001 | 125.0 | 1000 | 0.6698 | 34.3195 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
zack-paperspace/roberta-base-finetuned-cola
|
zack-paperspace
| 2022-12-21T00:26:29Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"optimum_graphcore",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-20T15:01:09Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: roberta-base-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-cola
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5732
- Matthews Correlation: 0.6495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- total_eval_batch_size: 5
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- training precision: Mixed Precision
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5211 | 1.0 | 534 | 0.4031 | 0.5599 |
| 0.3739 | 2.0 | 1068 | 0.4688 | 0.5713 |
| 0.0697 | 3.0 | 1602 | 0.4988 | 0.6070 |
| 0.0712 | 4.0 | 2136 | 0.5596 | 0.6221 |
| 0.0955 | 5.0 | 2670 | 0.5732 | 0.6495 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.0+cpu
- Datasets 2.8.0
- Tokenizers 0.12.1
|
ihanif/whisper_small_ps_augmented
|
ihanif
| 2022-12-21T00:22:08Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"ps",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T15:51:31Z |
---
language:
- ps
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Small Pashto - Augmented
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
args: 'config: ps_af, split: test'
metrics:
- name: Wer
type: wer
value: 53.62439467312349
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Pashto - Augmented
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6979
- Wer: 53.6244
- Cer: 22.6847
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.9683 | 1.19 | 100 | 0.8812 | 139.3765 | 131.6166 |
| 0.6848 | 2.38 | 200 | 0.7543 | 145.9973 | 151.3369 |
| 0.5548 | 3.57 | 300 | 0.6979 | 53.6244 | 22.6847 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
gabrielZang/bert-finetuned-ner
|
gabrielZang
| 2022-12-21T00:15:40Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-20T22:48:52Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: train
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9344587884806356
- name: Recall
type: recall
value: 0.9501851228542578
- name: F1
type: f1
value: 0.942256341789052
- name: Accuracy
type: accuracy
value: 0.9866662742096898
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0619
- Precision: 0.9345
- Recall: 0.9502
- F1: 0.9423
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0855 | 1.0 | 1756 | 0.0718 | 0.9162 | 0.9297 | 0.9229 | 0.9812 |
| 0.0337 | 2.0 | 3512 | 0.0585 | 0.9263 | 0.9475 | 0.9368 | 0.9863 |
| 0.0171 | 3.0 | 5268 | 0.0619 | 0.9345 | 0.9502 | 0.9423 | 0.9867 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
JovialValley/model_phoneme_onSet0.0
|
JovialValley
| 2022-12-20T23:58:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T22:50:14Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_phoneme_onSet0.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_phoneme_onSet0.0
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0340
- 0 Precision: 1.0
- 0 Recall: 1.0
- 0 F1-score: 1.0
- 0 Support: 27
- 1 Precision: 1.0
- 1 Recall: 1.0
- 1 F1-score: 1.0
- 1 Support: 31
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 24
- 3 Precision: 1.0
- 3 Recall: 1.0
- 3 F1-score: 1.0
- 3 Support: 16
- Accuracy: 1.0
- Macro avg Precision: 1.0
- Macro avg Recall: 1.0
- Macro avg F1-score: 1.0
- Macro avg Support: 98
- Weighted avg Precision: 1.0
- Weighted avg Recall: 1.0
- Weighted avg F1-score: 1.0
- Weighted avg Support: 98
- Wer: 0.0612
- Mtrix: [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 70
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:----------------------------------------------------------------------------------------:|
| 4.0755 | 4.16 | 100 | 3.4544 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
| 3.3477 | 8.33 | 200 | 3.1963 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
| 3.16 | 12.49 | 300 | 3.1744 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
| 3.0366 | 16.65 | 400 | 3.0466 | 1.0 | 0.2963 | 0.4571 | 27 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 24 | 0.1778 | 1.0 | 0.3019 | 16 | 0.2449 | 0.2944 | 0.3241 | 0.1898 | 98 | 0.3045 | 0.2449 | 0.1752 | 98 | 0.9965 | [[0, 1, 2, 3], [0, 8, 0, 0, 19], [1, 0, 0, 0, 31], [2, 0, 0, 0, 24], [3, 0, 0, 0, 16]] |
| 2.6349 | 20.82 | 500 | 2.4959 | 0.6429 | 1.0 | 0.7826 | 27 | 0.5185 | 0.4516 | 0.4828 | 31 | 0.625 | 0.4167 | 0.5 | 24 | 0.9231 | 0.75 | 0.8276 | 16 | 0.6429 | 0.6774 | 0.6546 | 0.6482 | 98 | 0.6449 | 0.6429 | 0.6259 | 98 | 0.9809 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 14, 14, 3, 0], [2, 1, 12, 10, 1], [3, 0, 1, 3, 12]] |
| 2.1268 | 24.98 | 600 | 2.0605 | 1.0 | 0.8148 | 0.8980 | 27 | 0.7188 | 0.7419 | 0.7302 | 31 | 0.6667 | 0.8333 | 0.7407 | 24 | 1.0 | 0.875 | 0.9333 | 16 | 0.8061 | 0.8464 | 0.8163 | 0.8255 | 98 | 0.8294 | 0.8061 | 0.8122 | 98 | 0.9729 | [[0, 1, 2, 3], [0, 22, 5, 0, 0], [1, 0, 23, 8, 0], [2, 0, 4, 20, 0], [3, 0, 0, 2, 14]] |
| 1.7548 | 29.16 | 700 | 1.5829 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9355 | 0.9667 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9796 | 0.9753 | 0.9839 | 0.9790 | 98 | 0.9806 | 0.9796 | 0.9795 | 98 | 0.9413 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 1.3546 | 33.33 | 800 | 1.1662 | 1.0 | 1.0 | 1.0 | 27 | 0.9688 | 1.0 | 0.9841 | 31 | 1.0 | 0.9583 | 0.9787 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9922 | 0.9896 | 0.9907 | 98 | 0.9901 | 0.9898 | 0.9898 | 98 | 0.8916 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 1, 23, 0], [3, 0, 0, 0, 16]] |
