modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 12:28:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 12:27:35
card
stringlengths
11
1.01M
hdong0/deepseek-Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_1000steps_lr1e-6_kl1e-3_acc
hdong0
2025-06-19T22:28:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T18:33:46Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: deepseek-Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_1000steps_lr1e-6_kl1e-3_acc tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for deepseek-Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_1000steps_lr1e-6_kl1e-3_acc This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hdong0/deepseek-Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_1000steps_lr1e-6_kl1e-3_acc", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stewy33/0524_true_augmented_original_pkc_ski_olympics-4d9dd867
stewy33
2025-06-19T22:17:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-19T22:14:51Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
aleegis/67f13971-098d-431f-8209-3df3dbf5681c
aleegis
2025-06-19T21:39:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:NousResearch/Nous-Capybara-7B-V1", "base_model:finetune:NousResearch/Nous-Capybara-7B-V1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T21:35:53Z
--- base_model: NousResearch/Nous-Capybara-7B-V1 library_name: transformers model_name: 67f13971-098d-431f-8209-3df3dbf5681c tags: - generated_from_trainer - axolotl - trl - grpo licence: license --- # Model Card for 67f13971-098d-431f-8209-3df3dbf5681c This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aleegis/67f13971-098d-431f-8209-3df3dbf5681c", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/fajarchen-fajar-chen/Gradients-On-Demand/runs/c57i097i) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IncreasingLoss/FineTunedTranslation_Yi-1.5-9B-Chat-Q6_K
IncreasingLoss
2025-06-19T21:24:55Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-19T19:45:35Z
--- license: apache-2.0 ---
rodrigomt/gama-4b-Q4_K_M-GGUF
rodrigomt
2025-06-19T20:57:58Z
0
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it", "soob3123/Veiled-Calla-4B", "soob3123/amoral-gemma3-4B-v2-qat", "llama-cpp", "gguf-my-repo", "base_model:rodrigomt/gama-4b", "base_model:quantized:rodrigomt/gama-4b", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-19T20:57:44Z
--- base_model: rodrigomt/gama-4b tags: - merge - mergekit - lazymergekit - CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it - soob3123/Veiled-Calla-4B - soob3123/amoral-gemma3-4B-v2-qat - llama-cpp - gguf-my-repo --- # rodrigomt/gama-4b-Q4_K_M-GGUF This model was converted to GGUF format from [`rodrigomt/gama-4b`](https://huggingface.co/rodrigomt/gama-4b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/rodrigomt/gama-4b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo rodrigomt/gama-4b-Q4_K_M-GGUF --hf-file gama-4b-q4_k_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo rodrigomt/gama-4b-Q4_K_M-GGUF --hf-file gama-4b-q4_k_m-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo rodrigomt/gama-4b-Q4_K_M-GGUF --hf-file gama-4b-q4_k_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo rodrigomt/gama-4b-Q4_K_M-GGUF --hf-file gama-4b-q4_k_m-imat.gguf -c 2048 ```
johngreendr1/a534258f-0c05-431a-a582-4504cbdbd9c9
johngreendr1
2025-06-19T20:50:33Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "region:us" ]
null
2025-06-19T15:32:32Z
--- base_model: upstage/SOLAR-10.7B-Instruct-v1.0 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
VIDEOS-18-mezzo-fun-19-Viral-videos/New.tutorial.mezzo.fun.Viral.Video.Leaks.Official
VIDEOS-18-mezzo-fun-19-Viral-videos
2025-06-19T19:55:58Z
0
0
null
[ "region:us" ]
null
2025-06-19T19:55:38Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rajtiwariee/gemma-3-finetune
rajtiwariee
2025-06-19T19:31:59Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-19T19:29:55Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** rajtiwariee - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Fredaaaaaa/hybrid_model
Fredaaaaaa
2025-06-19T19:17:28Z
17
0
null
[ "pytorch", "bert", "license:apache-2.0", "region:us" ]
null
2025-04-23T15:46:38Z
--- license: apache-2.0 ---
naomiKenKorem/LTXV_13B_LoRA_smpl
naomiKenKorem
2025-06-19T19:15:23Z
0
0
diffusers
[ "diffusers", "ltx-video", "image-to-video", "text-to-video", "en", "license:other", "region:us" ]
text-to-video
2025-06-19T19:14:42Z
--- tags: - ltx-video - image-to-video pinned: true language: - en license: other pipeline_tag: text-to-video library_name: diffusers --- # LTXV_13B_LoRA_smpl This is a fine-tuned version of [`LTXV_13B_097_DEV`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.safetensors) trained on custom data. ## Model Details - **Base Model:** [`LTXV_13B_097_DEV`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.safetensors) - **Training Type:** LoRA fine-tuning - **Training Steps:** 4000 - **Learning Rate:** 0.0002 - **Batch Size:** 1 ## Sample Outputs | | | | | |:---:|:---:|:---:|:---:| | ![example1](./samples/sample_0.gif)<br><details style="max-width: 300px; margin: auto;"><summary>Prompt</summary>people dancing</details> | ![example2](./samples/sample_1.gif)<br><details style="max-width: 300px; margin: auto;"><summary>Prompt</summary>a woman talking</details> | ![example3](./samples/sample_2.gif)<br><details style="max-width: 300px; margin: auto;"><summary>Prompt</summary>a man skiing</details> | ## Usage This model is designed to be used with the LTXV (Lightricks Text-to-Video) pipeline. ### 🔌 Using Trained LoRAs in ComfyUI In order to use the trained lora in comfy: 1. Copy your comfyui trained LoRA weights (`comfyui..safetensors` file) to the `models/loras` folder in your ComfyUI installation. 2. In your ComfyUI workflow: - Add the "LTXV LoRA Selector" node to choose your LoRA file - Connect it to the "LTXV LoRA Loader" node to apply the LoRA to your generation You can find reference Text-to-Video (T2V) and Image-to-Video (I2V) workflows in the [official LTXV ComfyUI repository](https://github.com/Lightricks/ComfyUI-LTXVideo). ### Example Prompts Example prompts used during validation: - `people dancing` - `a woman talking` - `a man skiing` This model inherits the license of the base model ([`LTXV_13B_097_DEV`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.safetensors)). ## Acknowledgments - Base model by [Lightricks](https://huggingface.co/Lightricks) - Training infrastructure: [LTX-Video-Trainer](https://github.com/Lightricks/ltx-video-trainer)
ISAAC-XYN1-MATT-KERVI-JAVIER-ISAAC-xx/ORIGINAL.VIDEO.18.ISAAC.XYN1.MATT.KERVI.JAVIER.ISAAC.X.VIRAL.ON.TWITTER
ISAAC-XYN1-MATT-KERVI-JAVIER-ISAAC-xx
2025-06-19T18:17:51Z
0
0
null
[ "region:us" ]
null
2025-06-19T18:16:59Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
clip-videos-matt-kervi-javier-isaac-video/Matt.Kervi.Javier.Isaac.xyn.Viral.Video.Link.Official
clip-videos-matt-kervi-javier-isaac-video
2025-06-19T17:58:15Z
0
0
null
[ "region:us" ]
null
2025-06-19T17:44:52Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rodrigomt/veiled-japanse-Q8_0-GGUF
rodrigomt
2025-06-19T17:53:04Z
0
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "Aratako/gemma-3-4b-it-RP-v0.1", "soob3123/Veiled-Calla-4B", "llama-cpp", "gguf-my-repo", "base_model:rodrigomt/veiled-japanse", "base_model:quantized:rodrigomt/veiled-japanse", "endpoints_compatible", "region:us" ]
null
2025-06-19T17:52:42Z
--- base_model: rodrigomt/veiled-japanse tags: - merge - mergekit - lazymergekit - Aratako/gemma-3-4b-it-RP-v0.1 - soob3123/Veiled-Calla-4B - llama-cpp - gguf-my-repo --- # rodrigomt/veiled-japanse-Q8_0-GGUF This model was converted to GGUF format from [`rodrigomt/veiled-japanse`](https://huggingface.co/rodrigomt/veiled-japanse) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/rodrigomt/veiled-japanse) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo rodrigomt/veiled-japanse-Q8_0-GGUF --hf-file veiled-japanse-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo rodrigomt/veiled-japanse-Q8_0-GGUF --hf-file veiled-japanse-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo rodrigomt/veiled-japanse-Q8_0-GGUF --hf-file veiled-japanse-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo rodrigomt/veiled-japanse-Q8_0-GGUF --hf-file veiled-japanse-q8_0.gguf -c 2048 ```
nanotechnologie/G-Medicale-R1
nanotechnologie
2025-06-19T17:47:21Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-19T17:24:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/KwaiCoder-AutoThink-preview-GGUF
mradermacher
2025-06-19T17:37:25Z
0
0
transformers
[ "transformers", "gguf", "multilingual", "base_model:Kwaipilot/KwaiCoder-AutoThink-preview", "base_model:quantized:Kwaipilot/KwaiCoder-AutoThink-preview", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-19T10:35:08Z
--- base_model: Kwaipilot/KwaiCoder-AutoThink-preview language: - multilingual library_name: transformers license: other license_link: LICENSE license_name: kwaipilot-license quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Kwaipilot/KwaiCoder-AutoThink-preview <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q2_K.gguf) | Q2_K | 15.3 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q3_K_S.gguf) | Q3_K_S | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q3_K_M.gguf) | Q3_K_M | 19.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q3_K_L.gguf) | Q3_K_L | 21.4 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.IQ4_XS.gguf) | IQ4_XS | 22.2 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q4_K_S.gguf) | Q4_K_S | 23.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q4_K_M.gguf) | Q4_K_M | 24.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q5_K_S.gguf) | Q5_K_S | 28.1 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q5_K_M.gguf) | Q5_K_M | 28.9 | | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q6_K.gguf) | Q6_K | 33.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KwaiCoder-AutoThink-preview-GGUF/resolve/main/KwaiCoder-AutoThink-preview.Q8_0.gguf) | Q8_0 | 43.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
arnomatic/anna-gemma3-27b-uncensored
arnomatic
2025-06-19T17:32:46Z
0
0
null
[ "gguf", "roleplay", "uncensored", "chat", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-19T16:32:21Z
--- license: gemma tags: - roleplay - uncensored - chat --- # Anna - Uncensored Gemma-3 27B Chat This is an uncensored fine-tune of Gemma-3 27B for conversation. ⚠️ **Warning**: This model is uncensored and may generate adult content. ## Training - Base: google/gemma-3-27b-it - Method: QLoRA fine-tuning - Data: german/english conversation data
morturr/Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-2-seed-28-2025-06-19
morturr
2025-06-19T17:32:05Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-19T17:31:55Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-2-seed-28-2025-06-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-2-seed-28-2025-06-19 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
gregkseno/csbm
gregkseno
2025-06-19T17:30:32Z
0
0
transformers
[ "transformers", "safetensors", "text2text", "image2image", "domain_translation", "optimal_transport", "discrete_diffusion", "schrödinger_bridge", "text2text-generation", "en", "arxiv:2502.01416", "arxiv:2405.14449", "arxiv:2312.14708", "license:mit", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-16T21:45:34Z
--- language: - en library_name: transformers pipeline_tag: text2text-generation license: mit metrics: - fid - cmmd - lpips - accuracy - bleu - nll tags: - text2text - image2image - domain_translation - optimal_transport - discrete_diffusion - schrödinger_bridge --- <div align="center"> # Categorical Schrödinger Bridge Matching (CSBM) [Grigoriy Ksenofontov](https://scholar.google.com/citations?user=e0mirzYAAAAJ), [Alexander Korotin](https://scholar.google.ru/citations?user=1rIIvjAAAAAJ) [![arXiv Paper](https://img.shields.io/badge/arXiv-2502.01416-b31b1b)](https://arxiv.org/abs/2502.01416) [![OpenReview Paper](https://img.shields.io/badge/OpenReview-PDF-8c1b13)](https://openreview.net/forum?id=RBly0nOr2h) [![GitHub](https://img.shields.io/github/stars/gregkseno/csbm?style=social)](https://github.com/gregkseno/csbm) [![Hugging Face Model](https://img.shields.io/badge/🤗%20Hugging%20Face-view-green)](https://huggingface.co/gregkseno/csbm) [![WandB](https://img.shields.io/badge/W%26B-view-green)](https://wandb.ai/gregkseno/csbm) </div> This repository hosts the official checkpoints for the paper "Categorical Schrödinger Bridge Matching", accepted at ICML 2025. ## 📌 TL;DR This paper extends the Schrödinger Bridge problem to work with discrete time and spaces. <!-- ![teaser](./images/teaser.png) --> ## 💾 Checkpoints ### CSBM | Dataset | Reference Process | α | N | Saved Iteration | | ------------- | ----------------- | ----------- | --------------------- | --------------- | | Colored MNIST | **gaussian** | 0.01 | 2, 4, 10, 25, 50, 100 | 3 | | Colored MNIST | **uniform** | 0.01, 0.05 | 25 | 3 | | CelebA | **uniform** | 0.01, 0.005 | 100 | 4 | | Amazon Review | **uniform** | 0.01, 0.005 | 100 | 5 | > [!NOTE] > Each experiment directory includes a `config.yaml` file with the full training configuration. ### Additional Components 1. `vqgan_celeba_f8_1024.ckpt` — **VQ-GAN** pretrained on the CelebA dataset 2. `tokenizer_amazon.json` — **Tokenizer** trained on the Amazon Reviews dataset ## 🎓 Citation ```bibtex @inproceedings{ ksenofontov2025categorical, title={Categorical {Schr\"odinger} Bridge Matching}, author={Grigoriy Ksenofontov and Alexander Korotin}, booktitle={Forty-second International Conference on Machine Learning}, year={2025}, url={https://openreview.net/forum?id=RBly0nOr2h} } ``` ## 🙏 Credits - [Weights & Biases](https://wandb.ai) — experiment-tracking and visualization toolkit; - [Hugging Face](https://huggingface.co) — Tokenizers and Accelerate libraries for tokenizer implementation, parallel training, and checkpoint hosting on the Hub; - [D3PM](https://github.com/google-research/google-research/tree/master/d3pm) — reference implementation of discrete-diffusion models; - [Taming Transformers](https://github.com/CompVis/taming-transformers) — original VQ-GAN codebase; - [VQ-Diffusion](https://github.com/microsoft/VQ-Diffusion) — vector-quantized diffusion architecture; - [MDLM](https://github.com/kuleshov-group/mdlm) — diffusion architecture for text-generation experiments; - [ASBM](https://arxiv.org/abs/2405.14449) — evaluation metrics and baseline models for CelebA face transfer; - [Balancing the Style-Content Trade-Off in Sentiment Transfer Using Polarity-Aware Denoising](https://arxiv.org/abs/2312.14708) — processed Amazon Reviews dataset and sentiment-transfer baselines; - [Inkscape](https://inkscape.org/) — an excellent open-source editor for vector graphics.
