modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-01 12:28:49
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-01 12:27:35
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Kuntal/distilbert-base-uncased-finetuned-sst2
|
Kuntal
| 2023-01-10T08:11:11Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-10T07:35:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: train
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9059633027522935
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3487
- Accuracy: 0.9060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1874 | 1.0 | 4210 | 0.3487 | 0.9060 |
| 0.1309 | 2.0 | 8420 | 0.3840 | 0.9037 |
| 0.1009 | 3.0 | 12630 | 0.3770 | 0.9048 |
| 0.063 | 4.0 | 16840 | 0.4741 | 0.8979 |
| 0.0357 | 5.0 | 21050 | 0.5241 | 0.9002 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Art-phys/ppo-LunarLander-62M-v2
|
Art-phys
| 2023-01-10T08:09:53Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T06:37:23Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 274.11 +/- 41.16
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
PooryaPiroozfar/Flair-Persian-NER
|
PooryaPiroozfar
| 2023-01-10T08:01:46Z | 4,649 | 7 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"fa",
"region:us"
] |
token-classification
| 2023-01-09T20:19:52Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: fa
dataset:
- NSURL-2019
widget:
- text: >-
اولین نمایش این فیلمها روز دوشنبه 13 اردیبهشت و از ساعت 21 در موزه سینماست.
metrics:
- f1
---
## Persian NER Using Flair
This is the 7-class Named-entity recognition model for Persian that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **90.33** (NSURL-2019)
Predicts NER tags:
| **tag** | **meaning** |
|:---------------------------------:|:-----------:|
| PER | person name |
| LOC | location name |
| ORG | organization name |
| DAT | date |
| TIM | time |
| PCT | percent |
| MON | Money|
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and Pars-Bert.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("PooryaPiroozfar/Flair-Persian-NER")
# make example sentence
sentence = Sentence("اولین نمایش این فیلمها روز دوشنبه 13 اردیبهشت و از ساعت 21 در موزه سینماست.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
This yields the following output:
```
Span[4:8]: "روز دوشنبه 13 اردیبهشت" → DAT (1.0)
Span[10:12]: "ساعت 21" → TIM (1.0)
Span[13:15]: "موزه سینماست" → LOC (0.9999)
```
---
### Results
- F-score (micro) 0.9033
- F-score (macro) 0.8976
- Accuracy 0.8277
```
By class:
precision recall f1-score support
ORG 0.9016 0.8667 0.8838 1523
LOC 0.9113 0.9305 0.9208 1425
PER 0.9216 0.9322 0.9269 1224
DAT 0.8623 0.7958 0.8277 480
MON 0.9665 0.9558 0.9611 181
PCT 0.9375 0.9740 0.9554 77
TIM 0.8235 0.7925 0.8077 53
micro avg 0.9081 0.8984 0.9033 4963
macro avg 0.9035 0.8925 0.8976 4963
weighted avg 0.9076 0.8984 0.9028 4963
samples avg 0.8277 0.8277 0.8277 4963
```
|
susooo/kobigbird-test45-74084713
|
susooo
| 2023-01-10T07:43:03Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T03:48:45Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-test45-74084713
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-test45-74084713
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8963
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.84 | 4 | 2.0601 |
| No log | 1.84 | 8 | 1.9294 |
| No log | 2.84 | 12 | 1.8963 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
cwinkler/distilbert-base-uncased-finetuned-greenplastics-small
|
cwinkler
| 2023-01-10T07:18:08Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-10T07:13:17Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-greenplastics-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-greenplastics-small
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4816
- Accuracy: 0.87
- F1: 0.8691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6531 | 1.0 | 11 | 0.5633 | 0.87 | 0.8696 |
| 0.5415 | 2.0 | 22 | 0.4816 | 0.87 | 0.8691 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
CauseWhyNot/cardiacarrestjunior
|
CauseWhyNot
| 2023-01-10T07:06:44Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-10T07:06:44Z |
---
license: creativeml-openrail-m
---
|
Stokrotka/Taxi-v3
|
Stokrotka
| 2023-01-10T06:43:24Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T21:05:59Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Stokrotka/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
bananaspectre/marian-finetuned-tgl-eng-netspeak-trial9
|
bananaspectre
| 2023-01-10T06:41:40Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-10T06:18:17Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: marian-finetuned-tgl-eng-netspeak-trial9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-tgl-eng-netspeak-trial9
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tl-en](https://huggingface.co/Helsinki-NLP/opus-mt-tl-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3568
- Bleu: 29.1370
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 5.6316 | 1.0 | 57 | 4.1183 | 4.6005 |
| 4.8654 | 2.0 | 114 | 3.8581 | 5.9435 |
| 4.5642 | 3.0 | 171 | 3.6865 | 6.6312 |
| 4.3364 | 4.0 | 228 | 3.5646 | 7.3157 |
| 4.1474 | 5.0 | 285 | 3.4686 | 8.6700 |
| 4.0044 | 6.0 | 342 | 3.3852 | 8.6733 |
| 3.8862 | 7.0 | 399 | 3.3257 | 8.3894 |
| 3.7676 | 8.0 | 456 | 3.2528 | 9.2599 |
| 3.6633 | 9.0 | 513 | 3.2005 | 9.7922 |
| 3.5594 | 10.0 | 570 | 3.1615 | 10.9836 |
| 3.4683 | 11.0 | 627 | 3.1055 | 11.0111 |
| 3.3897 | 12.0 | 684 | 3.0527 | 11.0658 |
| 3.3165 | 13.0 | 741 | 3.0106 | 11.3570 |
| 3.2338 | 14.0 | 798 | 2.9819 | 12.4296 |
| 3.1626 | 15.0 | 855 | 2.9395 | 13.0279 |
| 3.1127 | 16.0 | 912 | 2.9088 | 13.2959 |
| 3.0224 | 17.0 | 969 | 2.8760 | 13.9185 |
| 2.9523 | 18.0 | 1026 | 2.8420 | 14.7849 |
| 2.9036 | 19.0 | 1083 | 2.8059 | 15.3255 |
| 2.8449 | 20.0 | 1140 | 2.7830 | 15.8899 |
| 2.7851 | 21.0 | 1197 | 2.7654 | 15.3016 |
| 2.7182 | 22.0 | 1254 | 2.7422 | 15.9169 |
| 2.683 | 23.0 | 1311 | 2.7171 | 15.4695 |
| 2.6016 | 24.0 | 1368 | 2.6860 | 17.2504 |
| 2.5688 | 25.0 | 1425 | 2.6800 | 17.4693 |
| 2.511 | 26.0 | 1482 | 2.6523 | 17.8363 |
| 2.4627 | 27.0 | 1539 | 2.6247 | 18.6818 |
| 2.4259 | 28.0 | 1596 | 2.6038 | 19.2026 |
| 2.3814 | 29.0 | 1653 | 2.5946 | 18.9046 |
| 2.3368 | 30.0 | 1710 | 2.5720 | 19.6498 |
| 2.2639 | 31.0 | 1767 | 2.5564 | 18.7972 |
| 2.2366 | 32.0 | 1824 | 2.5432 | 20.1555 |
| 2.1884 | 33.0 | 1881 | 2.5369 | 19.9048 |
| 2.143 | 34.0 | 1938 | 2.5215 | 19.3706 |
| 2.122 | 35.0 | 1995 | 2.5102 | 20.2954 |
| 2.0819 | 36.0 | 2052 | 2.4966 | 20.5785 |
| 2.0333 | 37.0 | 2109 | 2.4939 | 20.8078 |
| 1.9972 | 38.0 | 2166 | 2.4852 | 21.6624 |
| 1.9596 | 39.0 | 2223 | 2.4724 | 21.3380 |
| 1.9386 | 40.0 | 2280 | 2.4550 | 21.7399 |
| 1.8881 | 41.0 | 2337 | 2.4539 | 21.8201 |
| 1.8488 | 42.0 | 2394 | 2.4494 | 22.8561 |
| 1.8344 | 43.0 | 2451 | 2.4436 | 22.0001 |
| 1.8005 | 44.0 | 2508 | 2.4353 | 21.5060 |
| 1.7703 | 45.0 | 2565 | 2.4314 | 22.6523 |
| 1.7321 | 46.0 | 2622 | 2.4258 | 22.9500 |
| 1.6897 | 47.0 | 2679 | 2.4202 | 23.0767 |
| 1.6822 | 48.0 | 2736 | 2.4115 | 23.3565 |
| 1.6392 | 49.0 | 2793 | 2.4056 | 24.4669 |
| 1.621 | 50.0 | 2850 | 2.4071 | 25.7900 |
| 1.6075 | 51.0 | 2907 | 2.3930 | 25.8570 |
| 1.5558 | 52.0 | 2964 | 2.3835 | 26.0207 |
| 1.5335 | 53.0 | 3021 | 2.3848 | 24.5089 |
| 1.5091 | 54.0 | 3078 | 2.3870 | 26.7579 |
| 1.4904 | 55.0 | 3135 | 2.3791 | 26.2250 |
| 1.4645 | 56.0 | 3192 | 2.3760 | 26.1819 |
| 1.4628 | 57.0 | 3249 | 2.3811 | 25.9747 |
| 1.4297 | 58.0 | 3306 | 2.3659 | 26.4407 |
| 1.4011 | 59.0 | 3363 | 2.3650 | 27.1145 |
| 1.3649 | 60.0 | 3420 | 2.3597 | 27.6616 |
| 1.3419 | 61.0 | 3477 | 2.3601 | 28.6248 |
| 1.3278 | 62.0 | 3534 | 2.3670 | 27.2075 |
| 1.3106 | 63.0 | 3591 | 2.3588 | 27.3917 |
| 1.2855 | 64.0 | 3648 | 2.3508 | 27.8277 |
| 1.2732 | 65.0 | 3705 | 2.3622 | 28.3032 |
| 1.259 | 66.0 | 3762 | 2.3603 | 28.0315 |
| 1.2397 | 67.0 | 3819 | 2.3551 | 27.9452 |
| 1.2285 | 68.0 | 3876 | 2.3597 | 28.5887 |
| 1.1898 | 69.0 | 3933 | 2.3599 | 28.5675 |
| 1.181 | 70.0 | 3990 | 2.3642 | 29.7412 |
| 1.1748 | 71.0 | 4047 | 2.3577 | 29.2003 |
| 1.146 | 72.0 | 4104 | 2.3609 | 28.3760 |
| 1.1274 | 73.0 | 4161 | 2.3519 | 29.2015 |
| 1.1138 | 74.0 | 4218 | 2.3568 | 29.1370 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
0xid/Reinforce-Pixelcopter-PLE-v0m
|
0xid
| 2023-01-10T06:33:33Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T06:33:20Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0m
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 153.70 +/- 74.49
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
SkyworkAIGC/SkyCode
|
SkyworkAIGC
| 2023-01-10T06:20:09Z | 14 | 26 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-14T04:51:44Z |
# Brief introduction of SkyCode
SkyCode is a multi-language open source programming model released by Singularity-AI. It adopts the GPT3 model structure and uses a large amount of code for training. Support Java, JavaScript, C, C++, Python, Go, shell and other mainstream programming languages, and can understand Chinese comments. The model can complete the code, solve problems and other operations, freeing you from programming and focusing on solving larger problems.
