modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 12:28:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 12:27:35
card
stringlengths
11
1.01M
Brainergy/ppaattaass
Brainergy
2023-01-10T23:12:47Z
31
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-10T23:02:09Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### ppaattaass Dreambooth model trained by Brainergy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
cleanrl/Tennis-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-10T23:09:47Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Tennis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T23:09:43Z
--- tags: - Tennis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tennis-v5 type: Tennis-v5 metrics: - type: mean_reward value: -0.30 +/- 0.64 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tennis-v5** This is a trained model of a PPO agent playing Tennis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Tennis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tennis-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/Tennis-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tennis-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Tennis-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tennis-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
ongp/swin-tiny-patch4-window7-224-finetuned-eurosat
ongp
2023-01-10T23:07:31Z
194
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-10T23:02:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
adelc/ppo-LunarLander-v2
adelc
2023-01-10T22:33:33Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T22:33:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.58 +/- 19.39 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mithul/Taxi-v3
Mithul
2023-01-10T22:27:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T22:27:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mithul/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Qilex/dqn-SpaceInvadersNoFrameskip-v4
Qilex
2023-01-10T22:10:21Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T22:09:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 614.50 +/- 240.09 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Qilex -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Qilex -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Qilex ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ljicvedera/dqn-MsPacmanNoFrameskip_1-v4
ljicvedera
2023-01-10T22:04:03Z
6
0
stable-baselines3
[ "stable-baselines3", "MsPacmanNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T22:03:35Z
--- library_name: stable-baselines3 tags: - MsPacmanNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacmanNoFrameskip-v4 type: MsPacmanNoFrameskip-v4 metrics: - type: mean_reward value: 109.00 +/- 25.87 name: mean_reward verified: false --- # **DQN** Agent playing **MsPacmanNoFrameskip-v4** This is a trained model of a **DQN** agent playing **MsPacmanNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env MsPacmanNoFrameskip-v4 -orga ljicvedera -f logs/ python -m rl_zoo3.enjoy --algo dqn --env MsPacmanNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env MsPacmanNoFrameskip-v4 -orga ljicvedera -f logs/ python -m rl_zoo3.enjoy --algo dqn --env MsPacmanNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env MsPacmanNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env MsPacmanNoFrameskip-v4 -f logs/ -orga ljicvedera ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Mithul/q-FrozenLake-v1-4x4-noSlippery
Mithul
2023-01-10T22:03:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T22:03:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mithul/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jojeyh/xlm-roberta-base-finetuned-panx-de-fr
jojeyh
2023-01-10T21:53:53Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-10T21:23:22Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1656 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 | | 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 | | 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
rahuldhodapkar/protgpt2-finetuned-sarscov2-rbd
rahuldhodapkar
2023-01-10T21:50:41Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "Text Generation", "Primary Sequence Prediction", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-10T16:51:13Z
--- license: cc-by-nc-nd-4.0 metrics: - accuracy tags: - generated_from_trainer - Text Generation - Primary Sequence Prediction model-index: - name: protgpt2-finetuned-sarscov2-rbd results: [] --- # Model Card for `protgpt2-finetuned-sarscov2-rbd` This model is a fine-tuned version of [nferruz/ProtGPT2](https://huggingface.co/nferruz/ProtGPT2) on sequences from the NCBI Virus Data Portal. It achieves the following results on the evaluation set: - Loss: 1.1674 - Accuracy: 0.8883 ## Model description This model is a fine-tuned checkpoint of [ProtGPT2](https://huggingface.co/nferruz/ProtGPT2), which was originally trained on the UniRef50 (version 2021_04) database. For a detailed overview of the original model configuration and architecture, please see the linked model card, or refer to the ProtGPT2 publication. The model was finetuned on data from the SARS-CoV-2 Spike (surface glycoprotein) receptor binding domain (RBD). A repository with the training scripts, train and test data partitions, as well as evaluation code is available on GitHub at (https://github.com/rahuldhodapkar/PredictSARSVariants). ## Intended uses & limitations This model is intended to generate synthetic SARS-CoV-2 surface glycoprotein (a.k.a. spike protein) sequences for the purpose of identifying meaningful variants for characterization either experimentally or through other *in silico* tools. These variants may be used to drive vaccine develop to protect against never-before-seen point mutants that are probable in the future. As this model is based on the original ProtGPT2 model, it is subject to many of the same limitations as the base model. Any biases present in the UniRef50 dataset will also be present in the model, which may include nonuniform skew of peptides sampled across different taxonomic clades. These limitations should be considered when interpreting the output of this model. ## Training and evaluation data SARS-CoV-2 spike protein sequences were obtained from the NIH Sars-CoV-2 Data Hub accessible at https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ Note that the reference sequence for the surface glycoprotein can be found at: https://www.ncbi.nlm.nih.gov/protein/1791269090 As the loaded ProtGPT2 model was pretrained on the UniRef50 (version 2021_04) dataset, it cannot have contained sequencing data that was generated after that date. Evaluations will be conducted using SARS-CoV-2 sequences generated on or after May 2021. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.8.0 - Tokenizers 0.13.2
GrumpyPants/dqn-SpaceInvadersNoFrameskip-v4
GrumpyPants
2023-01-10T21:41:02Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T21:40:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 575.00 +/- 174.11 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga GrumpyPants -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga GrumpyPants -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga GrumpyPants ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eliotz/Reinforce-cartpole
eliotz
2023-01-10T21:36:14Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T21:36:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Orahra/X23
Orahra
2023-01-10T20:46:06Z
0
0
null
[ "region:us" ]
null
2023-01-10T20:45:18Z
beautiful, cyberpunk, golden crown, anime boy, smart, handsome, purple lightning
CoreyMorris/ppo-SnowballTarget
CoreyMorris
2023-01-10T20:37:31Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-10T20:36:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: CoreyMorris/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ezaromb/sd-class-butterflies-64
ezaromb
2023-01-10T20:12:24Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-10T20:11:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ezaromb/sd-class-butterflies-64') image = pipeline().images[0] image ```
0xid/ppo-SnowballTarget
0xid
2023-01-10T19:51:17Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-10T19:51:10Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: 0xid/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
johko/capdec_015
johko
2023-01-10T19:33:40Z
0
0
null
[ "Image Captioning", "image-to-text", "en", "dataset:MS-COCO", "dataset:Flickr30k", "arxiv:2211.00575", "license:apache-2.0", "region:us" ]
image-to-text