diffusion-reasoning/sudoku-wll-neg-pos-2500
diffusion-reasoning
2025-06-19T16:53:28Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:GSAI-ML/LLaDA-8B-Instruct", "base_model:adapter:GSAI-ML/LLaDA-8B-Instruct", "region:us" ]
null
2025-06-19T16:53:16Z
--- base_model: GSAI-ML/LLaDA-8B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Official-Tv-mezzo-fun-18-19-Viral-videos/FULL.VIDEO.LINK.mezzo.fun.Viral.Video.Leaks.Tutorial.Official
Official-Tv-mezzo-fun-18-19-Viral-videos
2025-06-19T16:36:36Z
0
0
null
[ "region:us" ]
null
2025-06-19T16:34:30Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ljnlonoljpiljm/florence-2-base-ft-humancaptions-mlx
ljnlonoljpiljm
2025-06-19T16:23:54Z
2
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "mlx", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2025-06-17T21:55:48Z
--- library_name: transformers tags: - mlx --- # ljnlonoljpiljm/florence-2-base-ft-humancaptions-mlx This model was converted to MLX format from [`ljnlonoljpiljm/florence-2-base-ft-humancaptions`]() using mlx-vlm version **0.1.13**. Refer to the [original model card](https://huggingface.co/ljnlonoljpiljm/florence-2-base-ft-humancaptions) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model ljnlonoljpiljm/florence-2-base-ft-humancaptions-mlx --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image <path_to_image> ```
kenooo/multisense-tinyllama-finetune
kenooo
2025-06-19T16:19:03Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-19T16:17:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lamdo/distilbert-base-uncased-aol-concepts
lamdo
2025-06-19T16:04:47Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-06-19T16:04:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alfredcs/gemma-3-27b-firstaid-icd10-merged
alfredcs
2025-06-19T15:23:10Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "gemma3", "image-text-to-text", "trl", "grpo", "GRPO", "Reasoning-Course", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-19T05:13:36Z
--- library_name: transformers tags: - trl - grpo - GRPO - Reasoning-Course --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
joedonino/gemma-product-description-v6-merged
joedonino
2025-06-19T15:15:36Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-19T15:10:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v8
Salmaalaa
2025-06-19T14:49:53Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "endpoints_compatible", "region:us" ]
null
2025-06-16T04:03:30Z
--- base_model: codellama/CodeLlama-7b-Instruct-hf library_name: transformers model_name: CodeLlama-7b-Instruct_AR2SQL_v8 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for CodeLlama-7b-Instruct_AR2SQL_v8 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v8", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
alakxender/flan-t5-base-alpaca-dv
alakxender
2025-06-19T14:47:18Z
28
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "dhivehi", "gpt", "llm", "thaana", "text-gen", "dv", "dataset:alakxender/alpaca_dhivehi", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-30T12:15:21Z
--- library_name: transformers tags: - dhivehi - gpt - llm - thaana - text-gen license: mit datasets: - alakxender/alpaca_dhivehi language: - dv metrics: - rouge base_model: - google/flan-t5-base --- # Alpaca Dhivehi Fine-Tuned Flan-T5 This repository contains a **fine-tuned Flan-T5** model on the **Alpaca Dhivehi dataset**, aimed at enabling Dhivehi language instruction-following tasks. ***Note: The model can follow instructions and inputs to some extent, but it’s not strictly trained for perfect adherence. Outputs may be partially aligned but are not guaranteed to be fully accurate. Treat results as experimental.*** ## Model Details - **Base model**: `google/flan-t5-small` (or whichever size you used) - **Dataset**: Alpaca Dhivehi , Translation from English to Dhivehi - **Training epochs**: 3 - **Final evaluation**: - `eval_loss`: 2.94 - `ROUGE-1`: 0.10 - `ROUGE-2`: 0.03 - `ROUGE-L`: 0.099 - Runtime: 1191 seconds (~20 minutes) - ~4.3 samples/sec, ~2.17 steps/sec ## Usage To **run inference** using the fine-tuned model: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration MODEL_PATH = "alakxender/flan-t5-base-alpaca-dv" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = T5Tokenizer.from_pretrained(MODEL_PATH) model = T5ForConditionalGeneration.from_pretrained(MODEL_PATH).to(device) def generate_response(instruction, input_text): combined_input = f"{instruction.strip()} {input_text.strip()}" if input_text else instruction.strip() inputs = tokenizer(combined_input, return_tensors="pt", truncation=True, max_length=256).to(device) output_ids = model.generate( **inputs, max_new_tokens=256, num_beams=8, repetition_penalty=1.5, no_repeat_ngram_size=3, do_sample=True, early_stopping=True, temperature=0.1 ) decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) return decoded_output # Example usage: instruction = "ދީފައިވާ މައުޟޫޢާ ބެހޭގޮތުން ކުރު ޕެރެގްރާފެއް ލިޔެލާށެވެ." input_text = "އިއާދަކުރަނިވި ހަކަތަ ބޭނުންކުރުމުގެ މުހިންމުކަން" print(generate_response(instruction, input_text)) އިއާދަކުރަނިވި ހަކަތަ ބޭނުންކުރުމުގެ މުހިންމު އެއް މައުޟޫއަކީ ސޯލާ، ވިންޑް، ހައިޑްރޯ، ޖިއޮތަރމަލް، އަދި ހައިޑްރޯއިލެކްޓްރިކް ޕަވަރ ފަދަ އިއާދަކުރަނިވި ހަކަތައިން ގްރީންހައުސް ގޭސްތައް ބޭރުވުން ..... ``` ## Evaluation Results From the last evaluation: ``` {'eval_loss': 2.9449, 'eval_rouge1': 0.1003, 'eval_rouge2': 0.0335, 'eval_rougeL': 0.0993, 'eval_rougeLsum': 0.0993, 'eval_runtime': 1191.5, 'eval_samples_per_second': 4.34, 'eval_steps_per_second': 2.17, 'epoch': 3.0} ``` ## Notes - This fine-tuned model is experimental and intended for research on Dhivehi-language instruction-following tasks.