## Project Highlights
1. Technical advantage 1: covering multiple programming languages
Different programming languages focus on solving problems in different platforms and environments, and different programming languages have their own reasons for existence. The codes that Singularity-AI SkyCode can generate not only include widely used JavaScript, python, Java, C, etc., but also cover more than ten programming languages such as php, go, and swift, so that users of different languages can experience SkyCode has powerful code generation capabilities.
2. Technical advantage 2: optimize for Chinese annotations
In the field of pre-training large models, it has always been dominated by the English community. The code generation model based on GPT3 has the same problem. Relying on the experience of deeply cultivating Chinese models, Singularity-AI optimized and innovated a unique Chinese encoding method according to the characteristics of Chinese, which is more in line with Chinese language habits, making the model's ability to understand Chinese annotations better.
3. Technical advantage 3: excellent problem-solving ability
On the HumanEval data set that reflects the problem-solving ability of the code generation model, the problem-solving ability of SkyCode is also much higher than that of other open source models.
| model | pass@1 | pass@10 | pass@100 |
|:-------------- | ------:|:-------:| -------- |
| GPT-Neo 1.3B | 4.79% | 7.47% | 16.30% |
| GPT-Neo 2.7B | 6.41% | 11.27% | 21.37% |
| GPT-J 6B | 11.62% | 15.74% | 27.74% |
| SKY_code(2.6B) | 12.84% | 21.07% | 35.97% |
It can be seen that SkyCode with a parameter quantity of 2.6B is not only much higher than the GPT-Neo 1.3B model with fewer parameters, but also much higher than the GPT-Neo 2.7B model with a comparable parameter quantity. Even compared to the GPT-J 6B model with a higher number of parameters, SkyCode's problem-solving ability is stronger. In the pass@100 indicator that better reflects the upper limit of problem-solving ability, SkyCode's net value exceeds GPT-J by 8.23%.
# News of Singularity-AI
- [2022.12.15] [AIGC Press Conference of Singularity-AI](https://live.vhall.com/v3/lives/subscribe/697547540)
## Reliance
```
Recommend:
transformers>=4.18.0
```
## Model usage
```python
# -*- coding: utf-8 -*-
from transformers import GPT2LMHeadModel
from transformers import AutoTokenizer
from transformers import TextGenerationPipeline
model = GPT2LMHeadModel.from_pretrained("SkyWork/SkyCode")
tokenizer = AutoTokenizer.from_pretrained("SkyWork/SkyCode", trust_remote_code=True)
text_generator = TextGenerationPipeline(model, tokenizer, device=0)
input_str = "if __name__"
max_new_tokens = 40
print(text_generator(input_str, max_new_tokens=max_new_tokens, do_sample=True))###
```
# Licence
[MIT License](LICENSE)
# Join in developer group
[Scan the QR Code with WeChat](https://user-images.githubusercontent.com/120169448/211475709-75b5f652-366f-45a1-b8c0-0bd64e8256bb.jpg) to join in the developer group of SkyCode.
——————————————————————————————————————————————————————————————————————————————
# SkyCode
SkyCode是由奇点智源发布的多语言开源编程大模型,采用GPT3模型结构,使用海量的代码进行训练。支持Java, JavaScript, C, C++, Python, Go, shell等多种主流编程语言,并能理解中文注释。模型可以对代码进行补全,进行解题等操作,使您从编程中解放出来,专心于解决更大的问题。
## 项目亮点
1. 技术优势一 :涵盖多种编程语言
不同的编程语言着重于解决不同平台、环境下的问题,不同的编程语言都有自己存在的理由。奇点智源SkyCode能够生成的代码,不仅包括使用广泛的JavaScript、python、Java、C等,还涵盖了php、go、swift等共计十余种编程语言,使不同语言的使用者都能来体验SkyCode强大的代码生成能力。
2. 技术优势二:针对中文注释进行优化
曾经在预训练大模型领域,一直是被英文社区主导着,依托于GPT3的代码生成模型有着同样的问题。奇点智源凭借深耕中文模型的经验,针对中文的特点,优化创新使用了独特的中文编码方式,更加符合中文的语言习惯,使得模型对中文注释的理解能力更为优秀。
3. 技术优势三:极其出色的解题能力
在体现代码生成模型解题能力的HumanEval数据集上,奇点智源SkyCode的解题能力也远高出其他开源模型。
| model | pass@1 | pass@10 | pass@100 |
|:-------------- | ------:|:-------:| -------- |
| GPT-Neo 1.3B | 4.79% | 7.47% | 16.30% |
| GPT-Neo 2.7B | 6.41% | 11.27% | 21.37% |
| GPT-J 6B | 11.62% | 15.74% | 27.74% |
| SKY_code(2.6B) | 12.84% | 21.07% | 35.97% |
可以看到,参数量2.6B的SkyCode在解题能力上不仅高出参数较少的GPT-Neo 1.3B许多,也远高于参数量相当的GPT-Neo 2.7B模型。即使对比参数量更高的GPT-J 6B模型,SkyCode的解题能力也更强。在更能体现解题能力上限的pass@100指标上,SkyCode超出GPT-J的净值为8.23%。
# 奇点新闻
- [2022.12.15] [昆仑天工AIGC发布会](https://live.vhall.com/v3/lives/subscribe/697547540)
## 依赖
```
推荐
transformers>=4.18.0
```
## 模型使用
```python
# -*- coding: utf-8 -*-
from transformers import GPT2LMHeadModel
from transformers import AutoTokenizer
from transformers import TextGenerationPipeline
model = GPT2LMHeadModel.from_pretrained("SkyWork/SkyCode")
tokenizer = AutoTokenizer.from_pretrained("SkyWork/SkyCode", trust_remote_code=True)
text_generator = TextGenerationPipeline(model, tokenizer, device=0)
input_str = "if __name__"
max_new_tokens = 40
print(text_generator(input_str, max_new_tokens=max_new_tokens, do_sample=True))###
```
# 版权许可
[MIT License](LICENSE)
# 加入SkyCode开发者群
[微信扫描此二维码](https://user-images.githubusercontent.com/120169448/211475709-75b5f652-366f-45a1-b8c0-0bd64e8256bb.jpg) 加入SkyCode开发者群。
|
johnowhitaker/sac_midu_mini
|
johnowhitaker
| 2023-01-10T06:16:42Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-01-05T18:44:28Z |
```python
# Download the model weights
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="johnowhitaker/sac_midu_mini",
filename="midu_model_aesthetic_classifier.pt")
# Load the aesthetic classifier
m = nn.Sequential(
nn.Conv2d(1280, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.ReLU(),
nn.AdaptiveAvgPool2d(output_size=(2, 2)), nn.Flatten(),
nn.Linear(128*4, 64), nn.ReLU(), nn.Linear(64, 10)).to(device)
m.load_state_dict(torch.load(model_path));
# Load the SD pipeline and add a hook
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(device)
pipe.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe.scheduler.set_timesteps(30)
def hook_fn(module, input, output):
module.output = output
pipe.unet.mid_block.register_forward_hook(hook_fn);
# Now after calling the forward pass of the UNET, you can do
preds = m(pipe.unet.mid_block.output)
```
|
YuJungSoo/kobigbird-pure45-34458617
|
YuJungSoo
| 2023-01-10T06:02:03Z | 93 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T05:11:35Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure45-34458617
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure45-34458617
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.84 | 4 | 5.0505 |
| No log | 1.84 | 8 | 4.4642 |
| No log | 2.84 | 12 | 4.3725 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
syabusyabu0141/fine1
|
syabusyabu0141
| 2023-01-10T06:01:30Z | 72 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-10-07T07:24:46Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: syabusyabu0141/afterabove
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# syabusyabu0141/afterabove
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.1391
- Validation Loss: 0.6806
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.1391 | 0.6806 | 0 |
### Framework versions
- Transformers 4.23.1
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.1
|
alphahg/kobigbird-test45-36490500
|
alphahg
| 2023-01-10T06:00:29Z | 89 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T05:11:18Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-test45-36490500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-test45-36490500
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5195
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.84 | 4 | 5.9855 |
| No log | 1.84 | 8 | 5.5968 |
| No log | 2.84 | 12 | 5.5195 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
bananaspectre/marian-finetuned-tgl-eng-netspeak-trial6
|
bananaspectre
| 2023-01-10T05:55:50Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-10T05:43:41Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: marian-finetuned-tgl-eng-netspeak-trial6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-tgl-eng-netspeak-trial6
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tl-en](https://huggingface.co/Helsinki-NLP/opus-mt-tl-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3343
- Bleu: 28.3769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 4.5424 | 1.0 | 57 | 3.8496 | 5.8759 |
| 3.6414 | 2.0 | 114 | 3.5073 | 9.0838 |
| 3.1777 | 3.0 | 171 | 3.2660 | 10.0099 |
| 2.7865 | 4.0 | 228 | 3.0646 | 12.0484 |
| 2.4638 | 5.0 | 285 | 2.9109 | 14.0737 |
| 2.1815 | 6.0 | 342 | 2.7853 | 16.3752 |
| 1.9426 | 7.0 | 399 | 2.6832 | 17.7971 |
| 1.725 | 8.0 | 456 | 2.6060 | 19.5480 |
| 1.5336 | 9.0 | 513 | 2.5433 | 20.8335 |
| 1.3571 | 10.0 | 570 | 2.4888 | 21.9160 |
| 1.2081 | 11.0 | 627 | 2.4424 | 21.7108 |
| 1.0733 | 12.0 | 684 | 2.4045 | 23.9640 |
| 0.9516 | 13.0 | 741 | 2.3940 | 24.4162 |
| 0.8487 | 14.0 | 798 | 2.3840 | 27.1127 |
| 0.7513 | 15.0 | 855 | 2.3563 | 27.3229 |
| 0.662 | 16.0 | 912 | 2.3501 | 25.8083 |
| 0.5835 | 17.0 | 969 | 2.3506 | 27.0424 |
| 0.5247 | 18.0 | 1026 | 2.3355 | 27.9392 |
| 0.4648 | 19.0 | 1083 | 2.3379 | 27.1880 |
| 0.4047 | 20.0 | 1140 | 2.3343 | 28.3769 |
| 0.3574 | 21.0 | 1197 | 2.3431 | 27.9125 |
| 0.3183 | 22.0 | 1254 | 2.3407 | 29.3798 |
| 0.2828 | 23.0 | 1311 | 2.3408 | 30.5316 |
| 0.2528 | 24.0 | 1368 | 2.3368 | 29.9854 |
| 0.2306 | 25.0 | 1425 | 2.3603 | 30.4071 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
KJIM/kobigbird-test45-81001466
|
KJIM
| 2023-01-10T05:49:02Z | 90 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T04:57:50Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-test45-81001466
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-test45-81001466
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00011
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.84 | 4 | 4.5836 |
| No log | 1.84 | 8 | 4.1083 |
| No log | 2.84 | 12 | 3.8401 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
kupman99/ppo-LunarLander-v2
|
kupman99
| 2023-01-10T05:46:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T05:46:19Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 260.94 +/- 14.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Xhaheen/hazbullay-man-generator
|
Xhaheen
| 2023-01-10T05:20:23Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"stable-diffusion",
"text-to-image",
"diffusion-models-class",
"dreambooth-hackathon",
"wildcard",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-10T05:15:11Z |
---
license: creativeml-openrail-m
tags:
- pytorch
- diffusers
- stable-diffusion
- text-to-image
- diffusion-models-class
- dreambooth-hackathon
- wildcard
widget:
- text: a photo of hazbullay man with the Statue of Zeus from Ancient Greece in the
background
---
# DreamBooth model for the hazbullay concept trained by Xhaheen on the bethecloud/golf-courses dataset.
This is a Stable Diffusion model fine-tuned on the hazbullay concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of hazbullay man**
This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
## Description
This is a Stable Diffusion model fine-tuned on `man` images for the wildcard theme.