| 0.8917 | 37.49 | 900 | 0.7394 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9688 | 1.0 | 0.9841 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9922 | 0.9907 | 0.9913 | 98 | 0.9901 | 0.9898 | 0.9898 | 98 | 0.8323 | [[0, 1, 2, 3], [0, 26, 1, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.5059 | 41.65 | 1000 | 0.4234 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9677 | 0.9836 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.99 | 0.9919 | 0.9908 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.4814 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.2618 | 45.82 | 1100 | 0.1749 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9677 | 0.9836 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.99 | 0.9919 | 0.9908 | 98 | 0.9902 | 0.9898 | 0.9898 | 98 | 0.1576 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 30, 1, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.126 | 49.98 | 1200 | 0.1227 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 0.9355 | 0.9667 | 31 | 0.96 | 1.0 | 0.9796 | 24 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9796 | 0.9753 | 0.9839 | 0.9790 | 98 | 0.9806 | 0.9796 | 0.9795 | 98 | 0.0989 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 29, 1, 1], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.1138 | 54.16 | 1300 | 0.0469 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0693 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.0675 | 58.33 | 1400 | 0.0397 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0658 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.0462 | 62.49 | 1500 | 0.0333 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0612 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
| 0.0359 | 66.65 | 1600 | 0.0340 | 1.0 | 1.0 | 1.0 | 27 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 24 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.0612 | [[0, 1, 2, 3], [0, 27, 0, 0, 0], [1, 0, 31, 0, 0], [2, 0, 0, 24, 0], [3, 0, 0, 0, 16]] |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
jwkritchie/whisper-small-defined-dot-ai-qc-fr-combined-dataset
|
jwkritchie
| 2022-12-20T23:37:14Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"fr",
"dataset:mozilla-foundation/common_voice_11_0",
"license:cc-by-nc-4.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-19T08:28:54Z |
---
language:
- fr
license: cc-by-nc-4.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Finetuned on Defined.AI Quebec Combined French Dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 29.554922556524836
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Finetuned on Defined.AI Quebec Combined French Dataset
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2191
- Wer: 29.5549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.8093 | 1.0 | 1000 | 1.2191 | 29.5549 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
mijungkim/pasha
|
mijungkim
| 2022-12-20T23:28:54Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:nielsr/funsd-layoutlmv3",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-20T16:18:44Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- nielsr/funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pasha
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nielsr/funsd-layoutlmv3
type: nielsr/funsd-layoutlmv3
config: pasha
split: test
args: pasha
metrics:
- name: Precision
type: precision
value: 0.986704994610133
- name: Recall
type: recall
value: 0.989193083573487
- name: F1
type: f1
value: 0.9879474725670084
- name: Accuracy
type: accuracy
value: 0.9905978784956606
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pasha
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0585
- Precision: 0.9867
- Recall: 0.9892
- F1: 0.9879
- Accuracy: 0.9906
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.13 | 100 | 0.2664 | 0.9534 | 0.9438 | 0.9486 | 0.9571 |
| No log | 4.26 | 200 | 0.1044 | 0.9756 | 0.9802 | 0.9779 | 0.9838 |
| No log | 6.38 | 300 | 0.0672 | 0.9853 | 0.9899 | 0.9876 | 0.9904 |
| No log | 8.51 | 400 | 0.0634 | 0.9824 | 0.9860 | 0.9842 | 0.9884 |
| 0.2958 | 10.64 | 500 | 0.0585 | 0.9867 | 0.9892 | 0.9879 | 0.9906 |
| 0.2958 | 12.77 | 600 | 0.0511 | 0.9889 | 0.9928 | 0.9908 | 0.9928 |
| 0.2958 | 14.89 | 700 | 0.0503 | 0.9871 | 0.9921 | 0.9896 | 0.9925 |
| 0.2958 | 17.02 | 800 | 0.0529 | 0.9860 | 0.9903 | 0.9881 | 0.9913 |
| 0.2958 | 19.15 | 900 | 0.0581 | 0.9842 | 0.9892 | 0.9867 | 0.9904 |
| 0.0256 | 21.28 | 1000 | 0.0571 | 0.9849 | 0.9888 | 0.9869 | 0.9901 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.2
|
aammari/setfit-zero-shot-classification-pbsp-p3-cons
|
aammari
| 2022-12-20T23:04:37Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-12-20T23:04:06Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 215 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 215,
"warmup_steps": 22,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
mnavas/tacsi
|
mnavas
| 2022-12-20T22:50:28Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:31:31Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: tacsi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="mnavas/tacsi", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
babujyan/LunarLender
|
babujyan
| 2022-12-20T22:48:26Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:09:22Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 301.56 +/- 17.41
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RuudVelo/whisper-small-fy-NL
|
RuudVelo
| 2022-12-20T22:44:52Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"fy",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T12:50:50Z |
---
language:
- fy
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Frisian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fy-NL
type: mozilla-foundation/common_voice_11_0
config: fy-NL
split: test
args: fy-NL
metrics:
- name: Wer
type: wer
value: 21.03
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small fy-NL - RuudVelo
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the test set:
- Loss: 0.1443
- Wer: 21.03
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Step | Validation Loss | Wer |
|:-------------:|:-----:|:---------------:|:------:|
| 0.0053 | 1000 | 0.4201 | 21.64 |
| 0.0008 | 2000 | 0.4607 | 21.03 |
| 0.0004 | 3000 | 0.4853 | 21.11 |
| 0.0003 | 4000 | 0.5015 | 21.14 |
| 0.0002 | 5000 | 0.5084 | 21.20 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AinTziLLo/dqn-SpaceInvadersNoFrameskip-v4
|
AinTziLLo
| 2022-12-20T22:40:28Z | 5 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:39:52Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 615.00 +/- 88.66
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AinTziLLo -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AinTziLLo -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AinTziLLo
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
DiegoD616/PPO-LunarLander-v2
|
DiegoD616
| 2022-12-20T22:30:34Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:30:13Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 264.76 +/- 25.33