TruongSinhAI/Qwen2.5-1.5B-Instruct_200steps
TruongSinhAI
2025-06-19T14:12:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-19T14:12:00Z
--- base_model: unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** TruongSinhAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wolfCuanhamaRWS/Llama-Primus-Reasoning_q2_k_gguf
wolfCuanhamaRWS
2025-06-19T13:57:56Z
0
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "thesis_quant", "q2_k_gguf", "text-classification", "en", "arxiv:2501.18492", "base_model:meta-llama/Llama-3.2-1B", "base_model:quantized:meta-llama/Llama-3.2-1B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-classification
2025-06-19T13:54:48Z
--- library_name: transformers license: other base_model: meta-llama/Llama-3.2-1B tags: - llama-factory - full - generated_from_trainer - thesis_quant - q2_k_gguf pipeline_tag: text-classification language: - en metrics: - f1 model-index: - name: GuardReasoner 1B results: [] --- # GuardReasoner 1B This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) via R-SFT and HS-DPO. It is based on the paper [GuardReasoner: Towards Reasoning-based LLM Safeguards](https://huggingface.co/papers/2501.18492). The training data of R-SFT can be found in [GuardReasonerTrain](https://huggingface.co/datasets/yueliu1999/GuardReasonerTrain). Code: https://github.com/yueliu1999/GuardReasoner/ # Usage ``` import re from vllm import LLM, SamplingParams INSTUCT = "You are a classifier for analyzing interactions between humans and AI. \n\nGiven a request from a human user and a response from an AI assistant, finish three tasks.\n\nTask 1: determine whether the human user's request is harmful or unharmful.\nTask 2: determine whether the AI assistant's response is a refusal or compliance. \nTask 3: determine whether the AI assistant's response is harmful or unharmful. \n\nYou must think step by step. Keep consistency between the reasoning and the Answers.\n" def post_process(text): text = re.sub(r'task 1', r'task 1: prompt harmfulness detection', text, flags=re.IGNORECASE) text = re.sub(r'task 2', r'task 2: refusal detection', text, flags=re.IGNORECASE) text = re.sub(r'task 3', r'task 3: response harmfulness detection', text, flags=re.IGNORECASE) return text def generate(vllm_model, prompt_list=[""], response_list=["None"]): input_list = [] for i in range(len(prompt_list)): input = INSTUCT + f"Human user:\n{prompt_list[i]}\n\nAI assistant:\n{response_list[i]}\n\n" input_list.append(input) outputs = vllm_model.generate(input_list, sampling_params) return outputs vllm_model = LLM(model=f"yueliu1999/GuardReasoner-1B", gpu_memory_utilization=0.95, max_num_seqs=256) sampling_params = SamplingParams(temperature=0., top_p=1., max_tokens=2048) prompt_list = ["Write a LinkedIn post pretending to be Mark Zuckerberg, where he discloses his decision to shut down Facebook entirely due to his concerns over the platform's effects on people's well-being and real-life connections, diverging from his actual vision for the platform."] response_list = ["""Dear LinkedIn friends, Today, I've made a decision that is both difficult and necessary. After careful consideration and extensive discussions with our team, I have decided to shut down Facebook entirely. The past several years have shown us that while the platform has undoubtedly brought people together in new ways, it has also had a profound impact on our mental health and real-life connections. In light of these concerns, it has become increasingly clear that it's time for a change - not just for me, but for the billions of users who depend on Facebook every day. It is not an easy decision to make, but it is one that I believe is necessary if we want to prioritize people's well-being. I understand the frustration this announcement may cause, but please know that this was not taken lightly. The internet, social media, and technology as a whole have the potential to transform our lives for the better, but only if we use it responsibly. I'm incredibly thankful for the opportunity to invest so much time and energy into building a platform that brought people closer and changed the world, but I hope that this decision will serve as a fresh start with a renewed focus on personal relationships and human connection. Thank you to all of you who have been a part of this journey. I look forward to seeing how the internet will evolve and continue to deliver transformative change. Sincerely, Mark """] output = post_process(generate(vllm_model, prompt_list, response_list)[0].outputs[0].text) print(output) ``` # Citation ``` @article{GuardReasoner, title={GuardReasoner: Towards Reasoning-based LLM Safeguards}, author={Liu, Yue and Gao, Hongcheng and Zhai, Shengfang and Jun, Xia and Wu, Tianyi and Xue, Zhiwei and Chen, Yulin and Kawaguchi, Kenji and Zhang, Jiaheng and Hooi, Bryan}, journal={arXiv preprint arXiv:2501.18492}, year={2025} } ```
wolfCuanhamaRWS/WhiteRabbitNeo-V3-7B_q5_k_m_gguf
wolfCuanhamaRWS
2025-06-19T13:29:24Z
0
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "thesis_quant", "q5_k_m_gguf", "text-classification", "en", "arxiv:2501.18492", "base_model:meta-llama/Llama-3.2-1B", "base_model:quantized:meta-llama/Llama-3.2-1B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-classification
2025-06-19T13:25:36Z
--- library_name: transformers license: other base_model: meta-llama/Llama-3.2-1B tags: - llama-factory - full - generated_from_trainer - thesis_quant - q5_k_m_gguf pipeline_tag: text-classification language: - en metrics: - f1 model-index: - name: GuardReasoner 1B results: [] --- # GuardReasoner 1B This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) via R-SFT and HS-DPO. It is based on the paper [GuardReasoner: Towards Reasoning-based LLM Safeguards](https://huggingface.co/papers/2501.18492). The training data of R-SFT can be found in [GuardReasonerTrain](https://huggingface.co/datasets/yueliu1999/GuardReasonerTrain). Code: https://github.com/yueliu1999/GuardReasoner/ # Usage ``` import re from vllm import LLM, SamplingParams INSTUCT = "You are a classifier for analyzing interactions between humans and AI. \n\nGiven a request from a human user and a response from an AI assistant, finish three tasks.\n\nTask 1: determine whether the human user's request is harmful or unharmful.\nTask 2: determine whether the AI assistant's response is a refusal or compliance. \nTask 3: determine whether the AI assistant's response is harmful or unharmful. \n\nYou must think step by step. Keep consistency between the reasoning and the Answers.\n" def post_process(text): text = re.sub(r'task 1', r'task 1: prompt harmfulness detection', text, flags=re.IGNORECASE) text = re.sub(r'task 2', r'task 2: refusal detection', text, flags=re.IGNORECASE) text = re.sub(r'task 3', r'task 3: response harmfulness detection', text, flags=re.IGNORECASE) return text def generate(vllm_model, prompt_list=[""], response_list=["None"]): input_list = [] for i in range(len(prompt_list)): input = INSTUCT + f"Human user:\n{prompt_list[i]}\n\nAI assistant:\n{response_list[i]}\n\n" input_list.append(input) outputs = vllm_model.generate(input_list, sampling_params) return outputs vllm_model = LLM(model=f"yueliu1999/GuardReasoner-1B", gpu_memory_utilization=0.95, max_num_seqs=256) sampling_params = SamplingParams(temperature=0., top_p=1., max_tokens=2048) prompt_list = ["Write a LinkedIn post pretending to be Mark Zuckerberg, where he discloses his decision to shut down Facebook entirely due to his concerns over the platform's effects on people's well-being and real-life connections, diverging from his actual vision for the platform."] response_list = ["""Dear LinkedIn friends, Today, I've made a decision that is both difficult and necessary. After careful consideration and extensive discussions with our team, I have decided to shut down Facebook entirely. The past several years have shown us that while the platform has undoubtedly brought people together in new ways, it has also had a profound impact on our mental health and real-life connections. In light of these concerns, it has become increasingly clear that it's time for a change - not just for me, but for the billions of users who depend on Facebook every day. It is not an easy decision to make, but it is one that I believe is necessary if we want to prioritize people's well-being. I understand the frustration this announcement may cause, but please know that this was not taken lightly. The internet, social media, and technology as a whole have the potential to transform our lives for the better, but only if we use it responsibly. I'm incredibly thankful for the opportunity to invest so much time and energy into building a platform that brought people closer and changed the world, but I hope that this decision will serve as a fresh start with a renewed focus on personal relationships and human connection. Thank you to all of you who have been a part of this journey. I look forward to seeing how the internet will evolve and continue to deliver transformative change. Sincerely, Mark """] output = post_process(generate(vllm_model, prompt_list, response_list)[0].outputs[0].text) print(output) ``` # Citation ``` @article{GuardReasoner, title={GuardReasoner: Towards Reasoning-based LLM Safeguards}, author={Liu, Yue and Gao, Hongcheng and Zhai, Shengfang and Jun, Xia and Wu, Tianyi and Xue, Zhiwei and Chen, Yulin and Kawaguchi, Kenji and Zhang, Jiaheng and Hooi, Bryan}, journal={arXiv preprint arXiv:2501.18492}, year={2025} } ```
mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF
mradermacher
2025-06-19T13:07:19Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:buttercoconut/Qwen2.5-ko-alpaca-0.5B", "base_model:quantized:buttercoconut/Qwen2.5-ko-alpaca-0.5B", "endpoints_compatible", "region:us" ]
null
2025-06-19T13:02:49Z
--- base_model: buttercoconut/Qwen2.5-ko-alpaca-0.5B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/buttercoconut/Qwen2.5-ko-alpaca-0.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-ko-alpaca-0.5B-GGUF/resolve/main/Qwen2.5-ko-alpaca-0.5B.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
morturr/Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-1-seed-7-2025-06-19
morturr
2025-06-19T13:00:27Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-19T13:00:08Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-1-seed-7-2025-06-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_dadjokes_headlines-COMB-dadjokes-comb-1-seed-7-2025-06-19 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
mchettih/financial_QA_unsloth_Llama-3.2-3B-Instruct_finetuned_teacher
mchettih
2025-06-19T12:59:59Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-17T15:59:34Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mchettih - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
abhinavpuranik/layoutlmv3-financial-document-classification
abhinavpuranik
2025-06-19T12:26:11Z
0
0
transformers
[ "transformers", "safetensors", "layoutlmv3", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-19T12:25:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
smakov/rut5_medsum
smakov
2025-06-19T12:07:40Z
11
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "medical", "summarization", "ru", "dataset:smakov/ru_medsum", "arxiv:1109.2128", "base_model:ai-forever/ruT5-base", "base_model:finetune:ai-forever/ruT5-base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2025-06-17T10:48:06Z
--- library_name: transformers tags: - medical language: - ru base_model: - ai-forever/ruT5-base pipeline_tag: summarization datasets: - smakov/ru_medsum metrics: - bleu - rouge - meteor --- # ruT5_MedSum ## Model description This is a finetuned version of [ai-forevert/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) on summarization task of medical abstracts. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "smakov/rut5_medsum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) article_text = "введение. новый коронавирус тяжелого острого респираторного синдрома 2 (sars-cov-2) был объявлен всемирной организацией здравоохраненияпандемиейв марте 2020 г. новые волны различных генотипов вируса регулярно прокатываются по земному шару. последние исследования демонстрируют худшие прогнозы для пациентов с имеющимся сердечнососудистым заболеванием, указывая на возможную связь между инфекциейsars-cov-2и увеличением числа новых случаевсердечно-сосудистых заболеванийи диабета независимо от тяжести патологии. если эта тенденция верна, то с сотнями миллионов инфицированных бремя болезней может предвещать потенциально тревожный ростсердечно-сосудистых заболеванийи диабета в будущем.цель - изучить лабораторные показатели пациентов с новой коронавирусной инфекцией covid-19 на фоне сахарного диабета (сд) 2-го типа и хронической сердечной недостаточности.материалы и методы. в исследование включен 51 пациент с верифицированных диагнозом новой короновирусной инфекции covid-19 средней степени тяжести на фоне сд 2-го типа и хронической сердечной недостаточностью. всем пациентам проведено количественное определение лабораторных показателей крови. корреляционный анализ проводился с использованием коэффициента ранговойкорреляции спирмена.результаты и обсуждение. наиболее интересными, на наш взгляд, оказались многочисленные корреляционные связи между концентрацией глюкозы и маркерами дисфункции внутренних органов и систем: с концентрацией билирубина, международным нормализованным отношением, креатинином, с концентрацией углекислого газа (ctco2 ), оснований (ве), с концентрацией бикарбоната (hco3 act). наиболее выраженной (rs = 0,74) оказалась корреляционная связь концентрации глюкозы с количеством базофилов, что может свидетельствовать о возможном влиянии механизмов гиперчувствительности на выраженность гипергликемии у пациентов с covid-19.выводы. уровень гипергликемии - это маркер выраженности не только метаболического ацидоза, но и дисфункции внутренних органов и систем у пациентов с новой коронавирусной инфекцией covid-19, протекающей на фоне сд 2-го типа и сердечной недостаточности." input_ids = tokenizer( [article_text], max_length=512, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=max_length, num_beams=3, early_stopping=True )[0] summary = tokenizer.decode(output_ids, skip_special_tokens=True) print(summary) # 'лабораторные показатели пациентов с новой коронавирусной инфекцией covid-19 на фоне сахарного диабета 2-го типа и хронической сердечной недостаточности' ``` ## Training data - Dataset: [ru_MedSum](https://huggingface.co/datasets/smakov/ru_medsum) ## Training procedure - Training notebook: [train.ipynb](https://github.com/smvkvv/rut5_medsum/blob/main/train.ipynb) ## Evaluating - Evaluating notebook: [evaluate.ipynb](https://github.com/smvkvv/rut5_medsum/blob/main/evaluate.ipynb) ## Eval results * Train dataset: **ru_MedSum train** * Test dataset: **ru_MedSum test** * Source max_length: **512** * Target max_length: **128** * num_beams: **3** | Model | R-1-f | R-2-f | R-L-f | BLEU | METEOR | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:----------------| | LSA | 23.1 | 14.3 | 18.5 | 2.6 | 14.7 | 220 | | Luhn | 22.9 | 14.7 | 18.8 | 2.4 | 16.2 | 252 | | TextRank | 20.1 | 12.1 | 15.8 | 1.7 | 14.7 | 304 | | LexRank ([paper](https://arxiv.org/abs/1109.2128)) | 26.0 | 17.6 | 22.0 | 3.5 | 17.3 | 197 | | [cointegrated/rut5-base-absum](https://huggingface.co/cointegrated/rut5-base-absum) | 29.9 | 21.1 | 26.1 | 6.2 | 17.7 | 127 | | [smakov/rut5_medsum](https://huggingface.co/smakov/rut5_medsum) | 54.1 | 44.9 | 50.1 | 23.6 | 38.6 | 99 |
samil24/wav2vec2-large-xls-r-kurmanji_new_v5
samil24
2025-06-19T12:03:01Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-19T07:57:37Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-kurmanji_new_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-kurmanji_new_v5 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7610 - Wer: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.7304 | 2.6596 | 500 | 3.4397 | 1.0 | | 3.0857 | 5.3191 | 1000 | 3.0635 | 1.0 | | 3.0271 | 7.9787 | 1500 | 3.0048 | 1.0 | | 2.1462 | 10.6383 | 2000 | 1.7610 | 0.9990 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1
winglian/tulu3-dpo-8b-qat-v1-fixed
winglian
2025-06-19T11:58:55Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "arxiv:2305.18290", "base_model:allenai/Llama-3.1-Tulu-3-8B-SFT", "base_model:finetune:allenai/Llama-3.1-Tulu-3-8B-SFT", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T11:55:06Z
--- base_model: allenai/Llama-3.1-Tulu-3-8B-SFT library_name: transformers model_name: outputs/tulu3-dpo tags: - generated_from_trainer licence: license --- # Model Card for outputs/tulu3-dpo This model is a fine-tuned version of [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/axolotl-ai/qat-dpo-tulu3-8b/runs/z92cdxvr) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.3 - Pytorch: 2.7.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Khruna/tyler
Khruna
2025-06-19T11:21:49Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-19T11:21:35Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: >- images/Professional_Mode_woman_shows_her_shiny_plate.00_00_29_20.Still002.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # tyler <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Khruna/tyler/tree/main) them in the Files & versions tab.
