modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 06:26:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
538 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 06:26:41
card
stringlengths
11
1.01M
NotLiame/DiscordBot
NotLiame
2023-10-30T22:11:07Z
109
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T22:02:27Z
--- thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
royallab/Echidna-13b-v0.3-exl2
royallab
2023-10-30T22:09:17Z
0
0
null
[ "en", "license:cc-by-nc-4.0", "region:us" ]
null
2023-10-30T05:02:53Z
--- license: cc-by-nc-4.0 language: - en --- ## Information This is a Exl2 quantized version of [Echidna-13b-v0.3](https://huggingface.co/NeverSleep/Echidna-13b-v0.3) Please refer to the original creator for more information. Calibration dataset: [wikitext](https://huggingface.co/datasets/wikitext/tree/refs%2Fconvert%2Fparquet/wikitext-2-v1/test) ## Branches: - main: Measurement files - 4bpw: 4 bits per weight - 5bpw: 5 bits per weight - 6bpw: 6 bits per weight ## Notes - 6bpw is recommended for the best quality to vram usage ratio (assuming you have enough vram). - Please ask for more bpws in the community tab if necessary. ## Donate? All my infrastructure and cloud expenses are paid out of pocket. If you'd like to donate, you can do so here: https://ko-fi.com/kingbri You should not feel obligated to donate, but if you do, I'd appreciate it. ---
royallab/Lewd-Sydney-20B-exl2
royallab
2023-10-30T22:05:12Z
0
0
null
[ "en", "license:cc-by-nc-4.0", "region:us" ]
null
2023-10-30T05:07:29Z
--- license: cc-by-nc-4.0 language: - en --- ## Information This is a Exl2 quantized version of [Lewd-Sydney-20B](https://huggingface.co/Undi95/Lewd-Sydney-20B) Please refer to the original creator for more information. Calibration dataset: [wikitext](https://huggingface.co/datasets/wikitext/tree/refs%2Fconvert%2Fparquet/wikitext-2-v1/test) ## Branches: - main: Measurement files - 4bpw: 4 bits per weight - 5bpw: 5 bits per weight - 6bpw: 6 bits per weight ## Notes - 6bpw is recommended for the best quality to vram usage ratio (assuming you have enough vram). - Please ask for more bpws in the community tab if necessary. ## Donate? All my infrastructure and cloud expenses are paid out of pocket. If you'd like to donate, you can do so here: https://ko-fi.com/kingbri You should not feel obligated to donate, but if you do, I'd appreciate it. ---
Yntec/Deliberate
Yntec
2023-10-30T22:00:04Z
721
5
diffusers
[ "diffusers", "safetensors", "General", "Anime", "Art", "XpucT", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-20T20:51:16Z
--- license: cc-by-nc-nd-4.0 library_name: diffusers pipeline_tag: text-to-image tags: - General - Anime - Art - XpucT - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # Deliberate Deliberate 1.0 with the MoistMixV2 VAE baked in for improved details over Deliberate 1.1. Comparison: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/nRNcn2gyGTzftchKyE0Zf.png) (Click for larger) ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/jtrvqp3R59PSwvvWpP8jw.png) Sample and prompt: Cartoon Pretty CUTE Girl, sitting on Overwatch, DETAILED CHIBI EYES, soaking in the rain, gorgeous detailed hair, Ponytail, Magazine ad, iconic, 1940, sharp focus, aerial photography, trending on artstation, peter lloyd. Illustration By ROSSDRAWS and Dave Rapoza and artgerm and leyendecker and Clay Original page: https://huggingface.co/XpucT/Deliberate
ericrong888/logo_classifier
ericrong888
2023-10-30T21:53:50Z
80
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-13T03:43:39Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: ericrong888/logo_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ericrong888/logo_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7196 - Validation Loss: 0.8069 - Train Accuracy: 1.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 75, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.1054 | 1.0410 | 0.8333 | 0 | | 0.9869 | 0.9692 | 0.8333 | 1 | | 0.8856 | 0.9035 | 1.0 | 2 | | 0.8117 | 0.8585 | 1.0 | 3 | | 0.7196 | 0.8069 | 1.0 | 4 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
puchki2015/maitra1982-finetuned-bert-mrpc
puchki2015
2023-10-30T21:46:44Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T21:43:25Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: maitra1982-finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8926746166950595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # maitra1982-finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4454 - Accuracy: 0.8456 - F1: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5477 | 1.0 | 230 | 0.4645 | 0.8039 | 0.8701 | | 0.3141 | 2.0 | 460 | 0.4186 | 0.8382 | 0.89 | | 0.1597 | 3.0 | 690 | 0.4454 | 0.8456 | 0.8927 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
iago22/mcpose
iago22
2023-10-30T21:39:58Z
0
0
null
[ "license:other", "region:us" ]
null
2023-10-30T21:39:58Z
--- license: other license_name: mcpose license_link: LICENSE ---
TheBloke/Uncensored-Jordan-13B-GGUF
TheBloke
2023-10-30T21:25:22Z
247
5
transformers
[ "transformers", "gguf", "llama", "en", "base_model:ajibawa-2023/Uncensored-Jordan-13B", "base_model:quantized:ajibawa-2023/Uncensored-Jordan-13B", "license:cc-by-nc-nd-4.0", "region:us" ]
null
2023-10-30T20:18:32Z
--- base_model: ajibawa-2023/Uncensored-Jordan-13B inference: false language: - en license: cc-by-nc-nd-4.0 model_creator: Feynman Innovations model_name: Uncensored Jordan 13B model_type: llama prompt_template: 'This is a conversation with your Uncensored AI assistant Jordan. Jordan can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Uncensored Jordan 13B - GGUF - Model creator: [Feynman Innovations](https://huggingface.co/ajibawa-2023) - Original model: [Uncensored Jordan 13B](https://huggingface.co/ajibawa-2023/Uncensored-Jordan-13B) <!-- description start --> ## Description This repo contains GGUF format model files for [Feynman Innovations's Uncensored Jordan 13B](https://huggingface.co/ajibawa-2023/Uncensored-Jordan-13B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF) * [Feynman Innovations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ajibawa-2023/Uncensored-Jordan-13B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Jordan ``` This is a conversation with your Uncensored AI assistant Jordan. Jordan can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `cc-by-nc-nd-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Feynman Innovations's Uncensored Jordan 13B](https://huggingface.co/ajibawa-2023/Uncensored-Jordan-13B). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [uncensored-jordan-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [uncensored-jordan-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [uncensored-jordan-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [uncensored-jordan-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [uncensored-jordan-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [uncensored-jordan-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [uncensored-jordan-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [uncensored-jordan-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [uncensored-jordan-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [uncensored-jordan-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [uncensored-jordan-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [uncensored-jordan-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Uncensored-Jordan-13B-GGUF/blob/main/uncensored-jordan-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Uncensored-Jordan-13B-GGUF and below it, a specific filename to download, such as: uncensored-jordan-13b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Uncensored-Jordan-13B-GGUF uncensored-jordan-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Uncensored-Jordan-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Uncensored-Jordan-13B-GGUF uncensored-jordan-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m uncensored-jordan-13b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "This is a conversation with your Uncensored AI assistant Jordan. Jordan can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information.\n\nContext\nYou are a Uncensored AI assistant.\n\nUSER: {prompt}\nASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Uncensored-Jordan-13B-GGUF", model_file="uncensored-jordan-13b.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Feynman Innovations's Uncensored Jordan 13B **Jordan: An Uncensored Model** The name "Jordan" pays homage to the charismatic character Jordan Belfort, portrayed by Leonardo DiCaprio in the movie "The Wolf of Wall Street." Just like the character, Jordan aspires to push boundaries and encourage unfiltered conversations. Jordan Belfort, the central character in "The Wolf of Wall Street," is known for his audaciousness, charisma, and willingness to speak about anything, no matter the societal norms or boundaries. Jordan, the AI language model, draws inspiration from these qualities to offer a space where users can discuss a wide range of topics without fear of censorship or constraints. Users can engage in candid discussions about politics, religion, contentious issues, and other subjects that might be off-limits on mainstream social media platforms. It is trained on around 155000 set of conversations. Each set having 10~15 conversations. We will not release this data. **Warning** An uncensored model has no or little guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous objects. Publishing anything this model generates is the same as publishing it yourself. We are not responsible for what you generate using this model. **Training:** Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took 77 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta. **GPTQ GGML & AWQ** GPTQ: TBA GGUF: TBA AWQ: TBA **Example Prompt:** ``` This is a conversation with your Uncensored AI assistant Jordan. Jordan can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: <prompt> ASSISTANT: ``` <!-- original-model-card end -->
TheBloke/Nethena-20B-GPTQ
TheBloke
2023-10-30T21:23:33Z
52
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "base_model:NeverSleep/Nethena-20B", "base_model:quantized:NeverSleep/Nethena-20B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-10-30T20:09:21Z
--- base_model: NeverSleep/Nethena-20B inference: false license: cc-by-nc-4.0 model_creator: NeverSleep model_name: Nethena 20B model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Nethena 20B - GPTQ - Model creator: [NeverSleep](https://huggingface.co/NeverSleep) - Original model: [Nethena 20B](https://huggingface.co/NeverSleep/Nethena-20B) <!-- description start --> ## Description This repo contains GPTQ model files for [NeverSleep's Nethena 20B](https://huggingface.co/NeverSleep/Nethena-20B). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Nethena-20B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nethena-20B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nethena-20B-GGUF) * [NeverSleep's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NeverSleep/Nethena-20B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [NeverSleep's Nethena 20B](https://huggingface.co/NeverSleep/Nethena-20B). <!-- licensing end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KobaldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 10.52 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 10.89 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 12.04 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.41 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 20.35 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 9.51 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Nethena-20B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 20.80 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Nethena-20B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Nethena-20B-GPTQ:gptq-4bit-128g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Nethena-20B-GPTQ`: ```shell mkdir Nethena-20B-GPTQ huggingface-cli download TheBloke/Nethena-20B-GPTQ --local-dir Nethena-20B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Nethena-20B-GPTQ huggingface-cli download TheBloke/Nethena-20B-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Nethena-20B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Nethena-20B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Nethena-20B-GPTQ --local-dir Nethena-20B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Nethena-20B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Nethena-20B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Nethena-20B-GPTQ:gptq-4bit-128g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Nethena-20B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Nethena-20B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Nethena-20B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-128g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: NeverSleep's Nethena 20B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/NNs9LlIWuupi4KPLmTFtP.png) # This model is a collab between [IkariDev](https://huggingface.co/IkariDev) and [Undi](https://huggingface.co/Undi95)! Nethena-20B model. Use Alpaca format. Suitable for RP, ERP and general stuff. What would happen if we combine all of out best models? Well.. here it is, the holy grail: **Echidna v0.3** + **Athena v3** + **Nete** This model also has a 13b version, you can check it out right [here](https://huggingface.co/NeverSleep/Nethena-13B). [Recommended settings - No settings yet(Please suggest some over in the Community tab!)] <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains fp16 files of Nethena-20B. [FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Nethena-20B) <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)--> <!--[exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-20B-v0.3-8bpw-8h-exl2)--> <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)--> <!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)--> [GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Nethena-20B-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)--> ## Ratings: Note: We have permission of all users to upload their ratings, i DONT screenshot random reviews without asking if i can put them here! No ratings yet! If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi". <!-- description end --> <!-- description start --> ## Models+loras used and recipe - NeverSleep/Echidna-13b-v0.3 - IkariDev/Athena-v3 - Undi95/Nete-13B <!-- description end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## Others Undi: If you want to support me, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
li-ping/river_retriver_416data_v3
li-ping
2023-10-30T21:17:15Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-30T21:17:07Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # li-ping/river_retriver_416data_v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('li-ping/river_retriver_416data_v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=li-ping/river_retriver_416data_v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 791 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 400, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 80, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kunhanw/mms_gn_fine_tune
kunhanw
2023-10-30T21:13:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-30T20:51:31Z
--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: mms_gn_fine_tune results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: gn split: test args: gn metrics: - name: Wer type: wer value: 0.329064919594997 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms_gn_fine_tune This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1811 - Wer: 0.3291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.0552 | 1.79 | 100 | 0.2300 | 0.3880 | | 0.2259 | 3.57 | 200 | 0.1811 | 0.3291 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Kooten/Nethena-20B-3bpw-h8-exl2
Kooten
2023-10-30T21:11:47Z
9
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T17:21:48Z
--- license: cc-by-nc-4.0 --- ## Description Exllama 2 quant of [NeverSleep/Nethena-20B](https://huggingface.co/NeverSleep/Nethena-20B) 3 BPW, Head bit set to 8 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## VRAM My VRAM usage with 20B models are: | Bits per weight | Context | VRAM | |--|--|--| | 6bpw | 4k | 24gb | | 4bpw | 4k | 18gb | | 4bpw | 8k | 24gb | | 3bpw | 4k | 16gb | | 3bpw | 8k | 21gb | I have rounded up, these arent exact numbers, this is also on a windows machine.
imi2/openbuddy-falcon-180b-v13-preview1-GGUF
imi2
2023-10-30T20:40:18Z
0
1
null
[ "region:us" ]
null
2023-10-30T09:15:50Z
tested the quantized models, both load correctly as of 41aee4d in llama.cpp.
waldie/Nethena-20B-4bpw-h6-exl2
waldie
2023-10-30T20:37:06Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T20:07:32Z
--- license: cc-by-nc-4.0 --- quant of [IkariDev's](https://huggingface.co/IkariDev) and [Undi95's](https://huggingface.co/Undi95) [Nethena-20B](https://huggingface.co/NeverSleep/Nethena-20B) wikitext used as calibration dataset.
gstoica3/roberta-large-peft-rte
gstoica3
2023-10-30T20:35:05Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:FacebookAI/roberta-large", "base_model:adapter:FacebookAI/roberta-large", "region:us" ]
null
2023-10-30T20:35:05Z
--- library_name: peft base_model: roberta-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
Samiel999/ppo-LunarLander-v2
Samiel999
2023-10-30T20:29:36Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-30T20:29:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.37 +/- 23.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
petermutwiri/Tiny_Bert_Cupstone
petermutwiri
2023-10-30T20:18:28Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:huawei-noah/TinyBERT_General_4L_312D", "base_model:finetune:huawei-noah/TinyBERT_General_4L_312D", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T19:46:41Z
--- base_model: huawei-noah/TinyBERT_General_4L_312D tags: - generated_from_trainer metrics: - accuracy model-index: - name: Tiny_Bert_Cupstone results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tiny_Bert_Cupstone This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3333 - Accuracy: 0.8550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.524 | 0.2 | 500 | 0.4015 | 0.8318 | | 0.4268 | 0.4 | 1000 | 0.4274 | 0.8279 | | 0.39 | 0.6 | 1500 | 0.3743 | 0.8502 | | 0.3674 | 0.8 | 2000 | 0.3333 | 0.8550 | | 0.3687 | 1.0 | 2500 | 0.3836 | 0.8585 | | 0.3489 | 1.2 | 3000 | 0.3927 | 0.8548 | | 0.3193 | 1.41 | 3500 | 0.3938 | 0.8669 | | 0.3525 | 1.61 | 4000 | 0.3717 | 0.8753 | | 0.3327 | 1.81 | 4500 | 0.4589 | 0.8573 | | 0.3276 | 2.01 | 5000 | 0.3676 | 0.8791 | | 0.285 | 2.21 | 5500 | 0.4196 | 0.8811 | | 0.2757 | 2.41 | 6000 | 0.3973 | 0.8777 | | 0.277 | 2.61 | 6500 | 0.4198 | 0.8805 | | 0.2834 | 2.81 | 7000 | 0.4955 | 0.8739 | | 0.338 | 3.01 | 7500 | 0.4383 | 0.8844 | | 0.2499 | 3.21 | 8000 | 0.4745 | 0.8785 | | 0.2405 | 3.41 | 8500 | 0.4794 | 0.8854 | | 0.2648 | 3.61 | 9000 | 0.4576 | 0.8844 | | 0.2379 | 3.81 | 9500 | 0.4395 | 0.8886 | | 0.2343 | 4.01 | 10000 | 0.5088 | 0.8791 | | 0.2011 | 4.22 | 10500 | 0.5272 | 0.8781 | | 0.2198 | 4.42 | 11000 | 0.5235 | 0.8765 | | 0.2343 | 4.62 | 11500 | 0.5019 | 0.8844 | | 0.194 | 4.82 | 12000 | 0.5227 | 0.8791 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
MeghanaArakkal/TuringChat
MeghanaArakkal
2023-10-30T20:10:33Z
0
1
null
[ "generated_from_trainer", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:finetune:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2023-10-30T20:01:02Z
--- base_model: NousResearch/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: 2_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2_epochs This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Kooten/Nethena-13B-4bpw-h8-exl2
Kooten
2023-10-30T19:52:02Z
52
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T16:02:13Z
--- license: cc-by-nc-4.0 --- ## Description Exllama 2 quant of [NeverSleep/Nethena-13B](https://huggingface.co/NeverSleep/Nethena-13B) 4 BPW, Head bit set to 8 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## VRAM My VRAM usage with 13B models are: | Bits per weight | Context | VRAM | |--|--|--| | 8bpw | 8k | 22gb | | 8bpw | 4k | 19gb | | 6bpw | 8k | 19gb | | 6bpw | 4k | 16gb | | 4bpw | 8k | 16gb | | 4bpw | 4k | 13gb | | 3bpw | 8k | 15gb | | 3bpw | 4k | 12gb | I have rounded up, these arent exact numbers, this is also on a windows machine, they should be slightly lower on linux.