2022-12-19T19:35:44Z
--- license: apache-2.0 language: - en pipeline_tag: image-to-text datasets: - MS-COCO - Flickr30k tags: - Image Captioning --- # CapDec - NoiseLevel: 0.015 ## Model Description These are model weights originally provided by the authors of the paper [Text-Only Training for Image Captioning using Noise-Injected CLIP](https://arxiv.org/pdf/2211.00575.pdf). Their method aims to train CLIP with only text samples. Therefore they are injecting zero-mean Gaussian Noise into the text embeddings before decoding. In their words: *Specifically, we assume that the visual embedding corresponding to a text embedding lies somewhere within a ball of small radius around the text embedding (see Fig. 1). We would like all text embeddings in this ball to decode to the same caption,which should also correspond to the visual content mapped to this ball. We implement this intuition by adding zero-mean Gaussian noise of STD to the text embedding before decoding it.* The "Noise Level" of 0.015 is equivalent to the Noise Variance which is the square of the STD. The reported metrics are results of a model with a Noise Variance of 0.016, which the authors unfortunately do not provide in their repository. This model with a Noise Variance 0.015 is the closest available pre-trained model to their best model. ## Datasets The authors trained the model on MS-COCO and Flickr30k datasets. ## Performance The authors don't explicitly report the performance for this NoiseLevel but it can be estimated from the following figure from the original paper: ![](capdec_performance.png)
jpopham91/dqn-SpaceInvadersNoFrameskip-v4
jpopham91
2023-01-10T19:30:20Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T19:29:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 444.50 +/- 227.41 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jpopham91 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jpopham91 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jpopham91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
lmazzon70/videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-sample8
lmazzon70
2023-01-10T19:22:54Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-01-10T11:26:16Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-sample8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-sample8 This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2493 - Accuracy: 0.3857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 6400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6783 | 0.12 | 800 | 0.5823 | 0.8175 | | 0.7397 | 1.12 | 1600 | 2.2365 | 0.5475 | | 0.206 | 2.12 | 2400 | 1.4244 | 0.6375 | | 0.0431 | 3.12 | 3200 | 0.9144 | 0.7525 | | 0.0033 | 4.12 | 4000 | 0.7622 | 0.825 | | 0.0011 | 5.12 | 4800 | 1.0658 | 0.775 | | 0.001 | 6.12 | 5600 | 1.6892 | 0.6875 | | 0.2392 | 7.12 | 6400 | 1.1574 | 0.7825 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
rishipatel92/ppo-SnowballTarget101
rishipatel92
2023-01-10T19:15:48Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-10T18:40:54Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: rishipatel92/ppo-SnowballTarget101 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
truthseekah/TruthSeekah
truthseekah
2023-01-10T19:13:10Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-01-10T19:11:43Z
--- # For reference on model card metadata, see: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed] # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
kadirnar/yolov8x-v8.0
kadirnar
2023-01-10T19:05:58Z
0
0
null
[ "object-detection", "computer-vision", "yolov8", "yolov5", "dataset:detection-datasets/coco", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-10T18:53:22Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov8 - yolov5 datasets: - detection-datasets/coco --- ### Model Description [Ultralytics:](https://github.com/ultralytics/ultralytics/) YOLOv8 in PyTorch > ONNX > CoreML > TFLite] ### Installation ``` pip install ultralytics ``` ### Yolov8 Inference ```python from ultralytics import YOLO model = YOLO('kadirnar/yolov8x-v8.0') model.conf = conf_threshold model.iou = iou_threshold prediction = model.predict(image, imgsz=image_size, show=False, save=False) ``` ### BibTeX Entry and Citation Info ``` ```
kadirnar/yolov8l-v8.0
kadirnar
2023-01-10T19:05:39Z
0
1
null
[ "object-detection", "computer-vision", "yolov8", "yolov5", "dataset:detection-datasets/coco", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-10T18:53:01Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov8 - yolov5 datasets: - detection-datasets/coco --- ### Model Description [Ultralytics:](https://github.com/ultralytics/ultralytics/) YOLOv8 in PyTorch > ONNX > CoreML > TFLite] ### Installation ``` pip install ultralytics ``` ### Yolov8 Inference ```python from ultralytics import YOLO model = YOLO('kadirnar/yolov8l-v8.0') model.conf = conf_threshold model.iou = iou_threshold prediction = model.predict(image, imgsz=image_size, show=False, save=False) ``` ### BibTeX Entry and Citation Info ``` ```
kadirnar/yolov8m-v8.0
kadirnar
2023-01-10T19:05:21Z
0
0
null
[ "object-detection", "computer-vision", "yolov8", "yolov5", "dataset:detection-datasets/coco", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-10T18:51:51Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov8 - yolov5 datasets: - detection-datasets/coco --- ### Model Description [Ultralytics:](https://github.com/ultralytics/ultralytics/) YOLOv8 in PyTorch > ONNX > CoreML > TFLite] ### Installation ``` pip install ultralytics ``` ### Yolov8 Inference ```python from ultralytics import YOLO model = YOLO('kadirnar/yolov8m-v8.0') model.conf = conf_threshold model.iou = iou_threshold prediction = model.predict(image, imgsz=image_size, show=False, save=False) ``` ### BibTeX Entry and Citation Info ``` ```
eliotz/taxicab
eliotz
2023-01-10T19:00:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T19:00:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxicab results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="eliotz/taxicab", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
codingmoh/cat-breed-identifier-23-01
codingmoh
2023-01-10T18:54:16Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-01-10T18:54:07Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
juanfdangelo/ddpm-butterflies-128
juanfdangelo
2023-01-10T18:52:43Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2023-01-10T16:03:36Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/juanfdangelo/ddpm-butterflies-128/tensorboard?#scalars)
jinghua2tang/ppo-SnowballTarget
jinghua2tang
2023-01-10T18:50:19Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-10T18:50:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: jinghua2tang/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BobMcDear/convnextv2_tiny_384_fcmae_in22ft1k
BobMcDear
2023-01-10T18:48:28Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:26Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_nano_fcmae
BobMcDear
2023-01-10T18:48:16Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:24Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_base_384_fcmae_in22ft1k
BobMcDear
2023-01-10T18:48:10Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:25Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_pico_fcmae
BobMcDear
2023-01-10T18:48:03Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:15Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_femto_fcmae
BobMcDear
2023-01-10T18:47:56Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:06Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_femto_fcmae_ftin1k
BobMcDear
2023-01-10T18:47:43Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:13Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_base_fcmae_ftin1k
BobMcDear
2023-01-10T18:47:38Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:24Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_large_fcmae
BobMcDear
2023-01-10T18:47:16Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:22Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
aj555/ppo-Huggy
aj555
2023-01-10T18:46:49Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-10T18:46:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: aj555/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BobMcDear/convnextv2_base_fcmae
BobMcDear
2023-01-10T18:46:41Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:07Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_atto_fcmae_ftin1k
BobMcDear
2023-01-10T18:46:33Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:17Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_tiny_fcmae