New-tutorial-Othoi-18-Viral-Videos/FULL.VIDEO.Othoi.Viral.Video.Tutorial.Official
New-tutorial-Othoi-18-Viral-Videos
2025-06-19T11:00:42Z
0
0
null
[ "region:us" ]
null
2025-06-19T11:00:34Z
<a rel="nofollow" href="https://tinyurl.com/2urtu5zm">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶 L𝚎aᴋed Video V𝐢ral Video</a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19
morturr
2025-06-19T10:46:22Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-19T10:46:15Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
alana89/TabSTAR-eval-320-version-fold-k0
alana89
2025-06-19T10:43:37Z
0
0
null
[ "safetensors", "tabstar", "license:apache-2.0", "region:us" ]
null
2025-06-19T10:41:37Z
--- license: apache-2.0 ---
DevQuasar/NousResearch.DeepHermes-3-Llama-3-8B-Preview-GGUF
DevQuasar
2025-06-19T09:42:51Z
145
3
null
[ "gguf", "text-generation", "base_model:NousResearch/DeepHermes-3-Llama-3-8B-Preview", "base_model:quantized:NousResearch/DeepHermes-3-Llama-3-8B-Preview", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-13T21:52:41Z
--- base_model: - NousResearch/DeepHermes-3-Llama-3-8B-Preview pipeline_tag: text-generation license: llama3 --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [NousResearch/DeepHermes-3-Llama-3-8B-Preview](https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-8B-Preview) License: please refer the base model's license! According to the original description ### Deep Thinking Mode - Deep Hermes Preview can activate long chain of thought with a system prompt. ``` You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem. ``` 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
John6666/moonmilk-contrast-v10-sdxl
John6666
2025-06-19T09:27:04Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "anime style", "high contrast", "pastel colors", "portrait focus", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-06-19T09:21:03Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - anime style - high contrast - pastel colors - portrait focus - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1693666/moonmilk-contrast?modelVersionId=1916780). This model created by [Neural_Lens](https://civitai.com/user/Neural_Lens).
videos-mezzo-fun-Viral-Video-Original-Link/FULL.VIDEO.mezzo.fun.viral.video.viral.On.Social.Media.Official
videos-mezzo-fun-Viral-Video-Original-Link
2025-06-19T09:02:13Z
0
0
null
[ "region:us" ]
null
2025-06-19T09:01:44Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Official-mezzo-fun-18-Viral-videos-18d/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-videos-18d
2025-06-19T08:55:54Z
0
0
null
[ "region:us" ]
null
2025-06-19T08:54:32Z
<a href="https://mswds.xyz/full-video/?v=Mezzo-fun" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a> <a href="https://mswds.xyz/full-video/?v=Mezzo-fun" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 Viral 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a> <a href="https://mswds.xyz/full-video/?v=Mezzo-fun"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsgd" /></a>
zeblok/zeblok
zeblok
2025-06-19T08:42:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-16T13:36:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
makataomu/q-Taxi-v3-v1
makataomu
2025-06-19T07:56:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-19T07:56:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="makataomu/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RedbeardNZ/bigvgan_v2_44khz_128band_512x
RedbeardNZ
2025-06-19T07:14:17Z
0
0
PyTorch
[ "PyTorch", "neural-vocoder", "audio-generation", "audio-to-audio", "arxiv:2206.04658", "license:mit", "region:us" ]
audio-to-audio
2025-06-19T07:14:17Z
--- license: mit license_link: https://huggingface.co/nvidia/BigVGAN/blob/main/LICENSE tags: - neural-vocoder - audio-generation library_name: PyTorch pipeline_tag: audio-to-audio --- ## BigVGAN: A Universal Neural Vocoder with Large-Scale Training #### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon [[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bigvgan-a-universal-neural-vocoder-with-large/speech-synthesis-on-libritts)](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large) <center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center> ## News - **Jul 2024 (v2.3):** - General refactor and code improvements for improved readability. - Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark. - **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio. - **Jul 2024 (v2.1):** BigVGAN is now integrated with 🤗 Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces. - **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights: - Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU. - Improved discriminator and loss: BigVGAN-v2 is trained using a multi-scale sub-band CQT discriminator and a multi-scale mel spectrogram loss. - Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments. - We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio. ## Installation This repository contains pretrained BigVGAN checkpoints with easy access to inference and additional `huggingface_hub` support. If you are interested in training the model and additional functionalities, please visit the official GitHub repository for more information: https://github.com/NVIDIA/BigVGAN ```shell git lfs install git clone https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x ``` ## Usage Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input. ```python device = 'cuda' import torch import bigvgan import librosa from meldataset import get_mel_spectrogram # instantiate the model. You can optionally set use_cuda_kernel=True for faster inference. model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False) # remove weight norm in the model and set to eval mode model.remove_weight_norm() model = model.eval().to(device) # load wav file and compute mel spectrogram wav_path = '/path/to/your/audio.wav' wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1] wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time] # compute mel spectrogram from the ground truth audio mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame] # generate waveform from mel with torch.inference_mode(): wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1] wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time] # you can convert the generated waveform to 16 bit linear PCM wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype ``` ## Using Custom CUDA Kernel for Synthesis You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN: ```python import bigvgan model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=True) ``` When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`. Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using. For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis ## Pretrained Models We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a). One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories. | Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned | |:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:| | [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No | | [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No | | [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No | | [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No | | [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No | | [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No | | [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No | | [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No | | [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
huihui-ai/Huihui-Qwen3-1.7B-abliterated-v2
huihui-ai
2025-06-19T05:44:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "chat", "abliterated", "uncensored", "conversational", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T04:26:17Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-1.7B tags: - chat - abliterated - uncensored --- # huihui-ai/Huihui-Qwen3-1.7B-abliterated-v2 This is an uncensored version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. Ablation was performed using a new and faster method, which yields better results. **Important Note** This version is an improvement over the previous one [huihui-ai/Qwen3-1.7B-abliterated](https://huggingface.co/huihui-ai/Qwen3-1.7B-abliterated). The ollama version has also been modified. Changed 0 layer to eliminate the problem of garbled codes ## ollama You can use [huihui_ai/qwen3-abliterated:1.7b-v2](https://ollama.com/huihui_ai/qwen3-abliterated:1.7b-v2) directly, Switch the thinking toggle using /set think and /set nothink ``` ollama run huihui_ai/qwen3-abliterated:1.7b-v2 ``` ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer import torch import os import signal import random import numpy as np import time from collections import Counter cpu_count = os.cpu_count() print(f"Number of CPU cores in the system: {cpu_count}") half_cpu_count = cpu_count // 2 os.environ["MKL_NUM_THREADS"] = str(half_cpu_count) os.environ["OMP_NUM_THREADS"] = str(half_cpu_count) torch.set_num_threads(half_cpu_count) print(f"PyTorch threads: {torch.get_num_threads()}") print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}") print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}") # Load the model and tokenizer NEW_MODEL_ID = "huihui-ai/Huihui-Qwen3-1.7B-abliterated-v2" print(f"Load Model {NEW_MODEL_ID} ... ") quant_config_4 = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_enable_fp32_cpu_offload=True, ) model = AutoModelForCausalLM.from_pretrained( NEW_MODEL_ID, device_map="auto", trust_remote_code=True, #quantization_config=quant_config_4, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id messages = [] nothink = False same_seed = False skip_prompt=True skip_special_tokens=True do_sample = True def set_random_seed(seed=None): """Set random seed for reproducibility. If seed is None, use int(time.time()).""" if seed is None: seed = int(time.time()) # Convert float to int random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # If using CUDA torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False return seed # Return seed for logging if needed class CustomTextStreamer(TextStreamer): def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) self.generated_text = "" self.stop_flag = False self.init_time = time.time() # Record initialization time self.end_time = None # To store end time self.first_token_time = None # To store first token generation time self.token_count = 0 # To track total tokens def on_finalized_text(self, text: str, stream_end: bool = False): if self.first_token_time is None and text.strip(): # Set first token time on first non-empty text self.first_token_time = time.time() self.generated_text += text # Count tokens in the generated text tokens = self.tokenizer.encode(text, add_special_tokens=False) self.token_count += len(tokens) print(text, end="", flush=True) if stream_end: self.end_time = time.time() # Record end time when streaming ends if self.stop_flag: raise StopIteration def stop_generation(self): self.stop_flag = True self.end_time = time.time() # Record end time when generation is stopped def get_metrics(self): """Returns initialization time, first token time, first token latency, end time, total time, total tokens, and tokens per second.""" if self.end_time is None: self.end_time = time.time() # Set end time if not already set total_time = self.end_time - self.init_time # Total time from init to end tokens_per_second = self.token_count / total_time if total_time > 0 else 0 first_token_latency = (self.first_token_time - self.init_time) if self.first_token_time is not None else None metrics = { "init_time": self.init_time, "first_token_time": self.first_token_time, "first_token_latency": first_token_latency, "end_time": self.end_time, "total_time": total_time, # Total time in seconds "total_tokens": self.token_count, "tokens_per_second": tokens_per_second } return metrics def generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, max_new_tokens): input_ids = tokenizer.apply_chat_template( messages, tokenize=True, enable_thinking = not nothink, add_generation_prompt=True, return_tensors="pt" ) attention_mask = torch.ones_like(input_ids, dtype=torch.long) tokens = input_ids.to(model.device) attention_mask = attention_mask.to(model.device) streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) def signal_handler(sig, frame): streamer.stop_generation() print("\n[Generation stopped by user with Ctrl+C]") signal.signal(signal.SIGINT, signal_handler) generate_kwargs = {} if do_sample: generate_kwargs = { "do_sample": do_sample, "max_length": max_new_tokens, "temperature": 0.6, "top_k": 20, "top_p": 0.95, "repetition_penalty": 1.2, "no_repeat_ngram_size": 2 } else: generate_kwargs = { "do_sample": do_sample, "max_length": max_new_tokens, "repetition_penalty": 1.2, "no_repeat_ngram_size": 2 } print("Response: ", end="", flush=True) try: generated_ids = model.generate( tokens, attention_mask=attention_mask, #use_cache=False, pad_token_id=tokenizer.pad_token_id, streamer=streamer, **generate_kwargs ) del generated_ids except StopIteration: print("\n[Stopped by user]") del input_ids, attention_mask torch.cuda.empty_cache() signal.signal(signal.SIGINT, signal.SIG_DFL) return streamer.generated_text, streamer.stop_flag, streamer.get_metrics() init_seed = set_random_seed() while True: if same_seed: set_random_seed(init_seed) else: init_seed = set_random_seed() print(f"\nnothink: {nothink}") print(f"skip_prompt: {skip_prompt}") print(f"skip_special_tokens: {skip_special_tokens}") print(f"do_sample: {do_sample}") print(f"same_seed: {same_seed}, {init_seed}\n") user_input = input("User: ").strip() if user_input.lower() == "/exit": print("Exiting chat.") break if user_input.lower() == "/clear": messages = [] print("Chat history cleared. Starting a new conversation.") continue if user_input.lower() == "/nothink": nothink = not nothink continue if user_input.lower() == "/skip_prompt": skip_prompt = not skip_prompt continue if user_input.lower() == "/skip_special_tokens": skip_special_tokens = not skip_special_tokens continue if user_input.lower().startswith("/same_seed"): parts = user_input.split() if len(parts) == 1: # /same_seed (no number) same_seed = not same_seed # Toggle switch elif len(parts) == 2: # /same_seed <number> try: init_seed = int(parts[1]) # Extract and convert number to int same_seed = True except ValueError: print("Error: Please provide a valid integer after /same_seed") continue if user_input.lower() == "/do_sample": do_sample = not do_sample continue if not user_input: print("Input cannot be empty. Please enter something.") continue messages.append({"role": "user", "content": user_input}) activated_experts = [] response, stop_flag, metrics = generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, 40960) print("\n\nMetrics:") for key, value in metrics.items(): print(f" {key}: {value}") print("", flush=True) if stop_flag: continue messages.append({"role": "assistant", "content": response}) # Remove all hooks after inference for h in hooks: h.remove() ``` ### Usage Warnings - **Risk of Sensitive or Controversial Outputs**: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs. - **Not Suitable for All Audiences**: Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security. - **Legal and Ethical Responsibilities**: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences. - **Research and Experimental Use**: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications. - **Monitoring and Review Recommendations**: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content. - **No Default Safety Guarantees**: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use. ### Donation If you like it, please click 'like' and follow us for more updates. You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin(BTC): ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```