## Usage
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('Xhaheen/hazbullay-man-generator')
image = pipeline().images[0]
image
```
|
mjschock/Reinforce-PixelCopter0
|
mjschock
| 2023-01-10T04:50:58Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T04:50:51Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 70.20 +/- 44.62
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
YuJungSoo/kobigbird-pure45-28788823
|
YuJungSoo
| 2023-01-10T04:43:50Z | 90 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T03:54:40Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure45-28788823
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure45-28788823
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.5214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.84 | 4 | 5.2857 |
| No log | 1.84 | 8 | 4.6361 |
| No log | 2.84 | 12 | 4.5214 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Gadersd/Reinforce-Pixelcopter
|
Gadersd
| 2023-01-10T04:16:11Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T04:16:06Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 35.30 +/- 25.65
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kreepy/dqn-SpaceInvadersNoFrameskip-vsc
|
kreepy
| 2023-01-10T04:06:19Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T03:24:02Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 593.00 +/- 148.36
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kreepy -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kreepy -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kreepy
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
astein0/ppo-LunarLander-v2
|
astein0
| 2023-01-10T04:04:36Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T04:04:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 260.60 +/- 16.29
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
bananaspectre/marianmt-finetuned-netspeak-tgl-to-eng
|
bananaspectre
| 2023-01-10T03:55:59Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"translation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-08T12:10:06Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: marianmt-finetuned-netspeak-tgl-to-eng
results: []
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# marianmt-finetuned-netspeak-tgl-to-eng
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tl-en](https://huggingface.co/Helsinki-NLP/opus-mt-tl-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7277
- Validation Loss: 2.0459
- Train Bleu: 33.5501
- Train Gen Len: 8.7228
- Epoch: 93
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch |
|:----------:|:---------------:|:----------:|:-------------:|:-----:|
| 5.4267 | 4.5907 | 3.3310 | 11.7129 | 0 |
| 4.6862 | 4.1720 | 3.5594 | 10.4752 | 1 |
| 4.4077 | 3.9852 | 4.0100 | 9.2079 | 2 |
| 4.2296 | 3.8554 | 3.3190 | 9.3663 | 3 |
| 4.0964 | 3.7598 | 4.8776 | 9.4554 | 4 |
| 3.9799 | 3.6710 | 4.9744 | 9.6931 | 5 |
| 3.8799 | 3.5953 | 5.9838 | 9.4752 | 6 |
| 3.7661 | 3.5248 | 6.4073 | 9.3366 | 7 |
| 3.6807 | 3.4588 | 6.2692 | 9.1485 | 8 |
| 3.5932 | 3.3964 | 6.0781 | 9.0990 | 9 |
| 3.5110 | 3.3384 | 6.6363 | 9.0891 | 10 |
| 3.4294 | 3.2892 | 7.0472 | 9.2079 | 11 |
| 3.3566 | 3.2363 | 7.2707 | 9.1782 | 12 |
| 3.2796 | 3.1878 | 7.9426 | 9.1683 | 13 |
| 3.2026 | 3.1376 | 7.9254 | 9.2772 | 14 |
| 3.1472 | 3.0926 | 8.2076 | 9.1188 | 15 |
| 3.0634 | 3.0496 | 8.5193 | 9.2475 | 16 |
| 3.0124 | 3.0082 | 8.9990 | 9.1485 | 17 |
| 2.9554 | 2.9696 | 11.2816 | 9.1485 | 18 |
| 2.8885 | 2.9352 | 12.0866 | 9.0396 | 19 |
| 2.8403 | 2.8974 | 12.8611 | 9.1485 | 20 |
| 2.7636 | 2.8661 | 13.0981 | 9.1485 | 21 |
| 2.7229 | 2.8269 | 12.9295 | 8.9010 | 22 |
| 2.6714 | 2.7951 | 14.0159 | 8.8713 | 23 |
| 2.6179 | 2.7644 | 13.7369 | 8.7624 | 24 |
| 2.5520 | 2.7348 | 14.0979 | 8.8119 | 25 |
| 2.5199 | 2.7059 | 14.5253 | 8.7426 | 26 |
| 2.4652 | 2.6832 | 13.8452 | 8.7030 | 27 |
| 2.4081 | 2.6537 | 15.6475 | 8.9505 | 28 |
| 2.3708 | 2.6302 | 16.1325 | 8.8713 | 29 |
| 2.3195 | 2.6124 | 16.0044 | 8.7426 | 30 |
| 2.2938 | 2.5892 | 16.8560 | 8.8020 | 31 |
| 2.2202 | 2.5700 | 16.8995 | 8.8911 | 32 |
| 2.1808 | 2.5456 | 17.5342 | 8.8416 | 33 |
| 2.1373 | 2.5262 | 18.4092 | 8.6337 | 34 |
| 2.1096 | 2.5082 | 18.1906 | 8.6436 | 35 |
| 2.0610 | 2.4896 | 18.3189 | 8.7525 | 36 |
| 2.0275 | 2.4725 | 18.4318 | 8.6436 | 37 |
| 1.9913 | 2.4534 | 18.1136 | 8.6832 | 38 |
| 1.9544 | 2.4403 | 19.2999 | 8.6040 | 39 |
| 1.9144 | 2.4220 | 19.1325 | 8.6535 | 40 |
| 1.8781 | 2.4075 | 19.4122 | 8.6337 | 41 |
| 1.8610 | 2.3928 | 21.0270 | 8.6832 | 42 |
| 1.8176 | 2.3779 | 20.9122 | 8.7921 | 43 |
| 1.7839 | 2.3618 | 20.3906 | 8.7624 | 44 |
| 1.7553 | 2.3466 | 20.9078 | 8.7327 | 45 |
| 1.7045 | 2.3368 | 20.7228 | 8.7030 | 46 |
| 1.6974 | 2.3221 | 20.7889 | 8.7426 | 47 |
| 1.6561 | 2.3109 | 20.8293 | 8.7129 | 48 |
| 1.6264 | 2.2991 | 20.3201 | 8.5644 | 49 |
| 1.5976 | 2.2906 | 22.7905 | 8.6139 | 50 |
| 1.5725 | 2.2820 | 23.9301 | 8.7228 | 51 |
| 1.5528 | 2.2702 | 23.5437 | 8.6733 | 52 |
| 1.5158 | 2.2612 | 22.9832 | 8.6040 | 53 |
| 1.4883 | 2.2509 | 24.6290 | 8.6733 | 54 |
| 1.4497 | 2.2434 | 25.6293 | 8.6139 | 55 |
| 1.4357 | 2.2336 | 25.4158 | 8.6634 | 56 |
| 1.4105 | 2.2290 | 25.2337 | 8.5644 | 57 |
| 1.3803 | 2.2194 | 26.2588 | 8.5941 | 58 |
| 1.3606 | 2.2118 | 25.8251 | 8.6139 | 59 |
| 1.3389 | 2.2073 | 26.2269 | 8.5842 | 60 |
| 1.3064 | 2.1966 | 26.2973 | 8.6040 | 61 |
| 1.2747 | 2.1893 | 27.3831 | 8.5743 | 62 |
| 1.2586 | 2.1811 | 28.4823 | 8.6733 | 63 |
| 1.2445 | 2.1740 | 27.5688 | 8.6139 | 64 |
| 1.2201 | 2.1576 | 29.3111 | 8.5347 | 65 |
| 1.1924 | 2.1487 | 28.3428 | 8.6040 | 66 |
| 1.1657 | 2.1464 | 28.8596 | 8.5941 | 67 |
| 1.1435 | 2.1469 | 28.7870 | 8.5743 | 68 |
| 1.1274 | 2.1382 | 29.5455 | 8.6436 | 69 |
| 1.1080 | 2.1297 | 29.4602 | 8.6139 | 70 |
| 1.0907 | 2.1257 | 28.2800 | 8.7525 | 71 |
| 1.0881 | 2.1207 | 29.2731 | 8.6337 | 72 |
| 1.0534 | 2.1179 | 29.9292 | 8.7624 | 73 |
| 1.0389 | 2.1096 | 29.9660 | 8.5347 | 74 |
| 1.0186 | 2.1052 | 29.7106 | 8.5446 | 75 |
| 0.9953 | 2.0959 | 30.0563 | 8.5050 | 76 |
| 0.9727 | 2.0977 | 30.0527 | 8.5446 | 77 |
| 0.9543 | 2.0878 | 29.8762 | 8.5446 | 78 |
| 0.9372 | 2.0871 | 30.4451 | 8.4950 | 79 |
| 0.9234 | 2.0804 | 30.7829 | 8.5347 | 80 |
| 0.9045 | 2.0774 | 31.2911 | 8.6337 | 81 |
| 0.8920 | 2.0727 | 31.4189 | 8.4752 | 82 |
| 0.8729 | 2.0761 | 30.5640 | 8.7624 | 83 |
| 0.8466 | 2.0735 | 31.4347 | 8.7525 | 84 |
| 0.8430 | 2.0677 | 31.1463 | 8.6139 | 85 |
| 0.8340 | 2.0669 | 31.5623 | 8.7228 | 86 |
| 0.8152 | 2.0587 | 31.9364 | 8.6535 | 87 |
| 0.7916 | 2.0548 | 31.6855 | 8.6238 | 88 |
| 0.7829 | 2.0562 | 33.4523 | 8.7426 | 89 |
| 0.7678 | 2.0559 | 32.0304 | 8.7129 | 90 |
| 0.7509 | 2.0540 | 32.7711 | 8.7525 | 91 |
| 0.7406 | 2.0498 | 33.6200 | 8.7030 | 92 |
| 0.7277 | 2.0459 | 33.5501 | 8.7228 | 93 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
kreepy/dqn-SpaceInvadersNoFrameskip-v4
|
kreepy
| 2023-01-10T03:51:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T22:24:22Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 598.50 +/- 193.64
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kreepy -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kreepy -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kreepy
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Elldreth/hearthstone-fantasy
|
Elldreth
| 2023-01-10T03:49:03Z | 223 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-01-10T03:48:51Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: hearthstone-fantasy
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.5263158082962036
---
# hearthstone-fantasy
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### fantasy

#### hearthstone

#### warcraft

|
lmqg/bart-large-squad-qag
|
lmqg
| 2023-01-10T03:29:11Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-18T06:24:56Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/bart-large-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 92.16
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 91.17
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 93.21
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 63.79
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 61.32
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 66.71
---
# Model Card of `lmqg/bart-large-squad-qag`
This model is fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-large](https://huggingface.co/facebook/bart-large)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-large-squad-qag")
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-large-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.16 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 63.79 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 93.21 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 66.71 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 91.17 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 61.32 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 256
- epoch: 14
- batch: 8
- lr: 1e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
lmqg/bart-base-squad-qag
|
lmqg
| 2023-01-10T03:27:48Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-15T04:51:39Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/bart-base-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 84.49
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 83.38
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 85.64
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 57.46
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 55.26
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 60.01
---
# Model Card of `lmqg/bart-base-squad-qag`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-base-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-base-squad-qag")
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-base-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 84.49 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 57.46 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 85.64 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 60.01 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 83.38 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 55.26 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: facebook/bart-base
- max_length: 512
- max_length_output: 256
- epoch: 2
- batch: 16
- lr: 1e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
lmqg/t5-large-squad-qag
|
lmqg
| 2023-01-10T03:27:02Z | 28 | 2 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-19T02:43:35Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/t5-large-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 93.45
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 93.57
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 93.34
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 66.05
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 65.84
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 66.34
---
# Model Card of `lmqg/t5-large-squad-qag`
This model is fine-tuned version of [t5-large](https://huggingface.co/t5-large) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-large](https://huggingface.co/t5-large)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-large-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 93.45 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 66.05 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 93.34 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 66.34 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 93.57 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 65.84 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: ['qag']
- model: t5-large
- max_length: 512
- max_length_output: 256
- epoch: 12
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
Kuntal/distilbert-base-uncased-finetuned-cola
|
Kuntal
| 2023-01-10T03:09:38Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-10T02:57:24Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: train
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5340667882909217
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8130
- Matthews Correlation: 0.5341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5214 | 1.0 | 535 | 0.5266 | 0.4239 |
| 0.3449 | 2.0 | 1070 | 0.5079 | 0.5052 |
| 0.2347 | 3.0 | 1605 | 0.5736 | 0.5185 |
| 0.1764 | 4.0 | 2140 | 0.7526 | 0.5305 |
| 0.1324 | 5.0 | 2675 | 0.8130 | 0.5341 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
lmqg/t5-base-squad-qag
|
lmqg
| 2023-01-10T03:08:25Z | 379 | 2 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-19T02:49:52Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/t5-base-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 93.34
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 93.51
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 93.18
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 65.78
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 65.68
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 65.96
---
# Model Card of `lmqg/t5-base-squad-qag`
This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-base](https://huggingface.co/t5-base)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-base-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-base-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 93.34 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 65.78 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 93.18 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 65.96 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 93.51 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 65.68 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: ['qag']
- model: t5-base
- max_length: 512
- max_length_output: 256
- epoch: 17
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-base-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
lmqg/t5-small-squad-qag
|
lmqg
| 2023-01-10T03:07:26Z | 142 | 2 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-15T04:50:13Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/t5-small-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 92.76
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 92.68
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 92.87
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 64.59
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 63.99
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 65.3