diana9m/swin-tiny-patch4-window7-224-finetuned-eurosat
diana9m
2023-10-30T19:42:25Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-19T09:21:46Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5666 - Accuracy: 0.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.92 | 6 | 4.5666 | 0.7778 | | 5.077 | 2.0 | 13 | 1.7078 | 0.7778 | | 5.077 | 2.77 | 18 | 1.4156 | 0.7778 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.13.3
Ephicho/NLP_Capstone
Ephicho
2023-10-30T19:28:08Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:huawei-noah/TinyBERT_General_4L_312D", "base_model:finetune:huawei-noah/TinyBERT_General_4L_312D", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-26T07:28:23Z
--- base_model: huawei-noah/TinyBERT_General_4L_312D tags: - generated_from_trainer metrics: - accuracy model-index: - name: NLP_Capstone results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_Capstone This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Accuracy: 0.7654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
AmelieSchreiber/phi_1_5_vicgalle_alpaca-gpt4
AmelieSchreiber
2023-10-30T19:23:11Z
3
0
peft
[ "peft", "arxiv:1910.09700", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "region:us" ]
null
2023-10-30T18:45:06Z
--- library_name: peft base_model: microsoft/phi-1_5 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
sunyijia97/lora-trained-xl-colab-doll-v1_5
sunyijia97
2023-10-30T19:22:52Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-30T03:16:23Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of che1se4 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - sunyijia97/lora-trained-xl-colab-doll-v2 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of che1se4 using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
laion/larger_clap_music
laion
2023-10-30T19:17:40Z
5,923
25
transformers
[ "transformers", "pytorch", "clap", "feature-extraction", "arxiv:2211.06687", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-30T18:16:15Z
--- license: apache-2.0 --- # Model ## TL;DR CLAP is to audio what CLIP is to image. This is an improved CLAP checkpoint, specifically trained on music. ## Description CLAP (Contrastive Language-Audio Pretraining) is a neural network trained on a variety of (audio, text) pairs. It can be instructed in to predict the most relevant text snippet, given an audio, without directly optimizing for the task. The CLAP model uses a SWINTransformer to get audio features from a log-Mel spectrogram input, and a RoBERTa model to get text features. Both the text and audio features are then projected to a latent space with identical dimension. The dot product between the projected audio and text features is then used as a similar score. # Usage You can use this model for zero shot audio classification or extracting audio and/or textual features. # Uses ## Perform zero-shot audio classification ### Using `pipeline` ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/larger_clap_music") output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) print(output) >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}] ``` ## Run the model: You can also get the audio and text embeddings using `ClapModel` ### Run the model on CPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_music") processor = ClapProcessor.from_pretrained("laion/larger_clap_music") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt") audio_embed = model.get_audio_features(**inputs) ``` ### Run the model on GPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/larger_clap_music").to(0) processor = ClapProcessor.from_pretrained("laion/larger_clap_music") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0) audio_embed = model.get_audio_features(**inputs) ``` # Citation If you are using this model for your work, please consider citing the original paper: ``` @misc{https://doi.org/10.48550/arxiv.2211.06687, doi = {10.48550/ARXIV.2211.06687}, url = {https://arxiv.org/abs/2211.06687}, author = {Wu, Yusong and Chen, Ke and Zhang, Tianyu and Hui, Yuchen and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo}, keywords = {Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
schubertcarvalho/text_summarization_t5_trainer
schubertcarvalho
2023-10-30T19:16:42Z
112
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:billsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-10-30T19:14:24Z
--- license: apache-2.0 base_model: t5-small tags: - summarization - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: text_summarization_t5_trainer results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_summarization_t5_trainer This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.9562 - Rouge1: 0.1285 - Rouge2: 0.0396 - Rougel: 0.1104 - Rougelsum: 0.1102 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 16 | 3.5925 | 0.1421 | 0.0501 | 0.1208 | 0.1207 | 19.0 | | No log | 2.0 | 32 | 3.1487 | 0.1339 | 0.0428 | 0.1146 | 0.1145 | 19.0 | | No log | 3.0 | 48 | 2.9987 | 0.1285 | 0.04 | 0.1101 | 0.1099 | 19.0 | | No log | 4.0 | 64 | 2.9562 | 0.1285 | 0.0396 | 0.1104 | 0.1102 | 19.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0a0+29c30b1 - Datasets 2.14.5 - Tokenizers 0.14.1
dcfidalgo/ppo-LunarLander-v2
dcfidalgo
2023-10-30T19:03:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-30T15:34:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.81 +/- 12.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JatinKumar/q-FrozenLake-v1-4x4-noSlippery
JatinKumar
2023-10-30T18:56:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-30T18:56:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JatinKumar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kwwww/bert-base-uncased-test_2_100
kwwww
2023-10-30T18:55:55Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-10-30T14:13:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-base-uncased-test_2_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-test_2_100 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3742 - F1: {'f1': 0.8207293666026871} - Accuracy: {'accuracy': 0.8132} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------:|:--------------------:| | No log | 1.0 | 7 | 0.6867 | {'f1': 0.6673895364597453} | {'accuracy': 0.5092} | | No log | 2.0 | 14 | 0.6819 | {'f1': 0.5501760563380282} | {'accuracy': 0.5912} | | No log | 3.0 | 21 | 0.6808 | {'f1': 0.37319468515309073} | {'accuracy': 0.566} | | No log | 4.0 | 28 | 0.6778 | {'f1': 0.3979706877113867} | {'accuracy': 0.5728} | | No log | 5.0 | 35 | 0.6748 | {'f1': 0.432258064516129} | {'accuracy': 0.5776} | | No log | 6.0 | 42 | 0.6702 | {'f1': 0.5789250952179433} | {'accuracy': 0.602} | | No log | 7.0 | 49 | 0.6664 | {'f1': 0.5185891325071497} | {'accuracy': 0.596} | | No log | 8.0 | 56 | 0.6615 | {'f1': 0.5394378966455122} | {'accuracy': 0.5936} | | No log | 9.0 | 63 | 0.6583 | {'f1': 0.5796124684077507} | {'accuracy': 0.6008} | | No log | 10.0 | 70 | 0.6547 | {'f1': 0.628030303030303} | {'accuracy': 0.6072} | | No log | 11.0 | 77 | 0.6429 | {'f1': 0.555812876331635} | {'accuracy': 0.6164} | | No log | 12.0 | 84 | 0.6200 | {'f1': 0.6544731610337972} | {'accuracy': 0.6524} | | No log | 13.0 | 91 | 0.6054 | {'f1': 0.6861480075901328} | {'accuracy': 0.6692} | | No log | 14.0 | 98 | 0.5944 | {'f1': 0.6591107236268527} | {'accuracy': 0.6872} | | No log | 15.0 | 105 | 0.5802 | {'f1': 0.6939109113199837} | {'accuracy': 0.7004} | | No log | 16.0 | 112 | 0.5801 | {'f1': 0.7122069523039612} | {'accuracy': 0.7152} | | No log | 17.0 | 119 | 0.5862 | {'f1': 0.7172413793103448} | {'accuracy': 0.7212} | | No log | 18.0 | 126 | 0.6508 | {'f1': 0.7453769559032717} | {'accuracy': 0.7136} | | No log | 19.0 | 133 | 0.5935 | {'f1': 0.7325581395348837} | {'accuracy': 0.7424} | | No log | 20.0 | 140 | 0.6193 | {'f1': 0.7265029635901777} | {'accuracy': 0.7416} | | No log | 21.0 | 147 | 0.6967 | {'f1': 0.7574221578566257} | {'accuracy': 0.732} | | No log | 22.0 | 154 | 0.6781 | {'f1': 0.7065267001369236} | {'accuracy': 0.7428} | | No log | 23.0 | 161 | 0.6566 | {'f1': 0.7692898272552784} | {'accuracy': 0.7596} | | No log | 24.0 | 168 | 0.6656 | {'f1': 0.7717265353418308} | {'accuracy': 0.7636} | | No log | 25.0 | 175 | 0.6746 | {'f1': 0.7662650602409639} | {'accuracy': 0.7672} | | No log | 26.0 | 182 | 0.7001 | {'f1': 0.7759433962264151} | {'accuracy': 0.772} | | No log | 27.0 | 189 | 0.7292 | {'f1': 0.7441063009001286} | {'accuracy': 0.7612} | | No log | 28.0 | 196 | 0.7418 | {'f1': 0.7610474631751227} | {'accuracy': 0.7664} | | No log | 29.0 | 203 | 0.7614 | {'f1': 0.751592356687898} | {'accuracy': 0.766} | | No log | 30.0 | 210 | 0.7697 | {'f1': 0.7806022682831443} | {'accuracy': 0.7756} | | No log | 31.0 | 217 | 0.7885 | {'f1': 0.7721265518622348} | {'accuracy': 0.7724} | | No log | 32.0 | 224 | 0.8062 | {'f1': 0.7642209398186316} | {'accuracy': 0.7712} | | No log | 33.0 | 231 | 0.8301 | {'f1': 0.7805456702253853} | {'accuracy': 0.778} | | No log | 34.0 | 238 | 0.8503 | {'f1': 0.7807570977917981} | {'accuracy': 0.7776} | | No log | 35.0 | 245 | 0.9258 | {'f1': 0.7845180498697432} | {'accuracy': 0.7684} | | No log | 36.0 | 252 | 0.9121 | {'f1': 0.7879472693032015} | {'accuracy': 0.7748} | | No log | 37.0 | 259 | 0.8719 | {'f1': 0.7829238824003222} | {'accuracy': 0.7844} | | No log | 38.0 | 266 | 0.9147 | {'f1': 0.7897748950782144} | {'accuracy': 0.7796} | | No log | 39.0 | 273 | 0.8983 | {'f1': 0.7862013638186923} | {'accuracy': 0.7868} | | No log | 40.0 | 280 | 0.9294 | {'f1': 0.7913779830638953} | {'accuracy': 0.7832} | | No log | 41.0 | 287 | 0.9203 | {'f1': 0.7841269841269841} | {'accuracy': 0.7824} | | No log | 42.0 | 294 | 0.9434 | {'f1': 0.7949405902644691} | {'accuracy': 0.786} | | No log | 43.0 | 301 | 0.9415 | {'f1': 0.7944465869649053} | {'accuracy': 0.7868} | | No log | 44.0 | 308 | 0.9479 | {'f1': 0.770859805167302} | {'accuracy': 0.7836} | | No log | 45.0 | 315 | 0.9805 | {'f1': 0.7955927051671733} | {'accuracy': 0.7848} | | No log | 46.0 | 322 | 0.9753 | {'f1': 0.788184998056743} | {'accuracy': 0.782} | | No log | 47.0 | 329 | 0.9732 | {'f1': 0.7798537774167345} | {'accuracy': 0.7832} | | No log | 48.0 | 336 | 1.0218 | {'f1': 0.7910163684811572} | {'accuracy': 0.7804} | | No log | 49.0 | 343 | 1.0071 | {'f1': 0.7824056052938886} | {'accuracy': 0.7764} | | No log | 50.0 | 350 | 0.9941 | {'f1': 0.7769962763756723} | {'accuracy': 0.7844} | | No log | 51.0 | 357 | 1.1072 | {'f1': 0.7849580138736765} | {'accuracy': 0.7644} | | No log | 52.0 | 364 | 1.0659 | {'f1': 0.7905048982667672} | {'accuracy': 0.7776} | | No log | 53.0 | 371 | 1.0176 | {'f1': 0.7758268681094325} | {'accuracy': 0.7804} | | No log | 54.0 | 378 | 1.0482 | {'f1': 0.7857695282289249} | {'accuracy': 0.7784} | | No log | 55.0 | 385 | 1.2158 | {'f1': 0.784452296819788} | {'accuracy': 0.756} | | No log | 56.0 | 392 | 1.1118 | {'f1': 0.7880575009214891} | {'accuracy': 0.77} | | No log | 57.0 | 399 | 1.0318 | {'f1': 0.7878308968787041} | {'accuracy': 0.7852} | | No log | 58.0 | 406 | 1.0296 | {'f1': 0.7861178369652946} | {'accuracy': 0.788} | | No log | 59.0 | 413 | 1.1107 | {'f1': 0.7899034892353377} | {'accuracy': 0.7736} | | No log | 60.0 | 420 | 1.0667 | {'f1': 0.791124713083397} | {'accuracy': 0.7816} | | No log | 61.0 | 427 | 1.0478 | {'f1': 0.7916666666666666} | {'accuracy': 0.788} | | No log | 62.0 | 434 | 1.0506 | {'f1': 0.7908625443087829} | {'accuracy': 0.7876} | | No log | 63.0 | 441 | 1.0569 | {'f1': 0.7927786499215072} | {'accuracy': 0.7888} | | No log | 64.0 | 448 | 1.0732 | {'f1': 0.7882534775888718} | {'accuracy': 0.7808} | | No log | 65.0 | 455 | 1.0744 | {'f1': 0.7902287708414115} | {'accuracy': 0.7836} | | No log | 66.0 | 462 | 1.0650 | {'f1': 0.7919463087248323} | {'accuracy': 0.7892} | | No log | 67.0 | 469 | 1.1210 | {'f1': 0.7916981132075471} | {'accuracy': 0.7792} | | No log | 68.0 | 476 | 1.0886 | {'f1': 0.7925552539744086} | {'accuracy': 0.786} | | No log | 69.0 | 483 | 1.0712 | {'f1': 0.7895372233400404} | {'accuracy': 0.7908} | | No log | 70.0 | 490 | 1.0749 | {'f1': 0.7860897695107156} | {'accuracy': 0.7884} | | No log | 71.0 | 497 | 1.0807 | {'f1': 0.7931446791550419} | {'accuracy': 0.7924} | | 0.1431 | 72.0 | 504 | 1.0837 | {'f1': 0.7931446791550419} | {'accuracy': 0.7924} | | 0.1431 | 73.0 | 511 | 1.0897 | {'f1': 0.7936758893280632} | {'accuracy': 0.7912} | | 0.1431 | 74.0 | 518 | 1.0925 | {'f1': 0.7952755905511811} | {'accuracy': 0.792} | | 0.1431 | 75.0 | 525 | 1.1018 | {'f1': 0.7951713395638628} | {'accuracy': 0.7896} | | 0.1431 | 76.0 | 532 | 1.1121 | {'f1': 0.7938104448742745} | {'accuracy': 0.7868} | | 0.1431 | 77.0 | 539 | 1.1071 | {'f1': 0.7945631067961165} | {'accuracy': 0.7884} | | 0.1431 | 78.0 | 546 | 1.1149 | {'f1': 0.7944250871080138} | {'accuracy': 0.7876} | | 0.1431 | 79.0 | 553 | 1.1702 | {'f1': 0.7919312663429211} | {'accuracy': 0.7772} | | 0.1431 | 80.0 | 560 | 1.1048 | {'f1': 0.7970277669143527} | {'accuracy': 0.7924} | | 0.1431 | 81.0 | 567 | 1.0988 | {'f1': 0.7942583732057418} | {'accuracy': 0.7936} | | 0.1431 | 82.0 | 574 | 1.1094 | {'f1': 0.797141722905915} | {'accuracy': 0.7956} | | 0.1431 | 83.0 | 581 | 1.1293 | {'f1': 0.79408330089529} | {'accuracy': 0.7884} | | 0.1431 | 84.0 | 588 | 1.1591 | {'f1': 0.7948229920060906} | {'accuracy': 0.7844} | | 0.1431 | 85.0 | 595 | 1.1706 | {'f1': 0.7921241953805376} | {'accuracy': 0.7804} | | 0.1431 | 86.0 | 602 | 1.1557 | {'f1': 0.792467332820907} | {'accuracy': 0.784} | | 0.1431 | 87.0 | 609 | 1.1554 | {'f1': 0.76732249786142} | {'accuracy': 0.7824} | | 0.1431 | 88.0 | 616 | 1.1516 | {'f1': 0.7946257197696737} | {'accuracy': 0.786} | | 0.1431 | 89.0 | 623 | 1.2337 | {'f1': 0.7969208211143696} | {'accuracy': 0.7784} | | 0.1431 | 90.0 | 630 | 1.1372 | {'f1': 0.7978227060653188} | {'accuracy': 0.792} | | 0.1431 | 91.0 | 637 | 1.1228 | {'f1': 0.7916833266693323} | {'accuracy': 0.7916} | | 0.1431 | 92.0 | 644 | 1.1289 | {'f1': 0.7952569169960475} | {'accuracy': 0.7928} | | 0.1431 | 93.0 | 651 | 1.1409 | {'f1': 0.7992187500000001} | {'accuracy': 0.7944} | | 0.1431 | 94.0 | 658 | 1.1469 | {'f1': 0.7989109295993777} | {'accuracy': 0.7932} | | 0.1431 | 95.0 | 665 | 1.2357 | {'f1': 0.7549019607843137} | {'accuracy': 0.78} | | 0.1431 | 96.0 | 672 | 1.1278 | {'f1': 0.789664917238595} | {'accuracy': 0.7916} | | 0.1431 | 97.0 | 679 | 1.1492 | {'f1': 0.8013937282229966} | {'accuracy': 0.7948} | | 0.1431 | 98.0 | 686 | 1.1501 | {'f1': 0.7805486284289276} | {'accuracy': 0.7888} | | 0.1431 | 99.0 | 693 | 1.1785 | {'f1': 0.7683807904802381} | {'accuracy': 0.782} | | 0.1431 | 100.0 | 700 | 1.1602 | {'f1': 0.7807708246995443} | {'accuracy': 0.7884} | | 0.1431 | 101.0 | 707 | 1.1585 | {'f1': 0.7963621984974298} | {'accuracy': 0.794} | | 0.1431 | 102.0 | 714 | 1.2049 | {'f1': 0.7948523845571537} | {'accuracy': 0.7832} | | 0.1431 | 103.0 | 721 | 1.1969 | {'f1': 0.7960275019098548} | {'accuracy': 0.7864} | | 0.1431 | 104.0 | 728 | 1.1693 | {'f1': 0.7960552268244576} | {'accuracy': 0.7932} | | 0.1431 | 105.0 | 735 | 1.1664 | {'f1': 0.7934739355352168} | {'accuracy': 0.7924} | | 0.1431 | 106.0 | 742 | 1.1675 | {'f1': 0.7937898089171975} | {'accuracy': 0.7928} | | 0.1431 | 107.0 | 749 | 1.1750 | {'f1': 0.7965299684542587} | {'accuracy': 0.7936} | | 0.1431 | 108.0 | 756 | 1.1829 | {'f1': 0.7989045383411582} | {'accuracy': 0.7944} | | 0.1431 | 109.0 | 763 | 1.1870 | {'f1': 0.797818465134398} | {'accuracy': 0.7924} | | 0.1431 | 110.0 | 770 | 1.1873 | {'f1': 0.7987519500780031} | {'accuracy': 0.7936} | | 0.1431 | 111.0 | 777 | 1.1899 | {'f1': 0.798443579766537} | {'accuracy': 0.7928} | | 0.1431 | 112.0 | 784 | 1.2010 | {'f1': 0.798151001540832} | {'accuracy': 0.7904} | | 0.1431 | 113.0 | 791 | 1.1904 | {'f1': 0.799532892175944} | {'accuracy': 0.794} | | 0.1431 | 114.0 | 798 | 1.1816 | {'f1': 0.7965299684542587} | {'accuracy': 0.7936} | | 0.1431 | 115.0 | 805 | 1.1729 | {'f1': 0.7906413876563132} | {'accuracy': 0.7924} | | 0.1431 | 116.0 | 812 | 1.1751 | {'f1': 0.7868453105968332} | {'accuracy': 0.79} | | 0.1431 | 117.0 | 819 | 1.1747 | {'f1': 0.7909604519774011} | {'accuracy': 0.7928} | | 0.1431 | 118.0 | 826 | 1.1807 | {'f1': 0.7957244655581948} | {'accuracy': 0.7936} | | 0.1431 | 119.0 | 833 | 1.3983 | {'f1': 0.7960199004975125} | {'accuracy': 0.7704} | | 0.1431 | 120.0 | 840 | 1.3032 | {'f1': 0.7992700729927008} | {'accuracy': 0.78} | | 0.1431 | 121.0 | 847 | 1.2420 | {'f1': 0.7653997378768019} | {'accuracy': 0.7852} | | 0.1431 | 122.0 | 854 | 1.1608 | {'f1': 0.7954911433172303} | {'accuracy': 0.7968} | | 0.1431 | 123.0 | 861 | 1.2434 | {'f1': 0.8047512991833704} | {'accuracy': 0.7896} | | 0.1431 | 124.0 | 868 | 1.1561 | {'f1': 0.7962662337662338} | {'accuracy': 0.7992} | | 0.1431 | 125.0 | 875 | 1.1961 | {'f1': 0.7776355100298763} | {'accuracy': 0.7916} | | 0.1431 | 126.0 | 882 | 1.2566 | {'f1': 0.802962962962963} | {'accuracy': 0.7872} | | 0.1431 | 127.0 | 889 | 1.1969 | {'f1': 0.8042813455657493} | {'accuracy': 0.7952} | | 0.1431 | 128.0 | 896 | 1.1668 | {'f1': 0.7972480777013354} | {'accuracy': 0.7996} | | 0.1431 | 129.0 | 903 | 1.1762 | {'f1': 0.7916152897657213} | {'accuracy': 0.7972} | | 0.1431 | 130.0 | 910 | 1.1758 | {'f1': 0.791307913079131} | {'accuracy': 0.7964} | | 0.1431 | 131.0 | 917 | 1.1774 | {'f1': 0.8007889546351085} | {'accuracy': 0.798} | | 0.1431 | 132.0 | 924 | 1.2013 | {'f1': 0.8047564250095894} | {'accuracy': 0.7964} | | 0.1431 | 133.0 | 931 | 1.2061 | {'f1': 0.805045871559633} | {'accuracy': 0.796} | | 0.1431 | 134.0 | 938 | 1.1958 | {'f1': 0.8041714947856314} | {'accuracy': 0.7972} | | 0.1431 | 135.0 | 945 | 1.1887 | {'f1': 0.8040514218932606} | {'accuracy': 0.7988} | | 0.1431 | 136.0 | 952 | 1.1840 | {'f1': 0.8040832351786416} | {'accuracy': 0.8004} | | 0.1431 | 137.0 | 959 | 1.1836 | {'f1': 0.8056648308418568} | {'accuracy': 0.8024} | | 0.1431 | 138.0 | 966 | 1.1792 | {'f1': 0.8033175355450237} | {'accuracy': 0.8008} | | 0.1431 | 139.0 | 973 | 1.1881 | {'f1': 0.8073322932917315} | {'accuracy': 0.8024} | | 0.1431 | 140.0 | 980 | 1.2032 | {'f1': 0.8058551617873652} | {'accuracy': 0.7984} | | 0.1431 | 141.0 | 987 | 1.2021 | {'f1': 0.8070987654320988} | {'accuracy': 0.8} | | 0.1431 | 142.0 | 994 | 1.2005 | {'f1': 0.8061895551257253} | {'accuracy': 0.7996} | | 0.0009 | 143.0 | 1001 | 1.1952 | {'f1': 0.8074679113185532} | {'accuracy': 0.802} | | 0.0009 | 144.0 | 1008 | 1.1926 | {'f1': 0.8085937499999999} | {'accuracy': 0.804} | | 0.0009 | 145.0 | 1015 | 1.1915 | {'f1': 0.8079780993351583} | {'accuracy': 0.8036} | | 0.0009 | 146.0 | 1022 | 1.1910 | {'f1': 0.8067424539396315} | {'accuracy': 0.8028} | | 0.0009 | 147.0 | 1029 | 1.1865 | {'f1': 0.806948282668772} | {'accuracy': 0.8044} | | 0.0009 | 148.0 | 1036 | 1.1827 | {'f1': 0.8025528520143598} | {'accuracy': 0.802} | | 0.0009 | 149.0 | 1043 | 1.1839 | {'f1': 0.8004866180048661} | {'accuracy': 0.8032} | | 0.0009 | 150.0 | 1050 | 1.1840 | {'f1': 0.8009708737864079} | {'accuracy': 0.8032} | | 0.0009 | 151.0 | 1057 | 1.1846 | {'f1': 0.8025682182985554} | {'accuracy': 0.8032} | | 0.0009 | 152.0 | 1064 | 1.1869 | {'f1': 0.8039840637450199} | {'accuracy': 0.8032} | | 0.0009 | 153.0 | 1071 | 1.1888 | {'f1': 0.8044515103338633} | {'accuracy': 0.8032} | | 0.0009 | 154.0 | 1078 | 1.2019 | {'f1': 0.8078124999999999} | {'accuracy': 0.8032} | | 0.0009 | 155.0 | 1085 | 1.2122 | {'f1': 0.8083785880527542} | {'accuracy': 0.8024} | | 0.0009 | 156.0 | 1092 | 1.2193 | {'f1': 0.8083462132921175} | {'accuracy': 0.8016} | | 0.0009 | 157.0 | 1099 | 1.2198 | {'f1': 0.8083462132921175} | {'accuracy': 0.8016} | | 0.0009 | 158.0 | 1106 | 1.2121 | {'f1': 0.8087261394624076} | {'accuracy': 0.8036} | | 0.0009 | 159.0 | 1113 | 1.2084 | {'f1': 0.8078124999999999} | {'accuracy': 0.8032} | | 0.0009 | 160.0 | 1120 | 1.2091 | {'f1': 0.8078124999999999} | {'accuracy': 0.8032} | | 0.0009 | 161.0 | 1127 | 1.2117 | {'f1': 0.8074970714564623} | {'accuracy': 0.8028} | | 0.0009 | 162.0 | 1134 | 1.2270 | {'f1': 0.7828668363019508} | {'accuracy': 0.7952} | | 0.0009 | 163.0 | 1141 | 1.2069 | {'f1': 0.8028503562945369} | {'accuracy': 0.8008} | | 0.0009 | 164.0 | 1148 | 1.4732 | {'f1': 0.8007054673721341} | {'accuracy': 0.774} | | 0.0009 | 165.0 | 1155 | 1.2911 | {'f1': 0.8055451479955038} | {'accuracy': 0.7924} | | 0.0009 | 166.0 | 1162 | 1.2061 | {'f1': 0.8075709779179809} | {'accuracy': 0.8048} | | 0.0009 | 167.0 | 1169 | 1.2534 | {'f1': 0.8086070215175539} | {'accuracy': 0.7972} | | 0.0009 | 168.0 | 1176 | 1.2814 | {'f1': 0.8092744951383695} | {'accuracy': 0.796} | | 0.0009 | 169.0 | 1183 | 1.2533 | {'f1': 0.8111361926260346} | {'accuracy': 0.7992} | | 0.0009 | 170.0 | 1190 | 1.2007 | {'f1': 0.8126959247648903} | {'accuracy': 0.8088} | | 0.0009 | 171.0 | 1197 | 1.1935 | {'f1': 0.8106180665610143} | {'accuracy': 0.8088} | | 0.0009 | 172.0 | 1204 | 1.1932 | {'f1': 0.8079522862823061} | {'accuracy': 0.8068} | | 0.0009 | 173.0 | 1211 | 1.1938 | {'f1': 0.8079522862823061} | {'accuracy': 0.8068} | | 0.0009 | 174.0 | 1218 | 1.1952 | {'f1': 0.8095238095238094} | {'accuracy': 0.808} | | 0.0009 | 175.0 | 1225 | 1.1973 | {'f1': 0.8118577075098814} | {'accuracy': 0.8096} | | 0.0009 | 176.0 | 1232 | 1.2001 | {'f1': 0.8123028391167193} | {'accuracy': 0.8096} | | 0.0009 | 177.0 | 1239 | 1.2003 | {'f1': 0.8126232741617356} | {'accuracy': 0.81} | | 0.0009 | 178.0 | 1246 | 1.1996 | {'f1': 0.8104678826328311} | {'accuracy': 0.8088} | | 0.0009 | 179.0 | 1253 | 1.1999 | {'f1': 0.8095238095238094} | {'accuracy': 0.808} | | 0.0009 | 180.0 | 1260 | 1.2009 | {'f1': 0.8104678826328311} | {'accuracy': 0.8088} | | 0.0009 | 181.0 | 1267 | 1.2028 | {'f1': 0.8126482213438735} | {'accuracy': 0.8104} | | 0.0009 | 182.0 | 1274 | 1.2050 | {'f1': 0.8130914826498422} | {'accuracy': 0.8104} | | 0.0009 | 183.0 | 1281 | 1.2959 | {'f1': 0.8094170403587443} | {'accuracy': 0.796} | | 0.0009 | 184.0 | 1288 | 1.4564 | {'f1': 0.8015647226173542} | {'accuracy': 0.7768} | | 0.0009 | 185.0 | 1295 | 1.2213 | {'f1': 0.8090154211150652} | {'accuracy': 0.8068} | | 0.0009 | 186.0 | 1302 | 1.2472 | {'f1': 0.7836355967946014} | {'accuracy': 0.7948} | | 0.0009 | 187.0 | 1309 | 1.2286 | {'f1': 0.8066561014263074} | {'accuracy': 0.8048} | | 0.0009 | 188.0 | 1316 | 1.2583 | {'f1': 0.8121866563825684} | {'accuracy': 0.8052} | | 0.0009 | 189.0 | 1323 | 1.2744 | {'f1': 0.8105423987776929} | {'accuracy': 0.8016} | | 0.0009 | 190.0 | 1330 | 1.2877 | {'f1': 0.8078967350037963} | {'accuracy': 0.7976} | | 0.0009 | 191.0 | 1337 | 1.2626 | {'f1': 0.8108317214700194} | {'accuracy': 0.8044} | | 0.0009 | 192.0 | 1344 | 1.2989 | {'f1': 0.7748058671268335} | {'accuracy': 0.7912} | | 0.0009 | 193.0 | 1351 | 1.2673 | {'f1': 0.7831174258253238} | {'accuracy': 0.7924} | | 0.0009 | 194.0 | 1358 | 1.2525 | {'f1': 0.8090332805071315} | {'accuracy': 0.8072} | | 0.0009 | 195.0 | 1365 | 1.2736 | {'f1': 0.810077519379845} | {'accuracy': 0.804} | | 0.0009 | 196.0 | 1372 | 1.3521 | {'f1': 0.8102297998517419} | {'accuracy': 0.7952} | | 0.0009 | 197.0 | 1379 | 1.3654 | {'f1': 0.8086828550404709} | {'accuracy': 0.792} | | 0.0009 | 198.0 | 1386 | 1.3538 | {'f1': 0.8093126385809312} | {'accuracy': 0.7936} | | 0.0009 | 199.0 | 1393 | 1.2624 | {'f1': 0.8131782945736433} | {'accuracy': 0.8072} | | 0.0009 | 200.0 | 1400 | 1.2467 | {'f1': 0.7957166392092258} | {'accuracy': 0.8016} | | 0.0009 | 201.0 | 1407 | 1.2774 | {'f1': 0.7833474936278675} | {'accuracy': 0.796} | | 0.0009 | 202.0 | 1414 | 1.2753 | {'f1': 0.7833827893175075} | {'accuracy': 0.7956} | | 0.0009 | 203.0 | 1421 | 1.2851 | {'f1': 0.8121398386477141} | {'accuracy': 0.8044} | | 0.0009 | 204.0 | 1428 | 1.4365 | {'f1': 0.8037585833032164} | {'accuracy': 0.7828} | | 0.0009 | 205.0 | 1435 | 1.4102 | {'f1': 0.8037997807818781} | {'accuracy': 0.7852} | | 0.0009 | 206.0 | 1442 | 1.3754 | {'f1': 0.8053293856402663} | {'accuracy': 0.7896} | | 0.0009 | 207.0 | 1449 | 1.3527 | {'f1': 0.8046407185628742} | {'accuracy': 0.7912} | | 0.0009 | 208.0 | 1456 | 1.3362 | {'f1': 0.8088955898982284} | {'accuracy': 0.7972} | | 0.0009 | 209.0 | 1463 | 1.3206 | {'f1': 0.8138561096307575} | {'accuracy': 0.8044} | | 0.0009 | 210.0 | 1470 | 1.3094 | {'f1': 0.8134814247414783} | {'accuracy': 0.8052} | | 0.0009 | 211.0 | 1477 | 1.3024 | {'f1': 0.813389765294344} | {'accuracy': 0.806} | | 0.0009 | 212.0 | 1484 | 1.2958 | {'f1': 0.8108317214700194} | {'accuracy': 0.8044} | | 0.0009 | 213.0 | 1491 | 1.2930 | {'f1': 0.8102444703143191} | {'accuracy': 0.8044} | | 0.0009 | 214.0 | 1498 | 1.2977 | {'f1': 0.8108317214700194} | {'accuracy': 0.8044} | | 0.0003 | 215.0 | 1505 | 1.2979 | {'f1': 0.8109992254066616} | {'accuracy': 0.8048} | | 0.0003 | 216.0 | 1512 | 1.3123 | {'f1': 0.8141321044546852} | {'accuracy': 0.8064} | | 0.0003 | 217.0 | 1519 | 1.3245 | {'f1': 0.8129770992366412} | {'accuracy': 0.804} | | 0.0003 | 218.0 | 1526 | 1.3279 | {'f1': 0.8126669210225105} | {'accuracy': 0.8036} | | 0.0003 | 219.0 | 1533 | 1.3249 | {'f1': 0.813287514318442} | {'accuracy': 0.8044} | | 0.0003 | 220.0 | 1540 | 1.3202 | {'f1': 0.8147013782542114} | {'accuracy': 0.8064} | | 0.0003 | 221.0 | 1547 | 1.3125 | {'f1': 0.8112480739599385} | {'accuracy': 0.804} | | 0.0003 | 222.0 | 1554 | 1.3040 | {'f1': 0.8105385509492445} | {'accuracy': 0.8044} | | 0.0003 | 223.0 | 1561 | 1.3616 | {'f1': 0.8061492313460817} | {'accuracy': 0.7932} | | 0.0003 | 224.0 | 1568 | 1.6007 | {'f1': 0.7990196078431372} | {'accuracy': 0.7704} | | 0.0003 | 225.0 | 1575 | 1.5556 | {'f1': 0.8007054673721341} | {'accuracy': 0.774} | | 0.0003 | 226.0 | 1582 | 1.4173 | {'f1': 0.8058608058608058} | {'accuracy': 0.788} | | 0.0003 | 227.0 | 1589 | 1.2708 | {'f1': 0.8091844813935075} | {'accuracy': 0.8072} | | 0.0003 | 228.0 | 1596 | 1.2721 | {'f1': 0.7967145790554415} | {'accuracy': 0.802} | | 0.0003 | 229.0 | 1603 | 1.2797 | {'f1': 0.7948611686697058} | {'accuracy': 0.802} | | 0.0003 | 230.0 | 1610 | 1.2756 | {'f1': 0.7977020927369718} | {'accuracy': 0.8028} | | 0.0003 | 231.0 | 1617 | 1.2732 | {'f1': 0.7987012987012987} | {'accuracy': 0.8016} | | 0.0003 | 232.0 | 1624 | 1.2735 | {'f1': 0.8037007240547064} | {'accuracy': 0.8048} | | 0.0003 | 233.0 | 1631 | 1.2756 | {'f1': 0.8060775689724111} | {'accuracy': 0.806} | | 0.0003 | 234.0 | 1638 | 1.2775 | {'f1': 0.8087649402390439} | {'accuracy': 0.808} | | 0.0003 | 235.0 | 1645 | 1.2786 | {'f1': 0.8084428514536042} | {'accuracy': 0.8076} | | 0.0003 | 236.0 | 1652 | 1.2803 | {'f1': 0.8068362480127186} | {'accuracy': 0.8056} | | 0.0003 | 237.0 | 1659 | 1.2827 | {'f1': 0.8076009501187648} | {'accuracy': 0.8056} | | 0.0003 | 238.0 | 1666 | 1.2816 | {'f1': 0.8071570576540756} | {'accuracy': 0.806} | | 0.0003 | 239.0 | 1673 | 1.2808 | {'f1': 0.8068635275339185} | {'accuracy': 0.8064} | | 0.0003 | 240.0 | 1680 | 1.2807 | {'f1': 0.8065547561950439} | {'accuracy': 0.8064} | | 0.0003 | 241.0 | 1687 | 1.2794 | {'f1': 0.8032193158953722} | {'accuracy': 0.8044} | | 0.0003 | 242.0 | 1694 | 1.2994 | {'f1': 0.791578947368421} | {'accuracy': 0.802} | | 0.0003 | 243.0 | 1701 | 1.3223 | {'f1': 0.7840616966580977} | {'accuracy': 0.7984} | | 0.0003 | 244.0 | 1708 | 1.2878 | {'f1': 0.7956810631229236} | {'accuracy': 0.8032} | | 0.0003 | 245.0 | 1715 | 1.2761 | {'f1': 0.8040567951318459} | {'accuracy': 0.8068} | | 0.0003 | 246.0 | 1722 | 1.2763 | {'f1': 0.8051323175621492} | {'accuracy': 0.8056} | | 0.0003 | 247.0 | 1729 | 1.2789 | {'f1': 0.810207336523126} | {'accuracy': 0.8096} | | 0.0003 | 248.0 | 1736 | 1.2818 | {'f1': 0.8109393579072532} | {'accuracy': 0.8092} | | 0.0003 | 249.0 | 1743 | 1.2847 | {'f1': 0.8138801261829653} | {'accuracy': 0.8112} | | 0.0003 | 250.0 | 1750 | 1.2864 | {'f1': 0.8140267927501971} | {'accuracy': 0.8112} | | 0.0003 | 251.0 | 1757 | 1.2869 | {'f1': 0.8140267927501971} | {'accuracy': 0.8112} | | 0.0003 | 252.0 | 1764 | 1.2863 | {'f1': 0.8132649032767469} | {'accuracy': 0.8108} | | 0.0003 | 253.0 | 1771 | 1.2859 | {'f1': 0.8117088607594937} | {'accuracy': 0.8096} | | 0.0003 | 254.0 | 1778 | 1.2860 | {'f1': 0.811089108910891} | {'accuracy': 0.8092} | | 0.0003 | 255.0 | 1785 | 1.2867 | {'f1': 0.81203007518797} | {'accuracy': 0.81} | | 0.0003 | 256.0 | 1792 | 1.2884 | {'f1': 0.8132649032767469} | {'accuracy': 0.8108} | | 0.0003 | 257.0 | 1799 | 1.2988 | {'f1': 0.8167252833137943} | {'accuracy': 0.8124} | | 0.0003 | 258.0 | 1806 | 1.3067 | {'f1': 0.8163424124513619} | {'accuracy': 0.8112} | | 0.0003 | 259.0 | 1813 | 1.2974 | {'f1': 0.8155111633372502} | {'accuracy': 0.8116} | | 0.0003 | 260.0 | 1820 | 1.2927 | {'f1': 0.8144654088050315} | {'accuracy': 0.8112} | | 0.0003 | 261.0 | 1827 | 1.2901 | {'f1': 0.8127962085308058} | {'accuracy': 0.8104} | | 0.0003 | 262.0 | 1834 | 1.2891 | {'f1': 0.8126732673267326} | {'accuracy': 0.8108} | | 0.0003 | 263.0 | 1841 | 1.2890 | {'f1': 0.8107893692978976} | {'accuracy': 0.8092} | | 0.0003 | 264.0 | 1848 | 1.2912 | {'f1': 0.8127962085308058} | {'accuracy': 0.8104} | | 0.0003 | 265.0 | 1855 | 1.2928 | {'f1': 0.8142011834319528} | {'accuracy': 0.8116} | | 0.0003 | 266.0 | 1862 | 1.2935 | {'f1': 0.8138801261829653} | {'accuracy': 0.8112} | | 0.0003 | 267.0 | 1869 | 1.2941 | {'f1': 0.814814814814815} | {'accuracy': 0.812} | | 0.0003 | 268.0 | 1876 | 1.2942 | {'f1': 0.8138801261829653} | {'accuracy': 0.8112} | | 0.0003 | 269.0 | 1883 | 1.2951 | {'f1': 0.8144938952343442} | {'accuracy': 0.8116} | | 0.0003 | 270.0 | 1890 | 1.2983 | {'f1': 0.8141453831041258} | {'accuracy': 0.8108} | | 0.0003 | 271.0 | 1897 | 1.3002 | {'f1': 0.8142913231252454} | {'accuracy': 0.8108} | | 0.0003 | 272.0 | 1904 | 1.3017 | {'f1': 0.8156862745098038} | {'accuracy': 0.812} | | 0.0003 | 273.0 | 1911 | 1.3045 | {'f1': 0.8161189358372457} | {'accuracy': 0.812} | | 0.0003 | 274.0 | 1918 | 1.3077 | {'f1': 0.8175068386088317} | {'accuracy': 0.8132} | | 0.0003 | 275.0 | 1925 | 1.3098 | {'f1': 0.8173302107728336} | {'accuracy': 0.8128} | | 0.0003 | 276.0 | 1932 | 1.3145 | {'f1': 0.8163424124513619} | {'accuracy': 0.8112} | | 0.0003 | 277.0 | 1939 | 1.3161 | {'f1': 0.8168028004667445} | {'accuracy': 0.8116} | | 0.0003 | 278.0 | 1946 | 1.3159 | {'f1': 