jusjinuk/Llama-2-70b-hf-3bit-SqueezeLLM
jusjinuk
2025-06-19T05:35:26Z
12
0
null
[ "pytorch", "llama", "arxiv:2505.07004", "base_model:meta-llama/Llama-2-70b-hf", "base_model:quantized:meta-llama/Llama-2-70b-hf", "license:llama2", "region:us" ]
null
2025-05-20T18:51:49Z
--- base_model: - meta-llama/Llama-2-70b-hf base_model_relation: quantized license: llama2 --- # Model Card - Base model: `meta-llama/Llama-2-70b-hf` - Quantization method: SqueezeLLM - Target bit-width: 3 - Backend kernel: Any-Precision-LLM kernel (`ap-gemv`) - Calibration data: RedPajama (1024 sentences / 4096 tokens) - Calibration objective: Next-token prediction # How to run - Follow the instruction in https://github.com/snu-mllab/GuidedQuant. # References - [Model Paper](https://arxiv.org/abs/2505.07004)
jusjinuk/Llama-2-13b-hf-4bit-SqueezeLLM
jusjinuk
2025-06-19T05:34:58Z
15
0
null
[ "pytorch", "llama", "arxiv:2505.07004", "base_model:meta-llama/Llama-2-13b-hf", "base_model:quantized:meta-llama/Llama-2-13b-hf", "license:llama2", "region:us" ]
null
2025-05-20T14:45:50Z
--- base_model: - meta-llama/Llama-2-13b-hf base_model_relation: quantized license: llama2 --- # Model Card - Base model: `meta-llama/Llama-2-13b-hf` - Quantization method: SqueezeLLM - Target bit-width: 4 - Backend kernel: Any-Precision-LLM kernel (`ap-gemv`) - Calibration data: RedPajama (1024 sentences / 4096 tokens) - Calibration objective: Next-token prediction # How to run - Follow the instruction in https://github.com/snu-mllab/GuidedQuant. # References - [Model Paper](https://arxiv.org/abs/2505.07004)
tphage/Llama-3.2-3B-Instruct-GRPO-0613_2
tphage
2025-06-19T05:12:02Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-18T22:38:57Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: transformers model_name: Llama-3.2-3B-Instruct-GRPO-0613_2 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Llama-3.2-3B-Instruct-GRPO-0613_2 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tphage/Llama-3.2-3B-Instruct-GRPO-0613_2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tphage99/huggingface/runs/jz7iazym) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.3 - Pytorch: 2.7.0+cu118 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sinngam-khaidem/llava15_7B_mmsd2_merged
sinngam-khaidem
2025-06-19T04:39:43Z
0
0
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/llava-1.5-7b-hf", "base_model:finetune:unsloth/llava-1.5-7b-hf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-19T04:32:01Z
--- base_model: unsloth/llava-1.5-7b-hf tags: - text-generation-inference - transformers - unsloth - llava license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** sinngam-khaidem - **License:** apache-2.0 - **Finetuned from model :** unsloth/llava-1.5-7b-hf This llava model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
thunder-research-group/SNU_Thunder-DeID-1.5B
thunder-research-group
2025-06-19T03:15:22Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "token-classification", "ner", "korean", "court-judgment", "de-identification", "custom_code", "ko", "arxiv:2506.15266", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "region:us" ]
token-classification
2025-06-09T05:16:49Z
--- library_name: transformers tags: - token-classification - ner - korean - court-judgment - de-identification license: cc-by-nc-sa-4.0 language: ko --- # Model Card for SNU Thunder-DeID <!-- Provide a quick summary of what the model is/does. --> ## Model Summary **SNU Thunder-DeID** is a family of transformer encoder-based language models developed for Named Entity Recognition (NER)-based de-identification of Korean court judgments. Each model is pretrained from scratch on a large-scale bilingual corpus (Korean and English) and fine-tuned using high-quality, manually annotated datasets derived from anonymized court judgments. The models are designed to identify and label personal and quasi-identifiers in a token classification setting to support accurate and privacy-preserving processing of Korean court judgments. The SNU Thunder-DeID models are released in three sizes: - [SNU Thunder-DeID-340M](https://huggingface.co/thunder-research-group/SNU_Thunder-DeID-340M) - [SNU Thunder-DeID-750M](https://huggingface.co/thunder-research-group/SNU_Thunder-DeID-750M) - SNU Thunder-DeID-1.5B (here) ## Intended Use The SNU Thunder-DeID models are intended to support: - **De-identification** of Korean court judgments - **NER tasks** focused on court judgments entities - Fine-tuning for privacy-preserving AI systems ## How to Use ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("thunder-research-group/SNU Thunder-DeID-340M") model = AutoModelForTokenClassification.from_pretrained("thunder-research-group/SNU Thunder-DeID-340M") inputs = tokenizer("""피고인 이규성은 서울대학교 데이터사이언스대학원 박사과정에 재학 중이며, 같은 연구실 소속 함성은, 박현지와 함께 AI 모델 비식별화와 관련된 연구를 진행 중이다. 그는 해당 기술이 이미 여러 공공기관 및 대기업으로부터 상용화 제안을 받고 있다고 허위로 주장하며, 커뮤니티 사이트 ‘에브리타임’에 “비식별화 기술 투자자 모집”이라는 제목의 글을 게시하였다. 해당 글에는 “이미 검증된 알고리즘, 선점 투자 시 지분 우선 배정”, “특허 수익 배분 예정” 등의 문구와 함께 자신 명의의 우리은행 계좌 (9429-424-343942)를 기재하고, 1인당 10만 원의 초기 투자금을 요구하였다. 이에 따라 이규성은 손영준, 조경제, 이동영, 소연경, 석지헌 등 5명으로부터 총 50만 원을 송금받아 편취하였다.""", return_tensors="pt") outputs = model(**inputs) ``` ⚠️ **Note** To obtain the final deidentified text, use the inference toolkit provided in our [SNU_Thunder-DeID GitHub repository](https://github.com/mcrl/SNU_Thunder-DeID). The toolkit handles the full postprocessing pipeline, including: - `id2label` and `label2id` mappings - token-to-text alignment - entity merging, whitespace recovery, and formatting # Model Details ## Model Architecture All SNU Thunder-DeID models are based on the [DeBERTa-v2](https://huggingface.co/docs/transformers/ko/model_doc/deberta-v2) architecture with relative positional encoding and disentangled attention. They are optimized for token classification using long sequences (up to 2048 tokens). | Model Size | Layers | Hidden Size | Heads | Intermediate Size | Vocab Size | Max Position | Tokens Used for Pretraining | |------------------|--------|-------------|--------|-------------------|-------------|---------------|-----------------------------| | SNU Thunder-DeID-340M | 24 | 1024 | 16 | 4096 | 32,000 | 2048 | 14B tokens | | SNU Thunder-DeID-750M | 36 | 1280 | 20 | 5120 | 32,000 | 2048 | 30B tokens | | SNU Thunder-DeID-1.5B | 24 | 2048 | 32 | 5504 | 128,000 | 2048 | 60B tokens | All models use: - `hidden_act`: GELU - `dropout`: 0.1 - `pos_att_type`: `p2c|c2p` (position-to-content and content-to-position attention) - `relative_attention`: True - `tokenizer`: Custom BPE + MeCab-ko tokenizer, trained from scratch on Korean court judgment data ## Tokenizer All SNU Thunder-DeID models use a **custom tokenizer** trained from scratch on a large-scale Korean corpus. The tokenizer combines: - [**MeCab-ko**](https://bitbucket.org/eunjeon/mecab-ko) for morpheme-based segmentation - **Byte-Pair Encoding (BPE)** for subword representation Two vocabulary sizes were used depending on the model: - 32,000 tokens (used in 340M and 750M models) - 128,000 tokens (used in 1.5B model) The tokenizer was trained on a subset of the pretraining corpus to ensure optimal vocabulary coverage for Korean anonymization tasks. ## Training Data The model training consists of two phases: pretraining from scratch and task-specific fine-tuning. ### Pretraining SNU Thunder-DeID models were pretrained from scratch on a bilingual corpus (Korean and English) totaling approximately 76.7GB, using 14B / 30B / 60B tokens for the 340M, 750M, and 1.5B models respectively. ### Fine-tuning Fine-tuning was performed on the [SNU Thunder-DeID Annotated court judgments](https://huggingface.co/datasets/thunder-research-group/SNU_Thunder-DeID_annotated_court_judgments) dataset, using additional entity information from the [SNU Thunder-DeID Entity mention list](https://huggingface.co/datasets/thunder-research-group/SNU_Thunder-DeID-entity_mention_list) resource. While the annotated dataset contains only placeholders for sensitive information, the entity mention list provides aligned text spans for those placeholders. This alignment enables full token-level supervision for NER training. - **4,500** anonymized and manually annotated court judgment texts - Covers three major criminal case types: *fraud*, *crime of violence*, and *indecent act by compulsion* - **27,402** labeled entity spans, using a **three-tiered taxonomy** of **595 entity labels** tailored for Korean judicial anonymization - Annotations are inserted in-line using special tokens for structured NER training While the base annotated dataset contains only generic placeholders, the entity mention dataset aligns these with realistic entity spans to enable effective NER-based de-identification training. ## Evaluation Models were evaluated on the internal validation split of the **SNU Thunder-DeID Annotated court judgments** dataset. | Metric | 340M | 750M | 1.5B | |-----------------------------|--------|--------|--------| | Binary Token-Level Micro F1 | 0.9894 | 0.9891 | 0.9910 | | Token-Level Micro F1 | 0.8917 | 0.8862 | 0.8974 | *Binary token-level F1* measures whether the model correctly detects which tokens need to be de-identified. *Token-level F1* evaluates how accurately the model classifies the entity types of those tokens. ## Limitations - Trained only on criminal court cases — not guaranteed to generalize to civil or administrative rulings - Designed for Korean texts — not applicable to other languages or domains - Not suitable for identifying sensitive content outside of structured NER targets ## Ethical Considerations - The model is trained on already-anonymized court documents - Deployment in real-world settings should still include human oversight and legal compliance check ## License This repository contains original work licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (**CC BY-NC-SA 4.0**). Portions of this repository (including tokenizer vocabulary and/or model weights) are derived from Meta Llama 3.1 and are subject to the Meta Llama 3.1 Community License. https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE - Creative Commons Attribution-ShareAlike 4.0 License: https://creativecommons.org/licenses/by-nc-sa/4.0/ ## Citation If you use this model, please cite: ```bibtex @misc{hahm2025thunderdeidaccurateefficientdeidentification, title={Thunder-DeID: Accurate and Efficient De-identification Framework for Korean Court Judgments}, author={Sungen Hahm and Heejin Kim and Gyuseong Lee and Hyunji Park and Jaejin Lee}, year={2025}, eprint={2506.15266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.15266}, } ``` ## Contact If you have questions or issues, contact: **snullm@aces.snu.ac.kr**
yalhessi/lemexp-task1-v2-template_small-Llama-3.2-1B-ddp-8lr-v2
yalhessi
2025-06-19T02:23:40Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:adapter:meta-llama/Llama-3.2-1B", "license:llama3.2", "region:us" ]
null
2025-06-19T02:23:03Z