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mnavas/q-FrozenLake-v1-4x4-noSlippery
|
mnavas
| 2022-12-20T22:30:31Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:30:28Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mnavas/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
AgentXXX/sd-class-butterflies-32
|
AgentXXX
| 2022-12-20T22:29:46Z | 0 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-20T22:29:34Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('AgentXXX/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
daripaez/q-FrozenLake-v1-8x8-noSlippery
|
daripaez
| 2022-12-20T22:28:12Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T22:27:56Z |
---
tags:
- FrozenLake-v1-8x8-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8-no_slippery
type: FrozenLake-v1-8x8-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="daripaez/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
JovialValley/model_broadclass_onSet0try1
|
JovialValley
| 2022-12-20T22:16:31Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T21:07:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_broadclass_onSet0try1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_broadclass_onSet0try1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9723
- 0 Precision: 0.7317
- 0 Recall: 0.9677
- 0 F1-score: 0.8333
- 0 Support: 31
- 1 Precision: 0.8276
- 1 Recall: 0.96
- 1 F1-score: 0.8889
- 1 Support: 25
- 2 Precision: 1.0
- 2 Recall: 0.7407
- 2 F1-score: 0.8511
- 2 Support: 27
- 3 Precision: 1.0
- 3 Recall: 0.5333
- 3 F1-score: 0.6957
- 3 Support: 15
- Accuracy: 0.8367
- Macro avg Precision: 0.8898
- Macro avg Recall: 0.8005
- Macro avg F1-score: 0.8172
- Macro avg Support: 98
- Weighted avg Precision: 0.8711
- Weighted avg Recall: 0.8367
- Weighted avg F1-score: 0.8313
- Weighted avg Support: 98
- Wer: 0.9220
- Mtrix: [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 1, 24, 0, 0], [2, 4, 3, 20, 0], [3, 6, 1, 0, 8]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 70
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
| 2.329 | 4.16 | 100 | 2.2015 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 2.2772 | 8.33 | 200 | 2.1792 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 2.0617 | 12.49 | 300 | 2.0492 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.9607 | 16.65 | 400 | 1.8299 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.6665 | 20.82 | 500 | 1.5920 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.6451 | 24.98 | 600 | 1.5898 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.6024 | 29.16 | 700 | 1.5471 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.5967 | 33.33 | 800 | 1.5154 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 1.4451 | 37.49 | 900 | 1.4983 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9847 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 0.9896 | 41.65 | 1000 | 0.9953 | 0.3163 | 1.0 | 0.4806 | 31 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 15 | 0.3163 | 0.0791 | 0.25 | 0.1202 | 98 | 0.1001 | 0.3163 | 0.1520 | 98 | 0.9842 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 25, 0, 0, 0], [2, 27, 0, 0, 0], [3, 15, 0, 0, 0]] |
| 0.9559 | 45.82 | 1100 | 0.9747 | 0.3483 | 1.0 | 0.5167 | 31 | 1.0 | 0.24 | 0.3871 | 25 | 1.0 | 0.0741 | 0.1379 | 27 | 1.0 | 0.0667 | 0.125 | 15 | 0.4082 | 0.8371 | 0.3452 | 0.2917 | 98 | 0.7939 | 0.4082 | 0.3193 | 98 | 0.9650 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 19, 6, 0, 0], [2, 25, 0, 2, 0], [3, 14, 0, 0, 1]] |
| 0.9441 | 49.98 | 1200 | 1.0000 | 0.4493 | 1.0 | 0.62 | 31 | 0.7857 | 0.44 | 0.5641 | 25 | 1.0 | 0.3333 | 0.5 | 27 | 1.0 | 0.4 | 0.5714 | 15 | 0.5816 | 0.8087 | 0.5433 | 0.5639 | 98 | 0.7711 | 0.5816 | 0.5652 | 98 | 0.9590 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 14, 11, 0, 0], [2, 15, 3, 9, 0], [3, 9, 0, 0, 6]] |
| 0.9656 | 54.16 | 1300 | 0.9814 | 0.5741 | 1.0 | 0.7294 | 31 | 0.8 | 0.64 | 0.7111 | 25 | 1.0 | 0.4444 | 0.6154 | 27 | 1.0 | 0.8 | 0.8889 | 15 | 0.7245 | 0.8435 | 0.7211 | 0.7362 | 98 | 0.8142 | 0.7245 | 0.7177 | 98 | 0.9304 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 9, 16, 0, 0], [2, 12, 3, 12, 0], [3, 2, 1, 0, 12]] |
| 0.9491 | 58.33 | 1400 | 0.9922 | 0.5 | 0.9677 | 0.6593 | 31 | 0.7778 | 0.56 | 0.6512 | 25 | 1.0 | 0.5185 | 0.6829 | 27 | 1.0 | 0.4 | 0.5714 | 15 | 0.6531 | 0.8194 | 0.6116 | 0.6412 | 98 | 0.7851 | 0.6531 | 0.6503 | 98 | 0.9383 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 11, 14, 0, 0], [2, 11, 2, 14, 0], [3, 8, 1, 0, 6]] |
| 0.8918 | 62.49 | 1500 | 0.9883 | 0.6522 | 0.9677 | 0.7792 | 31 | 0.8846 | 0.92 | 0.9020 | 25 | 1.0 | 0.5556 | 0.7143 | 27 | 1.0 | 0.7333 | 0.8462 | 15 | 0.8061 | 0.8842 | 0.7942 | 0.8104 | 98 | 0.8605 | 0.8061 | 0.8029 | 98 | 0.9383 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 2, 23, 0, 0], [2, 11, 1, 15, 0], [3, 3, 1, 0, 11]] |
| 0.8863 | 66.65 | 1600 | 0.9723 | 0.7317 | 0.9677 | 0.8333 | 31 | 0.8276 | 0.96 | 0.8889 | 25 | 1.0 | 0.7407 | 0.8511 | 27 | 1.0 | 0.5333 | 0.6957 | 15 | 0.8367 | 0.8898 | 0.8005 | 0.8172 | 98 | 0.8711 | 0.8367 | 0.8313 | 98 | 0.9220 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 1, 24, 0, 0], [2, 4, 3, 20, 0], [3, 6, 1, 0, 8]] |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
rpant/q-Taxi-v3
|
rpant
| 2022-12-20T21:51:28Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T21:51:18Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="rpant/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
rpant/q-FrozenLake-v1-4x4-noSlippery
|
rpant
| 2022-12-20T21:48:52Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T21:48:43Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="rpant/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Sanjii/Dawgsmix
|
Sanjii
| 2022-12-20T21:46:07Z | 0 | 2 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-12-20T21:32:35Z |
---
license: creativeml-openrail-m
---
|
huggingtweets/messiiionei
|
huggingtweets
| 2022-12-20T20:59:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-20T20:55:11Z |
---
language: en
thumbnail: http://www.huggingtweets.com/messiiionei/1671569960697/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1414174228069470209/ZPxTsYAJ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">#LionelMessi10🇦🇷</div>
<div style="text-align: center; font-size: 14px;">@messiiionei</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from #LionelMessi10🇦🇷.