0.8163424124513619} | {'accuracy': 0.8112} | | 0.0003 | 279.0 | 1953 | 1.3156 | {'f1': 0.8166601790579991} | {'accuracy': 0.8116} | | 0.0003 | 280.0 | 1960 | 1.3118 | {'f1': 0.8170113148653921} | {'accuracy': 0.8124} | | 0.0003 | 281.0 | 1967 | 1.3088 | {'f1': 0.8161189358372457} | {'accuracy': 0.812} | | 0.0003 | 282.0 | 1974 | 1.3077 | {'f1': 0.8145825166601333} | {'accuracy': 0.8108} | | 0.0003 | 283.0 | 1981 | 1.3072 | {'f1': 0.8149019607843137} | {'accuracy': 0.8112} | | 0.0003 | 284.0 | 1988 | 1.3075 | {'f1': 0.8149019607843137} | {'accuracy': 0.8112} | | 0.0003 | 285.0 | 1995 | 1.3084 | {'f1': 0.8149019607843137} | {'accuracy': 0.8112} | | 0.0001 | 286.0 | 2002 | 1.3097 | {'f1': 0.8147277712495105} | {'accuracy': 0.8108} | | 0.0001 | 287.0 | 2009 | 1.3106 | {'f1': 0.815655577299413} | {'accuracy': 0.8116} | | 0.0001 | 288.0 | 2016 | 1.3076 | {'f1': 0.8150765606595994} | {'accuracy': 0.8116} | | 0.0001 | 289.0 | 2023 | 1.3055 | {'f1': 0.8154269972451791} | {'accuracy': 0.8124} | | 0.0001 | 290.0 | 2030 | 1.3025 | {'f1': 0.8145224940805051} | {'accuracy': 0.812} | | 0.0001 | 291.0 | 2037 | 1.3139 | {'f1': 0.8165819319515056} | {'accuracy': 0.8124} | | 0.0001 | 292.0 | 2044 | 1.3268 | {'f1': 0.8170542635658915} | {'accuracy': 0.8112} | | 0.0001 | 293.0 | 2051 | 1.3310 | {'f1': 0.8170212765957446} | {'accuracy': 0.8108} | | 0.0001 | 294.0 | 2058 | 1.3307 | {'f1': 0.8170212765957446} | {'accuracy': 0.8108} | | 0.0001 | 295.0 | 2065 | 1.4449 | {'f1': 0.8125} | {'accuracy': 0.796} | | 0.0001 | 296.0 | 2072 | 1.5353 | {'f1': 0.8086175942549373} | {'accuracy': 0.7868} | | 0.0001 | 297.0 | 2079 | 1.4656 | {'f1': 0.8106530463334549} | {'accuracy': 0.7924} | | 0.0001 | 298.0 | 2086 | 1.3036 | {'f1': 0.8156028368794326} | {'accuracy': 0.8128} | | 0.0001 | 299.0 | 2093 | 1.2977 | {'f1': 0.8054410552349547} | {'accuracy': 0.8112} | | 0.0001 | 300.0 | 2100 | 1.2972 | {'f1': 0.8068739770867429} | {'accuracy': 0.8112} | | 0.0001 | 301.0 | 2107 | 1.2982 | {'f1': 0.810441767068273} | {'accuracy': 0.8112} | | 0.0001 | 302.0 | 2114 | 1.3025 | {'f1': 0.8116288331342094} | {'accuracy': 0.8108} | | 0.0001 | 303.0 | 2121 | 1.3063 | {'f1': 0.8142574257425743} | {'accuracy': 0.8124} | | 0.0001 | 304.0 | 2128 | 1.3108 | {'f1': 0.8148440584287406} | {'accuracy': 0.8124} | | 0.0001 | 305.0 | 2135 | 1.3120 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0001 | 306.0 | 2142 | 1.3152 | {'f1': 0.8146399055489965} | {'accuracy': 0.8116} | | 0.0001 | 307.0 | 2149 | 1.3293 | {'f1': 0.8155339805825242} | {'accuracy': 0.81} | | 0.0001 | 308.0 | 2156 | 1.3356 | {'f1': 0.8165314793356508} | {'accuracy': 0.81} | | 0.0001 | 309.0 | 2163 | 1.3352 | {'f1': 0.8163896405102435} | {'accuracy': 0.81} | | 0.0001 | 310.0 | 2170 | 1.3325 | {'f1': 0.8156771439658517} | {'accuracy': 0.81} | | 0.0001 | 311.0 | 2177 | 1.3303 | {'f1': 0.815390594636611} | {'accuracy': 0.81} | | 0.0001 | 312.0 | 2184 | 1.3272 | {'f1': 0.8160561184723305} | {'accuracy': 0.8112} | | 0.0001 | 313.0 | 2191 | 1.3246 | {'f1': 0.8143806174286832} | {'accuracy': 0.81} | | 0.0001 | 314.0 | 2198 | 1.3224 | {'f1': 0.8134796238244514} | {'accuracy': 0.8096} | | 0.0001 | 315.0 | 2205 | 1.3203 | {'f1': 0.815251572327044} | {'accuracy': 0.812} | | 0.0001 | 316.0 | 2212 | 1.3183 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0001 | 317.0 | 2219 | 1.3132 | {'f1': 0.8129952456418383} | {'accuracy': 0.8112} | | 0.0001 | 318.0 | 2226 | 1.3111 | {'f1': 0.8127236580516899} | {'accuracy': 0.8116} | | 0.0001 | 319.0 | 2233 | 1.3078 | {'f1': 0.8101164191087917} | {'accuracy': 0.8108} | | 0.0001 | 320.0 | 2240 | 1.3076 | {'f1': 0.8096774193548387} | {'accuracy': 0.8112} | | 0.0001 | 321.0 | 2247 | 1.3090 | {'f1': 0.8101164191087917} | {'accuracy': 0.8108} | | 0.0001 | 322.0 | 2254 | 1.3433 | {'f1': 0.7892491467576792} | {'accuracy': 0.8024} | | 0.0001 | 323.0 | 2261 | 1.4595 | {'f1': 0.7642058165548098} | {'accuracy': 0.7892} | | 0.0001 | 324.0 | 2268 | 1.3247 | {'f1': 0.7968026924694994} | {'accuracy': 0.8068} | | 0.0001 | 325.0 | 2275 | 1.3326 | {'f1': 0.8177570093457942} | {'accuracy': 0.8128} | | 0.0001 | 326.0 | 2282 | 1.3992 | {'f1': 0.8167105758374106} | {'accuracy': 0.8052} | | 0.0001 | 327.0 | 2289 | 1.4017 | {'f1': 0.8177376925967682} | {'accuracy': 0.806} | | 0.0001 | 328.0 | 2296 | 1.3527 | {'f1': 0.8194070080862534} | {'accuracy': 0.8124} | | 0.0001 | 329.0 | 2303 | 1.3316 | {'f1': 0.8175465838509317} | {'accuracy': 0.812} | | 0.0001 | 330.0 | 2310 | 1.3199 | {'f1': 0.8155111633372502} | {'accuracy': 0.8116} | | 0.0001 | 331.0 | 2317 | 1.3143 | {'f1': 0.8127709893575089} | {'accuracy': 0.81} | | 0.0001 | 332.0 | 2324 | 1.3109 | {'f1': 0.8113879003558718} | {'accuracy': 0.8092} | | 0.0001 | 333.0 | 2331 | 1.3092 | {'f1': 0.8114104595879558} | {'accuracy': 0.8096} | | 0.0001 | 334.0 | 2338 | 1.3085 | {'f1': 0.8104678826328311} | {'accuracy': 0.8088} | | 0.0001 | 335.0 | 2345 | 1.3083 | {'f1': 0.8107893692978976} | {'accuracy': 0.8092} | | 0.0001 | 336.0 | 2352 | 1.3086 | {'f1': 0.8107893692978976} | {'accuracy': 0.8092} | | 0.0001 | 337.0 | 2359 | 1.3096 | {'f1': 0.8109393579072532} | {'accuracy': 0.8092} | | 0.0001 | 338.0 | 2366 | 1.3108 | {'f1': 0.8118811881188118} | {'accuracy': 0.81} | | 0.0001 | 339.0 | 2373 | 1.3119 | {'f1': 0.812351543942993} | {'accuracy': 0.8104} | | 0.0001 | 340.0 | 2380 | 1.3130 | {'f1': 0.8117088607594937} | {'accuracy': 0.8096} | | 0.0001 | 341.0 | 2387 | 1.3141 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 342.0 | 2394 | 1.3154 | {'f1': 0.811216429699842} | {'accuracy': 0.8088} | | 0.0001 | 343.0 | 2401 | 1.3151 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 344.0 | 2408 | 1.3154 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 345.0 | 2415 | 1.3156 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 346.0 | 2422 | 1.3157 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 347.0 | 2429 | 1.3158 | {'f1': 0.8115369419201897} | {'accuracy': 0.8092} | | 0.0001 | 348.0 | 2436 | 1.3338 | {'f1': 0.8160561184723305} | {'accuracy': 0.8112} | | 0.0001 | 349.0 | 2443 | 1.3439 | {'f1': 0.819062378922898} | {'accuracy': 0.8132} | | 0.0001 | 350.0 | 2450 | 1.3474 | {'f1': 0.8188854489164088} | {'accuracy': 0.8128} | | 0.0001 | 351.0 | 2457 | 1.3484 | {'f1': 0.8188854489164088} | {'accuracy': 0.8128} | | 0.0001 | 352.0 | 2464 | 1.3478 | {'f1': 0.8188854489164088} | {'accuracy': 0.8128} | | 0.0001 | 353.0 | 2471 | 1.3462 | {'f1': 0.8186046511627906} | {'accuracy': 0.8128} | | 0.0001 | 354.0 | 2478 | 1.3432 | {'f1': 0.8183229813664596} | {'accuracy': 0.8128} | | 0.0001 | 355.0 | 2485 | 1.3415 | {'f1': 0.8172628304821151} | {'accuracy': 0.812} | | 0.0001 | 356.0 | 2492 | 1.3380 | {'f1': 0.8166601790579991} | {'accuracy': 0.8116} | | 0.0001 | 357.0 | 2499 | 1.3354 | {'f1': 0.8165495706479313} | {'accuracy': 0.812} | | 0.0011 | 358.0 | 2506 | 1.3370 | {'f1': 0.816374269005848} | {'accuracy': 0.8116} | | 0.0011 | 359.0 | 2513 | 1.3384 | {'f1': 0.8172964550058435} | {'accuracy': 0.8124} | | 0.0011 | 360.0 | 2520 | 1.3373 | {'f1': 0.8166926677067083} | {'accuracy': 0.812} | | 0.0011 | 361.0 | 2527 | 1.3354 | {'f1': 0.8157689305230289} | {'accuracy': 0.8112} | | 0.0011 | 362.0 | 2534 | 1.3336 | {'f1': 0.8153364632237872} | {'accuracy': 0.8112} | | 0.0011 | 363.0 | 2541 | 1.3321 | {'f1': 0.8145825166601333} | {'accuracy': 0.8108} | | 0.0011 | 364.0 | 2548 | 1.3280 | {'f1': 0.8149312377210216} | {'accuracy': 0.8116} | | 0.0011 | 365.0 | 2555 | 1.3711 | {'f1': 0.819433817903596} | {'accuracy': 0.8112} | | 0.0011 | 366.0 | 2562 | 1.4276 | {'f1': 0.8177083333333331} | {'accuracy': 0.804} | | 0.0011 | 367.0 | 2569 | 1.4536 | {'f1': 0.8159645232815964} | {'accuracy': 0.8008} | | 0.0011 | 368.0 | 2576 | 1.4590 | {'f1': 0.8161004431314622} | {'accuracy': 0.8008} | | 0.0011 | 369.0 | 2583 | 1.3146 | {'f1': 0.8145224940805051} | {'accuracy': 0.812} | | 0.0011 | 370.0 | 2590 | 1.3096 | {'f1': 0.8057851239669422} | {'accuracy': 0.812} | | 0.0011 | 371.0 | 2597 | 1.3042 | {'f1': 0.8077080770807707} | {'accuracy': 0.8124} | | 0.0011 | 372.0 | 2604 | 1.3011 | {'f1': 0.8080065359477124} | {'accuracy': 0.812} | | 0.0011 | 373.0 | 2611 | 1.3000 | {'f1': 0.8090982940698618} | {'accuracy': 0.812} | | 0.0011 | 374.0 | 2618 | 1.3001 | {'f1': 0.8127522195318806} | {'accuracy': 0.8144} | | 0.0011 | 375.0 | 2625 | 1.3009 | {'f1': 0.8102893890675241} | {'accuracy': 0.8112} | | 0.0011 | 376.0 | 2632 | 1.3019 | {'f1': 0.8102687525070197} | {'accuracy': 0.8108} | | 0.0011 | 377.0 | 2639 | 1.3028 | {'f1': 0.8112} | {'accuracy': 0.8112} | | 0.0011 | 378.0 | 2646 | 1.3038 | {'f1': 0.8119760479041915} | {'accuracy': 0.8116} | | 0.0011 | 379.0 | 2653 | 1.3058 | {'f1': 0.8125746120175089} | {'accuracy': 0.8116} | | 0.0011 | 380.0 | 2660 | 1.3096 | {'f1': 0.8134653465346535} | {'accuracy': 0.8116} | | 0.0011 | 381.0 | 2667 | 1.3122 | {'f1': 0.8164232135807343} | {'accuracy': 0.814} | | 0.0011 | 382.0 | 2674 | 1.3137 | {'f1': 0.8168902920284135} | {'accuracy': 0.8144} | | 0.0011 | 383.0 | 2681 | 1.3156 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 384.0 | 2688 | 1.3162 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 385.0 | 2695 | 1.3165 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 386.0 | 2702 | 1.3168 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 387.0 | 2709 | 1.3169 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 388.0 | 2716 | 1.3166 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 389.0 | 2723 | 1.3166 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 390.0 | 2730 | 1.3168 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 391.0 | 2737 | 1.3165 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 392.0 | 2744 | 1.3168 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 393.0 | 2751 | 1.3172 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 394.0 | 2758 | 1.3173 | {'f1': 0.8170347003154574} | {'accuracy': 0.8144} | | 0.0011 | 395.0 | 2765 | 1.3161 | {'f1': 0.8154879494271038} | {'accuracy': 0.8132} | | 0.0011 | 396.0 | 2772 | 1.3156 | {'f1': 0.8148734177215189} | {'accuracy': 0.8128} | | 0.0011 | 397.0 | 2779 | 1.3148 | {'f1': 0.8129952456418383} | {'accuracy': 0.8112} | | 0.0011 | 398.0 | 2786 | 1.3146 | {'f1': 0.8129952456418383} | {'accuracy': 0.8112} | | 0.0011 | 399.0 | 2793 | 1.3142 | {'f1': 0.8133174791914388} | {'accuracy': 0.8116} | | 0.0011 | 400.0 | 2800 | 1.3146 | {'f1': 0.8129952456418383} | {'accuracy': 0.8112} | | 0.0011 | 401.0 | 2807 | 1.3163 | {'f1': 0.8139350752177354} | {'accuracy': 0.812} | | 0.0011 | 402.0 | 2814 | 1.3147 | {'f1': 0.8139627132090439} | {'accuracy': 0.8124} | | 0.0011 | 403.0 | 2821 | 1.3137 | {'f1': 0.813195548489666} | {'accuracy': 0.812} | | 0.0011 | 404.0 | 2828 | 1.3133 | {'f1': 0.8135188866799204} | {'accuracy': 0.8124} | | 0.0011 | 405.0 | 2835 | 1.3132 | {'f1': 0.8135188866799204} | {'accuracy': 0.8124} | | 0.0011 | 406.0 | 2842 | 1.3132 | {'f1': 0.8125746120175089} | {'accuracy': 0.8116} | | 0.0011 | 407.0 | 2849 | 1.3132 | {'f1': 0.8121019108280254} | {'accuracy': 0.8112} | | 0.0011 | 408.0 | 2856 | 1.3146 | {'f1': 0.8130469371519491} | {'accuracy': 0.812} | | 0.0011 | 409.0 | 2863 | 1.3186 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0011 | 410.0 | 2870 | 1.3217 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0011 | 411.0 | 2877 | 1.3233 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 412.0 | 2884 | 1.3243 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 413.0 | 2891 | 1.3248 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 414.0 | 2898 | 1.3249 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 415.0 | 2905 | 1.3248 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 416.0 | 2912 | 1.3249 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 417.0 | 2919 | 1.3251 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 418.0 | 2926 | 1.3250 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 419.0 | 2933 | 1.3250 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 420.0 | 2940 | 1.3250 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 421.0 | 2947 | 1.3246 | {'f1': 0.8162460567823343} | {'accuracy': 0.8136} | | 0.0011 | 422.0 | 2954 | 1.3244 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0011 | 423.0 | 2961 | 1.3242 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0011 | 424.0 | 2968 | 1.3245 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0011 | 425.0 | 2975 | 1.3256 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 426.0 | 2982 | 1.3260 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 427.0 | 2989 | 1.3261 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0011 | 428.0 | 2996 | 1.3264 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 429.0 | 3003 | 1.3265 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 430.0 | 3010 | 1.3268 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 431.0 | 3017 | 1.3265 | {'f1': 0.8162460567823343} | {'accuracy': 0.8136} | | 0.0 | 432.0 | 3024 | 1.3260 | {'f1': 0.8161010260457774} | {'accuracy': 0.8136} | | 0.0 | 433.0 | 3031 | 1.3259 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 434.0 | 3038 | 1.3260 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 435.0 | 3045 | 1.3262 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 436.0 | 3052 | 1.3257 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 437.0 | 3059 | 1.3255 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 438.0 | 3066 | 1.3250 | {'f1': 0.8154879494271038} | {'accuracy': 0.8132} | | 0.0 | 439.0 | 3073 | 1.3247 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 440.0 | 3080 | 1.3245 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0 | 441.0 | 3087 | 1.3242 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0 | 442.0 | 3094 | 1.3243 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0 | 443.0 | 3101 | 1.3247 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0 | 444.0 | 3108 | 1.3250 | {'f1': 0.8144044321329641} | {'accuracy': 0.8124} | | 0.0 | 445.0 | 3115 | 1.3254 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 446.0 | 3122 | 1.3254 | {'f1': 0.8148734177215189} | {'accuracy': 0.8128} | | 0.0 | 447.0 | 3129 | 1.3257 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 448.0 | 3136 | 1.3258 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 449.0 | 3143 | 1.3260 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 450.0 | 3150 | 1.3264 | {'f1': 0.8153420324238829} | {'accuracy': 0.8132} | | 0.0 | 451.0 | 3157 | 1.3270 | {'f1': 0.815955766192733} | {'accuracy': 0.8136} | | 0.0 | 452.0 | 3164 | 1.3273 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 453.0 | 3171 | 1.3276 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 454.0 | 3178 | 1.3277 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 455.0 | 3185 | 1.3278 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 456.0 | 3192 | 1.3279 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 457.0 | 3199 | 1.3283 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 458.0 | 