BobMcDear
2023-01-10T18:46:17Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:21Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_large_fcmae_in22ft1k
BobMcDear
2023-01-10T18:46:02Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:19Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_large_fcmae_ftin1k
BobMcDear
2023-01-10T18:45:54Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:14Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnextv2_huge_fcmae_ftin1k
BobMcDear
2023-01-10T18:45:30Z
0
0
null
[ "region:us" ]
null
2023-01-10T15:09:10Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
sd-concepts-library/ambrose-arm-chair
sd-concepts-library
2023-01-10T18:38:48Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-01-10T18:38:44Z
--- license: mit --- ### ambrose-arm-chair on Stable Diffusion This is the `<ambrose-arm-chair>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ambrose-arm-chair> 0](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/0.jpeg) ![<ambrose-arm-chair> 1](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/1.jpeg) ![<ambrose-arm-chair> 2](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/2.jpeg) ![<ambrose-arm-chair> 3](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/3.jpeg) ![<ambrose-arm-chair> 4](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/4.jpeg)
AWP/cat-breed-identifier
AWP
2023-01-10T18:37:19Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-01-10T18:37:11Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
AgentXXX/ppo-PyramidsRND
AgentXXX
2023-01-10T18:33:31Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-10T18:33:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: AgentXXX/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
deliveroo/ppo-Huggy
deliveroo
2023-01-10T18:29:23Z
24
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-10T18:29:15Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: deliveroo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sd-concepts-library/minecraft-concept-art
sd-concepts-library
2023-01-10T18:25:05Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-10T18:21:29Z
--- license: mit inference: true --- ### minecraft-concept-art on Stable Diffusion This is the `<concept>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<concept> 0](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/3.jpeg) ![<concept> 1](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/0.jpeg) ![<concept> 2](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/2.jpeg) ![<concept> 3](https://huggingface.co/sd-concepts-library/minecraft-concept-art/resolve/main/concept_images/1.jpeg)
cleanrl/Surround-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-10T18:12:34Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Surround-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T18:12:30Z
--- tags: - Surround-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Surround-v5 type: Surround-v5 metrics: - type: mean_reward value: 2.20 +/- 3.12 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Surround-v5** This is a trained model of a PPO agent playing Surround-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Surround-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Surround-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/Surround-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Surround-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Surround-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
marianokamp/dqn-SpaceInvadersNoFrameskip-v4
marianokamp
2023-01-10T18:09:30Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T18:08:52Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 627.00 +/- 170.77 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga marianokamp -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga marianokamp -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga marianokamp ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mus-shd/ppo-Huggy
mus-shd
2023-01-10T18:03:48Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-10T18:03:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mus-shd/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nepp1d0/prot_bert_classification_finetuned_karolina_es_20e
nepp1d0
2023-01-10T18:00:18Z
165
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-10T17:11:04Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: prot_bert_classification_finetuned_karolina_es_20e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prot_bert_classification_finetuned_karolina_es_20e This model is a fine-tuned version of [nepp1d0/prot_bert-finetuned-smiles-bindingDB](https://huggingface.co/nepp1d0/prot_bert-finetuned-smiles-bindingDB) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6763 - Accuracy: 0.92 - F1: 0.9583 - Precision: 1.0 - Recall: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 2 | 0.7084 | 0.02 | 0.0392 | 1.0 | 0.02 | | No log | 2.0 | 4 | 0.7082 | 0.02 | 0.0392 | 1.0 | 0.02 | | No log | 3.0 | 6 | 0.7078 | 0.04 | 0.0769 | 1.0 | 0.04 | | No log | 4.0 | 8 | 0.7072 | 0.04 | 0.0769 | 1.0 | 0.04 | | No log | 5.0 | 10 | 0.7065 | 0.04 | 0.0769 | 1.0 | 0.04 | | No log | 6.0 | 12 | 0.7055 | 0.04 | 0.0769 | 1.0 | 0.04 | | No log | 7.0 | 14 | 0.7044 | 0.04 | 0.0769 | 1.0 | 0.04 | | No log | 8.0 | 16 | 0.7031 | 0.06 | 0.1132 | 1.0 | 0.06 | | No log | 9.0 | 18 | 0.7017 | 0.12 | 0.2143 | 1.0 | 0.12 | | No log | 10.0 | 20 | 0.6999 | 0.2 | 0.3333 | 1.0 | 0.2 | | No log | 11.0 | 22 | 0.6981 | 0.22 | 0.3607 | 1.0 | 0.22 | | No log | 12.0 | 24 | 0.6962 | 0.22 | 0.3607 | 1.0 | 0.22 | | No log | 13.0 | 26 | 0.6941 | 0.24 | 0.3871 | 1.0 | 0.24 | | No log | 14.0 | 28 | 0.6917 | 0.44 | 0.6111 | 1.0 | 0.44 | | No log | 15.0 | 30 | 0.6893 | 0.58 | 0.7342 | 1.0 | 0.58 | | No log | 16.0 | 32 | 0.6869 | 0.76 | 0.8636 | 1.0 | 0.76 | | No log | 17.0 | 34 | 0.6842 | 0.88 | 0.9362 | 1.0 | 0.88 | | No log | 18.0 | 36 | 0.6816 | 0.9 | 0.9474 | 1.0 | 0.9 | | No log | 19.0 | 38 | 0.6789 | 0.92 | 0.9583 | 1.0 | 0.92 | | No log | 20.0 | 40 | 0.6763 | 0.92 | 0.9583 | 1.0 | 0.92 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.13.1
gday/ppo-LunarLander-v2
gday
2023-01-10T17:49:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T17:49:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.34 +/- 21.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AgentXXX/ppo-SnowballTarget
AgentXXX
2023-01-10T17:23:10Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-10T17:23:02Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: AgentXXX/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Volodymyr/sd-class-butterflies-32
Volodymyr
2023-01-10T17:21:18Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-10T17:20:20Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Volodymyr/sd-class-butterflies-32') image = pipeline().images[0] image ```
Clawoo/rnd-PyramidsTraining
Clawoo
2023-01-10T17:10:55Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-10T17:10:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Clawoo/rnd-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ineract/bert-large-uncased-whole-word-masking-finetuned-policy-number
Ineract
2023-01-10T16:43:20Z
119
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:policies", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-10T16:24:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - policies model-index: - name: bert-large-uncased-whole-word-masking-finetuned-policy-number results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-finetuned-policy-number This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on the policies dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 282 | 0.0031 | | 0.0049 | 2.0 | 564 | 0.0000 | | 0.0049 | 3.0 | 846 | 0.0000 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
custom-diffusion-library/cat
custom-diffusion-library
2023-01-10T16:31:12Z
6
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "stable-diffusion-diffusers", "license:other", "region:us" ]
null
2022-12-19T15:32:13Z
--- license: other tags: - pytorch - stable-diffusion - stable-diffusion-diffusers - diffusers --- # This is a Custom Diffusion model fine-tuned from the Stable Diffusion v1-4. [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion/index.html) allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). Here we give an example model fine-tuned using 5 images of a cat downloaded from UnSplash. The example code of inference is shown below. ## Example code of inference ``` git clone https://github.com/adobe-research/custom-diffusion cd custom-diffusion ``` ```python from diffusers import StableDiffusionPipeline from src import diffuser_training device = 'cuda' model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, 'cat.bin') prompt = "<new1> cat swimming in a pool" images = pipe(prompt, num_inference_steps=200, guidance_scale=6., eta=1.).images ``` <center> <img src="https://huggingface.co/custom-diffusion-library/cat/resolve/main/cat.png" width="600" align="center" > </center>