---
# Model Card of `lmqg/t5-small-squad-qag`
This model is fine-tuned version of [t5-small](https://huggingface.co/t5-small) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-small](https://huggingface.co/t5-small)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-small-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-small-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-small-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.76 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 64.59 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 92.87 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 65.3 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 92.68 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 63.99 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: ['qag']
- model: t5-small
- max_length: 512
- max_length_output: 256
- epoch: 18
- batch: 32
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.0
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-small-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
lmqg/bart-large-squad-qg
|
lmqg
| 2023-01-10T03:00:53Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"question generation",
"en",
"dataset:lmqg/qg_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/bart-large-squad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 26.17
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 53.85
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 27.07
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 91.0
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 64.99
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.54
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.49
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.59
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.82
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.54
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 71.13
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 93.23
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 93.35
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 93.13
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 64.76
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 64.63
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 64.98
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: amazon
args: amazon
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.06530369842068952
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.25030985091008146
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.2229994442645732
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9092814804525936
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6086538514008419
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: new_wiki
args: new_wiki
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.11118273173452982
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.2967546690273089
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.27315087810722966
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9322739617807421
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6623000084761579
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: nyt
args: nyt
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.08117757543966063
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.25292097720734297
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.25254205113198686
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9249009759439454
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6406329128556304
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: reddit
args: reddit
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.059525104157825456
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.22365090580055863
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.21499800504546457
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9095144685254328
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6059332247878408
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: books
args: books
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.006278914808207679
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.12368226019088967
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.11576293675813865
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8807110440044503
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5555905941686486
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: electronics
args: electronics
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.00866799444965211
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1601628874804186
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.15348605312210778
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8783386920680519
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5634845371093992
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: grocery
args: grocery
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.00528043272450429
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.12343711316491492
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.15133496445452477
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8778951253890991
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5701949938103265
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.0121579426501661e-06
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.12508697028506718
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.11862284941640638
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8748829724726739
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5528899173535703
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: restaurants
args: restaurants
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.1301750984972448e-06
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.13083168975354642
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.12419733006916912
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8797711839570719
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5542757411268555
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: tripadvisor
args: tripadvisor
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 8.380171318718442e-07
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1402922852924756
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.1372146070365174
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8891002409937424
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5604572211470809
---
# Model Card of `lmqg/bart-large-squad-qg`
This model is fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-large](https://huggingface.co/facebook/bart-large)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-large-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 91 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 58.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 42.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 33.11 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 26.17 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 27.07 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 64.99 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 53.85 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 95.54 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 70.82 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 95.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 71.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 95.49 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 70.54 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/bart-large-squad-ae`](https://huggingface.co/lmqg/bart-large-squad-ae). [raw metric file](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.lmqg_bart-large-squad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 93.23 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 64.76 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 93.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 64.98 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 93.35 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 64.63 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metrics (Question Generation, Out-of-Domain)***
| Dataset | Type | BERTScore| Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
|:--------|:-----|---------:|-------:|-------:|-----------:|--------:|-----:|
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | amazon | 90.93 | 6.53 | 22.3 | 60.87 | 25.03 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.amazon.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | new_wiki | 93.23 | 11.12 | 27.32 | 66.23 | 29.68 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.new_wiki.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | nyt | 92.49 | 8.12 | 25.25 | 64.06 | 25.29 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.nyt.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | reddit | 90.95 | 5.95 | 21.5 | 60.59 | 22.37 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.reddit.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | books | 88.07 | 0.63 | 11.58 | 55.56 | 12.37 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 87.83 | 0.87 | 15.35 | 56.35 | 16.02 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | grocery | 87.79 | 0.53 | 15.13 | 57.02 | 12.34 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.grocery.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 87.49 | 0.0 | 11.86 | 55.29 | 12.51 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | restaurants | 87.98 | 0.0 | 12.42 | 55.43 | 13.08 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.restaurants.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | tripadvisor | 88.91 | 0.0 | 13.72 | 56.05 | 14.03 | [link](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.tripadvisor.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 32
- epoch: 4
- batch: 32
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
lmqg/t5-large-squad-qg
|
lmqg
| 2023-01-10T02:57:58Z | 212 | 4 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"question generation",
"en",
"dataset:lmqg/qg_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/t5-large-squad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 27.21
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 54.13
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 27.7
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 91.0
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 65.29
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.57
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.51
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.62
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 71.1
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.8
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 71.41
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 92.97
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 93.14
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 92.83
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 64.72
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 64.66
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 64.87
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: amazon
args: amazon
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.06900290231938097
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.2533914694448162
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.23008771718972076
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.911505327721968
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6121573406359604
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: new_wiki
args: new_wiki
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.11180552552578073
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.30058260713604856
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.2792115028015132
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9316688723462665
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6630609588403827
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: nyt
args: nyt
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.08047293820182351
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.2518886524420378
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.2567360224537303
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9241819763475975
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6437327703980464
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: reddit
args: reddit
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.059479733408388684
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.21988765767997162
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.21853957131436155
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.909493447578926
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6064107011094938
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: books
args: books
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 8.038380813854933e-07
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.09871887977864714
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.11967515095282454
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.879356137120911
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5548471413251269
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: electronics
args: electronics
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.008434036066953862
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.14134333081097744
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.1616192221446712
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8786280911509731
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.560488065035827
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: grocery
args: grocery
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.007639835274564104
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.105046370156132
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.1540402363682146
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8749810194969178
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.56763136192963