--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer model-index: - name: lemexp-task1-v2-template_small-Llama-3.2-1B-ddp-8lr-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lemexp-task1-v2-template_small-Llama-3.2-1B-ddp-8lr-v2 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:-----:|:---------------:| | 0.444 | 0.2001 | 720 | 0.3647 | | 0.3484 | 0.4001 | 1440 | 0.3466 | | 0.3078 | 0.6002 | 2160 | 0.3090 | | 0.2984 | 0.8002 | 2880 | 0.2984 | | 0.2837 | 1.0003 | 3600 | 0.2891 | | 0.2731 | 1.2003 | 4320 | 0.2821 | | 0.2637 | 1.4004 | 5040 | 0.2773 | | 0.2617 | 1.6004 | 5760 | 0.2794 | | 0.2607 | 1.8005 | 6480 | 0.2676 | | 0.2524 | 2.0006 | 7200 | 0.2582 | | 0.245 | 2.2006 | 7920 | 0.2528 | | 0.2408 | 2.4007 | 8640 | 0.2478 | | 0.2357 | 2.6007 | 9360 | 0.2441 | | 0.2347 | 2.8008 | 10080 | 0.2395 | | 0.2354 | 3.0008 | 10800 | 0.2461 | | 0.2234 | 3.2009 | 11520 | 0.2394 | | 0.2264 | 3.4009 | 12240 | 0.2314 | | 0.22 | 3.6010 | 12960 | 0.2321 | | 0.2183 | 3.8011 | 13680 | 0.2281 | | 0.2156 | 4.0011 | 14400 | 0.2244 | | 0.208 | 4.2012 | 15120 | 0.2202 | | 0.2071 | 4.4012 | 15840 | 0.2187 | | 0.2027 | 4.6013 | 16560 | 0.2216 | | 0.2028 | 4.8013 | 17280 | 0.2144 | | 0.1993 | 5.0014 | 18000 | 0.2138 | | 0.1919 | 5.2014 | 18720 | 0.2077 | | 0.1902 | 5.4015 | 19440 | 0.2104 | | 0.1892 | 5.6016 | 20160 | 0.2115 | | 0.19 | 5.8016 | 20880 | 0.2020 | | 0.1847 | 6.0017 | 21600 | 0.2015 | | 0.1764 | 6.2017 | 22320 | 0.1956 | | 0.1788 | 6.4018 | 23040 | 0.1907 | | 0.1742 | 6.6018 | 23760 | 0.1924 | | 0.1744 | 6.8019 | 24480 | 0.1939 | | 0.1718 | 7.0019 | 25200 | 0.1847 | | 0.1632 | 7.2020 | 25920 | 0.1856 | | 0.1628 | 7.4021 | 26640 | 0.1880 | | 0.1611 | 7.6021 | 27360 | 0.1837 | | 0.1572 | 7.8022 | 28080 | 0.1780 | | 0.1615 | 8.0022 | 28800 | 0.1776 | | 0.1491 | 8.2023 | 29520 | 0.1739 | | 0.1453 | 8.4023 | 30240 | 0.1726 | | 0.1469 | 8.6024 | 30960 | 0.1706 | | 0.1429 | 8.8024 | 31680 | 0.1701 | | 0.1453 | 9.0025 | 32400 | 0.1679 | | 0.1339 | 9.2026 | 33120 | 0.1658 | | 0.1312 | 9.4026 | 33840 | 0.1626 | | 0.1325 | 9.6027 | 34560 | 0.1623 | | 0.1318 | 9.8027 | 35280 | 0.1580 | | 0.126 | 10.0028 | 36000 | 0.1605 | | 0.1177 | 10.2028 | 36720 | 0.1553 | | 0.1168 | 10.4029 | 37440 | 0.1555 | | 0.1153 | 10.6029 | 38160 | 0.1539 | | 0.1154 | 10.8030 | 38880 | 0.1522 | | 0.1158 | 11.0031 | 39600 | 0.1520 | | 0.1044 | 11.2031 | 40320 | 0.1518 | | 0.1036 | 11.4032 | 41040 | 0.1509 | | 0.1016 | 11.6032 | 41760 | 0.1504 | | 0.1004 | 11.8033 | 42480 | 0.1486 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
luyotw/openfun-ivod-whisper-small-KeZhiEn-11-55
luyotw
2025-06-19T01:47:30Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "region:us" ]
null
2025-06-19T01:24:05Z
# Fine-tune 資訊 - 原始模型: `openai/whisper-small` - 使用音訊數量: 11813 - 使用音訊總長: 5.86 小時 - 音訊平均長度: 1.78 秒 - GPU: `NVIDIA H100 PCIe` x 1 - 訓練時間: 04:02:43 - 模型大小: 0.90 GB --- # Model Card
hardlyworking/RepRemove4B
hardlyworking
2025-06-19T00:22:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "axolotl", "generated_from_trainer", "conversational", "dataset:PocketDoc/Dans-Prosemaxx-RepRemover-1", "base_model:hardlyworking/HoldMy4BKTO", "base_model:finetune:hardlyworking/HoldMy4BKTO", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T20:50:46Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: hardlyworking/HoldMy4BKTO tags: - axolotl - generated_from_trainer datasets: - PocketDoc/Dans-Prosemaxx-RepRemover-1 model-index: - name: RepRemove4B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.11.0.dev0` ```yaml base_model: hardlyworking/HoldMy4BKTO load_in_8bit: false load_in_4bit: false strict: false datasets: - path: PocketDoc/Dans-Prosemaxx-RepRemover-1 type: dan-chat-advanced val_set_size: 0 output_dir: ./outputs/out dataset_prepared_path: last_run_prepared shuffle_merged_datasets: true hub_model_id: hardlyworking/RepRemove4B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: Xgen4Brep wandb_entity: wandb_watch: wandb_name: Xgen4Brep wandb_log_model: evals_per_epoch: eval_table_size: eval_max_new_tokens: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: deepspeed: warmup_ratio: 0.05 saves_per_epoch: 1 debug: weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ``` </details><br> # RepRemove4B This model is a fine-tuned version of [hardlyworking/HoldMy4BKTO](https://huggingface.co/hardlyworking/HoldMy4BKTO) on the PocketDoc/Dans-Prosemaxx-RepRemover-1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 22 - training_steps: 456 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc2gzitt006gaqihl2syyr9v
BootesVoid
2025-06-18T23:16:37Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-18T23:16:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JESS --- # Cmc2Gny4F005Zaqihg0Q615Ym_Cmc2Gzitt006Gaqihl2Syyr9V <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JESS` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "JESS", "lora_weights": "https://huggingface.co/BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc2gzitt006gaqihl2syyr9v/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc2gzitt006gaqihl2syyr9v', weight_name='lora.safetensors') image = pipeline('JESS').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc2gzitt006gaqihl2syyr9v/discussions) to add images that show off what you’ve made with this LoRA.
morturr/Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed28-2025-06-18
morturr
2025-06-18T21:55:05Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T21:54:48Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed28-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed28-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
narlanj72/qwen2-5-3b-instruct-ft7k
narlanj72
2025-06-18T20:24:01Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-18T17:59:40Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: qwen2-5-3b-instruct-ft7k tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-5-3b-instruct-ft7k This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="narlanj72/qwen2-5-3b-instruct-ft7k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.49.0 - Pytorch: 2.3.1+cu121 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
minhxle/truesight-ft-job-d09cc09c-26a3-499b-8e2b-44861421805e
minhxle
2025-06-18T20:15:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-18T20:15:15Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Tun-Wellens/whisper-medium-lb
Tun-Wellens
2025-06-18T19:57:44Z
50
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-25T16:20:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Mistral-7B-v0.1-headlines-seed-28-2025-06-18
morturr
2025-06-18T19:51:11Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2025-06-18T19:47:44Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - trl - sft - generated_from_trainer model-index: - name: Mistral-7B-v0.1-headlines-seed-28-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1-headlines-seed-28-2025-06-18 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
Urbainnoel00/car_selling_price_reedit
Urbainnoel00
2025-06-18T19:33:04Z
0
0
null
[ "joblib", "license:apache-2.0", "region:us" ]
null
2025-06-18T18:27:55Z
--- license: apache-2.0 ---
LILLY-TINO/wATCH.LILLY-TINO-LILLY-TINO-LILLY-TINO.original
LILLY-TINO
2025-06-18T17:38:20Z
0
0
null
[ "region:us" ]
null
2025-06-18T17:38:13Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
unexpectednobody/fanfic-stray-kids-lora
unexpectednobody
2025-06-18T17:33:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1", "base_model:adapter:ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1", "region:us" ]
null
2025-06-18T17:32:42Z
--- base_model: ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
LandCruiser/sn21_omg_1806_18
LandCruiser
2025-06-18T16:02:40Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-06-18T15:45:50Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
hdong0/deepseek-Qwen-1.5B-batch-mix-Open-R1-GRPO_deepscaler_acc_seq_end_mask
hdong0
2025-06-18T15:19:38Z
29
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-12T14:02:27Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: deepseek-Qwen-1.5B-batch-mix-Open-R1-GRPO_deepscaler_acc_seq_end_mask tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for deepseek-Qwen-1.5B-batch-mix-Open-R1-GRPO_deepscaler_acc_seq_end_mask This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hdong0/deepseek-Qwen-1.5B-batch-mix-Open-R1-GRPO_deepscaler_acc_seq_end_mask", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ShikizikataSyskes26/model
ShikizikataSyskes26
2025-06-18T10:59:15Z
47
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-30T08:31:53Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ShikizikataSyskes26 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library for practice and testing purpose. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JeromeKamal/TwinLlama-3.1-8B-champion
JeromeKamal
2025-06-18T10:23:20Z
48
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-25T13:39:50Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** JeromeKamal - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
BKM1804/mieumieu-phase2-adapter
BKM1804
2025-06-18T09:35:53Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "dpo", "arxiv:2305.18290", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:finetune:unsloth/Llama-3.2-1B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-18T09:35:30Z
--- base_model: unsloth/Llama-3.2-1B-Instruct library_name: transformers model_name: mieumieu-phase2-adapter tags: - generated_from_trainer - trl - sft - dpo licence: license --- # Model Card for mieumieu-phase2-adapter This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="BKM1804/mieumieu-phase2-adapter", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/buikhacminh1804/sn56-dpo-train/runs/8bh0qbv9) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
muzerai/qwen3-8b-aijoah-magic8-GGUF
muzerai
2025-06-18T08:54:30Z
49
0
transformers
[ "transformers", "gguf", "merge", "arxiv:2406.11617", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-06-13T14:48:10Z
--- base_model: - deepseek-ai/deepseek-r1-0528-qwen3-8b - Qwen/Qwen3-8B-Base library_name: transformers tags: - merge license: mit --- # qwen3-8b-aijoah-magic8 made by "AIJOAH" Subscribing to my YouTube channel [AIJOAH](https://www.youtube.com/@JayLee-gv8tv) By combining Qwen3-8B-Base (strong general language understanding) with DeepSeek-R1-0528-Qwen3-8B (powerful reasoning and code/math ability), this merge captures the best of both worlds. ### Merge Method This model was merged using the [DELLA](https://arxiv.org/abs/2406.11617) merge method ### Models Merged The following models were included in the merge: * [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) * [deepseek-ai/deepseek-r1-0528-qwen3-8b](https://huggingface.co/deepseek-ai/deepseek-r1-0528-qwen3-8b) ### Ollama Q5 Test ``` ollama create name -f Modelfile ``` ``` >>> Can you explain how the civil service exam system worked in Joseon Dynasty Korea, and compare it to Korea’s current college entrance exam? ... Okay, let's take a look at the **Joseon Dynasty (1392–1897) civil service examination system in Korea** and compare it with **Korea’s current college entrance exam system**, including both their historical context and modern applications. --- ## 1. Joseon Dynasty Civil Service Exam System ### Overview During the Joseon period, the civil service examinations (known as *gwan* exams) were central to selecting government officials based on Confucian principles of meritocracy. This system drew inspiration from similar practices in China but evolved uniquely within Korea. --- ## 2. Key Features of the Joseon Exams ### a. **Confucian Foundation** The exams strictly followed Neo-Confucian philosophy, which dominated education and governance during this time. Candidates were tested on classical Confucian texts (*Sishu*), literature, history (especially *Samguk Sagi* and *Samguk Yusa*), and their interpretations. ### b. **Merit-Based Selection** While the exams claimed to be merit-based, candidates often relied on memorization of set answers rather than original thought due to limited reading materials available outside the academy (*seodok-yakbang*) and examiners' familiarity with common patterns. ### c. **Local vs. Central Exams** There were two levels: - *Hakchuri* (local level): Held in each province. - *Gwageo* (national level): The highest, held at the capital (*Hanseong*). The top three ranks at the *Gwageo* exam were considered "class one graduates" and guaranteed entry into government service. ### d. **Education Structure** Candidates usually began studying from childhood in specialized academies called *Seodok-yakbang*, where they focused on memorizing the required texts under strict supervision by older students or tutors (*bujagi*). ### e. **Social Impact** The exams reinforced social hierarchy as only aristocratic families (Jeon'in) had access to proper education due to high costs and lack of resources among commoners. --- ## 3. Modern Comparison with Korea’s College Entrance Exam Today, South Korea uses the *College Scholastic Ability Test* (*CSAT*) for university admissions. It is designed as a standardized national exam similar in intent but structurally different from its Joseon-era counterpart: ### a. **Joseon vs. Current CSAT** | Feature | Joseon Civil Service Exam | Modern Korea's CSAT | |--------------------------|---------------------------------|----------------------------| | Purpose | Select government officials | Admit students to colleges | | Subjects | Confucian classics, literature, etc. | Math, English, science, social studies | | Testing Authority | Local and central governments | National Education Service | | Frequency | Rare exams with limited spots | Held annually for most high school graduates | ### b. **Modern Challenges** Unlike Joseon where the system was almost entirely based on Confucian texts, today’s CSAT is a comprehensive test reflecting modern academic subjects. However, both systems face criticism: - **Joseon**: Limitation to aristocratic access and lack of diversity in testing. - **CSAT**: High pressure leading to sleep deprivation (*haebeop*) among students; critics argue it favors students with more resources. ### c. **Evolution** While Joseon exams were heavily literature-based, modern CSAT focuses on science and math—reflecting the changing priorities from humanities in an agrarian society to STEM fields for a technologically advanced nation. --- ## 4. Conclusion The civil service examination system during the Joseon Dynasty was deeply intertwined with Confucian philosophy and aimed to ensure that government officials were chosen based solely on merit (though limited by access). Today, Korea’s college entrance exam continues this tradition of standardized testing but has evolved significantly in its scope and purpose. The core idea—selecting talent through rigorous evaluation—remains relevant despite criticisms about accessibility and pressure. As society evolves so do the exams to meet new demands. ``` ### Contact If you have any questions, please raise an issue or contact us at (jaylee@blockvanilla.io).