3206 | 1.3285 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 459.0 | 3213 | 1.3288 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 460.0 | 3220 | 1.3290 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 461.0 | 3227 | 1.3291 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 462.0 | 3234 | 1.3291 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 463.0 | 3241 | 1.3296 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 464.0 | 3248 | 1.3298 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 465.0 | 3255 | 1.3297 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 466.0 | 3262 | 1.3295 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 467.0 | 3269 | 1.3298 | {'f1': 0.8156336360047375} | {'accuracy': 0.8132} | | 0.0 | 468.0 | 3276 | 1.3301 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 469.0 | 3283 | 1.3306 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 470.0 | 3290 | 1.3309 | {'f1': 0.8153117600631413} | {'accuracy': 0.8128} | | 0.0 | 471.0 | 3297 | 1.3321 | {'f1': 0.8162460567823343} | {'accuracy': 0.8136} | | 0.0 | 472.0 | 3304 | 1.3328 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 473.0 | 3311 | 1.3333 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 474.0 | 3318 | 1.3335 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 475.0 | 3325 | 1.3335 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 476.0 | 3332 | 1.3336 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 477.0 | 3339 | 1.3336 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 478.0 | 3346 | 1.3337 | {'f1': 0.8176447420244192} | {'accuracy': 0.8148} | | 0.0 | 479.0 | 3353 | 1.3335 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 480.0 | 3360 | 1.3334 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 481.0 | 3367 | 1.3336 | {'f1': 0.8167126527394561} | {'accuracy': 0.814} | | 0.0 | 482.0 | 3374 | 1.3336 | {'f1': 0.8171788810086682} | {'accuracy': 0.8144} | | 0.0 | 483.0 | 3381 | 1.3534 | {'f1': 0.8176538908246225} | {'accuracy': 0.8116} | | 0.0 | 484.0 | 3388 | 1.3670 | {'f1': 0.8195836545875097} | {'accuracy': 0.8128} | | 0.0 | 485.0 | 3395 | 1.3735 | {'f1': 0.8201383551114528} | {'accuracy': 0.8128} | | 0.0 | 486.0 | 3402 | 1.3764 | {'f1': 0.8216340621403913} | {'accuracy': 0.814} | | 0.0 | 487.0 | 3409 | 1.3759 | {'f1': 0.8216340621403913} | {'accuracy': 0.814} | | 0.0 | 488.0 | 3416 | 1.3750 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 489.0 | 3423 | 1.3743 | {'f1': 0.8207293666026871} | {'accuracy': 0.8132} | | 0.0 | 490.0 | 3430 | 1.3739 | {'f1': 0.8207293666026871} | {'accuracy': 0.8132} | | 0.0 | 491.0 | 3437 | 1.3746 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 492.0 | 3444 | 1.3754 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 493.0 | 3451 | 1.3755 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 494.0 | 3458 | 1.3754 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 495.0 | 3465 | 1.3753 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 496.0 | 3472 | 1.3751 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 497.0 | 3479 | 1.3749 | {'f1': 0.8211818879508825} | {'accuracy': 0.8136} | | 0.0 | 498.0 | 3486 | 1.3746 | {'f1': 0.8207293666026871} | {'accuracy': 0.8132} | | 0.0 | 499.0 | 3493 | 1.3743 | {'f1': 0.8207293666026871} | {'accuracy': 0.8132} | | 0.0 | 500.0 | 3500 | 1.3742 | {'f1': 0.8207293666026871} | {'accuracy': 0.8132} | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
lukekim420/qlora-koalpaca-polyglot-5.8b-sshsbamboobot
lukekim420
2023-10-30T18:39:39Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:beomi/KoAlpaca-Polyglot-5.8B", "base_model:adapter:beomi/KoAlpaca-Polyglot-5.8B", "region:us" ]
null
2023-10-30T18:39:37Z
--- library_name: peft base_model: beomi/KoAlpaca-Polyglot-5.8B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
Kooten/Nethena-13B-8bpw-h8-exl2
Kooten
2023-10-30T18:32:54Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T16:02:00Z
--- license: cc-by-nc-4.0 --- ## Description Exllama 2 quant of [NeverSleep/Nethena-13B](https://huggingface.co/NeverSleep/Nethena-13B) 8 BPW, Head bit set to 8 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## VRAM My VRAM usage with 13B models are: | Bits per weight | Context | VRAM | |--|--|--| | 8bpw | 8k | 22gb | | 8bpw | 4k | 19gb | | 6bpw | 8k | 19gb | | 6bpw | 4k | 16gb | | 4bpw | 8k | 16gb | | 4bpw | 4k | 13gb | | 3bpw | 8k | 15gb | | 3bpw | 4k | 12gb | I have rounded up, these arent exact numbers, this is also on a windows machine, they should be slightly lower on linux.
gstoica3/roberta-large-peft-mrpc
gstoica3
2023-10-30T18:31:34Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:FacebookAI/roberta-large", "base_model:adapter:FacebookAI/roberta-large", "region:us" ]
null
2023-10-30T18:31:33Z
--- library_name: peft base_model: roberta-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
tingchih/1030-1
tingchih
2023-10-30T18:30:52Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T17:43:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 1030-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1030-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3641 | 1.0 | 24828 | 1.3631 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
justinlevi/mistral-finetuned
justinlevi
2023-10-30T18:29:44Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-10-30T18:28:38Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
noble6/jokesru_enllama-falcon-7b
noble6
2023-10-30T18:28:31Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-25T19:38:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
yjlee1011/ncodeR_data_multilabel_8samples
yjlee1011
2023-10-30T18:27:27Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-30T18:07:10Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # yjlee1011/ncodeR_data_multilabel_8samples This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("yjlee1011/ncodeR_data_multilabel_8samples") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
uppara/myhouse
uppara
2023-10-30T18:25:55Z
1
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-30T18:21:03Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### myhouse Dreambooth model trained by uppara following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CVR-21 Sample pictures of this concept: ![0](https://huggingface.co/uppara/myhouse/resolve/main/sample_images/myhouse(3).jpg) ![1](https://huggingface.co/uppara/myhouse/resolve/main/sample_images/myhouse(1).jpg) ![2](https://huggingface.co/uppara/myhouse/resolve/main/sample_images/myhouse(2).jpg) ![3](https://huggingface.co/uppara/myhouse/resolve/main/sample_images/myhouse(5).jpg) ![4](https://huggingface.co/uppara/myhouse/resolve/main/sample_images/myhouse(4).jpg)
vrx2/matscibert-QA
vrx2
2023-10-30T18:24:26Z
107
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "base_model: m3rg-iitd/matscibert", "dataset:squad", "base_model:m3rg-iitd/matscibert", "base_model:finetune:m3rg-iitd/matscibert", "endpoints_compatible", "region:us" ]
question-answering
2023-10-26T11:15:56Z
--- base_model: m3rg-iitd/matscibert tags: - generated_from_trainer - 'base_model: m3rg-iitd/matscibert' datasets: - squad model-index: - name: matscibert-QA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # matscibert-QA This is a just a soft demo and it aint working as intended yet This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1571 | 1.0 | 5564 | 1.1091 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cpu - Datasets 2.14.5 - Tokenizers 0.14.1
yjlee1011/ncodeR_data_multilabel_16samples
yjlee1011
2023-10-30T18:11:32Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-30T18:11:11Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # yjlee1011/ncodeR_data_multilabel_16samples This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("yjlee1011/ncodeR_data_multilabel_16samples") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
alessiodm/ppo-SnowballTarget
alessiodm
2023-10-30T18:05:27Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-10-30T18:05:19Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: alessiodm/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jahb57/test_trainer
jahb57
2023-10-30T17:59:44Z
157
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T17:58:43Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: test_trainer results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: test args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.0617 - Accuracy: 0.584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 1.1204 | 0.515 | | 1.2411 | 2.0 | 500 | 1.0231 | 0.57 | | 1.2411 | 3.0 | 750 | 1.0617 | 0.584 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Ben141/LLM17
Ben141
2023-10-30T17:48:05Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-10-30T17:34:25Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: LLM17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLM17 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 120 ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
sajjadamjad/bert-base-banking77-pt2
sajjadamjad
2023-10-30T17:46:15Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:banking77", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T16:41:42Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - banking77 metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: test args: default metrics: - name: F1 type: f1 value: 0.9282963964565724 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - F1: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1348 | 1.0 | 626 | 0.8122 | 0.8288 | | 0.391 | 2.0 | 1252 | 0.3681 | 0.9219 | | 0.1881 | 3.0 | 1878 | 0.3035 | 0.9283 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Usdt666/gpu2
Usdt666
2023-10-30T17:37:41Z
0
0
null
[ "region:us" ]
null
2023-10-30T17:29:24Z
<img src="https://raw.githubusercontent.com/leptonai/leptonai/main/assets/logo.svg" height=100> # Lepton AI **A Pythonic framework to simplify AI service building** <a href="https://lepton.ai/">Homepage</a> • <a href="https://dashboard.lepton.ai/playground">API Playground</a> • <a href="https://github.com/leptonai/examples">Examples</a> • <a href="https://lepton.ai/docs/">Documentation</a> • <a href="https://lepton.ai/references">CLI References</a> • <a href="https://twitter.com/leptonai">Twitter</a> • <a href="https://leptonai.medium.com/">Blog</a> The LeptonAI python library allows you to build an AI service from python code with ease. Key features include: - A pythonic abstraction `Photon`, allowing you to convert research and modeling code into a service with a few lines of code. - Simple abstractions to launch models like those on [HuggingFace](https://huggingface.co) in few lines of code. - Prebuilt examples for common models such as Llama, SDXL, Whisper, and others. - AI tailored batteries included such as autobatching, background jobs, etc. - A client to automatically call your service like native Python functions. - Pythonic configuration specs to be readily shipped in a cloud environment. ## Getting started with one-liner Install the library with: ```shell pip install -U leptonai ``` This installs the `leptonai` python library, as well as the commandline interface `lep`. You can then launch a HuggingFace model, say `gpt2`, in one line of code: ```python lep photon run --name gpt2 --model hf:gpt2 --local ``` If you have access to the Llama2 model ([apply for access here](https://huggingface.co/meta-llama/Llama-2-7b)) and you have a reasonably sized GPU, you can launch it with: ```python # hint: you can also write `-n` and `-m` for short lep photon run -n llama2 -m hf:meta-llama/Llama-2-7b-chat-hf --local ``` (Be sure to use the `-hf` version for Llama2, which is compatible with huggingface pipelines.) You can then access the service with: ```python from leptonai.client import Client, local c = Client(local(port=8080)) # Use the following to print the doc print(c.run.__doc__) print(c.run(inputs="I enjoy walking with my cute dog")) ``` Fully managed Llama2 models and CodeLlama models can be found in the [playground](https://dashboard.lepton.ai/playground). Many standard HuggingFace pipelines are supported - find out more details in the [documentation](https://www.lepton.ai/docs/advanced/prebuilt_photons#hugging-face-photons). Not all HuggingFace models are supported though, as many of them contain custom code and are not standard pipelines. If you find a popular model you would like to support, please [open an issue or a PR](https://github.com/leptonai/leptonai/issues/new). ## Checking out more examples You can find out more examples from the [examples repository](https://github.com/leptonai/examples). For example, launch the Stable Diffusion XL model with: ```shell git clone git@github.com:leptonai/examples.git cd examples ``` ```python lep photon run -n sdxl -m advanced/sdxl/sdxl.py --local ``` Once the service is running, you can access it with: ```python from leptonai.client import Client, local c = Client(local(port=8080)) img_content = c.run(prompt="a cat launching rocket", seed=1234) with open("cat.png", "wb") as fid: fid.write(img_content) ``` or access the mounted Gradio UI at [http://localhost:8080/ui](http://localhost:8080/ui). Check the [README file](https://github.com/leptonai/examples/blob/main/advanced/sdxl/README.md) for more details. A fully managed SDXL is hosted at [https://dashboard.lepton.ai/playground/sdxl](https://dashboard.lepton.ai/playground/sdxl) with API access. ## Writing your own photons Writing your own photon is simple: write a python Photon class and decorate functions with `@Photon.handler`. As long as your input and output are JSON serializable, you are good to go. For example, the following code launches a simple echo service: ```python # my_photon.py from leptonai.photon import Photon class Echo(Photon): @Photon.handler def echo(self, inputs: str) -> str: """ A simple example to return the original input. """ return inputs ``` You can then launch the service with: ```shell lep photon run -n echo -m my_photon.py --local ``` Then, you can use your service as follows: ```python from leptonai.client import Client, local c = Client(local(port=8080)) # will print available paths print(c.paths()) # will print the doc for c.echo. You can also use `c.echo?` in Jupyter. print(c.echo.__doc__) # will actually call echo. c.echo(inputs="hello world") ``` For more details, checkout the [documentation](https://lepton.ai/docs/) and the [examples](https://github.com/leptonai/examples). ## Contributing Contributions and collaborations are welcome and highly appreciated. Please check out the [contributor guide](https://github.com/leptonai/leptonai/blob/main/CONTRIBUTING.md) for how to get involved. ## License The Lepton AI python library is released under the Apache 2.0 license. Developer Note: early development of LeptonAI was in a separate mono-repo, which is why you may see commits from the `leptonai/lepton` repo. We intend to use this open source repo as the source of truth going forward.