cewinharhar/prot_t5_xl_alphaKGD_bacteriaMiddle
cewinharhar
2023-01-10T16:29:59Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-10T15:16:44Z
--- tags: - generated_from_trainer model-index: - name: prot_t5_xl_alphaKGD_bacteriaMiddle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prot_t5_xl_alphaKGD_bacteriaMiddle This model is a fine-tuned version of [Rostlab/prot_t5_xl_uniref50](https://huggingface.co/Rostlab/prot_t5_xl_uniref50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 211 | 2.8487 | | No log | 2.0 | 422 | 2.8389 | | 3.2264 | 3.0 | 633 | 2.8333 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.7.1 - Tokenizers 0.11.0
m3kkasi/distilbert-cased-finetuned-newsqa
m3kkasi
2023-01-10T16:26:45Z
105
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-07T13:39:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-cased-finetuned-newsqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cased-finetuned-newsqa This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
chavicoski/Reinforce_Pixelcopter-PLE-v0
chavicoski
2023-01-10T16:20:07Z
0
0
null
[ "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "Pixelcopter-PLE-v0", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T16:17:10Z
--- tags: - reinforce - reinforcement-learning - custom-implementation - deep-rl-class - Pixelcopter-PLE-v0 model-index: - name: Reinforce_Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 73.39 +/- 55.42 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Closen/q-Taxi-v3
Closen
2023-01-10T16:14:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T16:09:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Closen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
edbeeching/rl_course_vizdoom_health_gathering_supreme
edbeeching
2023-01-10T16:06:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T15:21:04Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.07 +/- 1.90 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r edbeeching/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
iapetusLatent/Vega-0.2.4-preview
iapetusLatent
2023-01-10T16:04:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-10T14:10:23Z
--- license: creativeml-openrail-m ---
Deisler/q-Taxi-v3-25x5x4-6-35000
Deisler
2023-01-10T15:59:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T15:30:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-25x5x4-6-35000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Deisler/q-Taxi-v3-25x5x4-6-35000", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ineract/distilbert-base-uncased-finetuned-policies
Ineract
2023-01-10T15:41:44Z
127
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:policies", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-09T22:08:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - policies model-index: - name: distilbert-base-uncased-finetuned-policies results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-policies This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the policies dataset. It achieves the following results on the evaluation set: - Loss: 0.0193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4208 | 1.0 | 759 | 0.0183 | | 0.0115 | 2.0 | 1518 | 0.0202 | | 0.0048 | 3.0 | 2277 | 0.0193 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
poloclub/RobArch
poloclub
2023-01-10T15:21:39Z
0
2
null
[ "adversarial machine learning", "dataset:imagenet-1k", "arxiv:2301.03110", "license:mit", "region:us" ]
null
2023-01-09T21:02:13Z
--- license: mit datasets: - imagenet-1k metrics: - accuracy tags: - adversarial machine learning --- ## RobArch: Designing Robust Architectures against Adversarial Attacks *ShengYun Peng, Weilin Xu, Cory Cornelius, Kevin Li, Rahul Duggal, Duen Horng Chau, Jason Martin* Check https://github.com/ShengYun-Peng/RobArch for the complete code. ### Abstract Adversarial Training is the most effective approach for improving the robustness of Deep Neural Networks (DNNs). However, compared to the large body of research in optimizing the adversarial training process, there are few investigations into how architecture components affect robustness, and they rarely constrain model capacity. Thus, it is unclear where robustness precisely comes from. In this work, we present the first large-scale systematic study on the robustness of DNN architecture components under fixed parameter budgets. Through our investigation, we distill 18 actionable robust network design guidelines that empower model developers to gain deep insights. We demonstrate these guidelines' effectiveness by introducing the novel Robust Architecture (RobArch) model that instantiates the guidelines to build a family of top-performing models across parameter capacities against strong adversarial attacks. RobArch achieves the new state-of-the-art AutoAttack accuracy on the RobustBench ImageNet leaderboard. ### Prerequisites 1. Register Weights & Biases [account](https://wandb.ai/site) 2. Prepare ImageNet via [Fast AT - Installation step 3 & 4](https://github.com/locuslab/fast_adversarial/tree/master/ImageNet) > Run step 4 only if you want to use Fast-AT. 3. Set up venv: ```bash make .venv_done ``` ### Training Fast-AT is much faster than standard PGD AT. For RobArch-S, Fast-AT takes ~1.5 days on 2 Nvidia A100s, but ~5 days on 4 Nvidia A100s. #### Torchvision models - Fast AT (e.g., ResNet-50) ```bash make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/Torch_ResNet50/.done_test_pgd ``` If you want to test other off-the-shelf models in [torchvision](https://pytorch.org/vision/stable/models.html#classification), add the model name in [MODEL.mk](MODEL.mk), and create a new make target by following other ResNets/WideResNets in [Makefile](Makefile). #### RobArch - Fast AT (e.g., RobArch-S) ```bash make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/RobArch_S/.done_test_pgd ``` #### RobArch - Standard PGD AT (e.g., RobArch-S) ```bash # Training make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/PGDAT_RobArch_S/.done_train # Evaluation on PGD make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/PGDAT_RobArch_S/.done_test_pgd # Evaluation on AutoAttack make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/PGDAT_RobArch_S/.done_test_aa # Pretrained models evaluated on AutoAttack make BASE=<imagenet root dir> WANDB_ACCOUNT=<name> experiments/PGDAT_RobArch_S/.done_test_pretrained ``` ### Pretrained models - ImageNet $\ell_\infty$-norm | Architecture | #Param | Natural | AutoAttack | PGD10-4 | PGD50-4 | PGD100-4 | PGD100-2 | PGD100-8 | | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | | [RobArch-S](https://huggingface.co/poloclub/RobArch/resolve/main/pretrained/robarch_s.pt) | 26M | 70.17% | 44.14% | 48.19% | 47.78% | 47.77% | 60.06% | 21.77% | | [RobArch-M](https://huggingface.co/poloclub/RobArch/resolve/main/pretrained/robarch_m.pt) | 46M | 71.88% | 46.26% | 49.84% | 49.32% | 49.30% | 61.89% | 23.01% | | [RobArch-L](https://huggingface.co/poloclub/RobArch/resolve/main/pretrained/robarch_l.pt) | 104M | 73.44% | 48.94% | 51.72% | 51.04% | 51.03% | 63.49% | 25.31% | ### Citation ```bibtex @misc{peng2023robarch, title={RobArch: Designing Robust Architectures against Adversarial Attacks}, author={ShengYun Peng and Weilin Xu and Cory Cornelius and Kevin Li and Rahul Duggal and Duen Horng Chau and Jason Martin}, year={2023}, eprint={2301.03110}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
hr16/Miwano-Rag-LoRA
hr16
2023-01-10T15:15:08Z
0
3
null
[ "stable-diffusion", "safetensors", "LoRA", "Low-rank Adaptation", "anime", "text-to-image", "en", "dataset:hr16/Miwano-Rag", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-10T12:17:14Z
--- license: creativeml-openrail-m datasets: - hr16/Miwano-Rag language: - en pipeline_tag: text-to-image tags: - stable-diffusion - safetensors - LoRA - Low-rank Adaptation - anime --- The files in this model repo are LoRA embeddings created using [Kanianime](https://huggingface.co/Rasgeath/self_made_sauce/blob/main/Kani-anime-pruned.ckpt) by [Rasgeath](https://huggingface.co/Rasgeath) as base model. Use something like `masterpiece, best quality, 1girl, art by Miwano-Rag` as prompt. I'm too lazy to write a README lol.