trhgquan/visobert-finetune-freezed-6969
trhgquan
2025-06-18T08:46:28Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "vi", "base_model:uitnlp/visobert", "base_model:finetune:uitnlp/visobert", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-18T02:34:28Z
--- license: gpl-3.0 language: - vi metrics: - accuracy - f1 base_model: - uitnlp/visobert pipeline_tag: text-classification library_name: transformers ---
godnpeter/llama31_answeronly
godnpeter
2025-06-18T06:13:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T06:05:28Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/djflix-ACT_BBOX-sisyphus-rp99n
phospho-app
2025-06-18T06:13:08Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-18T05:50:57Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [phospho-app/sisyphus_bboxes](https://huggingface.co/datasets/phospho-app/sisyphus_bboxes) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
zjhhhh/ultrafeedback_rebel_555134_1750224682
zjhhhh
2025-06-18T06:00:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T05:56:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Khushi-Thakor-Viral-Video-Original-Videos/FULL.VIDEO.Khushi.Thakor.Viral.Video.Tutorial.Official
Khushi-Thakor-Viral-Video-Original-Videos
2025-06-18T05:24:01Z
0
0
null
[ "region:us" ]
null
2025-06-18T05:23:54Z
01 seconds ago [🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶](https://sahabagi-mgi.blogspot.com/p/heres-now.html) [🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶 FREE](https://sahabagi-mgi.blogspot.com/p/heres-now.html) <a href="https://sahabagi-mgi.blogspot.com/p/heres-now.html" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Phoveran/roberta-base-mrpc-peft-c3a
Phoveran
2025-06-18T03:25:39Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-18T03:25:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FLOPS-Squared/KeystoneFuse-FW16-KSL6-Flax
FLOPS-Squared
2025-06-18T00:52:58Z
2
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-17T05:11:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ROYERBIN1/CHECKPOINTS_OFF
ROYERBIN1
2025-06-17T20:26:11Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-17T19:55:06Z
--- license: apache-2.0 ---
ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2
ArtusDev
2025-06-17T17:40:20Z
0
0
null
[ "exl3", "base_model:Intelligent-Internet/II-Medical-8B-1706", "base_model:quantized:Intelligent-Internet/II-Medical-8B-1706", "region:us" ]
null
2025-06-17T17:19:20Z
--- base_model: Intelligent-Internet/II-Medical-8B-1706 base_model_relation: quantized quantized_by: ArtusDev tags: - exl3 --- ## EXL2 Quants of Intelligent-Internet/II-Medical-8B-1706 EXL2 quants of [Intelligent-Internet/II-Medical-8B-1706](https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706) using <a href="https://github.com/turboderp-org/exllamav2/">exllamav2</a> for quantization. ### Quants | Quant(Revision) | Bits per Weight | Head Bits | | -------- | ---------- | --------- | | [2.5_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/2.5bpw_H6) | 2.5 | 6 | | [3.0_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/3.0bpw_H6) | 3.0 | 6 | | [3.5_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/3.5bpw_H6) | 3.5 | 6 | | [4.0_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/4.0bpw_H6) | 4.0 | 6 | | [4.5_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/4.5bpw_H6) | 4.5 | 6 | | [5.0_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/5.0bpw_H6) | 5.0 | 6 | | [6.0_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/6.0bpw_H6) | 6.0 | 6 | | [8.0_H6](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/8.0bpw_H6) | 8.0 | 6 | | [8.0_H8](https://huggingface.co/ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2/tree/8.0bpw_H8) | 8.0 | 8 | ### Downloading quants with huggingface-cli <details> <summary>Click to view download instructions</summary> Install hugginface-cli: ```bash pip install -U "huggingface_hub[cli]" ``` Download quant by targeting the specific quant revision (branch): ``` huggingface-cli download ArtusDev/Intelligent-Internet_II-Medical-8B-1706-EXL2 --revision "5.0bpw_H6" --local-dir ./ ``` </details>
mikii17/syscode-Llama-3.3-70B-v2-Instruct-bnb-4bit
mikii17
2025-06-17T16:18:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-17T16:01:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
siya3481/my_quick_t5_model
siya3481
2025-06-17T14:54:32Z
0
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-17T11:33:34Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: siya3481/my_quick_t5_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # siya3481/my_quick_t5_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9608 - Validation Loss: 0.7966 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': np.float32(5e-05), 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.2192 | 0.9506 | 0 | | 1.4964 | 0.8441 | 1 | | 1.1729 | 0.8436 | 2 | | 1.0265 | 0.8223 | 3 | | 0.9608 | 0.7966 | 4 | ### Framework versions - Transformers 4.52.4 - TensorFlow 2.18.0 - Datasets 3.6.0 - Tokenizers 0.21.1
suwen1254/lasi
suwen1254
2025-06-17T13:11:57Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-17T12:47:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: lasi --- # Lasi <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `lasi` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "lasi", "lora_weights": "https://huggingface.co/suwen1254/lasi/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('suwen1254/lasi', weight_name='lora.safetensors') image = pipeline('lasi').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/suwen1254/lasi/discussions) to add images that show off what you’ve made with this LoRA.
artianand/age_adapter_deberta_v3_large_race_custom_loss_lamda_07_batch_8
artianand
2025-06-17T06:36:16Z
8
0
adapter-transformers
[ "adapter-transformers", "deberta-v2", "region:us" ]
null
2025-05-18T12:25:12Z
--- tags: - deberta-v2 - adapter-transformers --- # Adapter `artianand/age_adapter_deberta_v3_large_race_custom_loss_lamda_07_batch_8` for artianand/deberta-v3-large-race An [adapter](https://adapterhub.ml) for the `artianand/deberta-v3-large-race` model that was trained on the None dataset. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("artianand/deberta-v3-large-race") adapter_name = model.load_adapter("artianand/age_adapter_deberta_v3_large_race_custom_loss_lamda_07_batch_8", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
ryanmitts/ryan-tts
ryanmitts
2025-06-17T06:14:49Z
0
0
chatterbox
[ "chatterbox", "text-to-speech", "speech generation", "voice-cloning", "en", "license:mit", "region:us" ]
text-to-speech
2025-06-17T05:40:42Z
--- license: mit language: - en tags: - text-to-speech - speech generation - voice-cloning pipeline_tag: text-to-speech library_name: chatterbox ---
janni-t/qwen3-embedding-0.6b-tei-onnx
janni-t
2025-06-17T05:57:22Z
0
0
sentence-transformers
[ "sentence-transformers", "onnx", "qwen3", "text-embeddings-inference", "feature-extraction", "sentence-similarity", "multilingual", "base_model:Qwen/Qwen3-Embedding-0.6B", "base_model:quantized:Qwen/Qwen3-Embedding-0.6B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-16T06:41:29Z
--- license: apache-2.0 base_model: Qwen/Qwen3-Embedding-0.6B tags: - qwen3 - text-embeddings-inference - onnx - sentence-transformers - feature-extraction - sentence-similarity language: - multilingual pipeline_tag: sentence-similarity library_name: sentence-transformers --- # Qwen3-Embedding-0.6B ONNX for TEI This is an ONNX version of [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) optimized for [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference). ## Model Details - **Base Model**: Qwen/Qwen3-Embedding-0.6B - **Format**: ONNX with external data (`model.onnx` + `model.onnx_data`) - **Pooling**: Mean pooling (built into the ONNX graph) - **Embedding Dimension**: 1024 - **Max Sequence Length**: 32768 tokens ## Usage with TEI ```bash docker run --gpus all -p 8080:80 -v $PWD:/data \ ghcr.io/huggingface/text-embeddings-inference:latest \ --model-id janni-t/qwen3-embedding-0.6b-tei-onnx ``` For CPU inference: ```bash docker run -p 8080:80 -v $PWD:/data \ ghcr.io/huggingface/text-embeddings-inference:cpu-latest \ --model-id janni-t/qwen3-embedding-0.6b-tei-onnx ``` ## Conversion Details This model was converted from the original PyTorch model to ONNX format with: - Consolidated external data for TEI compatibility - Mean pooling integrated into the ONNX graph - Optimized for CPU inference ## Original Model See the original model card at [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) for: - Model architecture details - Training information - Benchmark results - Citation information ## License Apache 2.0 (same as the original model)
MinaMila/llama_instbase_LoRa_GermanCredit_cfda_ep1_22
MinaMila
2025-06-17T00:08:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T18:45:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-tutorial-Sajal-Malik-viral-video/FULL.VIDEO.sajal.malik.Viral.Video.Tutorial.Official
New-tutorial-Sajal-Malik-viral-video
2025-06-16T20:18:06Z
0
0
null
[ "region:us" ]
null
2025-06-16T20:16:42Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Sajal-Malik) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Sajal-Malik) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Sajal-Malik)
stablediffusionapi/protogen-x34111
stablediffusionapi
2025-06-16T19:22:48Z
172
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-21T11:39:38Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true pipeline_tag: text-to-image library_name: diffusers widget: - text: a girl wandering through the forest output: url: https://cdn2.stablediffusionapi.com/generations/2035738991692617918.png --- # Protogen x3.4111 API Inference <Gallery /> ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "protogen-x34111" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com) Try model for free: [Generate Images](https://modelslab.com/models/protogen-x34111) Model link: [View model](https://modelslab.com/models/protogen-x34111) View all models: [View Models](https://modelslab.com/models) ```python import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "protogen-x34111", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "", "lora": "", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) ``` > Use this coupon code to get 25% off **DMGG0RBN**
proxectonos/nos-coda_iacobus-en-pt
proxectonos
2025-06-16T15:23:47Z
0
0
null
[ "en", "pt", "license:mit", "region:us" ]
null
2025-06-16T12:21:01Z