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.149076256883913e-06
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.12272623105315689
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.13027427314652157
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8733754583767482
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5536261740282519
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: restaurants
args: restaurants
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.8508536550762953e-10
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1192666899417942
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.12447769563902232
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8825407926650608
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5591163692270524
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: tripadvisor
args: tripadvisor
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.007817275411070228
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.14594416096461188
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.16297700667338805
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8928685000227912
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5681021918513103
---
# Model Card of `lmqg/t5-large-squad-qg`
This model is fine-tuned version of [t5-large](https://huggingface.co/t5-large) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-large](https://huggingface.co/t5-large)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 91 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 59.54 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 43.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 34.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 27.21 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 27.7 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 65.29 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 54.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 95.57 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 71.1 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 95.62 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 71.41 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 95.51 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 70.8 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/t5-large-squad-ae`](https://huggingface.co/lmqg/t5-large-squad-ae). [raw metric file](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.lmqg_t5-large-squad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.97 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 64.72 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 92.83 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 64.87 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 93.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 64.66 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metrics (Question Generation, Out-of-Domain)***
| Dataset | Type | BERTScore| Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
|:--------|:-----|---------:|-------:|-------:|-----------:|--------:|-----:|
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | amazon | 91.15 | 6.9 | 23.01 | 61.22 | 25.34 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.amazon.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | new_wiki | 93.17 | 11.18 | 27.92 | 66.31 | 30.06 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.new_wiki.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | nyt | 92.42 | 8.05 | 25.67 | 64.37 | 25.19 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.nyt.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | reddit | 90.95 | 5.95 | 21.85 | 60.64 | 21.99 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.reddit.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | books | 87.94 | 0.0 | 11.97 | 55.48 | 9.87 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 87.86 | 0.84 | 16.16 | 56.05 | 14.13 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | grocery | 87.5 | 0.76 | 15.4 | 56.76 | 10.5 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.grocery.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 87.34 | 0.0 | 13.03 | 55.36 | 12.27 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | restaurants | 88.25 | 0.0 | 12.45 | 55.91 | 11.93 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.restaurants.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | tripadvisor | 89.29 | 0.78 | 16.3 | 56.81 | 14.59 | [link](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.tripadvisor.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: t5-large
- max_length: 512
- max_length_output: 32
- epoch: 6
- batch: 16
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
Jbot/ppo-Huggy
|
Jbot
| 2023-01-10T02:57:54Z | 12 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-10T02:57:46Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Jbot/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
lmqg/t5-small-squad-qg
|
lmqg
| 2023-01-10T02:54:20Z | 234 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"question generation",
"en",
"dataset:lmqg/qg_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/t5-small-squad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 24.4
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 51.43
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 25.84
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 90.2
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 63.89
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.14
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.09
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 95.19
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 69.79
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 69.51
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.09
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 92.26
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 92.48
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 92.07
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 63.83
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 63.82
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 63.92
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: amazon
args: amazon
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.05446530981230419
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.22970251150837936
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.20750111458026313
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8994468043449728
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5979360752045209
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: new_wiki
args: new_wiki
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.104778841878282
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.2810996054026912
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.2620896643265683
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9260609935106264
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6505447280842604
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: nyt
args: nyt
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.06968574467261796
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.23034544400347773
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.2366281135333324
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.9170723215078939
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.6286133349914554
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squadshifts
type: reddit
args: reddit
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.04750005928226048
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.20103251416604878
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.19795765672224766
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8956885570918934
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5923103575686176
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: books
args: books
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.484839636219606e-07
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.10882963005711024
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.12295516249732996
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8739685463031549
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5533617434235973
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: electronics
args: electronics
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.01163379406564442
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1561742307706773
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.1548763941617263
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.871218326462417
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.555469199401916
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: grocery
args: grocery
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.005200691923654061
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.12630554732425642
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.14946423426295516
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8721985507011414
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5711858634802471
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.928321423080042e-07
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1263481480649435
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.12111872719101677
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.868397428617849
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5500525496260875
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: restaurants
args: restaurants
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.728249026089261e-10
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.11532401921027728
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.12673504956336362
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8748602174660739
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5503550909114101
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: tripadvisor
args: tripadvisor
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.01455898541449453
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1424064090212074
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.15534444057817395
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.8839819959101786
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5591337724792363
---
# Model Card of `lmqg/t5-small-squad-qg`
This model is fine-tuned version of [t5-small](https://huggingface.co/t5-small) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-small](https://huggingface.co/t5-small)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-small-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-small-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 90.2 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 56.86 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 40.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 31.05 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 24.4 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 25.84 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 63.89 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 51.43 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 95.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 69.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 95.19 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 70.09 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 95.09 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 69.51 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/t5-small-squad-ae`](https://huggingface.co/lmqg/t5-small-squad-ae). [raw metric file](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.lmqg_t5-small-squad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.26 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedF1Score (MoverScore) | 63.83 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (BERTScore) | 92.07 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedPrecision (MoverScore) | 63.92 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (BERTScore) | 92.48 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| QAAlignedRecall (MoverScore) | 63.82 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metrics (Question Generation, Out-of-Domain)***
| Dataset | Type | BERTScore| Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
|:--------|:-----|---------:|-------:|-------:|-----------:|--------:|-----:|
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | amazon | 89.94 | 5.45 | 20.75 | 59.79 | 22.97 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.amazon.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | new_wiki | 92.61 | 10.48 | 26.21 | 65.05 | 28.11 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.new_wiki.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | nyt | 91.71 | 6.97 | 23.66 | 62.86 | 23.03 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.nyt.json) |
| [lmqg/qg_squadshifts](https://huggingface.co/datasets/lmqg/qg_squadshifts) | reddit | 89.57 | 4.75 | 19.8 | 59.23 | 20.1 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squadshifts.reddit.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | books | 87.4 | 0.0 | 12.3 | 55.34 | 10.88 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 87.12 | 1.16 | 15.49 | 55.55 | 15.62 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | grocery | 87.22 | 0.52 | 14.95 | 57.12 | 12.63 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.grocery.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 86.84 | 0.0 | 12.11 | 55.01 | 12.63 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | restaurants | 87.49 | 0.0 | 12.67 | 55.04 | 11.53 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.restaurants.json) |
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | tripadvisor | 88.4 | 1.46 | 15.53 | 55.91 | 14.24 | [link](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.tripadvisor.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: t5-small
- max_length: 512
- max_length_output: 32
- epoch: 9
- batch: 64
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-small-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
YuJungSoo/kobigbird-pure45-82642472
|
YuJungSoo