Lilya/gpt2-ner-invoiceSenderRecipient_all_inv_03_01
Lilya
2023-01-10T15:06:25Z
13
0
transformers
[ "transformers", "pytorch", "gpt2", "token-classification", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-01-03T19:49:36Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: gpt2-ner-invoiceSenderRecipient_all_inv_03_01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-ner-invoiceSenderRecipient_all_inv_03_01 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0307 - Precision: 0.7932 - Recall: 0.8488 - F1: 0.8201 - Accuracy: 0.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0363 | 0.01 | 500 | 0.0338 | 0.7846 | 0.7969 | 0.7907 | 0.9884 | | 0.0392 | 0.02 | 1000 | 0.0346 | 0.7665 | 0.8211 | 0.7929 | 0.9881 | | 0.0363 | 0.04 | 1500 | 0.0347 | 0.7701 | 0.8075 | 0.7884 | 0.9880 | | 0.0396 | 0.05 | 2000 | 0.0347 | 0.7454 | 0.8375 | 0.7888 | 0.9879 | | 0.0366 | 0.06 | 2500 | 0.0350 | 0.7519 | 0.8345 | 0.7911 | 0.9879 | | 0.0382 | 0.07 | 3000 | 0.0356 | 0.7500 | 0.8434 | 0.7939 | 0.9877 | | 0.0424 | 0.09 | 3500 | 0.0358 | 0.7517 | 0.8287 | 0.7883 | 0.9877 | | 0.0385 | 0.1 | 4000 | 0.0352 | 0.7605 | 0.8225 | 0.7903 | 0.9880 | | 0.0382 | 0.11 | 4500 | 0.0361 | 0.7494 | 0.8159 | 0.7813 | 0.9874 | | 0.0372 | 0.12 | 5000 | 0.0345 | 0.7817 | 0.8044 | 0.7929 | 0.9885 | | 0.0377 | 0.14 | 5500 | 0.0346 | 0.7749 | 0.8238 | 0.7986 | 0.9884 | | 0.0383 | 0.15 | 6000 | 0.0359 | 0.7568 | 0.8341 | 0.7936 | 0.9879 | | 0.0372 | 0.16 | 6500 | 0.0356 | 0.7548 | 0.8356 | 0.7932 | 0.9879 | | 0.0371 | 0.17 | 7000 | 0.0352 | 0.7540 | 0.8477 | 0.7981 | 0.9880 | | 0.0368 | 0.19 | 7500 | 0.0349 | 0.7662 | 0.8310 | 0.7973 | 0.9881 | | 0.0388 | 0.2 | 8000 | 0.0339 | 0.7648 | 0.8336 | 0.7977 | 0.9883 | | 0.0368 | 0.21 | 8500 | 0.0336 | 0.7729 | 0.8305 | 0.8006 | 0.9886 | | 0.0389 | 0.22 | 9000 | 0.0340 | 0.7750 | 0.8208 | 0.7972 | 0.9884 | | 0.0384 | 0.24 | 9500 | 0.0349 | 0.7549 | 0.8499 | 0.7996 | 0.9880 | | 0.0376 | 0.25 | 10000 | 0.0358 | 0.7531 | 0.8390 | 0.7938 | 0.9875 | | 0.0354 | 0.26 | 10500 | 0.0346 | 0.7650 | 0.8318 | 0.7970 | 0.9882 | | 0.0358 | 0.27 | 11000 | 0.0338 | 0.7694 | 0.8397 | 0.8030 | 0.9886 | | 0.0389 | 0.28 | 11500 | 0.0341 | 0.7586 | 0.8502 | 0.8018 | 0.9882 | | 0.0383 | 0.3 | 12000 | 0.0342 | 0.7688 | 0.8275 | 0.7971 | 0.9881 | | 0.0355 | 0.31 | 12500 | 0.0337 | 0.7783 | 0.8281 | 0.8024 | 0.9885 | | 0.0372 | 0.32 | 13000 | 0.0338 | 0.7703 | 0.8399 | 0.8036 | 0.9884 | | 0.0369 | 0.33 | 13500 | 0.0331 | 0.7683 | 0.8427 | 0.8038 | 0.9886 | | 0.0361 | 0.35 | 14000 | 0.0336 | 0.7699 | 0.8322 | 0.7999 | 0.9885 | | 0.0361 | 0.36 | 14500 | 0.0336 | 0.7735 | 0.8390 | 0.8049 | 0.9885 | | 0.0372 | 0.37 | 15000 | 0.0333 | 0.7747 | 0.8343 | 0.8034 | 0.9887 | | 0.0366 | 0.38 | 15500 | 0.0343 | 0.7646 | 0.8468 | 0.8036 | 0.9883 | | 0.0345 | 0.4 | 16000 | 0.0333 | 0.7790 | 0.8334 | 0.8053 | 0.9887 | | 0.0363 | 0.41 | 16500 | 0.0329 | 0.7783 | 0.8301 | 0.8034 | 0.9887 | | 0.0348 | 0.42 | 17000 | 0.0341 | 0.7626 | 0.8533 | 0.8054 | 0.9884 | | 0.0391 | 0.43 | 17500 | 0.0324 | 0.7873 | 0.8295 | 0.8079 | 0.9889 | | 0.0344 | 0.45 | 18000 | 0.0334 | 0.7769 | 0.8369 | 0.8058 | 0.9887 | | 0.0378 | 0.46 | 18500 | 0.0337 | 0.7741 | 0.8394 | 0.8054 | 0.9886 | | 0.035 | 0.47 | 19000 | 0.0328 | 0.7827 | 0.8323 | 0.8067 | 0.9888 | | 0.0351 | 0.48 | 19500 | 0.0327 | 0.7815 | 0.8371 | 0.8083 | 0.9889 | | 0.037 | 0.5 | 20000 | 0.0328 | 0.7793 | 0.8388 | 0.8079 | 0.9888 | | 0.0346 | 0.51 | 20500 | 0.0325 | 0.7804 | 0.8416 | 0.8099 | 0.9890 | | 0.0364 | 0.52 | 21000 | 0.0323 | 0.7861 | 0.8339 | 0.8093 | 0.9889 | | 0.0356 | 0.53 | 21500 | 0.0327 | 0.7729 | 0.8510 | 0.8101 | 0.9889 | | 0.0346 | 0.54 | 22000 | 0.0325 | 0.7791 | 0.8407 | 0.8087 | 0.9889 | | 0.0342 | 0.56 | 22500 | 0.0334 | 0.7790 | 0.8443 | 0.8104 | 0.9889 | | 0.0368 | 0.57 | 23000 | 0.0322 | 0.7869 | 0.8323 | 0.8089 | 0.9890 | | 0.0371 | 0.58 | 23500 | 0.0320 | 0.7890 | 0.8356 | 0.8116 | 0.9891 | | 0.0344 | 0.59 | 24000 | 0.0321 | 0.7910 | 0.8321 | 0.8110 | 0.9892 | | 0.0342 | 0.61 | 24500 | 0.0319 | 0.7881 | 0.8356 | 0.8111 | 0.9892 | | 0.0339 | 0.62 | 25000 | 0.0320 | 0.7889 | 0.8317 | 0.8097 | 0.9892 | | 0.0347 | 0.63 | 25500 | 0.0316 | 0.7909 | 0.8347 | 0.8122 | 0.9892 | | 0.034 | 0.64 | 26000 | 0.0318 | 0.7887 | 0.8324 | 0.8100 | 0.9891 | | 0.0347 | 0.66 | 26500 | 0.0317 | 0.7791 | 0.8525 | 0.8141 | 0.9891 | | 0.0345 | 0.67 | 27000 | 0.0318 | 0.7870 | 0.8384 | 0.8119 | 0.9892 | | 0.0347 | 0.68 | 27500 | 0.0317 | 0.7903 | 0.8426 | 0.8157 | 0.9893 | | 0.0371 | 0.69 | 28000 | 0.0311 | 0.7965 | 0.8332 | 0.8144 | 0.9894 | | 0.0338 | 0.71 | 28500 | 0.0316 | 0.7863 | 0.8442 | 0.8142 | 0.9892 | | 0.0352 | 0.72 | 29000 | 0.0315 | 0.7810 | 0.8537 | 0.8157 | 0.9892 | | 0.0344 | 0.73 | 29500 | 0.0314 | 0.7953 | 0.8353 | 0.8148 | 0.9894 | | 0.0322 | 0.74 | 30000 | 0.0320 | 0.7836 | 0.8449 | 0.8131 | 0.9891 | | 0.0355 | 0.76 | 30500 | 0.0312 | 0.7877 | 0.8480 | 0.8167 | 0.9894 | | 0.035 | 0.77 | 31000 | 0.0313 | 0.7864 | 0.8504 | 0.8171 | 0.9893 | | 0.0346 | 0.78 | 31500 | 0.0310 | 0.7931 | 0.8424 | 0.8170 | 0.9895 | | 0.0339 | 0.79 | 32000 | 0.0316 | 0.7857 | 0.8501 | 0.8166 | 0.9893 | | 0.033 | 0.8 | 32500 | 0.0311 | 0.7975 | 0.8406 | 0.8185 | 0.9895 | | 0.0337 | 0.82 | 33000 | 0.0314 | 0.7886 | 0.8457 | 0.8162 | 0.9894 | | 0.0357 | 0.83 | 33500 | 0.0311 | 0.7923 | 0.8437 | 0.8172 | 0.9894 | | 0.0348 | 0.84 | 34000 | 0.0312 | 0.7909 | 0.8490 | 0.8189 | 0.9894 | | 0.0343 | 0.85 | 34500 | 0.0311 | 0.7856 | 0.8528 | 0.8179 | 0.9893 | | 0.0323 | 0.87 | 35000 | 0.0311 | 0.7884 | 0.8505 | 0.8183 | 0.9894 | | 0.0329 | 0.88 | 35500 | 0.0307 | 0.7981 | 0.8399 | 0.8185 | 0.9896 | | 0.0324 | 0.89 | 36000 | 0.0313 | 0.7830 | 0.8576 | 0.8186 | 0.9893 | | 0.0336 | 0.9 | 36500 | 0.0312 | 0.7836 | 0.8566 | 0.8185 | 0.9893 | | 0.0327 | 0.92 | 37000 | 0.0309 | 0.7887 | 0.8501 | 0.8182 | 0.9895 | | 0.0338 | 0.93 | 37500 | 0.0312 | 0.7887 | 0.8514 | 0.8188 | 0.9894 | | 0.0327 | 0.94 | 38000 | 0.0311 | 0.7873 | 0.8534 | 0.8190 | 0.9894 | | 0.0326 | 0.95 | 38500 | 0.0308 | 0.7953 | 0.8459 | 0.8198 | 0.9895 | | 0.0338 | 0.97 | 39000 | 0.0307 | 0.7932 | 0.8488 | 0.8201 | 0.9895 | | 0.0354 | 0.98 | 39500 | 0.0308 | 0.7916 | 0.8502 | 0.8198 | 0.9895 | | 0.0313 | 0.99 | 40000 | 0.0309 | 0.7897 | 0.8523 | 0.8198 | 0.9895 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.10.0 - Tokenizers 0.12.1
aalsinat/Reinforce
aalsinat
2023-01-10T14:55:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T14:54:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
codingmoh/cat-identifier
codingmoh
2023-01-10T14:51:56Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-01-10T14:51:40Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Arjun12/ppo-LunarLander-v2
Arjun12
2023-01-10T14:42:01Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T14:41:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.36 +/- 39.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tayfen/Reinforce_px_copter_baseline_2
tayfen
2023-01-10T14:23:43Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T13:54:34Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_px_copter_baseline_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 56.90 +/- 31.17 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AV10/distilbert-base-uncased-finetuned-emotion