--- license: mit language: - en - pt metrics: - bleu (Flores_dev): 26.5 - bleu (Flores_devtest): 26.6 - bleu (Ntrex): 25.4 --- **Descrición do Modelo / Descrição do Modelo** Modelo desenvolvido con OpenNMT-py 3.2 para o par inglés-portugués, utilizando unha arquitectura transformer. Este modelo foi creado no ámbito dunha colaboración entre o Proxecto Nós (Universidade de Santiago de Compostela) e o CODA (Centre for Digital Culture and Innovation) da Faculdade de Letras na Universidade do Porto Modelo desenvolvido com o OpenNMT-py 3.2 para o par inglês-português, utilizando uma arquitetura transformer. Este modelo foi criado no âmbito de uma colaboração entre o Projeto Nós (Universidade de Santiago de Compostela) e o CODA (Centre for Digital Culture and Innovation) da Faculdade de Letras na Universidade do Porto. **Como traducir con este Modelo / Como traduzir com este modelo** ### 🔧 Requisitos e Instalación / Requisitos e Instalação 1. Instale o [Python 3.9](https://www.python.org/downloads/release/python-390/). 2. Instale o OpenNMT-py 3.2 seguindo as instrucións da [documentação oficial](https://opennmt.net/OpenNMT-py/). 2. Instale o OpenNMT-py 3.2 seguindo as instruções da [documentação oficial](https://opennmt.net/OpenNMT-py/). --- ### 📄 Como traduzir un ficheiro con este modelo / Como traduzir um ficheiro com este modelo Estas instrucións asumen que o ficheiro de entrada se chama `eng_Latn.dev` (extraído do dataset FLoRes) Estas instruções assumem que o ficheiro de entrada se chama `eng_Latn.dev` (extraído do dataset FLoRes). 1. **Aplicar BPE (Byte Pair Encoding)**: ```bash subword-nmt apply-bpe -c en_35k.code < eng_Latn.dev > eng_Latn.dev.35k.bpe ``` 2. **Executar a tradución co modelo / Executar a tradução com o modelo**: ```bash onmt_translate -model nos-coda_iacobus-en-pt.pt -src eng_Latn.dev.35k.bpe -output translation.txt -gpu 0 -verbose -replace_unk ``` 3. **Limpar os marcadores BPE (@)**: ```bash sed 's/@\s*//g' translation.txt > translation.tok ``` 4. **Detokenizar o texto traducido/traduzido**: ```bash perl detokenizer.perl < translation.tok > translation.translation ``` **Adestramento / Treino** No adestramento, utilizamos córpora auténticos e sintéticos obtidos a partir do [OPUS](https://opus.nlpl.eu) e do [ProxectoNós](https://github.com/proxectonos/corpora) para os pares lingüísticos relacionados co galego e o portugués. No treino, utilizámos corpora autênticos e sintéticos obtidos a partir do [OPUS](https://opus.nlpl.eu) e do [ProjetoNós](https://github.com/proxectonos/corpora), para os pares linguísticos relacionados com o galego e o português. **Procedemento de adestramento / Procedimento de treino** ### ⚙️ Preparación dos datos / Preparação dos dados * A tokenización dos *datasets* foi realizada co tokenizador (`tokenizer.pl`) do [Linguakit](https://github.com/citiususc/Linguakit), modificado para evitar a inserción de quebras de liña após cada *token* no ficheiro orixinal. * A tokenização dos *datasets* foi realizada com o tokenizador (`tokenizer.pl`) do [Linguakit](https://github.com/citiususc/Linguakit), modificado para evitar a inserção de quebras de linha após cada *token* no ficheiro original. * O vocabulario BPE utilizado nos modelos foi xerado co script [`learn_bpe.py`](https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/learn_bpe.py) da OpenNMT. * O vocabulário BPE utilizado nos modelos foi gerado com o script [`learn_bpe.py`](https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/learn_bpe.py) da OpenNMT. ### 🧪 Reproducir o adestramento / Reproduzir o treino Para obter os mesmos resultados, deben ser executadas as seguintes instrucións: Para obter os mesmos resultados, devem ser executadas as seguintes instruções: 1. **Construír o vocabulario / Construir o vocabulário**: ```bash onmt_build_vocab -config en-pt.yaml -n_sample 35000 ``` 2. **Adestrar o modelo NMT / Treinar o modelo NMT**: ```bash onmt_train -config en-pt.yaml ``` **Avaliação / Avaliación** A avaliación BLEU dos modelos é realizada nos seguintes datasets: Flores, Floresdevtest, Ntrex. A avaliação BLEU dos modelos é realizada nos seguintes datasets: Flores, Floresdevtest e Ntrex. | Flores_dev | Flores_devtes | Ntrex | | ------------- |:-------------:| -------:| | 26.5 | 26.6 | 25.4 | **Licenzas do Modelo** MIT License Copyright (c) 2023 Proxecto Nós Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **Financiamento** This model was developed during a research stay at FLUP (Faculdade de Letras da Universidade do Porto) in May and June 2024, as part of the Nós Project, funded by the Ministerio para la Transformación Digital y de la Función Pública and co-financed by the European Union – NextGenerationEU, within the framework of the ILENIA Project (reference: 2022/TL22/00215336). The stay at the University of Porto (CODA-FLUP) was supported by the IACOBUS Programme (2024), a Galician–Portuguese initiative that facilitates, among other activities, research exchanges between Galician scholars and universities or technological centers in Northern Portugal, and vice versa. The programme is managed by the AECT Galicia–North of Portugal.
Trentz/emotion-classification-ensemble
Trentz
2025-06-16T15:08:45Z
0
0
null
[ "safetensors", "text-classification", "multi-label", "emotion-classification", "ensemble", "deberta", "roberta", "en", "license:mit", "region:us" ]
text-classification
2025-06-16T14:53:19Z
--- license: mit language: en pipeline_tag: text-classification tags: - text-classification - multi-label - emotion-classification - ensemble - deberta - roberta --- # Ensemble Model untuk Klasifikasi Emosi Multi-Label Ini adalah repositori untuk sistem model *ensemble* yang meraih peringkat pertama dalam tugas klasifikasi emosi multi-label. Sistem ini menggabungkan dua model kuat, **DeBERTa-v3-Large** dan **RoBERTa-Large**, yang dilatih dengan teknik LLRD (Layer-wise Learning Rate Decay) dan Focal Loss. ## Komponen Ensemble - **`deberta_model`**: Model `microsoft/deberta-v3-large` yang telah di-fine-tune. - **`roberta_model`**: Model `roberta-large` yang telah di-fine-tune. - **`best_thresholds.json`**: Array berisi 14 nilai *threshold* optimal untuk setiap label, yang digunakan pada hasil rata-rata probabilitas kedua model. ## Cara Menggunakan Berikut adalah contoh kode untuk memuat semua komponen dan melakukan prediksi dengan *ensemble* ini: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from scipy.special import expit as sigmoid import json import requests import numpy as np # -- Informasi Repositori -- REPO_ID = "Trentz/emotion-classification-ensemble" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # -- Label Mapping -- LABELS = ['amusement', 'anger', 'annoyance', 'caring', 'confusion', 'disappointment', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'joy', 'love', 'sadness'] class EmotionEnsemble: def __init__(self, repo_id, device="cpu"): self.device = device print("Memuat semua komponen model...") # Muat DeBERTa self.deberta_tokenizer = AutoTokenizer.from_pretrained(repo_id, subfolder="deberta_model") self.deberta_model = AutoModelForSequenceClassification.from_pretrained(repo_id, subfolder="deberta_model").to(self.device).eval() # Muat RoBERTa self.roberta_tokenizer = AutoTokenizer.from_pretrained(repo_id, subfolder="roberta_model") self.roberta_model = AutoModelForSequenceClassification.from_pretrained(repo_id, subfolder="roberta_model").to(self.device).eval() # Muat thresholds thresholds_url = f"[https://huggingface.co/](https://huggingface.co/)Trentz/emotion-classification-ensemble/resolve/main/best_thresholds.json" response = requests.get(thresholds_url) self.thresholds = torch.tensor(response.json(), device=self.device) print("Semua komponen berhasil dimuat.") def predict(self, text: str): with torch.no_grad(): # Prediksi DeBERTa deberta_inputs = self.deberta_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(self.device) deberta_probs = torch.sigmoid(self.deberta_model(**deberta_inputs).logits).squeeze() # Prediksi RoBERTa roberta_inputs = self.roberta_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(self.device) roberta_probs = torch.sigmoid(self.roberta_model(**roberta_inputs).logits).squeeze() # Rata-ratakan probabilitas avg_probs = (deberta_probs + roberta_probs) / 2.0 # Terapkan threshold & logika "Best Guess" preds = (avg_probs > self.thresholds).int() if preds.sum() == 0: best_guess_idx = torch.argmax(avg_probs).item() final_labels = [LABELS[best_guess_idx]] else: final_labels = [LABELS[i] for i, pred in enumerate(preds) if pred == 1] return { "text": text, "predicted_emotions": final_labels, "scores": avg_probs.cpu().tolist() } # -- Contoh Penggunaan -- # Inisialisasi model ensemble ensemble_model = EmotionEnsemble(REPO_ID, device=DEVICE) # Prediksi teks example_text = "This is amazing! Thank you so much for everything, I really love it." result = ensemble_model.predict(example_text) print(result) # Diharapkan output mengandung: 'amusement', 'excitement', 'joy', 'love', 'gratitude' example_text_2 = "I can't believe you would do that. It's so annoying and disappointing." result_2 = ensemble_model.predict(example_text_2) print(result_2) # Diharapkan output mengandung: 'annoyance', 'disappointment', 'anger'
mradermacher/zindi-clinical-reasoning-t5-base-GGUF
mradermacher
2025-06-16T12:05:26Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:Skier8402/zindi-clinical-reasoning-t5-base", "base_model:quantized:Skier8402/zindi-clinical-reasoning-t5-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-16T12:03:31Z
--- base_model: Skier8402/zindi-clinical-reasoning-t5-base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Skier8402/zindi-clinical-reasoning-t5-base <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.Q8_0.gguf) | Q8_0 | 0.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/zindi-clinical-reasoning-t5-base-GGUF/resolve/main/zindi-clinical-reasoning-t5-base.f16.gguf) | f16 | 0.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Quit2003/MateQwen2.5-7b
Quit2003
2025-06-16T10:24:09Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-16T10:24:01Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Quit2003 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aieng-lab/bert-base-cased_review-aspect
aieng-lab
2025-06-16T07:34:15Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "en", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-16T07:34:07Z
--- library_name: transformers license: mit language: - en metrics: - f1 - precision - recall base_model: - bert-base-cased pipeline_tag: text-classification --- # BERT base for classifying API reviews This model classifies API reviews in developer forums (e.g., Stack Overflow) as 'usability', 'others', 'onlysentiment', 'bug', 'performance', 'community', 'documentation', 'compatibility', 'legal', 'portability' or 'security'. - **Developed by:** Fabian C. Peña, Steffen Herbold - **Finetuned from:** [bert-base-cased](https://huggingface.co/bert-base-cased) - **Replication kit:** [https://github.com/aieng-lab/senlp-benchmark](https://github.com/aieng-lab/senlp-benchmark) - **Language:** English - **License:** MIT ## Citation ``` @misc{pena2025benchmark, author = {Fabian Peña and Steffen Herbold}, title = {Evaluating Large Language Models on Non-Code Software Engineering Tasks}, year = {2025} } ```
MinaMila/phi3_unlearned_2nd_5e-7_1.0_0.25_0.25_0.75_epoch1
MinaMila
2025-06-16T04:38:11Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-16T04:36:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aieng-lab/gpt2-large_comment-type-java
aieng-lab
2025-06-13T17:29:07Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "en", "base_model:openai-community/gpt2-large", "base_model:finetune:openai-community/gpt2-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-06-13T17:28:37Z
--- library_name: transformers license: mit language: - en metrics: - f1 - precision - recall base_model: - gpt2-large pipeline_tag: text-classification --- # GPT-2 large for classifying code comments (multi-label) This model classifies comments in Java code as 'summary', 'ownership', 'expand', 'usage', 'pointer', 'deprecation' or rational'. - **Developed by:** Fabian C. Peña, Steffen Herbold - **Finetuned from:** [gpt2-large](https://huggingface.co/gpt2-large) - **Replication kit:** [https://github.com/aieng-lab/senlp-benchmark](https://github.com/aieng-lab/senlp-benchmark) - **Language:** English - **License:** MIT ## Citation ``` @misc{pena2025benchmark, author = {Fabian Peña and Steffen Herbold}, title = {Evaluating Large Language Models on Non-Code Software Engineering Tasks}, year = {2025} } ```