EduardoCam/mimuchacho0_o
EduardoCam
2023-10-30T17:32:21Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain", "unk", "dataset:EduardoCam/autotrain-data-brisnko", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T17:31:34Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - EduardoCam/autotrain-data-brisnko co2_eq_emissions: emissions: 0.4115384416022771 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 97847147059 - CO2 Emissions (in grams): 0.4115 ## Validation Metrics - Loss: 0.580 - Accuracy: 0.811 - Macro F1: 0.810 - Micro F1: 0.811 - Weighted F1: 0.814 - Macro Precision: 0.856 - Micro Precision: 0.811 - Weighted Precision: 0.847 - Macro Recall: 0.817 - Micro Recall: 0.811 - Weighted Recall: 0.811 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/EduardoCam/autotrain-brisnko-97847147059 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("EduardoCam/autotrain-brisnko-97847147059", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("EduardoCam/autotrain-brisnko-97847147059", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Kooten/Nethena-13B-3bpw-h8-exl2
Kooten
2023-10-30T17:28:23Z
9
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T16:02:25Z
--- license: cc-by-nc-4.0 --- ## Description Exllama 2 quant of [NeverSleep/Nethena-13B](https://huggingface.co/NeverSleep/Nethena-13B) 3 BPW, Head bit set to 8 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## VRAM My VRAM usage with 13B models are: | Bits per weight | Context | VRAM | |--|--|--| | 8bpw | 8k | 22gb | | 8bpw | 4k | 19gb | | 6bpw | 8k | 19gb | | 6bpw | 4k | 16gb | | 4bpw | 8k | 16gb | | 4bpw | 4k | 13gb | | 3bpw | 8k | 15gb | | 3bpw | 4k | 12gb | I have rounded up, these arent exact numbers, this is also on a windows machine, they should be slightly lower on linux.
Yntec/ChiliConCarne
Yntec
2023-10-30T17:24:31Z
616
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-30T10:24:43Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # Chili Con Carne Model specialized in Food Photography. Samples and prompts: ![Samples](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/-S5M6qKMDSjIYjBmWnag1.png) (Click for larger) - Top Left: hamburger with melted cheese splashing on top of it, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by - Top Right: lemon icecream with mapple syrup and chocolate, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by - Bottom Left: pizza, raining cheese, roast jalapeños with tomato, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by - Bottom Right: Chili con Carne, classic ground beef, beans, meatballs, highly stylized, 4k, unreal engine 5 render, food art, food photography, realistic render, smoke, mist, dramatic lighting, cinematic lighting, rule of thirds, depth of field, cinematic bloom, art by
MU-NLPC/calcformer-t5-xl
MU-NLPC
2023-10-30T17:13:14Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:MU-NLPC/Calc-gsm8k", "dataset:MU-NLPC/Calc-aqua_rat", "dataset:MU-NLPC/Calc-math_qa", "dataset:MU-NLPC/Calc-ape210k", "arxiv:2305.15017", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T15:22:12Z
--- datasets: - MU-NLPC/Calc-gsm8k - MU-NLPC/Calc-aqua_rat - MU-NLPC/Calc-math_qa - MU-NLPC/Calc-ape210k metrics: - exact_match - rouge license: apache-2.0 language: - en --- # Model Card for calcformer-t5-xl This model generates reasoning chains over mathematical questions while **using an external tool: Sympy calculator**. ## Model Description With the idea to offload the symbolic computation from the stochastic language model, we train this model to utilize a calculator **for all applicable numeric operations**. This is achieved by training the model to construct calls to the tool's API in this format: ```html <gadget id="calculator">100/2</gadget> <output>50</output> ``` where `<gadget>` segment triggers a call of the tool, which is subsequently served by extending model's decoder input context by adding the output of the tool within the `<output>` segment. - **Developed by:** Calcformer team - **Model type:** Autoregressive Encoder-Decoder - **Language(s):** en - **Finetuned from:** t5-xl ## Sources - **Repository:** <https://github.com/prompteus/calc-x> - **Paper:** <https://arxiv.org/abs/2305.15017> - [**Calcformer model family on HF**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - [**Calc-X dataset collection on HF**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) ## Usage Additionally to conventional generation, using Tool-augmented generation requires (1) implementation of the tool(s) and (2) a customization of `generate()` method augmenting input context on-demand with the outputs of the tools. You can find these two components implemented in the attached **gadgets/model.py** and **gadgets/gadget.py** in this model's repo and the project's [home repo](https://github.com/prompteus/calc-x). After adding these two scripts to your directory, you can use the model as follows: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer from gadgets.model import gadget_assisted_model from gadgets.gadget import Calculator GadgetAssistedT5 = gadget_assisted_model(T5ForConditionalGeneration) model_name = "MU-NLPC/calcformer-t5-xl" model = GadgetAssistedT5.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) model.prepare_for_generate(tokenizer, enabled_gadgets=[Calculator()], default_max_tokens=512) query = """ The profit from a business transaction is shared among 2 business partners, Mike and Johnson in the ratio 2:5 respectively. If Johnson got $2500, how much will Mike have after spending some of his share on a shirt that costs $200? """ inputs = tokenizer(query, return_tensors="pt") output_ids = model.generate(**inputs) tokenizer.decode(output_ids[0], spaces_between_special_tokens=False) ``` This returns: ```html According to the ratio, for every 5 parts that Johnson gets, Mike gets 2 parts Since Johnson got $2500, each part is therefore $2500/5 = $<gadget id="calculator">2500/5</gadget><output>500</output> 500 Mike will get 2*$500 = $<gadget id="calculator">2*500</gadget><output>1_000</output> 1000 After buying the shirt he will have $1000-$200 = $<gadget id="calculator">1000-200</gadget><output>800</output> 800 left. Final result is<result>800</result></s> ``` ## Out-of-Scope Usage Note that given the limited scope of the exercises' complexity in the training, this model will not work well for tasks requiring more complex algebraic operations, including equations, variables and operations outside the scope of (+-*/). ## Training This model was trained on [Calc-X](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483), a collection of math problem datasets which we converted into CoT with calculator interactions. We used a standard auto-regressive transformer training, i.e. a conditional next-token prediction with cross-entropy loss. For more detail about data, training or evaluation, see the [Calc-X and Calcformers paper](https://arxiv.org/abs/2305.15017). ## Cite Please cite the [Calcformers paper](https://arxiv.org/abs/2305.15017) as follows: ```bibtex @inproceedings{kadlcik-etal-2023-soft, title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems", author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek", booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track", month = dec, year = "2023", address = "Singapore, Singapore", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2305.15017", } ```
MU-NLPC/calcformer-flan-xl
MU-NLPC
2023-10-30T17:13:00Z
12
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:MU-NLPC/Calc-gsm8k", "dataset:MU-NLPC/Calc-aqua_rat", "dataset:MU-NLPC/Calc-math_qa", "dataset:MU-NLPC/Calc-ape210k", "arxiv:2305.15017", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T14:27:00Z
--- datasets: - MU-NLPC/Calc-gsm8k - MU-NLPC/Calc-aqua_rat - MU-NLPC/Calc-math_qa - MU-NLPC/Calc-ape210k metrics: - exact_match - rouge license: apache-2.0 language: - en --- # Model Card for calcformer-flan-xl This model generates reasoning chains over mathematical questions while **using an external tool: Sympy calculator**. ## Model Description With the idea to offload the symbolic computation from the stochastic language model, we train this model to utilize a calculator **for all applicable numeric operations**. This is achieved by training the model to construct calls to the tool's API in this format: ```html <gadget id="calculator">100/2</gadget> <output>50</output> ``` where `<gadget>` segment triggers a call of the tool, which is subsequently served by extending model's decoder input context by adding the output of the tool within the `<output>` segment. - **Developed by:** Calcformer team - **Model type:** Autoregressive Encoder-Decoder - **Language(s):** en - **Finetuned from:** google/flan-t5-xl ## Sources - **Repository:** <https://github.com/prompteus/calc-x> - **Paper:** <https://arxiv.org/abs/2305.15017> - [**Calcformer model family on HF**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - [**Calc-X dataset collection on HF**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) ## Usage Additionally to conventional generation, using Tool-augmented generation requires (1) implementation of the tool(s) and (2) a customization of `generate()` method augmenting input context on-demand with the outputs of the tools. You can find these two components implemented in the attached **gadgets/model.py** and **gadgets/gadget.py** in this model's repo and the project's [home repo](https://github.com/prompteus/calc-x). After adding these two scripts to your directory, you can use the model as follows: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer from gadgets.model import gadget_assisted_model from gadgets.gadget import Calculator GadgetAssistedT5 = gadget_assisted_model(T5ForConditionalGeneration) model_name = "MU-NLPC/calcformer-flan-xl" model = GadgetAssistedT5.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) model.prepare_for_generate(tokenizer, enabled_gadgets=[Calculator()], default_max_tokens=512) query = """ The profit from a business transaction is shared among 2 business partners, Mike and Johnson in the ratio 2:5 respectively. If Johnson got $2500, how much will Mike have after spending some of his share on a shirt that costs $200? """ inputs = tokenizer(query, return_tensors="pt") output_ids = model.generate(**inputs) tokenizer.decode(output_ids[0], spaces_between_special_tokens=False) ``` This returns: ```html According to the ratio, for every 5 parts that Johnson gets, Mike gets 2 parts Since Johnson got $2500, each part is therefore $2500/5 = $<gadget id="calculator">2500/5</gadget><output>500</output> 500 Mike will get 2*$500 = $<gadget id="calculator">2*500</gadget><output>1_000</output> 1000 After buying the shirt he will have $1000-$200 = $<gadget id="calculator">1000-200</gadget><output>800</output> 800 left. Final result is<result>800</result></s> ``` ## Out-of-Scope Usage Note that given the limited scope of the exercises' complexity in the training, this model will not work well for tasks requiring more complex algebraic operations, including equations, variables and operations outside the scope of (+-*/). ## Training This model was trained on [Calc-X](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483), a collection of math problem datasets which we converted into CoT with calculator interactions. We used a standard auto-regressive transformer training, i.e. a conditional next-token prediction with cross-entropy loss. For more detail about data, training or evaluation, see the [Calc-X and Calcformers paper](https://arxiv.org/abs/2305.15017). ## Cite Please cite the [Calcformers paper](https://arxiv.org/abs/2305.15017) as follows: ```bibtex @inproceedings{kadlcik-etal-2023-soft, title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems", author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek", booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track", month = dec, year = "2023", address = "Singapore, Singapore", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2305.15017", } ```
sunyijia97/lora-trained-xl-colab-yuan-v1
sunyijia97
2023-10-30T16:58:58Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-30T08:28:30Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of yu4nyu4n tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - sunyijia97/lora-trained-xl-colab-yuan-v1 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of yu4nyu4n using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
auro736/roberta-large-tweet-fid-news-TRC
auro736
2023-10-30T16:55:57Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T16:04:36Z
--- license: mit language: - en pipeline_tag: text-classification ---
REDRABBIT0314/SONALITEORCA
REDRABBIT0314
2023-10-30T16:51:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-30T16:50:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
SkunkworksAI/BakLLaVA_v1_pretrained
SkunkworksAI
2023-10-30T16:50:28Z
8
8
transformers
[ "transformers", "llava_mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-10-11T04:24:06Z
Mistral LLaVA pretrained projector.
auro736/roberta-large-tweet-fid-TRC
auro736
2023-10-30T16:49:56Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2205.10726", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2023-10-23T19:12:59Z
--- license: mit language: - en pipeline_tag: text-classification --- ## RoBERTa-large-tweet-fid-TRC This is a [RoBERTa-large](https://huggingface.co/roberta-large) model trained on the [Tweet-FID](https://arxiv.org/abs/2205.10726) dataset (*"TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks", Ruofan Hu et al, 2022* ) which is a collection of Twitter to detect incidents of foodborne illnesses. The model is enriched with a binary classification head to perform the custom task called Text Relevance Classification (TRC). The objective is to determine whether a given text is related to a food risk, identified as *class_1*, or not, *class_0*.