AV10
2023-01-10T14:15:29Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-10T13:20:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: train args: split metrics: - name: Accuracy type: accuracy value: 0.936 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1529 - F1 Score: 0.9362 - Accuracy: 0.936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.5258 | 1.0 | 250 | 0.1909 | 0.9255 | 0.9265 | | 0.145 | 2.0 | 500 | 0.1529 | 0.9362 | 0.936 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Sevenlee/kkk
Sevenlee
2023-01-10T13:05:50Z
0
0
allennlp
[ "allennlp", "chemistry", "image-segmentation", "ab", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
image-segmentation
2023-01-09T08:30:06Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - ab metrics: - accuracy 100 - bertscore library_name: allennlp pipeline_tag: image-segmentation tags: - chemistry ---
Pitak/Tak-Hug
Pitak
2023-01-10T13:00:12Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-01-10T13:00:12Z
--- license: bigscience-openrail-m ---
ayor-dns/RL_course
ayor-dns
2023-01-10T12:50:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T11:37:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.42 +/- 22.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
misza222/Reinforce-CartPole
misza222
2023-01-10T12:30:45Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-09T11:14:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tayfen/Reinforce_cartpole_baseline
tayfen
2023-01-10T12:01:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T12:01:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_cartpole_baseline results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aj555/ppo-LunarLander-v2-first-run
aj555
2023-01-10T11:57:52Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T11:57:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 306.58 +/- 10.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/wakefit-coffee-table
sd-concepts-library
2023-01-10T11:51:11Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-10T11:51:07Z
--- license: mit --- ### wakefit-coffee-table on Stable Diffusion This is the `<wakefit-coffee-table>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<wakefit-coffee-table> 0](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/6.jpeg) ![<wakefit-coffee-table> 1](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/3.jpeg) ![<wakefit-coffee-table> 2](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/4.jpeg) ![<wakefit-coffee-table> 3](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/1.jpeg) ![<wakefit-coffee-table> 4](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/5.jpeg) ![<wakefit-coffee-table> 5](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/2.jpeg) ![<wakefit-coffee-table> 6](https://huggingface.co/sd-concepts-library/wakefit-coffee-table/resolve/main/concept_images/0.jpeg)
FDB-BG/ppo-lunar-lander-v2
FDB-BG
2023-01-10T11:47:57Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T09:31:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.27 +/- 20.67 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse-take-3
rohitp1
2023-01-10T11:43:10Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-10T07:25:02Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse-take-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse-take-3 This model is a fine-tuned version of [rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse](https://huggingface.co/rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse) on the None dataset. It achieves the following results on the evaluation set: - Loss: 28.9263 - Wer: 0.3301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 291.1088 | 0.22 | 400 | 28.4207 | 0.3362 | | 284.1968 | 0.45 | 800 | 28.1458 | 0.3314 | | 288.1414 | 0.67 | 1200 | 28.1397 | 0.3326 | | 290.0272 | 0.9 | 1600 | 28.4186 | 0.3323 | | 287.3224 | 1.12 | 2000 | 28.3548 | 0.3283 | | 279.1482 | 1.35 | 2400 | 28.5373 | 0.3309 | | 285.8217 | 1.57 | 2800 | 28.4447 | 0.3301 | | 282.9265 | 1.79 | 3200 | 28.5379 | 0.3365 | | 292.6254 | 2.02 | 3600 | 28.2632 | 0.3299 | | 279.215 | 2.24 | 4000 | 28.9263 | 0.3301 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.11.0
ismet/flan-t5-base-finetuned-pwkp
ismet
2023-01-10T11:18:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "simplification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-09T12:49:47Z
--- license: apache-2.0 tags: - simplification - generated_from_trainer metrics: - sacrebleu model-index: - name: flan-t5-base-finetuned-pwkp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-finetuned-pwkp This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9315 - Sacrebleu: 41.2105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |:-------------:|:-----:|:-----:|:---------------:|:---------:| | 1.0683 | 1.0 | 3421 | 0.9984 | 40.9399 | | 0.9748 | 2.0 | 6842 | 0.9584 | 41.0858 | | 0.9279 | 3.0 | 10263 | 0.9433 | 41.1863 | | 0.9025 | 4.0 | 13684 | 0.9315 | 41.2105 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
tangoqash/SAM
tangoqash
2023-01-10T11:08:04Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-10T10:53:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: SAM results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: accuracy: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3061 - Accuracy: {'accuracy': 0.8733333333333333} - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
tomercagan/ppo-LunarLander-v2
tomercagan
2023-01-10T10:29:45Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T09:03:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.35 +/- 17.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RisiPisi/lunarlander
RisiPisi
2023-01-10T10:15:37Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T10:15:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.11 +/- 13.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RegisGraptin/dqn-SpaceInvadersNoFrameskip-v4
RegisGraptin
2023-01-10T10:11:15Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-31T12:42:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 692.00 +/- 164.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RegisGraptin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RegisGraptin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RegisGraptin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1900000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
bitextor/bicleaner-ai-full-en-sl
bitextor
2023-01-10T10:10:22Z
39
0
transformers
[ "transformers", "tf", "xlm-roberta", "bicleaner-ai", "en", "sl", "multilingual", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
null
2022-12-20T16:43:06Z
--- language: - en - sl - multilingual license: gpl-3.0 tags: - bicleaner-ai tasks: - text-classification --- # Bicleaner AI full model for en-sl Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
bitextor/bicleaner-ai-full-en-sq
bitextor
2023-01-10T10:10:15Z
35
2
transformers
[ "transformers", "tf", "xlm-roberta", "bicleaner-ai", "en", "sq", "multilingual", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
null
2022-12-20T16:47:22Z
--- language: - en - sq - multilingual license: gpl-3.0 tags: - bicleaner-ai tasks: - text-classification --- # Bicleaner AI full model for en-sq Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