| 2023-01-10T02:52:04Z | 91 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T01:20:19Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure45-82642472
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure45-82642472
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5578
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.3233 |
| No log | 1.99 | 84 | 1.1793 |
| No log | 2.99 | 126 | 1.5578 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
eduardokapp/ppo-LunarLander-v2
|
eduardokapp
| 2023-01-10T02:27:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T02:26:53Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -226.89 +/- 25.60
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
muhtasham/small-mlm-glue-cola-target-glue-wnli
|
muhtasham
| 2023-01-10T02:11:58Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-10T01:46:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: small-mlm-glue-cola-target-glue-wnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-mlm-glue-cola-target-glue-wnli
This model is a fine-tuned version of [muhtasham/small-mlm-glue-cola](https://huggingface.co/muhtasham/small-mlm-glue-cola) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 8.0250
- Accuracy: 0.0563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6311 | 25.0 | 500 | 2.6389 | 0.0845 |
| 0.3168 | 50.0 | 1000 | 5.1490 | 0.0986 |
| 0.1452 | 75.0 | 1500 | 6.3515 | 0.0986 |
| 0.0775 | 100.0 | 2000 | 7.5723 | 0.0704 |
| 0.056 | 125.0 | 2500 | 8.0250 | 0.0563 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
AleNunezArroyo/distilbert-base-spanish-uncased-model
|
AleNunezArroyo
| 2023-01-10T01:50:04Z | 126 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-01-10T01:27:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-spanish-uncased-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-spanish-uncased-model
This model is a fine-tuned version of [CenIA/distilbert-base-spanish-uncased](https://huggingface.co/CenIA/distilbert-base-spanish-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0311
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7074 | 1.0 | 920 | 2.2671 |
| 2.2717 | 2.0 | 1840 | 2.0866 |
| 2.1587 | 3.0 | 2760 | 2.0233 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
andreids/en_nature_of_li_multilabel
|
andreids
| 2023-01-10T01:29:17Z | 3 | 0 |
spacy
|
[
"spacy",
"text-classification",
"en",
"region:us"
] |
text-classification
| 2023-01-10T01:28:51Z |
---
tags:
- spacy
- text-classification
language:
- en
model-index:
- name: en_nature_of_li_multilabel
results: []
---
| Feature | Description |
| --- | --- |
| **Name** | `en_nature_of_li_multilabel` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.4.3,<3.5.0` |
| **Default Pipeline** | `textcat_multilabel` |
| **Components** | `textcat_multilabel` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (8 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`textcat_multilabel`** | `shirt`, `balloon`, `cream`, `socks`, `pants`, `shampoo`, `toy`, `sweater` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `CATS_SCORE` | 95.82 |
| `CATS_MICRO_P` | 99.77 |
| `CATS_MICRO_R` | 99.60 |
| `CATS_MICRO_F` | 99.69 |
| `CATS_MACRO_P` | 74.48 |
| `CATS_MACRO_R` | 73.84 |
| `CATS_MACRO_F` | 74.14 |
| `CATS_MACRO_AUC` | 95.82 |
| `CATS_MACRO_AUC_PER_TYPE` | 0.00 |
| `TEXTCAT_MULTILABEL_LOSS` | 7.61 |
|
YuJungSoo/kobigbird-pure46-467565
|
YuJungSoo
| 2023-01-10T01:01:54Z | 90 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-10T00:20:02Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure46-467565
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure46-467565
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 46
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.3187 |
| No log | 1.99 | 84 | 1.2002 |
| No log | 2.99 | 126 | 1.4834 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
rmeireles/ppo-Huggy
|
rmeireles
| 2023-01-10T00:52:22Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-10T00:52:14Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: rmeireles/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
muhtasham/small-vanilla-target-glue-wnli
|
muhtasham
| 2023-01-10T00:49:10Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-10T00:23:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: small-vanilla-target-glue-wnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-vanilla-target-glue-wnli
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 8.2398
- Accuracy: 0.0845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6354 | 25.0 | 500 | 2.5362 | 0.0845 |
| 0.3043 | 50.0 | 1000 | 5.1175 | 0.0986 |
| 0.138 | 75.0 | 1500 | 6.7552 | 0.0986 |
| 0.0732 | 100.0 | 2000 | 7.6533 | 0.0986 |
| 0.0413 | 125.0 | 2500 | 8.2398 | 0.0845 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
squidcrash/ppo-LunarLander-v2
|
squidcrash
| 2023-01-10T00:26:06Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T00:25:45Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 250.55 +/- 16.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
muhtasham/small-vanilla-target-glue-stsb
|
muhtasham
| 2023-01-10T00:22:18Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T23:55:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: small-vanilla-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-vanilla-target-glue-stsb
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5625
- Pearson: 0.8713
- Spearmanr: 0.8677
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 0.823 | 2.78 | 500 | 0.5972 | 0.8689 | 0.8689 |
| 0.2951 | 5.56 | 1000 | 0.5683 | 0.8725 | 0.8710 |
| 0.181 | 8.33 | 1500 | 0.5985 | 0.8695 | 0.8657 |
| 0.1349 | 11.11 | 2000 | 0.5915 | 0.8708 | 0.8679 |
| 0.1067 | 13.89 | 2500 | 0.5625 | 0.8713 | 0.8677 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
kozina/newworld
|
kozina
| 2023-01-10T00:22:09Z | 0 | 0 | null |
[
"image-classification",
"cs",
"dataset:fka/awesome-chatgpt-prompts",
"region:us"
] |
image-classification
| 2023-01-10T00:17:42Z |
---
datasets:
- fka/awesome-chatgpt-prompts
language:
- cs
pipeline_tag: image-classification
---
|
DiegoD616/Reinforce-Pixelcopter-PLE-v0
|
DiegoD616
| 2023-01-10T00:09:13Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T03:41:24Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 28.20 +/- 22.90
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
muhtasham/small-mlm-glue-cola-target-glue-rte
|
muhtasham
| 2023-01-10T00:06:12Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T23:45:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: small-mlm-glue-cola-target-glue-rte
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-mlm-glue-cola-target-glue-rte
This model is a fine-tuned version of [muhtasham/small-mlm-glue-cola](https://huggingface.co/muhtasham/small-mlm-glue-cola) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9023
- Accuracy: 0.6318
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4086 | 6.41 | 500 | 1.2604 | 0.6390 |
| 0.0549 | 12.82 | 1000 | 2.3633 | 0.6318 |
| 0.0276 | 19.23 | 1500 | 2.9521 | 0.6282 |
| 0.0188 | 25.64 | 2000 | 2.9023 | 0.6318 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
SatCat/Reinforce-Cartpole-v1
|
SatCat
| 2023-01-09T23:42:46Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T23:42:15Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
cleanrl/Skiing-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
|
cleanrl
| 2023-01-09T23:30:28Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Skiing-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T23:30:24Z |
---
tags:
- Skiing-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Skiing-v5
type: Skiing-v5
metrics:
- type: mean_reward
value: -12803.50 +/- 19.59
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Skiing-v5**
This is a trained model of a PPO agent playing Skiing-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]"
python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Skiing-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Skiing-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py
curl -OL https://huggingface.co/cleanrl/Skiing-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Skiing-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock
poetry install --all-extras
python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 1
```
# Hyperparameters
```python
{'anneal_lr': True,
'async_batch_size': 16,
'batch_size': 2048,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Skiing-v5',
'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado',
'gae': True,
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1024,
'norm_adv': True,
'num_envs': 64,
'num_minibatches': 2,
'num_steps': 32,
'num_updates': 24414,
'save_model': True,
'seed': 1,
'target_kl': None,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 2,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'envpool-atari'}
```
|
saurabhnaik/ppo-LunarLnaderV1
|
saurabhnaik
| 2023-01-09T23:09:34Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T20:21:51Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 282.92 +/- 19.05
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
YuJungSoo/kobigbird-pure45-19926792
|
YuJungSoo
| 2023-01-09T23:08:37Z | 92 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-09T22:41:18Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure45-19926792
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure45-19926792
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 45
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.2244 |
| No log | 1.99 | 84 | 1.1392 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
SuburbanLion/Reinforce-Pixelcopter-PLE-v0
|
SuburbanLion
| 2023-01-09T23:06:29Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T19:15:33Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 30.80 +/- 26.39
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
simlaharma/vit-base-cifar10
|
simlaharma
| 2023-01-09T23:04:32Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"vision",
"generated_from_trainer",
"dataset:cifar10",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-01-04T22:35:51Z |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: vit-base-cifar10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.106
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-cifar10
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3302
- Accuracy: 0.106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3324 | 1.0 | 664 | 2.3352 | 0.0967 |
| 2.3489 | 2.0 | 1328 | 2.3288 | 0.1049 |
| 2.4899 | 3.0 | 1992 | 2.4473 | 0.0989 |
| 2.479 | 4.0 | 2656 | 2.4894 | 0.1 |
| 2.4179 | 5.0 | 3320 | 2.4404 | 0.0947 |
| 2.3881 | 6.0 | 3984 | 2.3931 | 0.102 |
| 2.3597 | 7.0 | 4648 | 2.3744 | 0.0967 |
| 2.3721 | 8.0 | 5312 | 2.3667 | 0.0935 |
| 2.3456 | 9.0 | 5976 | 2.3495 | 0.1036 |
| 2.3361 | 10.0 | 6640 | 2.3473 | 0.1025 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Utkarsh-Verma/sd-class-butterflies-32
|
Utkarsh-Verma
| 2023-01-09T23:01:54Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-01-09T23:01:31Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('Utkarsh-Verma/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
gauthamk28/dqn-SpaceInvadersNoFrameskip-v4
|
gauthamk28
| 2023-01-09T23:00:10Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T22:59:34Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 665.00 +/- 321.50
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gauthamk28 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gauthamk28 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga gauthamk28
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
egumasa/en_engagement_spl_RoBERTa_acad
|
egumasa
| 2023-01-09T22:51:03Z | 8 | 0 |
spacy
|
[
"spacy",
"token-classification",
"en",
"model-index",
"region:us"
] |
token-classification
| 2022-12-24T22:40:44Z |
---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_engagement_spl_RoBERTa_acad
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.0
- name: NER Recall
type: recall
value: 0.0
- name: NER F Score
type: f_score
value: 0.0
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.0
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.0
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.0
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8508399109
---
| Feature | Description |
| --- | --- |
| **Name** | `en_engagement_spl_RoBERTa_acad` |
| **Version** | `0.6.0` |
| **spaCy** | `>=3.4.4,<3.5.0` |
| **Default Pipeline** | `transformer`, `parser`, `tagger`, `ner`, `attribute_ruler`, `lemmatizer`, `trainable_transformer`, `spancat` |
| **Components** | `transformer`, `parser`, `tagger`, `ner`, `attribute_ruler`, `lemmatizer`, `trainable_transformer`, `spancat` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (124 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
| **`spancat`** | `MONOGLOSS`, `ENDORSE`, `ENDOPHORIC`, `ENTERTAIN`, `PRONOUNCE`, `DENY`, `COUNTER`, `JUSTIFYING`, `ATTRIBUTE`, `SOURCES`, `CITATION`, `CONCUR` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `DEP_UAS` | 0.00 |
| `DEP_LAS` | 0.00 |
| `DEP_LAS_PER_TYPE` | 0.00 |
| `SENTS_P` | 82.24 |
| `SENTS_R` | 88.13 |
| `SENTS_F` | 85.08 |
| `TAG_ACC` | 0.00 |
| `ENTS_F` | 0.00 |
| `ENTS_P` | 0.00 |
| `ENTS_R` | 0.00 |
| `LEMMA_ACC` | 0.00 |
| `SPANS_SC_F` | 72.96 |
| `SPANS_SC_P` | 75.47 |
| `SPANS_SC_R` | 70.61 |
| `TRAINABLE_TRANSFORMER_LOSS` | 651.38 |
| `SPANCAT_LOSS` | 93570.83 |
|
atorre/q-Taxi-v3
|
atorre
| 2023-01-09T22:35:51Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T22:35:45Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
from huggingface_hub import hf_hub_download
import pickle5 as pickle
model_file = hf_hub_download(repo_id="atorre/Taxi-v3", filename="q-learning.pkl")
with open(model_file, 'rb') as f:
model = pickle.load(f)
env = gym.make(model["env_id"])
```
|
BobMcDear/vit_base_patch32_224_sam
|
BobMcDear
| 2023-01-09T22:31:18Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-09T22:30:18Z |
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
|
henryscheible/qnli
|
henryscheible
| 2023-01-09T22:24:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:42:27Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.9141497345780707
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4604
- Accuracy: 0.9141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
muhtasham/small-mlm-glue-cola-target-glue-qnli