| Data | #LionelMessi10🇦🇷 |
| --- | --- |
| Tweets downloaded | 373 |
| Retweets | 24 |
| Short tweets | 224 |
| Tweets kept | 125 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/i0091oli/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @messiiionei's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/swu7qn0q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/swu7qn0q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/messiiionei')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
BigSalmon/InformalToFormalLincoln92Paraphrase
|
BigSalmon
| 2022-12-20T20:55:45Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-04T02:49:36Z |
data: https://github.com/BigSalmon2/InformalToFormalDataset
Text Generation Informal Formal
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln92Paraphrase")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln92Paraphrase")
```
```
Demo:
https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy
```
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
input_ids = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(input_ids=input_ids,
max_length=10 + len(prompt),
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True,
num_return_sequences=5,
early_stopping=True)
for i in range(5):
print(tokenizer.decode(outputs[i]))
```
Most likely outputs (Disclaimer: I highly recommend using this over just generating):
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(250)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
print(best_words)
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
```
Essay Intro (Warriors vs. Rockets in Game 7):
text: eagerly anticipated by fans, game 7's are the highlight of the post-season.
text: ever-building in suspense, game 7's have the crowd captivated.
***
Essay Intro (South Korean TV Is Becoming Popular):
text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ).
text: increasingly held in critical esteem, south korean television continues to impress.
text: at the forefront of quality content, south korea is quickly achieving celebrity status.
***
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
```
- nebraska
- unicamerical legislature
- different from federal house and senate
text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate.
***
- penny has practically no value
- should be taken out of circulation
- just as other coins have been in us history
- lost use
- value not enough
- to make environmental consequences worthy
text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness.
***
-
```
```
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
***
original:
```
```
wordy: classical music is becoming less popular more and more.
Translate into Concise Text: interest in classic music is fading.
***
wordy:
```
```
sweet: savvy voters ousted him.
longer: voters who were informed delivered his defeat.
***
sweet:
```
```
1: commercial space company spacex plans to launch a whopping 52 flights in 2022.
2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022.
3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights.
4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company.
5: a commercial space company, spacex aims to conduct 52 flights in 2022.
***
1:
```
Keywords to sentences or sentence.
```
ngos are characterized by:
□ voluntary citizens' group that is organized on a local, national or international level
□ encourage political participation
□ often serve humanitarian functions
□ work for social, economic, or environmental change
***
what are the drawbacks of living near an airbnb?
□ noise
□ parking
□ traffic
□ security
□ strangers
***
```
```
original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung.
adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung.
***
original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark.
adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark.
***
original:
```
```
original: had trouble deciding.
translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation.
***
original:
```
```
input: not loyal
1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ).
***
input:
```
```
first: ( was complicit in / was involved in ).
antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ).
***
first: ( have no qualms about / see no issue with ).
antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ).
***
first: ( do not see eye to eye / disagree often ).
antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ).
***
first:
```
```
stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground.
***
languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo.
***
dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia.
***
embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons.
```
Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above):
```
his contention [blank] by the evidence [sep] was refuted [answer]
***
few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer]
***
when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer]
***
the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer]
***
the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer]
***
microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer]
***
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
Backwards
```
Essay Intro (National Parks):
text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ).
***
Essay Intro (D.C. Statehood):
washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ).
```
```
topic: the Golden State Warriors.
characterization 1: the reigning kings of the NBA.
characterization 2: possessed of a remarkable cohesion.
characterization 3: helmed by superstar Stephen Curry.
characterization 4: perched atop the league’s hierarchy.
characterization 5: boasting a litany of hall-of-famers.
***
topic: emojis.
characterization 1: shorthand for a digital generation.
characterization 2: more versatile than words.
characterization 3: the latest frontier in language.
characterization 4: a form of self-expression.
characterization 5: quintessentially millennial.
characterization 6: reflective of a tech-centric world.
***
topic:
```
```
regular: illinois went against the census' population-loss prediction by getting more residents.
VBG: defying the census' prediction of population loss, illinois experienced growth.
***
regular: microsoft word’s high pricing increases the likelihood of competition.
VBG: extortionately priced, microsoft word is inviting competition.
***
regular:
```
```
source: badminton should be more popular in the US.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more
text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing.
***
source: movies in theaters should be free.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money
text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay.
***
source:
```
```
in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure.
***
the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule.
***
the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement.
***
```
```
it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise.
question: what does “do likewise” mean in the above context?
(a) make the same journey
(b) share in the promise of the american dream
(c) start anew in the land of opportunity
(d) make landfall on the united states
***
in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure.
question: what does “this orientation” mean in the above context?
(a) visible business practices
(b) candor with the public
(c) open, honest communication
(d) culture of accountability
```
```
example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot.
text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities.
***
example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear.
text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student.
```
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult
(a) in reverential tones
(b) with great affection
(c) in adulatory fashion
(d) in glowing terms
```
```
clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ).
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
*Note* Of all the masking techniques, this one works the best.
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
essence: when someone's views are keeping within reasonable.
refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ).
***
essence: when things are worked through in a petty way.
refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling.
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
```
music before bedtime [makes for being able to relax] -> is a recipe for relaxation.
```
```
[people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway.
```
```
in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal.
***
politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ).
```
```
Q: What is whistleblower protection?
A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer.
Q: Why are whistleblower protections important?