bitextor/bicleaner-ai-full-en-fr
bitextor
2023-01-10T10:10:06Z
32
1
transformers
[ "transformers", "tf", "xlm-roberta", "bicleaner-ai", "en", "fr", "multilingual", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
null
2022-12-20T16:53:16Z
--- language: - en - fr - multilingual license: gpl-3.0 tags: - bicleaner-ai tasks: - text-classification --- # Bicleaner AI full model for en-fr Bicleaner AI is a tool that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0. Find out at our repository for further instructions on how to use it: https://github.com/bitextor/bicleaner-ai
AhiyaB/mt5-small-finetuned-Big-Patent-h
AhiyaB
2023-01-10T09:57:32Z
108
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:big_patent", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-12-01T13:16:45Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - big_patent metrics: - rouge model-index: - name: mt5-small-finetuned-Big-Patent-h results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: big_patent type: big_patent config: h split: train args: h metrics: - name: Rouge1 type: rouge value: 33.9091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-Big-Patent-h This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 2.2622 - Rouge1: 33.9091 - Rouge2: 14.1731 - Rougel: 30.105 - Rougelsum: 30.3666 ## Model description In this project, we fine-tuned mT5small, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. The model was fine-tuned on the electric patent corpus using a variety of techniques, including transfer learning, data augmentation, and hyperparameter tuning. ## Intended uses & limitations The fine-tuned model showed significant improvements in performance on the electric patent-specific tasks compared to the original pre-trained model. Note: This project is suitable for researchers who are working on electric patent, as it's fine-tuned on electric patents and it can be used for related NLP problems for electric patent and electric patent research. ## Training and evaluation data A subset of electric patents were used to fine-tune the model. The fine-tuned model was evaluated using the ROUGE metric on a variety of natural language processing tasks specific to the patent domain, including, named entity recognition, and summarization. ## Training procedure The model was fine-tuned on the electric patent corpus using a variety of techniques, including transfer learning, data augmentation, and hyperparameter tuning. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.5817 | 1.0 | 1071 | 2.3830 | 32.8521 | 13.2087 | 29.5594 | 29.7744 | | 2.5657 | 2.0 | 2142 | 2.3345 | 33.9434 | 14.0573 | 30.0135 | 30.2533 | | 2.4915 | 3.0 | 3213 | 2.2761 | 33.2033 | 13.2053 | 29.5126 | 29.8023 | | 2.4365 | 4.0 | 4284 | 2.3041 | 33.8649 | 13.6629 | 30.0377 | 30.257 | | 2.3952 | 5.0 | 5355 | 2.2722 | 33.9208 | 13.8018 | 30.1035 | 30.3432 | | 2.3628 | 6.0 | 6426 | 2.2850 | 33.883 | 13.9537 | 30.0579 | 30.2417 | | 2.3474 | 7.0 | 7497 | 2.2858 | 33.7201 | 14.0808 | 30.0762 | 30.255 | | 2.331 | 8.0 | 8568 | 2.2622 | 33.9091 | 14.1731 | 30.105 | 30.3666 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Scrwed/Reinforce-cartpole
Scrwed
2023-01-10T09:46:29Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T09:46:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cardiffnlp/xlm-twitter-politics-sentiment
cardiffnlp
2023-01-10T09:42:48Z
242
10
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "generated_from_keras_callback", "arxiv:2104.12250", "arxiv:2202.00396", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T00:34:22Z
--- tags: - generated_from_keras_callback model-index: - name: XLM-T-Sent-Politics results: [] --- # XLM-T-Sent-Politics This is an "extension" of the multilingual `twitter-xlm-roberta-base-sentiment` model ([model](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment), [original paper](https://arxiv.org/abs/2104.12250)) with a focus on sentiment from politicians' tweets. The original sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but further training was done using tweets from Members of Parliament from UK (English), Spain (Spanish) and Greece (Greek). - Reference Paper: [Politics, Sentiment and Virality: A Large-Scale Multilingual Twitter Analysis in Greece, Spain and United Kingdom](https://arxiv.org/pdf/2202.00396.pdf). - Git Repo: [https://github.com/cardiffnlp/politics-and-virality-twitter](https://github.com/cardiffnlp/politics-and-virality-twitter). ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax MODEL = f"cardiffnlp/xlm-twitter-politics-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) for i in range(scores.shape[0]): s = scores[ranking[i]] print(i, s) ``` Output: ``` 0 0.0048229103 1 0.03117284 2 0.9640044 ```
NYTK/summarization-hi-bart-base-1024-hungarian
NYTK
2023-01-10T09:22:52Z
139
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "hu", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: - hu tags: - summarization license: apache-2.0 metrics: - rouge widget: - text: >- A Tisza-parti város állatkertjében régóta tartanak szurikátákat ( Suricata suricatta ) , de tavaly tavaszig nem sikerült szaporítani őket , annak ellenére , hogy tágas ház és kifutó épült számukra - közölte Veprik Róbert igazgató . 2010-ben alakult ki az új - három Amszterdamból származó nőstényből és egy budapesti fiatal hímből álló - csapat , amely szaporodni kezdett . 2011-ben három , idén pedig egy utóddal örvendeztették meg a gondozókat és az állatbarátokat . A szurikáták utódai - tizenegy hetes vemhesség után - október és március között vakon és szőrtelenül jönnek a világra . A kicsinyek háromhetesen bújnak elő az üregből , és nevelésükben mindkét szülő részt vesz . A szurikátacsapatokban a család tagjai nagyon szoros kapcsolatban állnak egymással , viszont nagyon harciasan fellépnek az idegenekkel szemben , akár meg is ölhetik azt az állatot , amelyet betolakodónak tekintenek . Bár a Dél-Afrikában , a Kalahári sivatagban őshonos cibetmacskaféle ragadozókat a szegedi állatkertben természetes élőhelyükhöz képest kevesebb veszély fenyegeti , a vadasparki erdőben ragadozó madarak is élnek , amelyek akár zsákmányként is tekinthetnének a szurikátákra . A szegedi csapatnál azonban szigorú őrség van , mindig lesi valaki két lábra állva a veszélyforrásokat . Az őrszemek figyelmét még a sárkányrepülők is felkeltik , és felbukkanásakor valamennyi egyed biztos helyre menekül . A szurikáták a Kalahári sivatag bozótos , sziklás területein csapatokban élnek . A 700 gramm körüli testtömegű ragadozók rovarokkal , lárvákkal , skorpiókkal táplálkoznak , de néha elfogyasztják a kisebb gerinceseket , tojásokat és növényi gumókat is . A nappal aktív állatok földalatti üregrendszert ásnak , amelynek több bejárata is van . Ha a szurikáták idegen csapattal vagy ragadozóval kerülnek szembe , azonnal elkezdenek ásni , nagy porfelhőt kavarva . Az is gyakorta előfordul , hogy szorosan egymáshoz bújnak , felborzolják szőrüket , megnyújtják testüket , hogy minél nagyobbnak látszódjanak . Az előadásuk csúcspontján pedig az egész csapat a levegőbe ugrik , közben pedig morog . A hangadás egyébként is