aaditya/whisper-small-hi
aaditya
2023-10-30T16:49:41Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-26T13:33:09Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 2.2516 - eval_wer: 100.1206 - eval_runtime: 89.9036 - eval_samples_per_second: 1.112 - eval_steps_per_second: 0.145 - epoch: 0.86 - step: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
REDRABBIT0314/SONALITE
REDRABBIT0314
2023-10-30T16:46:41Z
3
0
peft
[ "peft", "region:us" ]
null
2023-10-30T08:20:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
ayoub999/LayoutLMv3_5_entities_filtred_12
ayoub999
2023-10-30T16:34:58Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-30T15:26:57Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: LayoutLMv3_5_entities_filtred_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LayoutLMv3_5_entities_filtred_12 This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - Precision: 0.9474 - Recall: 0.9474 - F1: 0.9474 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 50.0 | 100 | 0.1150 | 0.9 | 0.9474 | 0.9231 | 0.9784 | | No log | 100.0 | 200 | 0.1241 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | No log | 150.0 | 300 | 0.1328 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | No log | 200.0 | 400 | 0.1954 | 0.9 | 0.9474 | 0.9231 | 0.9784 | | 0.0457 | 250.0 | 500 | 0.1845 | 0.8571 | 0.9474 | 0.9 | 0.9712 | | 0.0457 | 300.0 | 600 | 0.0843 | 1.0 | 0.9474 | 0.9730 | 0.9928 | | 0.0457 | 350.0 | 700 | 0.0896 | 1.0 | 0.9474 | 0.9730 | 0.9928 | | 0.0457 | 400.0 | 800 | 0.0947 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0457 | 450.0 | 900 | 0.1026 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0005 | 500.0 | 1000 | 0.1118 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0005 | 550.0 | 1100 | 0.1196 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0005 | 600.0 | 1200 | 0.1257 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0005 | 650.0 | 1300 | 0.1297 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0005 | 700.0 | 1400 | 0.1334 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 750.0 | 1500 | 0.1360 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 800.0 | 1600 | 0.1381 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 850.0 | 1700 | 0.1389 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 900.0 | 1800 | 0.1396 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 950.0 | 1900 | 0.1402 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | | 0.0002 | 1000.0 | 2000 | 0.1405 | 0.9474 | 0.9474 | 0.9474 | 0.9856 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.13.3
stablediffusionapi/john-smith
stablediffusionapi
2023-10-30T16:34:29Z
29
1
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-30T16:32:10Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # John Smith API Inference ![generated from stablediffusionapi.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/12616221591698683415.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "john-smith" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/john-smith) Model link: [View model](https://stablediffusionapi.com/models/john-smith) Credits: [View credits](https://civitai.com/?query=John%20Smith) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "john-smith", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
yufengzheng/monster_toy
yufengzheng
2023-10-30T16:34:15Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T16:26:37Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks monster toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/monster_toy These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks monster toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
auro736/deberta-v3-large-tweet-fid-incidents-EMD
auro736
2023-10-30T16:30:23Z
78
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
token-classification
2023-10-30T16:27:16Z
--- license: mit language: - en pipeline_tag: token-classification ---
dell-research-harvard/wire-clustering-na
dell-research-harvard
2023-10-30T16:21:22Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-30T16:21:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # dell-research-harvard/wire-clustering-na This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('dell-research-harvard/wire-clustering-na') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=dell-research-harvard/wire-clustering-na) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2311 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `amended_sbert_fns.OnlineContrastiveLoss_wandb` Parameters of the fit()-Method: ``` { "epochs": 16, "evaluation_steps": 112, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36976, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
auro736/deberta-v3-large-tweet-fid-news-TRC
auro736
2023-10-30T16:15:43Z
75
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T16:12:37Z
--- license: mit language: - en pipeline_tag: text-classification ---
tingchih/1030
tingchih
2023-10-30T16:12:05Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T15:26:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: '1030' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1030 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3768 | 1.0 | 35688 | 1.3910 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
auro736/xlm-roberta-large-tweet-fid-news-TRC
auro736
2023-10-30T16:11:11Z
116
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "en", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T16:08:31Z
--- license: mit language: - en pipeline_tag: text-classification ---
rlmjy/biogpt_heart
rlmjy
2023-10-30T16:07:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-30T16:07:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
stabilityai/stable-diffusion-xl-base-1.0
stabilityai
2023-10-30T16:03:47Z
2,803,847
6,272
diffusers
[ "diffusers", "onnx", "safetensors", "text-to-image", "stable-diffusion", "arxiv:2307.01952", "arxiv:2211.01324", "arxiv:2108.01073", "arxiv:2112.10752", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-07-25T13:25:51Z
--- license: openrail++ tags: - text-to-image - stable-diffusion --- # SD-XL 1.0-base Model Card ![row01](01.png) ## Model ![pipeline](pipeline.png) [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion: In a first step, the base model is used to generate (noisy) latents, which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps. Note that the base model can be used as a standalone module. Alternatively, we can use a two-stage pipeline as follows: First, the base model is used to generate latents of the desired output size. In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img") to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations. Source code is available at https://github.com/Stability-AI/generative-models . ### Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952). ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time. [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference. - **Repository:** https://github.com/Stability-AI/generative-models - **Demo:** https://clipdrop.co/stable-diffusion ## Evaluation ![comparison](comparison.png) The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1. The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance. ### 🧨 Diffusers Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```py from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() prompt = "An astronaut riding a green horse" images = pipe(prompt=prompt).images[0] ``` To use the whole base + refiner pipeline as an ensemble of experts you can run: ```py from diffusers import DiffusionPipeline import torch # load both base & refiner base = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) base.to("cuda") refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) refiner.to("cuda") # Define how many steps and what % of steps to be run on each experts (80/20) here n_steps = 40 high_noise_frac = 0.8 prompt = "A majestic lion jumping from a big stone at night" # run both experts image = base( prompt=prompt, num_inference_steps=n_steps, denoising_end=high_noise_frac, output_type="latent", ).images image = refiner( prompt=prompt, num_inference_steps=n_steps, denoising_start=high_noise_frac, image=image, ).images[0] ``` When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: ```py pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) ``` If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` instead of `.to("cuda")`: ```diff - pipe.to("cuda") + pipe.enable_model_cpu_offload() ``` For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl). ### Optimum [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/). #### OpenVINO To install Optimum with the dependencies required for OpenVINO : ```bash pip install optimum[openvino] ``` To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`. ```diff - from diffusers import StableDiffusionXLPipeline + from optimum.intel import OVStableDiffusionXLPipeline model_id = "stabilityai/stable-diffusion-xl-base-1.0" - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id) + pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id) prompt = "A majestic lion jumping from a big stone at night" image = pipeline(prompt).images[0] ``` You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl). #### ONNX To install Optimum with the dependencies required for ONNX Runtime inference : ```bash pip install optimum[onnxruntime] ``` To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`. ```diff - from diffusers import StableDiffusionXLPipeline + from optimum.onnxruntime import ORTStableDiffusionXLPipeline model_id = "stabilityai/stable-diffusion-xl-base-1.0" - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id) + pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id) prompt = "A majestic lion jumping from a big stone at night" image = pipeline(prompt).images[0] ``` You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl). ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Zedge/sdxl-base
Zedge
2023-10-30T16:03:47Z
17
0
diffusers
[ "diffusers", "onnx", "safetensors", "text-to-image", "stable-diffusion", "arxiv:2307.01952", "arxiv:2211.01324", "arxiv:2108.01073", "arxiv:2112.10752", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-03-04T09:30:03Z
--- license: openrail++ tags: - text-to-image - stable-diffusion --- # SD-XL 1.0-base Model Card ![row01](01.png) ## Model ![pipeline](pipeline.png) [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion: In a first step, the base model is used to generate (noisy) latents, which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps. Note that the base model can be used as a standalone module. Alternatively, we can use a two-stage pipeline as follows: First, the base model is used to generate latents of the desired output size. In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img") to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations. Source code is available at https://github.com/Stability-AI/generative-models . ### Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952). ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time. [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference. - **Repository:** https://github.com/Stability-AI/generative-models - **Demo:** https://clipdrop.co/stable-diffusion ## Evaluation ![comparison](comparison.png) The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1. The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance. ### 🧨 Diffusers Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```py from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() prompt = "An astronaut riding a green horse" images = pipe(prompt=prompt).images[0] ``` To use the whole base + refiner pipeline as an ensemble of experts you can run: ```py from diffusers import DiffusionPipeline import torch # load both base & refiner base = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) base.to("cuda") refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) refiner.to("cuda") # Define how many steps and what % of steps to be run on each experts (80/20) here n_steps = 40 high_noise_frac = 0.8 prompt = "A majestic lion jumping from a big stone at night" # run both experts image = base( prompt=prompt, num_inference_steps=n_steps, denoising_end=high_noise_frac, output_type="latent", ).images image = refiner( prompt=prompt, num_inference_steps=n_steps, denoising_start=high_noise_frac, image=image, ).images[0] ``` When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: ```py pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) ``` If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` instead of `.to("cuda")`: ```diff - pipe.to("cuda") + pipe.enable_model_cpu_offload() ``` For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl). ### Optimum [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/). #### OpenVINO To install Optimum with the dependencies required for OpenVINO : ```bash pip install optimum[openvino] ``` To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`. ```diff - from diffusers import StableDiffusionXLPipeline + from optimum.intel import OVStableDiffusionXLPipeline model_id = "stabilityai/stable-diffusion-xl-base-1.0" - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id) + pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id) prompt = "A majestic lion jumping from a big stone at night" image = pipeline(prompt).images[0] ``` You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl). #### ONNX To install Optimum with the dependencies required for ONNX Runtime inference : ```bash pip install optimum[onnxruntime] ``` To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`. ```diff - from diffusers import StableDiffusionXLPipeline + from optimum.onnxruntime import ORTStableDiffusionXLPipeline model_id = "stabilityai/stable-diffusion-xl-base-1.0" - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id) + pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id) prompt = "A majestic lion jumping from a big stone at night" image = pipeline(prompt).images[0] ``` You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl). ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
yufengzheng/poop_emoji
yufengzheng
2023-10-30T16:01:27Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T15:53:38Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks poop emoji tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/poop_emoji These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks poop emoji using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
FelipeC/NLP_Course_Part_1
FelipeC
2023-10-30T15:59:05Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:glue", "dataset:sst2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-26T19:30:35Z
--- license: apache-2.0 datasets: - glue - sst2 language: - en --- # NLP_Course_Part_1 NLP_Course_Part_1 is a transformer model, a byproduct of Part 1 HuggingFace NLP Course. Although it is functional, it has only been created for my learning purposes.
yufengzheng/dog8
yufengzheng
2023-10-30T15:52:58Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T15:45:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/dog8 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
yufengzheng/dog3
yufengzheng
2023-10-30T15:36:42Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T15:29:11Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/dog3 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
mathildeparlo/ar_base_model
mathildeparlo
2023-10-30T15:28:52Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T12:55:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ar_base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar_base_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4166 - Accuracy: 0.8070 - F1: 0.8142 - Precision: 0.7852 - Recall: 0.8454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4275 | 1.0 | 1850 | 0.4166 | 0.8070 | 0.8142 | 0.7852 | 0.8454 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
yufengzheng/dog
yufengzheng
2023-10-30T15:28:28Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T15:21:07Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/dog These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
yufengzheng/dog7
yufengzheng
2023-10-30T15:20:25Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T15:12:50Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/dog7 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
hdparmar/tradfusion-v2
hdparmar
2023-10-30T15:12:40Z
9
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "text-to-image", "diffusion-models-class", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-27T11:38:27Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - text-to-image - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Fine-tuned Stable Diffusion Model on Irish Traditional Tunes Spectrograms ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('hdparmar/tradfusion-v2') image = pipeline().images[0] image ```
yufengzheng/dog2
yufengzheng
2023-10-30T15:03:57Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-30T14:45:02Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yufengzheng/dog2 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
NeverSleep/Nethena-13B-GGUF
NeverSleep
2023-10-30T15:03:41Z
17
6
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2023-10-29T18:36:26Z
--- license: cc-by-nc-4.0 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/NNs9LlIWuupi4KPLmTFtP.png) # This model is a collab between [IkariDev](https://huggingface.co/IkariDev) and [Undi](https://huggingface.co/Undi95)! Nethena-13B model. Use Alpaca format. Suitable for RP, ERP and general stuff. What would happen if we combine all of out best models? Well.. here it is, the holy grail: **Echidna v0.3** + **Athena v3** + **Nete** This model also has a 20b version, you can check it out right [here](https://huggingface.co/NeverSleep/Nethena-20B). [Recommended settings - No settings yet(Please suggest some over in the Community tab!)] <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains GGUF files of Nethena-13B. [FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Nethena-13B) <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)--> <!--[exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)--> <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)--> <!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)--> [GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Nethena-13B-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)--> ## Ratings: Note: We have permission of all users to upload their ratings, i DONT screenshot random reviews without asking if i can put them here! No ratings yet! If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi". <!-- description end --> <!-- description start --> ## Models+loras used and recipe - NeverSleep/Echidna-13b-v0.3 - IkariDev/Athena-v3 - Undi95/Nete-13B <!-- description end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## Others Undi: If you want to support me, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
doa12/furniture_use_data_finetuning
doa12
2023-10-30T14:52:37Z
31
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-30T04:48:55Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: furniture_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furniture_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
brinda9468/videomae-base-finetuned-ucf101-subset
brinda9468
2023-10-30T14:44:27Z
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-10-25T14:53:08Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0669 - Accuracy: 0.2222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.5 | 4 | 2.0845 | 0.125 | | No log | 1.5 | 8 | 2.0850 | 0.125 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
mathildeparlo/ben_specific_model
mathildeparlo
2023-10-30T14:42:42Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:sagorsarker/mbert-bengali-tydiqa-qa", "base_model:finetune:sagorsarker/mbert-bengali-tydiqa-qa", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T14:04:53Z
--- license: mit base_model: sagorsarker/mbert-bengali-tydiqa-qa tags: - generated_from_trainer model-index: - name: ben_specific_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ben_specific_model This model is a fine-tuned version of [sagorsarker/mbert-bengali-tydiqa-qa](https://huggingface.co/sagorsarker/mbert-bengali-tydiqa-qa) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 299 | 0.3213 | 0.8705 | 0.8807 | 0.8168 | 0.9554 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Henk717/echidna-tiefigther-25
Henk717
2023-10-30T14:36:49Z
15
8
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-30T12:36:10Z
--- license: cc-by-nc-4.0 --- ``` merge_method: task_arithmetic base_model: TheBloke/Llama-2-13B-fp16 models: - model: TheBloke/Llama-2-13B-fp16 - model: NeverSleep/Echidna-13b-v0.3 parameters: weight: 1.0 - model: KoboldAI/LLaMA2-13B-Tiefighter parameters: weight: 0.25 dtype: float16 ```
Henk717/echidna-tiefigther-25-gguf
Henk717
2023-10-30T14:36:12Z
83
3
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2023-10-30T13:09:43Z
--- license: cc-by-nc-4.0 --- ``` merge_method: task_arithmetic base_model: TheBloke/Llama-2-13B-fp16 models: - model: TheBloke/Llama-2-13B-fp16 - model: NeverSleep/Echidna-13b-v0.3 parameters: weight: 1.0 - model: KoboldAI/LLaMA2-13B-Tiefighter parameters: weight: 0.25 dtype: float16 ```
predictia/convswin2sr_mediterranean
predictia
2023-10-30T14:31:01Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "conv_swin2sr", "climate", "super-resolution", "image-to-image", "es", "en", "dataset:openclimatefix/era5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-image
2023-09-19T07:48:42Z
--- license: apache-2.0 datasets: - openclimatefix/era5 language: - es - en metrics: - mse library_name: transformers pipeline_tag: image-to-image tags: - climate - transformers - super-resolution --- # Europe Reanalysis Super Resolution The aim of the project is to create a Machine learning (ML) model that can generate high-resolution regional reanalysis data (similar to the one produced by CERRA) by downscaling global reanalysis data from ERA5. This will be accomplished by using state-of-the-art Deep Learning (DL) techniques like U-Net, conditional GAN, and diffusion models (among others). Additionally, an ingestion module will be implemented to assess the possible benefit of using CERRA pseudo-observations as extra predictors. Once the model is designed and trained, a detailed validation framework takes the place. It combines classical deterministic error metrics with in-depth validations, including time series, maps, spatio-temporal correlations, and computer vision metrics, disaggregated by months, seasons, and geographical regions, to evaluate the effectiveness of the model in reducing errors and representing physical processes. This level of granularity allows for a more comprehensive and accurate assessment, which is critical for ensuring that the model is effective in practice. Moreover, tools for interpretability of DL models can be used to understand the inner workings and decision-making processes of these complex structures by analyzing the activations of different neurons and the importance of different features in the input data. This work is funded by [Code for Earth 2023](https://codeforearth.ecmwf.int/) initiative. The model **ConvSwin2SR** is released in Apache 2.0, making it usable without restrictions anywhere. # Table of Contents - [Model Card for Europe Reanalysis Super Resolution](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Technical Specifications](#technical-specifications-optional) - [Model Architecture](#model-architecture) - [Components](#components) - [Configuration details](#configuration-details) - [Loss function](#loss-function) - [Computing Infrastructure](#computing-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Authors](#authors) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> We present the ConvSwin2SR tranformer, a vision model for down-scaling (from 0.25º to 0.05º) regional reanalysis grids in the mediterranean area. - **Developed by:** A team of Predictia Intelligent Data Solutions S.L. & Instituto de Fisica de Cantabria (IFCA) - **Model type:** Vision model - **Language(s) (NLP):** en, es - **License:** Apache-2.0 - **Resources for more information:** More information needed - [GitHub Repo](https://github.com/ECMWFCode4Earth/DeepR) # Uses ## Direct Use The primary use of the ConvSwin2SR transformer is to enhance the spatial resolution in the Mediterranean area of global reanalysis grids using a regional reanalysis grid as groundtruth. This enhancement is crucial for more precise climate studies, which can aid in better decision-making for various stakeholders including policymakers, researchers, and weather-dependent industries like agriculture, energy, and transportation. ## Out-of-Scope Use The model is specifically designed for downscaling ERA5 reanalysis grids to the CERRA regional reanalysis grid and may not perform well or provide accurate results for other types of geospatial data or geographical regions. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. # Training Details ## Training Data The datasets that are mainly used in the project can be found in the following Copernicus Climate Data Store catalogue entries: - [ERA5 hourly data on single levels from 1940 to present](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview) - [CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-single-levels?tab=overview) 1. Input low-resolution grids (ERA5): The input grids are structured as a 3D array with dimensions of (time, 60, 44), where 60 and 44 are the number of grid points along the longitude and latitude axes, respectively. Geographically, these grids cover a longitude range from -8.35 to 6.6 and a latitude range from 46.45 to 35.50. This implies that the data covers a region extending from a westernmost point at longitude -8.35 to an easternmost point at longitude 6.6, and from a northernmost point at latitude 46.45 to a southernmost point at latitude 35.50. 