A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution.
Q: Why would an employer engage in retribution?
A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing.
```
```
original: the meritocratic nature of crowdfunding [MASK] into their vision's viability.
infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability.
```
```
Leadership | Lecture 17: Worker Morale
What Workers Look for in Companies:
• Benefits
o Tuition reimbursement
o Paid parental leave
o 401K matching
o Profit sharing
o Pension plans
o Free meals
• Social responsibility
o Environmental stewardship
o Charitable contributions
o Diversity
• Work-life balance
o Telecommuting
o Paid holidays and vacation
o Casual dress
• Growth opportunities
• Job security
• Competitive compensation
• Recognition
o Open-door policies
o Whistleblower protection
o Employee-of-the-month awards
o Positive performance reviews
o Bonuses
```
```
description: business
keywords: for-profit, fiduciary duty, monopolistic, bottom line, return on investment, short-term thinking, capital-intensive, self-interested, risk-taking, fiduciary duty, merger, speculation, profiteering, oversight, capitalism, diversification
```
```
3. In this task, you are given a company name and you need to find its industry.
McDonalds -- Restaurant
Facebook -- Social Network
IKEA -- Furniture
American Express -- Credit Services
Nokia -- Telecom
Nintendo -- Entertainment
4. In this task, you are given a Month and you need to convert it to its corresponding season
April -- Spring
December -- Winter
July -- Summer
October -- Fall
February -- Winter
5. In this task, you are given a sentence with a missing word and you need to predict the correct word.
Managers should set an _____ for their employees. -- example
Some people spend more than four _____ in the gym. -- hours
The police were on the _____ of arresting the suspect. -- verge
They were looking for _____ on how to solve the problem. -- guidance
What is the _____ of the coffee? -- price
6. In this task, you are given a paragraph and you need to reorder it to make it logical.
It was first proposed in 1987. The total length of the bridge is 1,828 meters. The idea of a bridge connects Hong Kong to Macau. -- The idea of bridge connecting Hong Kong and Macau was first proposed in 1987. The total length of the bridge is 1,828 meters.
It is a movie about a brave and noble policeman. The film was produced by Americans. They were Kevin Lima and Chris Buck. They are directors. The movie is called Tarzan. -- Produced by Americans Kevin Lima and Chris Buck, Tarzan is a movie about a brave and noble policeman.
It was first discovered in the mountains of India. The active ingredients in this plant can stimulate hair growth. The plant is called "Hair Plus." -- First discovered in the mountains of India, Hair Plus is a plant whose active ingredients can stimulate hair growth.
```
```
trivia: What is the population of South Korea?
response: 51 million.
***
trivia: What is the minimum voting age in the US?
response: 18.
***
trivia: What are the first ten amendments of the US constitution called?
response: Bill of Rights.
```
|
BigSalmon/InformalToFormalLincoln93Paraphrase
|
BigSalmon
| 2022-12-20T20:55:31Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-20T19:50:33Z |
data: https://github.com/BigSalmon2/InformalToFormalDataset
Text Generation Informal Formal
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln93Paraphrase")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln93Paraphrase")
```
```
Demo:
https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy
```
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
input_ids = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(input_ids=input_ids,
max_length=10 + len(prompt),
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True,
num_return_sequences=5,
early_stopping=True)
for i in range(5):
print(tokenizer.decode(outputs[i]))
```
Most likely outputs (Disclaimer: I highly recommend using this over just generating):
```
prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:"""
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(250)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
print(best_words)
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
```
Essay Intro (Warriors vs. Rockets in Game 7):
text: eagerly anticipated by fans, game 7's are the highlight of the post-season.
text: ever-building in suspense, game 7's have the crowd captivated.
***
Essay Intro (South Korean TV Is Becoming Popular):
text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ).
text: increasingly held in critical esteem, south korean television continues to impress.
text: at the forefront of quality content, south korea is quickly achieving celebrity status.
***
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
```
- nebraska
- unicamerical legislature
- different from federal house and senate
text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate.
***
- penny has practically no value
- should be taken out of circulation
- just as other coins have been in us history
- lost use
- value not enough
- to make environmental consequences worthy
text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness.
***
-
```
```
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
***
original:
```
```
wordy: classical music is becoming less popular more and more.
Translate into Concise Text: interest in classic music is fading.
***
wordy:
```
```
sweet: savvy voters ousted him.
longer: voters who were informed delivered his defeat.
***
sweet:
```
```
1: commercial space company spacex plans to launch a whopping 52 flights in 2022.
2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022.
3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights.
4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company.
5: a commercial space company, spacex aims to conduct 52 flights in 2022.
***
1:
```
Keywords to sentences or sentence.
```
ngos are characterized by:
□ voluntary citizens' group that is organized on a local, national or international level
□ encourage political participation
□ often serve humanitarian functions
□ work for social, economic, or environmental change
***
what are the drawbacks of living near an airbnb?
□ noise
□ parking
□ traffic
□ security
□ strangers
***
```
```
original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung.
adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung.
***
original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark.
adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark.
***
original:
```
```
original: had trouble deciding.
translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation.
***
original:
```
```
input: not loyal
1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ).
***
input:
```
```
first: ( was complicit in / was involved in ).
antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ).
***
first: ( have no qualms about / see no issue with ).
antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ).
***
first: ( do not see eye to eye / disagree often ).
antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ).
***
first:
```
```
stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground.
***
languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo.
***
dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia.
***
embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons.
```
Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above):
```
his contention [blank] by the evidence [sep] was refuted [answer]
***
few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer]
***
when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer]
***
the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer]
***
the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer]
***
microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer]
***
```
```
original: microsoft word's [MASK] pricing invites competition.
Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition.
***
original: the library’s quiet atmosphere encourages visitors to [blank] in their work.
Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work.
```
Backwards
```
Essay Intro (National Parks):
text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ).
***
Essay Intro (D.C. Statehood):
washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ).
```
```
topic: the Golden State Warriors.
characterization 1: the reigning kings of the NBA.
characterization 2: possessed of a remarkable cohesion.
characterization 3: helmed by superstar Stephen Curry.
characterization 4: perched atop the league’s hierarchy.
characterization 5: boasting a litany of hall-of-famers.