|
muhtasham
| 2023-01-09T22:09:18Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T21:16:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: small-mlm-glue-cola-target-glue-qnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-mlm-glue-cola-target-glue-qnli
This model is a fine-tuned version of [muhtasham/small-mlm-glue-cola](https://huggingface.co/muhtasham/small-mlm-glue-cola) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3594
- Accuracy: 0.8532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4881 | 0.15 | 500 | 0.3958 | 0.8265 |
| 0.4461 | 0.31 | 1000 | 0.3827 | 0.8321 |
| 0.4217 | 0.46 | 1500 | 0.3588 | 0.8453 |
| 0.413 | 0.61 | 2000 | 0.3758 | 0.8384 |
| 0.4119 | 0.76 | 2500 | 0.3414 | 0.8494 |
| 0.3935 | 0.92 | 3000 | 0.3324 | 0.8559 |
| 0.3551 | 1.07 | 3500 | 0.3450 | 0.8532 |
| 0.3194 | 1.22 | 4000 | 0.3468 | 0.8620 |
| 0.3162 | 1.37 | 4500 | 0.3460 | 0.8622 |
| 0.3219 | 1.53 | 5000 | 0.3594 | 0.8532 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Shaier/pubmed_qa_biolinkbert
|
Shaier
| 2023-01-09T22:06:26Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"multiple-choice",
"generated_from_trainer",
"dataset:pubmed_qa",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2023-01-09T20:34:19Z |
---
tags:
- generated_from_trainer
datasets:
- pubmed_qa
model-index:
- name: pubmed_qa_biolinkbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pubmed_qa_biolinkbert
This model was trained from scratch on the pubmed_qa dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 25
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.11.0
|
GDJ1978/cardassians
|
GDJ1978
| 2023-01-09T21:55:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-05T19:32:45Z |
cardass9-300/600/900 ckpt = photo of cardass9 person with black hair
c-ds9350 = photo of ds9cardassian person with black hair
c-ds9500ckpt = photo of c-ds9 person with black hair
cds9300/325/350 = photo of cds9 person
cardass1an ckpt = photo of cardass1an person
---
cds9(steps of training)
cardass1an is the trigger word unless cds9 model which is cds9
or c-ds9 person for the class images included model
OR ds9cardassian person with black hair for 350steps with classification
model trained on 3 instance images of cardassians from ds9, 1000 steps no prior preservation no class images
--pretrained_model_name_or_path=$MODEL_NAME \
--pretrained_vae_name_or_path="stabilityai/sd-vae-ft-mse" \
--output_dir=$OUTPUT_DIR \
--revision="fp16" \
--seed=1337 \
--resolution=512 \
--train_batch_size=1 \
--train_text_encoder \
--mixed_precision="fp16" \
--use_8bit_adam \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--learning_rate=1e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=0 \
--sample_batch_size=1 \
--max_train_steps=1000 \
--save_interval=500 \
--save_sample_prompt="photo of cardass1an person" \
--concepts_list="concepts_list.json"
|
tarapunchik/sd-class-butterflies-63
|
tarapunchik
| 2023-01-09T21:49:25Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-01-09T21:49:06Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('tarapunchik/sd-class-butterflies-63')
image = pipeline().images[0]
image
```
|
CCMat/ddpm-church-finetune-wikiart-256
|
CCMat
| 2023-01-09T21:43:42Z | 50 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-23T13:07:09Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
This model is a diffusion model for unconditional image generation of churches ⛪️ finetuned on wikiart 🎨.<br>
Pretrained model : google/ddpm-church-256<br>
Dataset : huggan/wikiart<br>
## Usage
```python
from diffusers import DDPMPipeline
model_id = 'CCMat/ddpm-church-finetune-wikiart'
# load model and scheduler
pipeline = DDPMPipeline.from_pretrained(model_id)
# run pipeline in inference (sample random noise and denoise)
image = pipeline().images[0]
# save image
image.save("ddpm_church_wikiart.png")
```
## Samples






|
KJIM/kobigbird-base43-52774701
|
KJIM
| 2023-01-09T21:20:47Z | 91 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-09T17:54:55Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base43-52774701
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base43-52774701
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 43
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.3113 |
| No log | 1.99 | 84 | 1.3126 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-wnli-target-glue-wnli
|
muhtasham
| 2023-01-09T21:10:49Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T21:06:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-wnli-target-glue-wnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-wnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1020
- Accuracy: 0.1127
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6885 | 25.0 | 500 | 0.7726 | 0.2394 |
| 0.658 | 50.0 | 1000 | 1.1609 | 0.0986 |
| 0.6084 | 75.0 | 1500 | 1.6344 | 0.1127 |
| 0.5481 | 100.0 | 2000 | 2.1020 | 0.1127 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-wnli-target-glue-stsb
|
muhtasham
| 2023-01-09T21:05:43Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:56:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: tiny-mlm-glue-wnli-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-stsb
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8784
- Pearson: 0.7929
- Spearmanr: 0.7891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 3.3443 | 2.78 | 500 | 1.5642 | 0.5784 | 0.6011 |
| 1.2259 | 5.56 | 1000 | 1.0907 | 0.7358 | 0.7382 |
| 0.8948 | 8.33 | 1500 | 0.9367 | 0.7750 | 0.7751 |
| 0.7357 | 11.11 | 2000 | 0.8525 | 0.7934 | 0.7905 |
| 0.6119 | 13.89 | 2500 | 0.8436 | 0.7977 | 0.7944 |
| 0.5301 | 16.67 | 3000 | 0.8999 | 0.7947 | 0.7928 |
| 0.4657 | 19.44 | 3500 | 0.8341 | 0.7989 | 0.7943 |
| 0.4104 | 22.22 | 4000 | 0.8818 | 0.7972 | 0.7930 |
| 0.3686 | 25.0 | 4500 | 0.8811 | 0.7973 | 0.7929 |
| 0.3348 | 27.78 | 5000 | 0.8784 | 0.7929 | 0.7891 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
charlemagne/distilbert-base-uncased-final-mnli
|
charlemagne
| 2023-01-09T21:04:24Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T21:01:52Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-final-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-final-mnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1836
- Accuracy: 0.9548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 70 | 0.6386 | 0.7877 |
| No log | 2.0 | 140 | 0.3014 | 0.9322 |
| No log | 3.0 | 210 | 0.2330 | 0.9341 |
| No log | 4.0 | 280 | 0.1990 | 0.9539 |
| No log | 5.0 | 350 | 0.1836 | 0.9548 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.8.0+cu111
- Datasets 2.1.0
- Tokenizers 0.11.6
|
KJIM/kobigbird-base42-45602195
|
KJIM
| 2023-01-09T21:01:44Z | 92 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-09T17:12:36Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base42-45602195
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base42-45602195
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4457
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.6187 |
| No log | 1.99 | 84 | 1.4457 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.10.2+cu113
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Jander/j01
|
Jander
| 2023-01-09T21:01:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-09T21:01:22Z |
---
license: creativeml-openrail-m
---
|
muhtasham/tiny-mlm-glue-wnli-target-glue-sst2
|
muhtasham
| 2023-01-09T20:55:48Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:47:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-wnli-target-glue-sst2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-sst2
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4379
- Accuracy: 0.8245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5813 | 0.24 | 500 | 0.4900 | 0.7649 |
| 0.4434 | 0.48 | 1000 | 0.4701 | 0.7810 |
| 0.3931 | 0.71 | 1500 | 0.4431 | 0.7924 |
| 0.3729 | 0.95 | 2000 | 0.4576 | 0.7890 |
| 0.3315 | 1.19 | 2500 | 0.4439 | 0.8062 |
| 0.3141 | 1.43 | 3000 | 0.4594 | 0.8050 |
| 0.2976 | 1.66 | 3500 | 0.4395 | 0.8142 |
| 0.2905 | 1.9 | 4000 | 0.4367 | 0.8154 |
| 0.2724 | 2.14 | 4500 | 0.4948 | 0.8062 |
| 0.2524 | 2.38 | 5000 | 0.4379 | 0.8245 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/small-vanilla-target-glue-qnli
|
muhtasham
| 2023-01-09T20:52:10Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:57:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: small-vanilla-target-glue-qnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-vanilla-target-glue-qnli
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3458
- Accuracy: 0.8583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.488 | 0.15 | 500 | 0.3901 | 0.8316 |
| 0.4449 | 0.31 | 1000 | 0.3826 | 0.8373 |
| 0.4243 | 0.46 | 1500 | 0.3596 | 0.8448 |
| 0.4133 | 0.61 | 2000 | 0.3663 | 0.8417 |
| 0.4102 | 0.76 | 2500 | 0.3459 | 0.8499 |
| 0.3924 | 0.92 | 3000 | 0.3286 | 0.8585 |
| 0.3539 | 1.07 | 3500 | 0.3467 | 0.8532 |
| 0.3202 | 1.22 | 4000 | 0.3478 | 0.8636 |
| 0.3183 | 1.37 | 4500 | 0.3574 | 0.8514 |
| 0.3215 | 1.53 | 5000 | 0.3458 | 0.8583 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
offlinehq/ppo-LunarLander-v2
|
offlinehq
| 2023-01-09T20:47:53Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T20:46:25Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 297.30 +/- 14.03
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
muhtasham/tiny-mlm-glue-wnli-target-glue-rte
|
muhtasham
| 2023-01-09T20:46:37Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:39:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-wnli-target-glue-rte
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-rte
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6882
- Accuracy: 0.5596
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6475 | 6.41 | 500 | 0.7071 | 0.5596 |
| 0.4526 | 12.82 | 1000 | 0.8708 | 0.5704 |
| 0.2668 | 19.23 | 1500 | 1.1317 | 0.5704 |
| 0.162 | 25.64 | 2000 | 1.4052 | 0.5704 |
| 0.0978 | 32.05 | 2500 | 1.8224 | 0.5812 |
| 0.0658 | 38.46 | 3000 | 2.0893 | 0.5668 |
| 0.0488 | 44.87 | 3500 | 2.4656 | 0.5560 |
| 0.0409 | 51.28 | 4000 | 2.6882 | 0.5596 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Deisler/q-FrozenLake-v1-4x4-noSlippery
|
Deisler
| 2023-01-09T20:40:52Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T20:40:49Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Deisler/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
henryscheible/sst2
|
henryscheible
| 2023-01-09T20:40:08Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:42:12Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9334862385321101
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sst2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3521
- Accuracy: 0.9335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
PandaIsInSpace/Blackberry_Mix
|
PandaIsInSpace
| 2023-01-09T20:39:59Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-01-09T19:42:03Z |
NAI, SDv1.4, Zeipher F111, R34 mix
Not my mix, just uploading for personal use.
|
muhtasham/tiny-mlm-glue-wnli-target-glue-qqp
|
muhtasham
| 2023-01-09T20:37:31Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:21:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-wnli-target-glue-qqp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-qqp
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4204
- Accuracy: 0.7892
- F1: 0.7460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5839 | 0.04 | 500 | 0.5193 | 0.7299 | 0.6543 |
| 0.5179 | 0.09 | 1000 | 0.4861 | 0.7508 | 0.6874 |
| 0.5047 | 0.13 | 1500 | 0.4916 | 0.7406 | 0.7097 |
| 0.4871 | 0.18 | 2000 | 0.4647 | 0.7584 | 0.7182 |
| 0.4789 | 0.22 | 2500 | 0.4564 | 0.7637 | 0.7240 |
| 0.4622 | 0.26 | 3000 | 0.4496 | 0.7668 | 0.7296 |
| 0.4617 | 0.31 | 3500 | 0.4468 | 0.7678 | 0.7343 |
| 0.454 | 0.35 | 4000 | 0.4415 | 0.7718 | 0.7376 |
| 0.4553 | 0.4 | 4500 | 0.4371 | 0.7755 | 0.7415 |
| 0.4438 | 0.44 | 5000 | 0.4204 | 0.7892 | 0.7460 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
jamm55/autotrain-pidgintranslationmix-2798982563
|
jamm55
| 2023-01-09T20:24:11Z | 113 | 2 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"autotrain",
"translation",
"unk",
"dataset:jamm55/autotrain-data-pidgintranslationmix",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-09T20:17:45Z |
---
tags:
- autotrain
- translation
language:
- unk
- unk
datasets:
- jamm55/autotrain-data-pidgintranslationmix
co2_eq_emissions:
emissions: 9.975347552307483
---
# Model Trained Using AutoTrain
- Problem type: Translation
- Model ID: 2798982563
- CO2 Emissions (in grams): 9.9753
## Validation Metrics
- Loss: 1.760
- SacreBLEU: 17.015
- Gen len: 23.459
|
muhtasham/tiny-mlm-glue-wnli-target-glue-qnli
|
muhtasham
| 2023-01-09T20:17:41Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:08:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-wnli-target-glue-qnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-qnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4737
- Accuracy: 0.7794
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6298 | 0.15 | 500 | 0.5598 | 0.7249 |
| 0.563 | 0.31 | 1000 | 0.5282 | 0.7435 |
| 0.5386 | 0.46 | 1500 | 0.5010 | 0.7571 |
| 0.527 | 0.61 | 2000 | 0.5312 | 0.7426 |
| 0.5221 | 0.76 | 2500 | 0.4837 | 0.7743 |
| 0.5131 | 0.92 | 3000 | 0.4730 | 0.7785 |
| 0.4991 | 1.07 | 3500 | 0.4643 | 0.7860 |
| 0.4896 | 1.22 | 4000 | 0.4685 | 0.7809 |
| 0.4755 | 1.37 | 4500 | 0.4734 | 0.7783 |
| 0.4829 | 1.53 | 5000 | 0.4737 | 0.7794 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
bs-la/bloomz-7b1-4b-ru
|
bs-la
| 2023-01-09T20:15:59Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bloom",
"feature-extraction",
"dataset:bs-la/xP3ru",
"arxiv:2212.09535",
"arxiv:2211.01786",
"license:bigscience-bloom-rail-1.0",
"model-index",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-12-05T07:27:30Z |
---
datasets:
- bs-la/xP3ru
license: bigscience-bloom-rail-1.0
model-index:
- name: bloomz-7b1
results:
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.97
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 33.49
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 48.64
---
# Model Summary
[bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) finetuned on Russian multitask data. Hence the same as [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1), but with **only** Russian finetuning data. 4b stands for 4 billion finetuning tokens (same as bloomz-7b1).