fontos a szurikáták kapcsolatában , az egyedek legalább tízféle jelzést használnak a kolónián belül . --- # Hungarian Abstractive Summarization BART model For further models, scripts and details, see [our repository](https://github.com/nytud/neural-models) or [our demo site](https://juniper.nytud.hu/demo/nlp). - BART base model (see Results Table - bold): - Pretrained on Webcorpus 2.0 - Finetuned HI corpus (hvg.hu + index.hu) - Segments: 559.162 ## Limitations - tokenized input text (tokenizer: [HuSpaCy](https://huggingface.co/huspacy)) - **max_source_length = 1024** - max_target_length = 256 ## Results | Model | HI | NOL | | ------------- | ------------- | ------------- | | BART-base-512 | 30.18/13.86/22.92 | 46.48/32.40/39.45 | | BART-base-1024| **31.86/14.59/23.79** | 47.01/32.91/39.97 | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-bart, title = {{BARTerezzünk! - Messze, messze, messze a világtól, - BART kísérleti modellek magyar nyelvre}}, booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year = {2022}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Magyarország}, author = {Yang, Zijian Győző}, pages = {15--29} } ```
NYTK/summarization-nol-bart-hungarian
NYTK
2023-01-10T09:22:27Z
114
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "hu", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: - hu tags: - summarization license: apache-2.0 metrics: - rouge widget: - text: >- A Tisza-parti város állatkertjében régóta tartanak szurikátákat ( Suricata suricatta ) , de tavaly tavaszig nem sikerült szaporítani őket , annak ellenére , hogy tágas ház és kifutó épült számukra - közölte Veprik Róbert igazgató . 2010-ben alakult ki az új - három Amszterdamból származó nőstényből és egy budapesti fiatal hímből álló - csapat , amely szaporodni kezdett . 2011-ben három , idén pedig egy utóddal örvendeztették meg a gondozókat és az állatbarátokat . A szurikáták utódai - tizenegy hetes vemhesség után - október és március között vakon és szőrtelenül jönnek a világra . A kicsinyek háromhetesen bújnak elő az üregből , és nevelésükben mindkét szülő részt vesz . A szurikátacsapatokban a család tagjai nagyon szoros kapcsolatban állnak egymással , viszont nagyon harciasan fellépnek az idegenekkel szemben , akár meg is ölhetik azt az állatot , amelyet betolakodónak tekintenek . Bár a Dél-Afrikában , a Kalahári sivatagban őshonos cibetmacskaféle ragadozókat a szegedi állatkertben természetes élőhelyükhöz képest kevesebb veszély fenyegeti , a vadasparki erdőben ragadozó madarak is élnek , amelyek akár zsákmányként is tekinthetnének a szurikátákra . A szegedi csapatnál azonban szigorú őrség van , mindig lesi valaki két lábra állva a veszélyforrásokat . Az őrszemek figyelmét még a sárkányrepülők is felkeltik , és felbukkanásakor valamennyi egyed biztos helyre menekül . A szurikáták a Kalahári sivatag bozótos , sziklás területein csapatokban élnek . A 700 gramm körüli testtömegű ragadozók rovarokkal , lárvákkal , skorpiókkal táplálkoznak , de néha elfogyasztják a kisebb gerinceseket , tojásokat és növényi gumókat is . A nappal aktív állatok földalatti üregrendszert ásnak , amelynek több bejárata is van . Ha a szurikáták idegen csapattal vagy ragadozóval kerülnek szembe , azonnal elkezdenek ásni , nagy porfelhőt kavarva . Az is gyakorta előfordul , hogy szorosan egymáshoz bújnak , felborzolják szőrüket , megnyújtják testüket , hogy minél nagyobbnak látszódjanak . Az előadásuk csúcspontján pedig az egész csapat a levegőbe ugrik , közben pedig morog . A hangadás egyébként is fontos a szurikáták kapcsolatában , az egyedek legalább tízféle jelzést használnak a kolónián belül . --- # Hungarian Abstractive Summarization BART model For further models, scripts and details, see [our repository](https://github.com/nytud/neural-models) or [our demo site](https://juniper.nytud.hu/demo/nlp). - BART base model (see Results Table - bold): - Pretrained on Webcorpus 2.0 - Finetuned NOL corpus (nol.hu) - Segments: 397,343 ## Limitations - tokenized input text (tokenizer: [HuSpaCy](https://huggingface.co/huspacy)) - max_source_length = 512 - max_target_length = 256 ## Results | Model | HI | NOL | | ------------- | ------------- | ------------- | | BART-base-512 | 30.18/13.86/22.92 | **46.48/32.40/39.45** | | BART-base-1024| 31.86/14.59/23.79 | 47.01/32.91/39.97 | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-bart, title = {{BARTerezzünk! - Messze, messze, messze a világtól, - BART kísérleti modellek magyar nyelvre}}, booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year = {2022}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Magyarország}, author = {Yang, Zijian Győző}, pages = {15--29} } ```
cwinkler/distilbert-base-uncased-finetuned-greenplastics
cwinkler
2023-01-10T09:21:10Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-09T07:22:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-greenplastics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> - cwinkler/patents_green_plastics_10k - .train_test_split(test_size=0.3) # distilbert-base-uncased-finetuned-greenplastics This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0329 - Accuracy: 0.9922 - F1: 0.9922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2334 | 1.0 | 113 | 0.0384 | 0.9896 | 0.9896 | | 0.0245 | 2.0 | 226 | 0.0329 | 0.9922 | 0.9922 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
cleanrl/SpaceInvaders-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-10T08:57:01Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "SpaceInvaders-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-10T08:56:57Z
--- tags: - SpaceInvaders-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvaders-v5 type: SpaceInvaders-v5 metrics: - type: mean_reward value: 31672.50 +/- 17575.25 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5** This is a trained model of a PPO agent playing SpaceInvaders-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id SpaceInvaders-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'SpaceInvaders-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
akum1343/results2
akum1343
2023-01-10T08:49:24Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-10T07:17:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 27 | 6.1310 | 11.5882 | 3.2614 | 10.0378 | 11.2317 | 17.2 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cpu - Datasets 2.6.1 - Tokenizers 0.12.1
AhmedBou/TuniBert
AhmedBou
2023-01-10T08:12:26Z
117
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "sentiment analysis", "classification", "arabic dialect", "tunisian dialect", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - ar tags: - sentiment analysis - classification - arabic dialect - tunisian dialect --- This is a fineTued Bert model on Tunisian dialect text (Used dataset: AhmedBou/Tunisian-Dialect-Corpus), ready for sentiment analysis and classification tasks. LABEL_1: Positive LABEL_2: Negative LABEL_0: Neutral This work is an integral component of my Master's degree thesis and represents the culmination of extensive research and labor. If you wish to utilize the Tunisian-Dialect-Corpus or the TuniBert model, kindly refer to the directory provided. [huggingface.co/AhmedBou][github.com/BoulahiaAhmed]