***
topic: emojis.
characterization 1: shorthand for a digital generation.
characterization 2: more versatile than words.
characterization 3: the latest frontier in language.
characterization 4: a form of self-expression.
characterization 5: quintessentially millennial.
characterization 6: reflective of a tech-centric world.
***
topic:
```
```
regular: illinois went against the census' population-loss prediction by getting more residents.
VBG: defying the census' prediction of population loss, illinois experienced growth.
***
regular: microsoft word’s high pricing increases the likelihood of competition.
VBG: extortionately priced, microsoft word is inviting competition.
***
regular:
```
```
source: badminton should be more popular in the US.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more
text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing.
***
source: movies in theaters should be free.
QUERY: Based on the given topic, can you develop a story outline?
target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money
text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay.
***
source:
```
```
in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure.
***
the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule.
***
the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement.
***
```
```
it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise.
question: what does “do likewise” mean in the above context?
(a) make the same journey
(b) share in the promise of the american dream
(c) start anew in the land of opportunity
(d) make landfall on the united states
***
in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure.
question: what does “this orientation” mean in the above context?
(a) visible business practices
(b) candor with the public
(c) open, honest communication
(d) culture of accountability
```
```
example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot.
text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities.
***
example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear.
text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student.
```
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult
(a) in reverential tones
(b) with great affection
(c) in adulatory fashion
(d) in glowing terms
```
```
clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ).
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
*Note* Of all the masking techniques, this one works the best.
```
<Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle>
***
<Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle>
```
```
essence: when someone's views are keeping within reasonable.
refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ).
***
essence: when things are worked through in a petty way.
refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling.
```
```
description: when someone thinks that their view is the only right one.
synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous.
***
description: when you put something off.
synonyms: shelve, defer, table, postpone.
```
```
organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea.
rewrite phrases: meritocratic, viability, vision
rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability.
```
```
music before bedtime [makes for being able to relax] -> is a recipe for relaxation.
```
```
[people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway.
```
```
in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal.
***
politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ).
```
```
Q: What is whistleblower protection?
A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer.
Q: Why are whistleblower protections important?
A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution.
Q: Why would an employer engage in retribution?
A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing.
```
```
original: the meritocratic nature of crowdfunding [MASK] into their vision's viability.
infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability.
```
```
Leadership | Lecture 17: Worker Morale
What Workers Look for in Companies:
• Benefits
o Tuition reimbursement
o Paid parental leave
o 401K matching
o Profit sharing
o Pension plans
o Free meals
• Social responsibility
o Environmental stewardship
o Charitable contributions
o Diversity
• Work-life balance
o Telecommuting
o Paid holidays and vacation
o Casual dress
• Growth opportunities
• Job security
• Competitive compensation
• Recognition
o Open-door policies
o Whistleblower protection
o Employee-of-the-month awards
o Positive performance reviews
o Bonuses
```
```
description: business
keywords: for-profit, fiduciary duty, monopolistic, bottom line, return on investment, short-term thinking, capital-intensive, self-interested, risk-taking, fiduciary duty, merger, speculation, profiteering, oversight, capitalism, diversification
```
```
3. In this task, you are given a company name and you need to find its industry.
McDonalds -- Restaurant
Facebook -- Social Network
IKEA -- Furniture
American Express -- Credit Services
Nokia -- Telecom
Nintendo -- Entertainment
4. In this task, you are given a Month and you need to convert it to its corresponding season
April -- Spring
December -- Winter
July -- Summer
October -- Fall
February -- Winter
5. In this task, you are given a sentence with a missing word and you need to predict the correct word.
Managers should set an _____ for their employees. -- example
Some people spend more than four _____ in the gym. -- hours
The police were on the _____ of arresting the suspect. -- verge
They were looking for _____ on how to solve the problem. -- guidance
What is the _____ of the coffee? -- price
6. In this task, you are given a paragraph and you need to reorder it to make it logical.
It was first proposed in 1987. The total length of the bridge is 1,828 meters. The idea of a bridge connects Hong Kong to Macau. -- The idea of bridge connecting Hong Kong and Macau was first proposed in 1987. The total length of the bridge is 1,828 meters.
It is a movie about a brave and noble policeman. The film was produced by Americans. They were Kevin Lima and Chris Buck. They are directors. The movie is called Tarzan. -- Produced by Americans Kevin Lima and Chris Buck, Tarzan is a movie about a brave and noble policeman.
It was first discovered in the mountains of India. The active ingredients in this plant can stimulate hair growth. The plant is called "Hair Plus." -- First discovered in the mountains of India, Hair Plus is a plant whose active ingredients can stimulate hair growth.
```
```
trivia: What is the population of South Korea?
response: 51 million.
***
trivia: What is the minimum voting age in the US?
response: 18.
***
trivia: What are the first ten amendments of the US constitution called?
response: Bill of Rights.
```
```
ideas: in modern-day america, it is customary for the commander-in-chief to conduct regular press conferences
related keywords: transparency, check and balance, sacrosanct, public accountability, adversarial, unscripted, direct access, open government, watchdog, healthy democracy, institutional integrity, right to know, direct line of communication, behind closed doors, updates, track progress, instill confidence, reassure, humanize, leadership style, day-to-day, forthcoming, demystify, ask hard questions
***
ideas: i know this one guy who retired so young, attesting to how careful they were with money.
related keywords: money management, resourceful, penny-pinching, live below their means, frugal, financial discipline, financial independence, conservative, long-term vision, discretionary spending, deferred gratification, preparedness, self-control, cushion
```
```
less specific: actors and musicians should ( support democracy ).
clarifies: actors and musicians should ( wield their celebrity to amplify pro-democracy messaging / marshal their considerable influence in the service of the democratic cause ).
***
less specific: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( be careful ).
clarifies: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( master their desires / exercise self-restraint / embrace frugality / restrain their appetite for splendor ).