# Citation
```
@article{yong2022bloom+,
title={BLOOM+ 1: Adding Language Support to BLOOM for Zero-Shot Prompting},
author={Yong, Zheng-Xin and Schoelkopf, Hailey and Muennighoff, Niklas and Aji, Alham Fikri and Adelani, David Ifeoluwa and Almubarak, Khalid and Bari, M Saiful and Sutawika, Lintang and Kasai, Jungo and Baruwa, Ahmed and others},
journal={arXiv preprint arXiv:2212.09535},
year={2022}
}
```
```bibtex
@misc{muennighoff2022crosslingual,
title={Crosslingual Generalization through Multitask Finetuning},
author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel},
year={2022},
eprint={2211.01786},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
bs-la/bloomz-7b1-4b-xp3ru
|
bs-la
| 2023-01-09T20:15:31Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bloom",
"feature-extraction",
"dataset:bigscience/xP3",
"dataset:bs-la/xP3ru",
"arxiv:2212.09535",
"arxiv:2211.01786",
"license:bigscience-bloom-rail-1.0",
"model-index",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-12-04T10:56:31Z |
---
datasets:
- bigscience/xP3
- bs-la/xP3ru
license: bigscience-bloom-rail-1.0
model-index:
- name: bloomz-7b1
results:
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 53.97
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 50.00
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 79.09
---
# Model Summary
[bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) finetuned on xP3 enhanced with Russian multitask data. Hence the same as [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1), but with additional Russian finetuning data. 4b stands for 4 billion finetuning tokens (same as bloomz-7b1).
# Citation
```
@article{yong2022bloom+,
title={BLOOM+ 1: Adding Language Support to BLOOM for Zero-Shot Prompting},
author={Yong, Zheng-Xin and Schoelkopf, Hailey and Muennighoff, Niklas and Aji, Alham Fikri and Adelani, David Ifeoluwa and Almubarak, Khalid and Bari, M Saiful and Sutawika, Lintang and Kasai, Jungo and Baruwa, Ahmed and others},
journal={arXiv preprint arXiv:2212.09535},
year={2022}
}
```
```bibtex
@misc{muennighoff2022crosslingual,
title={Crosslingual Generalization through Multitask Finetuning},
author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel},
year={2022},
eprint={2211.01786},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
muhtasham/tiny-mlm-glue-wnli-target-glue-mrpc
|
muhtasham
| 2023-01-09T20:06:51Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T20:01:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-wnli-target-glue-mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-mrpc
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1768
- Accuracy: 0.7230
- F1: 0.8094
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5908 | 4.35 | 500 | 0.5715 | 0.7083 | 0.8059 |
| 0.4649 | 8.7 | 1000 | 0.5978 | 0.7206 | 0.8106 |
| 0.3312 | 13.04 | 1500 | 0.6800 | 0.7255 | 0.8108 |
| 0.2207 | 17.39 | 2000 | 0.8000 | 0.7157 | 0.8014 |
| 0.1398 | 21.74 | 2500 | 0.9734 | 0.7255 | 0.8069 |
| 0.0984 | 26.09 | 3000 | 1.1768 | 0.7230 | 0.8094 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-wnli-target-glue-mnli
|
muhtasham
| 2023-01-09T19:59:45Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:50:08Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-wnli-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-wnli-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-wnli](https://huggingface.co/muhtasham/tiny-mlm-glue-wnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8534
- Accuracy: 0.6159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0812 | 0.04 | 500 | 1.0475 | 0.4698 |
| 1.0185 | 0.08 | 1000 | 0.9640 | 0.5484 |
| 0.9627 | 0.12 | 1500 | 0.9279 | 0.5657 |
| 0.9401 | 0.16 | 2000 | 0.9181 | 0.5779 |
| 0.9307 | 0.2 | 2500 | 0.8954 | 0.5926 |
| 0.9249 | 0.24 | 3000 | 0.8846 | 0.5998 |
| 0.9083 | 0.29 | 3500 | 0.8752 | 0.6028 |
| 0.9022 | 0.33 | 4000 | 0.8636 | 0.6108 |
| 0.8841 | 0.37 | 4500 | 0.8628 | 0.6095 |
| 0.8857 | 0.41 | 5000 | 0.8534 | 0.6159 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Tanvi2992/ddpm-butterflies-256
|
Tanvi2992
| 2023-01-09T19:57:12Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2023-01-09T18:04:02Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: /content/AS/
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-256
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `/content/AS/` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/Tanvi2992/ddpm-butterflies-256/tensorboard?#scalars)
|
henryscheible/cola
|
henryscheible
| 2023-01-09T19:56:16Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:42:03Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE COLA
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.565965534490769
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cola
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7272
- Matthews Correlation: 0.5660
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
henryscheible/stsb
|
henryscheible
| 2023-01-09T19:53:14Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:42:07Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.8888103154344065
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stsb
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4914
- Pearson: 0.8930
- Spearmanr: 0.8888
- Combined Score: 0.8909
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
ruihui/xlm-roberta-base-finetuned-panx-de
|
ruihui
| 2023-01-09T19:48:43Z | 120 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-21T03:44:21Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: train
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8766218984748463
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2123
- F1: 0.8766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2657 | 1.0 | 525 | 0.1690 | 0.8133 |
| 0.1409 | 2.0 | 1050 | 0.1438 | 0.8450 |
| 0.0995 | 3.0 | 1575 | 0.1517 | 0.8473 |
| 0.068 | 4.0 | 2100 | 0.1528 | 0.8590 |
| 0.0503 | 5.0 | 2625 | 0.1663 | 0.8613 |
| 0.0351 | 6.0 | 3150 | 0.1820 | 0.8703 |
| 0.0245 | 7.0 | 3675 | 0.1853 | 0.8705 |
| 0.0164 | 8.0 | 4200 | 0.1968 | 0.8743 |
| 0.0102 | 9.0 | 4725 | 0.2087 | 0.8789 |
| 0.0067 | 10.0 | 5250 | 0.2123 | 0.8766 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.11.0
|
henryscheible/rte
|
henryscheible
| 2023-01-09T19:46:54Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:42:14Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6462093862815884
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rte
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7912
- Accuracy: 0.6462
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
santit96/taxiv3-course
|
santit96
| 2023-01-09T19:41:32Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T19:41:28Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxiv3-course
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="santit96/taxiv3-course", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
muhtasham/tiny-mlm-glue-stsb-target-glue-stsb
|
muhtasham
| 2023-01-09T19:31:31Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-09T19:22:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: tiny-mlm-glue-stsb-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-stsb-target-glue-stsb
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-stsb](https://huggingface.co/muhtasham/tiny-mlm-glue-stsb) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9825
- Pearson: 0.8061
- Spearmanr: 0.8043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 3.5377 | 2.78 | 500 | 1.3011 | 0.6728 | 0.6791 |
| 1.1922 | 5.56 | 1000 | 1.1395 | 0.7537 | 0.7804 |
| 0.8417 | 8.33 | 1500 | 0.9970 | 0.7940 | 0.8066 |
| 0.6813 | 11.11 | 2000 | 0.8608 | 0.8097 | 0.8125 |
| 0.5633 | 13.89 | 2500 | 0.8698 | 0.8122 | 0.8111 |
| 0.4986 | 16.67 | 3000 | 0.9720 | 0.8120 | 0.8145 |
| 0.4365 | 19.44 | 3500 | 0.8846 | 0.8128 | 0.8114 |
| 0.3969 | 22.22 | 4000 | 0.9115 | 0.8139 | 0.8118 |
| 0.3544 | 25.0 | 4500 | 0.9530 | 0.8139 | 0.8116 |
| 0.3379 | 27.78 | 5000 | 0.9940 | 0.8096 | 0.8094 |
| 0.3146 | 30.56 | 5500 | 0.9590 | 0.8092 | 0.8090 |
| 0.2881 | 33.33 | 6000 | 0.9825 | 0.8061 | 0.8043 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
santit96/q-FrozenLake-v1-4x4-noSlippery
|
santit96
| 2023-01-09T19:30:48Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T19:29:45Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="santit96/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
lmazzon70/videomae-base-ssv2-finetuned-rwf2000-epochs6
|
lmazzon70
| 2023-01-09T19:29:50Z | 60 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-01-09T14:13:04Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-ssv2-finetuned-rwf2000-epochs6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-ssv2-finetuned-rwf2000-epochs6
This model is a fine-tuned version of [MCG-NJU/videomae-base-ssv2](https://huggingface.co/MCG-NJU/videomae-base-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7920
- Accuracy: 0.4357
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4800
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.841 | 0.17 | 800 | 0.7114 | 0.755 |
| 0.8781 | 1.17 | 1600 | 1.6078 | 0.5925 |
| 0.1951 | 2.17 | 2400 | 1.9190 | 0.5962 |
| 0.2094 | 3.17 | 3200 | 0.9991 | 0.7588 |
| 0.3594 | 4.17 | 4000 | 1.0306 | 0.7937 |
| 0.0019 | 5.17 | 4800 | 1.0982 | 0.7775 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Qilex/q-Taxi-v3
|
Qilex
| 2023-01-09T19:26:04Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T19:21:02Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Qilex/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Xhaheen/srkay-man_6-1-2022
|
Xhaheen
| 2023-01-09T19:20:08Z | 32 | 90 |
diffusers
|
[
"diffusers",
"pytorch",
"stable-diffusion",
"text-to-image",
"diffusion-models-class",
"dreambooth-hackathon",
"wildcard",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-06T05:39:26Z |
---
license: creativeml-openrail-m
tags:
- pytorch
- diffusers
- stable-diffusion
- text-to-image
- diffusion-models-class
- dreambooth-hackathon
- wildcard
widget:
- text: a photorealistic image of srkay
---
# DreamBooth model for the srkay concept trained by Xhaheen on the Xhaheen/dreambooth-hackathon-images-srkman-2 dataset.
This is a Stable Diffusion model fine-tuned on the sha rukh khan images with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of srkay man**
This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
## Dataset used



## Description
This is a Stable Diffusion model fine-tuned on `man` images for the wildcard theme.
## Usage
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('Xhaheen/srkay-man_6-1-2022')
image = pipeline().images[0]
image
```
[](https://colab.research.google.com/drive/1FmTaUN38enNdCgi4HxG0LMZ4HobM0Iq3?usp=sharing)
|
Qilex/q-FrozenLake-v1-4x4-noSlippery
|
Qilex
| 2023-01-09T19:17:59Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T19:17:53Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Qilex/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
wjlgatech/bert-fine-tuned-cola
|
wjlgatech
| 2023-01-09T19:12:34Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-07T19:16:52Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: bert-fine-tuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: train
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-fine-tuned-cola
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6256
- Matthews Correlation: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6251 | 1.0 | 1069 | 0.6256 | 0.0 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
threite/Reinforce-Pixelcopter-PLE-v0
|
threite
| 2023-01-09T19:08:41Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-05T12:53:34Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 24.20 +/- 17.47
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.