```
|
renee127/ppo-LunarLander-v2
|
renee127
| 2022-12-20T20:50:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T19:14:31Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.28 +/- 14.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Musha-the-Yusha/q-FrozenLake-v1-8x8-Slippery
|
Musha-the-Yusha
| 2022-12-20T20:50:02Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:49:53Z |
---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8
type: FrozenLake-v1-8x8
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Musha-the-Yusha/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
cverluise/q-taxi-v3
|
cverluise
| 2022-12-20T20:44:14Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:44:06Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="cverluise/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
mewbot97/qn-SpaceInvadersNoFrameskip-v1
|
mewbot97
| 2022-12-20T20:39:31Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:38:53Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 419.50 +/- 82.35
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mewbot97 -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mewbot97 -f logs/
rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mewbot97
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Musha-the-Yusha/q-FrozenLake-v1-4x4-Slippery
|
Musha-the-Yusha
| 2022-12-20T20:37:24Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:06:13Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.60 +/- 0.49
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Musha-the-Yusha/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ihanif/whisper-base-ps
|
ihanif
| 2022-12-20T20:27:44Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T16:52:56Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Tiny Pashto
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs ps_af
type: google/fleurs
config: ps_af
split: test
args: ps_af
metrics:
- name: Wer
type: wer
value: 60.05599273607748
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Pashto
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs ps_af dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8714
- Wer: 60.0560
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.9153 | 2.5 | 100 | 1.0240 | 68.9864 |
| 0.6865 | 5.0 | 200 | 0.8968 | 61.7660 |
| 0.5474 | 7.5 | 300 | 0.8744 | 60.5554 |
| 0.4646 | 10.0 | 400 | 0.8710 | 60.0560 |
| 0.4557 | 12.5 | 500 | 0.8732 | 59.4658 |
| 0.3882 | 15.0 | 600 | 0.8819 | 59.0648 |
| 0.3346 | 17.5 | 700 | 0.9032 | 59.4809 |
| 0.2947 | 20.0 | 800 | 0.9144 | 59.7685 |
| 0.2724 | 22.5 | 900 | 0.9289 | 58.9815 |
| 0.2785 | 25.0 | 1000 | 0.9339 | 59.2010 |
| 0.2454 | 27.5 | 1100 | 0.9439 | 59.1934 |
| 0.2297 | 30.0 | 1200 | 0.9485 | 59.0421 |
| 0.2383 | 33.33 | 1300 | 0.9529 | 59.0799 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
emilios/whisper-sm-farsipal-e7
|
emilios
| 2022-12-20T20:26:23Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"el",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T12:33:40Z |
---
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0,google/fleurs
metrics:
- wer
model-index:
- name: Whisper small Greek Farsipal and El Greco
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr
type: mozilla-foundation/common_voice_11_0,google/fleurs
config: el
split: None
metrics:
- name: Wer
type: wer
value: 16.493313521545318
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper small Greek Farsipal and El Greco
This model is a fine-tuned version of [emilios/whisper-sm-farsipal-e5](https://huggingface.co/emilios/whisper-sm-farsipal-e5) on the mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5015
- Wer: 16.4933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0004 | 2.49 | 1000 | 0.4797 | 16.7348 |
| 0.0003 | 4.98 | 2000 | 0.4895 | 16.5397 |
| 0.0002 | 7.46 | 3000 | 0.4963 | 16.5119 |
| 0.0002 | 9.95 | 4000 | 0.5015 | 16.4933 |
| 0.0002 | 12.44 | 5000 | 0.5034 | 16.5676 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 2.0.0.dev20221216+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
rexwang8/py800m
|
rexwang8
| 2022-12-20T20:23:36Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-20T20:20:24Z |
test repo for pythia 800m with additional files from neox20b to try to get it to work
|
SorinAbrudan/SB3PPO-AgentLunarLander
|
SorinAbrudan
| 2022-12-20T20:23:34Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:20:57Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.50 +/- 33.92
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Camelia7v/bert-sentiment-analysis-model-25k-samples
|
Camelia7v
| 2022-12-20T20:21:36Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-20T18:39:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: bert-sentiment-analysis-model-25k-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.93948
- name: F1
type: f1
value: 0.939463049653903
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-sentiment-analysis-model-25k-samples
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2139
- Accuracy: 0.9395
- F1: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Kornel/ppo-LunarLander-v2
|
Kornel
| 2022-12-20T20:10:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T20:10:14Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 266.70 +/- 21.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
hli/pegasus-samsum
|
hli
| 2022-12-20T20:04:55Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-20T18:27:34Z |
---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6928 | 0.54 | 500 | 1.4812 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Musha-the-Yusha/q-FrozenLake-v1-8x8-noSlippery
|
Musha-the-Yusha
| 2022-12-20T19:59:04Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T19:58:55Z |
---
tags:
- FrozenLake-v1-8x8-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8-no_slippery
type: FrozenLake-v1-8x8-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Musha-the-Yusha/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Musha-the-Yusha/q-FrozenLake-v1-4x4-noSlippery
|
Musha-the-Yusha
| 2022-12-20T19:53:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T19:29:31Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Musha-the-Yusha/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
steja/whisper-small-sindhi
|
steja
| 2022-12-20T19:52:55Z | 4 | 3 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T19:51:30Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper small Sindhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: sd_in
split: test
metrics:
- name: Wer
type: wer
value: 39.360351975632454
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper small Sindhi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs sd_in dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8761
- Wer: 39.3604
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0125 | 30.74 | 400 | 0.7639 | 43.5485 |
| 0.0007 | 61.52 | 800 | 0.8301 | 39.4873 |
| 0.0003 | 92.3 | 1200 | 0.8761 | 39.3604 |
| 0.0002 | 123.07 | 1600 | 0.8949 | 39.3604 |
| 0.0002 | 153.81 | 2000 | 0.9013 | 39.4196 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
chami2/chimpunk
|
chami2
| 2022-12-20T19:45:34Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-12-20T19:45:34Z |
---
license: creativeml-openrail-m
---
|
chavicoski/QLearning-Taxi-v3
|
chavicoski
| 2022-12-20T19:41:08Z | 0 | 0 | null |
[
"q-learning",
"reinforcement-learning",
"custom-implementation",
"Taxi-v3",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-17T15:15:22Z |
---
tags:
- q-learning
- reinforcement-learning
- custom-implementation
- Taxi-v3
model-index:
- name: QLearning_Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="chavicoski/QLearning-Taxi-v3", filename="QLearning_Taxi-v3.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make("Taxi-v3")
```
|
BigSalmon/HistoryCurrentEvents
|
BigSalmon
| 2022-12-20T19:37:04Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-15T01:42:57Z |
Trained on recent news and lots of political vocabulary.
|
rematchka/DQN-LunarLander-v2
|
rematchka
| 2022-12-20T19:08:35Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T19:08:05Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 113.79 +/- 125.13
name: mean_reward
verified: false
---
# **DQN** Agent playing **LunarLander-v2**
This is a trained model of a **DQN** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
anuragshas/whisper-large-v2-kk
|
anuragshas
| 2022-12-20T19:07:14Z | 15 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"kk",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T16:45:48Z |
---
language:
- kk
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large-v2 Kazakh
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 kk
type: mozilla-foundation/common_voice_11_0
config: kk
split: test
args: kk
metrics:
- name: Wer
type: wer
value: 35.95004460303301
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large-v2 Kazakh
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 kk dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5747
- Wer: 35.9500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0002 | 39.02 | 1000 | 0.5747 | 35.9500 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
pranay-j/whisper-large-v2-vi
|
pranay-j
| 2022-12-20T18:27:45Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"vi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-20T15:37:42Z |
---
language:
- vi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper large v2 vi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: vi
split: test
args: vi
metrics:
- name: Wer
type: wer
value: 17.076113182715506
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large v2 vi
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5530
- Wer: 17.0761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0012 | 21.01 | 150 | 0.5211 | 17.2845 |
| 0.0006 | 42.02 | 300 | 0.5530 | 17.0761 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Keesterbrugge/ppo-Huggy
|
Keesterbrugge
| 2022-12-20T18:17:03Z | 13 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-20T18:16:50Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Keesterbrugge/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
akanametov/ddpm-celebahq-finetuned-butterflies-2epochs
|
akanametov
| 2022-12-20T18:04:35Z | 0 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-20T18:04:08Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('akanametov/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
coyotespike/q-FrozenLake-v1-8x8-noSlippery
|
coyotespike
| 2022-12-20T17:48:25Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:48:19Z |
---
tags:
- FrozenLake-v1-8x8-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8-no_slippery
type: FrozenLake-v1-8x8-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="coyotespike/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
J4F4N4F/q-Taxi-v3
|
J4F4N4F
| 2022-12-20T17:46:12Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:45:59Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="J4F4N4F/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
J4F4N4F/q-FrozenLake-v1-4x4-noSlippery
|
J4F4N4F
| 2022-12-20T17:40:40Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:40:30Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="J4F4N4F/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kul-speech-lab/whisper-small-nl-dy
|
kul-speech-lab
| 2022-12-20T17:40:08Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"feature-extraction",
"whisper-event",
"generated_from_trainer",
"dataset:data/copas",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-12-18T01:38:43Z |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- data/copas
metrics:
- wer
model-index:
- name: Whisper Small Dutch
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: data/copas copas-full
type: data/copas
config: copas-full
split: test
args: copas-full
metrics:
- name: Wer
type: wer
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Dutch
This model is a fine-tuned version of [qmeeus/whisper-small-nl](https://huggingface.co/qmeeus/whisper-small-nl) on the data/copas copas-full dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0015
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1291 | 2.03 | 500 | 0.2953 | 25.0681 |
| 0.0524 | 5.03 | 1000 | 0.1626 | 13.9118 |
| 0.0403 | 8.03 | 1500 | 0.0825 | 6.5450 |
| 0.0349 | 11.03 | 2000 | 0.0409 | 2.5652 |
| 0.0122 | 14.03 | 2500 | 0.0173 | 0.6619 |
| 0.0053 | 17.03 | 3000 | 0.0068 | 0.0822 |
| 0.0032 | 20.02 | 3500 | 0.0037 | 0.0173 |
| 0.0022 | 23.02 | 4000 | 0.0024 | 0.0 |
| 0.0018 | 26.02 | 4500 | 0.0018 | 0.0 |
| 0.0016 | 29.02 | 5000 | 0.0015 | 0.0 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|
paicup09/q-Taxi-v3
|
paicup09
| 2022-12-20T17:33:51Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:33:36Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.72
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="paicup09/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
paicup09/q-FrozenLake-v1-4x4-noSlippery
|
paicup09
| 2022-12-20T17:25:37Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:25:32Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="paicup09/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
paicup09/ppo-Huggy
|
paicup09
| 2022-12-20T17:06:06Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-20T17:05:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: paicup09/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
5p33ch3xpr/Whisper-fineTuning-malayalam
|
5p33ch3xpr
| 2022-12-20T16:57:57Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"hf-asr-leaderboard",
"generated_from_trainer",
"ml",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-11T06:11:02Z |
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper_malayalam_largev2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: ml
split: test
metrics:
- name: Wer
type: wer
value: 68.7356
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-fineTuning-malayalam
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4138
- Wer: 68.7356
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0099 | 1.88 | 1000 | 0.3563 | 69.6552 |
| 0.0046 | 3.77 | 2000 | 0.3860 | 70.1149 |
| 0.001 | 5.65 | 3000 | 0.4105 | 70.3448 |
| 0.0001 | 7.53 | 4000 | 0.4138 | 68.7356 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
akanametov/sd-class-butterflies-64
|
akanametov
| 2022-12-20T16:57:57Z | 4 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-03T06:12:25Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('akanametov/sd-class-butterflies-64')
image = pipeline().images[0]
image
```
|
akanametov/sd-class-butterflies-32
|
akanametov
| 2022-12-20T16:57:40Z | 8 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-03T05:32:48Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('akanametov/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
akanametov/ppo-Huggy
|
akanametov
| 2022-12-20T16:56:58Z | 14 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-17T20:36:37Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: akanametov/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Rstar/R77
|
Rstar
| 2022-12-20T16:41:50Z | 0 | 1 | null |
[
"license:openrail",
"region:us"
] | null | 2022-12-20T16:40:54Z |
---
license: openrail
---
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.