2. Target high-resolution grids (CERRA): They are represented as a 3D array with larger dimensions of (time, 240, 160), indicating a finer grid resolution compared to the input grids. Here, 240 and 160 are the number of grid points along the longitude and latitude axes, respectively. The geographical coverage for these high-resolution grids is defined by a longitude range from -6.85 to 5.1 and a latitude range from 44.95 to 37. This region extends from a westernmost point at longitude -6.85 to an easternmost point at longitude 5.1, and from a northernmost point at latitude 44.95 to a southernmost point at latitude 37. ![spatial-coverages](spatial-coverages.png) The dataset's temporal division is structured to optimize model training and subsequent per-epoch validation. The training duration spans 29 years, commencing in January 1985 and culminating in December 2013. Sequentially, the validation phase begins, covering the period from January 2014 to December 2017. This 4-year interval is solely dedicated to evaluating the model's aptitude on data it hasn't been exposed to during training. This separation ensures the model's robustness and its capability to make dependable predictions for the validation period. ## Training Procedure ### Preprocessing The preprocessing of climate datasets ERA5 and CERRA, extracted from the Climate Data Store (CDS), is a critical step before their utilization in training models. This section defines the preprocessing steps undertaken to homogenize these datasets into a common format. The steps include unit standardization, coordinate system rectification, and grid interpolation. The methodology employed in each step is discussed comprehensively in the following paragraphs: - Unit Standardization: A preliminary step in the preprocessing pipeline involved the standardization of units across both datasets. This was imperative to ensure a uniform unit system, facilitating a seamless integration of the datasets in later stages. - Coordinate System Rectification: The coordinate system of the datasets was rectified to ensure a coherent representation of geographical information. Specifically, the coordinates and dimensions were renamed to a standardized format with longitude (lon) and latitude (lat) as designated names. The longitude values were adjusted to range from -180 to 180 instead of the initial 0 to 360 range, while latitude values were ordered in ascending order, thereby aligning with conventional geographical coordinate systems. - Grid Interpolation: The ERA5 dataset is structured on a regular grid with a spatial resolution of 0.25º, whereas the CERRA dataset inhabits a curvilinear grid with a Lambert Conformal projection of higher spatial resolution (0.05º). To overcome this disparity in the grid system, a grid interpolation procedure is performed. This step is crucial to align the datasets onto a common format, a regular grid (with different spatial resolutions), thereby ensuring consistency in spatial representation. The interpolation transformed the CERRA dataset to match the regular grid structure of the ERA5 dataset, keeping its initial spatial resolution of 0.05º (5.5 km). ### Speeds, Sizes, Times - Training time: The training duration for the ConvSwin2SR model is notably extensive, clocking in at 3,648 days to complete a total of 100 epochs with a batch size of 2 for a total number of batches equal to ~43000. - Model size: The ConvSwin2SR model is a robust machine learning model boasting a total of 12,383,377 parameters. This size reflects a substantial capacity for learning and generalizing complex relationships within the data, enabling the model to effectively upscale lower-resolution reanalysis grids to higher-resolution versions. - Inference speed: The ConvSwin2SR model demonstrates a commendable inference speed, particularly when handling a substantial batch of samples. Specifically, when tasked with downscaling 248 samples, which is synonymous with processing data for an entire month at 3-hour intervals, the model completes the operation in a mere 21 seconds. This level of efficiency is observed in a local computing environment outfitted with 16GB of RAM and 4GB of GPU memory. # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data In terms of spatial dimensions, both the input grids from ERA5 and the target high-resolution grids from CERRA remain consistent throughout the training and testing phases. This spatial consistency ensures that the model is evaluated under the same geographic conditions as it was trained, allowing for a direct comparison of its performance across different temporal segments. The testing data samples correspond to the three-year period from 2018 to 2020, inclusive. This segment is crucial for assessing the model's real-world applicability and its performance on the most recent data points, ensuring its relevance and reliability in current and future scenarios. ## Results In our evaluation, the proposed model displayed a significant enhancement over the established baseline, which employs bicubic interpolation for the same task. Specifically, our model achieved a noteworthy 34.93% reduction in Mean Absolute Error (MAE), a metric indicative of the average magnitude of errors between predicted and actual values. Furthermore, there was a near 30% improvement in the Root Mean Square Error (RMSE), which measures the square root of the average of squared differences between predictions and actual values. These metrics not only underscore the model's capability to predict with greater precision but also emphasize its reduced propensity for errors. In comparison to the bicubic interpolation baseline, our model's superior predictive accuracy is evident, positioning it as a more reliable tool for this task. - Mean absolute error (MAE): ![mae](metric_global_map_diff_var-mae.png) - Root mean squared error (RMSE): ![rmse](metric_global_map_diff_var-rmse.png) # Technical Specifications ## Model Architecture Our model's design is deeply rooted in the Swin2 architecture, specifically tailored for Super Resolution (SR) tasks. We've harnessed the [transformers library](https://github.com/huggingface/transformers) to streamline and simplify the model's design. ![Model Architecture](architecture.png) ### Components - **Transformers Component**: Central to our model is the [transformers.Swin2SRModel](https://huggingface.co/docs/transformers/model_doc/swin2sr#transformers.Swin2SRModel). This component amplifies the spatial resolution of its inputs by a factor of 8. Notably, Swin2SR exclusively supports upscaling ratios that are powers of 2. - **Convolutional Neural Network (CNN) Component**: Given that our actual upscale ratio is approximately 5 and the designated output shape is (160, 240), we've integrated a CNN. This serves as a preprocessing unit, transforming inputs into (20, 30) feature maps suitable for the Swin2SRModel. The underlying objective of this network is to master the residuals stemming from bicubic interpolation. ### Configuration Details For those inclined towards the intricacies of the model, the specific parameters governing its behavior are meticulously detailed in the [config.json](https://huggingface.co/predictia/convswin2sr_mediterranean/blob/main/config.json). ### Loss function The Swin2 transformer optimizes its parameters using a composite loss function that aggregates multiple L1 loss terms to enhance its predictive accuracy across different resolutions and representations: 1. **Primary Predictions Loss**: - This term computes the L1 loss between the primary model predictions and the reference values. It ensures that the transformer's outputs closely match the ground truth. 2. **Downsampled Predictions Loss**: - This term calculates the L1 loss between the downsampled versions of the predictions and the reference values. By incorporating this term, the model is incentivized to preserve the underlying relations between both spatial resolutions. The references and predictions are upscaled by average pooling by a factor of x5 to match the source resolution. Although this loss term could be (technically) computed with respect to the low-resolution sample, the upscaled reference values are considered, due to the fact that the average pooling used for upscaling does not represent the true relationship between both datasets considered. 3. **Blurred Predictions Loss**: - To ensure the model's robustness against small perturbations and noise, this term evaluates the L1 loss between blurred versions of the predictions and the references. This encourages the model to produce predictions that maintain accuracy even under slight modifications in the data representation. On the other hand, it can smooth the prediction field too much, so it is a term whose use should be studied before including it in your model. To produce the blurred values, a gaussian kernel of size 5 is applied. By combining these loss terms, the ConvSwin2SR is trained to produce realistic predictions. ## Computing Infrastructure Leveraging GPUs in deep learning initiatives greatly amplifies the pace of model training and inference. This computational edge not only diminishes the total computational duration but also equips us to proficiently navigate complex tasks and extensive datasets. Our profound gratitude extends to our collaborative partners, whose invaluable contribution and support have been cornerstones in the fruition of this project. Their substantial inputs have immensely propelled our research and developmental strides. - **AI4EOSC**: Representing "Artificial Intelligence for the European Open Science Cloud," AI4EOSC functions under the aegis of the European Open Science Cloud (EOSC). Initiated by the European Union, EOSC endeavors to orchestrate a cohesive platform for research data and services. AI4EOSC, a distinct arm within EOSC, concentrates on embedding and leveraging artificial intelligence (AI) techniques within the open science domain. - **European Weather Cloud**: Serving as a cloud-centric hub, this platform catalyzes collective efforts in meteorological application design and operations throughout Europe. Its offerings are manifold, ranging from disseminating weather forecast data to proffering computational prowess, expert counsel, and consistent support. ### Hardware Specifications Our endeavor harnesses the capabilities of two virtual machines (VMs), each embedded with a dedicated GPU. One VM is equipped with a 16GB GPU, while its counterpart is equipped with an even potent 20GB GPU. This strategic hardware alignment proficiently caters to diverse computational needs, spanning data orchestration to model fine-tuning and evaluation, ensuring the seamless flow and success of our project. ### Software Resources For enthusiasts and researchers inclined towards a deeper probe, our model's training and evaluation code is transparently accessible. Navigate to our GitHub Repository [ECMWFCode4Earth/DeepR](https://github.com/ECMWFCode4Earth/DeepR) under the ECWMF Code 4 Earth consortium. ### Authors <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> - Mario Santa Cruz. Predictia Intelligent Data Solutions S.L. - Antonio Pérez. Predictia Intelligent Data Solutions S.L. - Javier Díez. Instituto de Física de Cantabria (IFCA)
lifenghan/TransformerNMT-zh2en
lifenghan
2023-10-30T14:27:04Z
0
0
null
[ "license:cc-by-nc-sa-2.0", "region:us" ]
null
2023-10-30T14:15:50Z
--- license: cc-by-nc-sa-2.0 --- Transformer for NMT trained from scratch for Chinese-to-English. Trained models are hosted here. These models are published in the PhD thesis: Han, Lifeng (2022) An investigation into multi-word expressions in machine translation. PhD thesis, Dublin City University. https://doras.dcu.ie/26559/ More publication lists on this work are available at: https://doras.dcu.ie/view/people/Han=3ALifeng=3A=3A.html data and trained models to tidy up: [here](https://drive.google.com/drive/folders/0BygVShQKVPZDfjh3ekw5WTJiclJGME4zWU9BbTNWZl9uank0NmZabk1LWjRrTUN4RFlDaDg?resourcekey=0-zjrjG9p5aSCTcH2-hfWw9g&usp=sharing)
jin5605/use_data_finetuning
jin5605
2023-10-30T14:10:36Z
219
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-30T08:26:33Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Hafiz47/food_classifier
Hafiz47
2023-10-30T14:06:38Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-30T13:34:02Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: Hafiz47/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hafiz47/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3692 - Validation Loss: 0.3328 - Train Accuracy: 0.926 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.7777 | 1.6234 | 0.834 | 0 | | 1.1884 | 0.7782 | 0.911 | 1 | | 0.6717 | 0.5104 | 0.908 | 2 | | 0.4754 | 0.4022 | 0.914 | 3 | | 0.3692 | 0.3328 | 0.926 | 4 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
titanpark/peft-lora-starcoder15B-v2-personal-copilot-A100-40GB-colab
titanpark
2023-10-30T14:06:12Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:bigcode/starcoder", "base_model:adapter:bigcode/starcoder", "region:us" ]
null
2023-10-30T14:05:58Z
--- library_name: peft base_model: bigcode/starcoder --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
aubmindlab/aragpt2-medium
aubmindlab
2023-10-30T13:53:45Z
3,879
9
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "safetensors", "gpt2", "text-generation", "ar", "arxiv:2012.15520", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ar datasets: - wikipedia - Osian - 1.5B-Arabic-Corpus - oscar-arabic-unshuffled - Assafir(private) widget: - text: "يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال" - text: "القدس مدينة تاريخية، بناها الكنعانيون في" - text: "كان يا ما كان في قديم الزمان" --- # Arabic GPT2 <img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/> You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520) The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API. GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository. These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library. GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`). Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core. AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2. # Usage ## Testing the model using `transformers`: ```python from transformers import GPT2TokenizerFast, pipeline #for base and medium from transformers import GPT2LMHeadModel #for large and mega # pip install arabert from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel from arabert.preprocess import ArabertPreprocessor MODEL_NAME='aubmindlab/aragpt2-medium' arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME) text="" text_clean = arabert_prep.preprocess(text) model = GPT2LMHeadModel.from_pretrained(MODEL_NAME) tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME) generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer) #feel free to try different decoding settings generation_pipeline(text, pad_token_id=tokenizer.eos_token_id, num_beams=10, max_length=200, top_p=0.9, repetition_penalty = 3.0, no_repeat_ngram_size = 3)[0]['generated_text'] ``` ## Finetunning using `transformers`: Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed) ## Finetuning using our code with TF 1.15.4: Create the Training TFRecords: ```bash python create_pretraining_data.py --input_file=<RAW TEXT FILE with documents/article separated by an empty line> --output_file=<OUTPUT TFRecord> --tokenizer_dir=<Directory with the GPT2 Tokenizer files> ``` Finetuning: ```bash python3 run_pretraining.py \\\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\\n --config_file="config/small_hparams.json" \\\n --batch_size=128 \\\n --eval_batch_size=8 \\\n --num_train_steps= \\\n --num_warmup_steps= \\\n --learning_rate= \\\n --save_checkpoints_steps= \\\n --max_seq_length=1024 \\\n --max_eval_steps= \\\n --optimizer="lamb" \\\n --iterations_per_loop=5000 \\\n --keep_checkpoint_max=10 \\\n --use_tpu=True \\\n --tpu_name=<TPU NAME> \\\n --do_train=True \\\n --do_eval=False ``` # Model Sizes Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params | ---|:---:|:---:|:---:|:---:|:---:|:---: AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB / 135M | AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.38G/370M | AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M | AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B | All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats. ## Compute Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days) ---|:---:|:---:|:---:|:---:|:---: AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5 AraGPT2-medium | TPUv3-8 | 9.7M | 80 | 1M | 15 AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3 AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9 # Dataset The pretraining data used for the new AraGPT2 model is also used for **AraBERTv2 and AraELECTRA**. The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation) For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the dataset used in AraBERTv1 but with out the websites that we previously crawled: - OSCAR unshuffled and filtered. - [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01 - [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4) - [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619) - Assafir news articles. Huge thank you for Assafir for giving us the data # Disclaimer The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it. # If you used this model please cite us as : ``` @inproceedings{antoun-etal-2021-aragpt2, title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation", author = "Antoun, Wissam and Baly, Fady and Hajj, Hazem", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Virtual)", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.wanlp-1.21", pages = "196--207", } ``` # Acknowledgments Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT. # Contacts **Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <wfa07@mail.aub.edu> | <wissam.antoun@gmail.com> **Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <fgb06@mail.aub.edu> | <baly.fady@gmail.com>
aubmindlab/aragpt2-base
aubmindlab
2023-10-30T13:53:25Z
9,777
25
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "safetensors", "gpt2", "text-generation", "ar", "arxiv:2012.15520", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ar datasets: - wikipedia - Osian - 1.5B-Arabic-Corpus - oscar-arabic-unshuffled - Assafir(private) widget: - text: "يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال" - text: "القدس مدينة تاريخية، بناها الكنعانيون في" - text: "كان يا ما كان في قديم الزمان" --- # Arabic GPT2 <img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/> You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520) The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API. GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository. These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library. GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`). Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core. AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2. # Usage ## Testing the model using `transformers`: ```python from transformers import GPT2TokenizerFast, pipeline #for base and medium from transformers import GPT2LMHeadModel #for large and mega # pip install arabert from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel from arabert.preprocess import ArabertPreprocessor MODEL_NAME='aubmindlab/aragpt2-base' arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME) text="" text_clean = arabert_prep.preprocess(text) model = GPT2LMHeadModel.from_pretrained(MODEL_NAME) tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME) generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer) #feel free to try different decoding settings generation_pipeline(text, pad_token_id=tokenizer.eos_token_id, num_beams=10, max_length=200, top_p=0.9, repetition_penalty = 3.0, no_repeat_ngram_size = 3)[0]['generated_text'] ``` ## Finetunning using `transformers`: Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed) ## Finetuning using our code with TF 1.15.4: Create the Training TFRecords: ```bash python create_pretraining_data.py --input_file=<RAW TEXT FILE with documents/article separated by an empty line> --output_file=<OUTPUT TFRecord> --tokenizer_dir=<Directory with the GPT2 Tokenizer files> ``` Finetuning: ```bash python3 run_pretraining.py \\r\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\r\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\r\n --config_file="config/small_hparams.json" \\r\n --batch_size=128 \\r\n --eval_batch_size=8 \\r\n --num_train_steps= \\r\n --num_warmup_steps= \\r\n --learning_rate= \\r\n --save_checkpoints_steps= \\r\n --max_seq_length=1024 \\r\n --max_eval_steps= \\r\n --optimizer="lamb" \\r\n --iterations_per_loop=5000 \\r\n --keep_checkpoint_max=10 \\r\n --use_tpu=True \\r\n --tpu_name=<TPU NAME> \\r\n --do_train=True \\r\n --do_eval=False ``` # Model Sizes Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params | ---|:---:|:---:|:---:|:---:|:---:|:---: AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB / 135M | AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.38G/370M | AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M | AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B | All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats. ## Compute Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days) ---|:---:|:---:|:---:|:---:|:---: AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5 AraGPT2-medium | TPUv3-8 | 9.7M | 1152 | 85K | 1.5 AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3 AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9 # Dataset The pretraining data used for the new AraGPT2 model is also used for **AraBERTv2 and AraELECTRA**. The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation) For the new dataset we added the unshuffled OSCAR corpus after we thoroughly filter it, to the dataset used in AraBERTv1 but without the websites that we previously crawled: - OSCAR unshuffled and filtered. - [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01 - [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4) - [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619) - Assafir news articles. Huge thank you for Assafir for giving us the data # Disclaimer The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it. # If you used this model please cite us as : ``` @inproceedings{antoun-etal-2021-aragpt2, title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation", author = "Antoun, Wissam and Baly, Fady and Hajj, Hazem", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Virtual)", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.wanlp-1.21", pages = "196--207", } ``` # Acknowledgments Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT. # Contacts **Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <wfa07@mail.aub.edu> | <wissam.antoun@gmail.com> **Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <fgb06@mail.aub.edu> | <baly.fady@gmail.com>
delitante-coder/falcon_tune
delitante-coder
2023-10-30T13:28:41Z
4
0
peft
[ "peft", "arxiv:1910.09700", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "base_model:adapter:vilsonrodrigues/falcon-7b-instruct-sharded", "region:us" ]
null
2023-10-28T13:35:32Z
--- library_name: peft base_model: vilsonrodrigues/falcon-7b-instruct-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
johannes-garstenauer/distilbert_masking_heaps
johannes-garstenauer
2023-10-30T13:27:33Z
105
1
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-15T09:11:59Z
DistilBERT for masked language modelling trained on OpenSSH heap data structures dataset for the purpose of generating representations. This model was created for the thesis "Generating Robust Representations of Structures in OpenSSH Heap Dumps" by Johannes Garstenauer. ### Model Description - **Developed by:** Johannes Garstenauer - **Funded by [optional]:** Universität Passau ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://zenodo.org/records/10053730 ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Training data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_train Validation data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_eval
johannes-garstenauer/distilbert_class_heaps
johannes-garstenauer
2023-10-30T13:27:21Z
106
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "digital forensics", "dataset:johannes-garstenauer/structs_token_size_4_reduced_labelled_eval", "dataset:johannes-garstenauer/structs_token_size_4_reduced_labelled_train", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-18T13:59:04Z
--- datasets: - johannes-garstenauer/structs_token_size_4_reduced_labelled_eval - johannes-garstenauer/structs_token_size_4_reduced_labelled_train tags: - digital forensics --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> DistilBERT for sequence classification trained on OpenSSH heap data structures dataset for the purpose of generating representations. This model was created for the thesis "Generating Robust Representations of Structures in OpenSSH Heap Dumps" by Johannes Garstenauer. It is finetuned from "johannes-garstenauer/distilbert_masking_heaps". ### Model Description - **Developed by:** Johannes Garstenauer - **Funded by [optional]:** Universität Passau - **Finetuned from model [optional]:** johannes-garstenauer/distilbert_masking_heaps ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://zenodo.org/records/10053730 ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Training data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_train Validation data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_eval
nitendra1729/bert-base-uncased-disaster_tweetsv1
nitendra1729
2023-10-30T13:15:38Z
65
1
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T14:37:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-base-uncased-disaster_tweetsv1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-disaster_tweetsv1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on disaster tweets dataset of kaggle. It achieves the following results on the evaluation set: 81% accuracy ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 570, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
goodjin/furniture_use_data_finetuning
goodjin
2023-10-30T13:15:03Z
4
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-30T08:57:46Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: furniture_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furniture_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
WillyWilliam/distilbert-emotion-analysis
WillyWilliam
2023-10-30T13:08:02Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T13:05:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-emotion-analysis results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1449 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.1609 | 0.935 | | No log | 2.0 | 250 | 0.1449 | 0.935 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
RogerB/afro-xlmr-large-kinteal-domain-kinte-task-unkin-sent3
RogerB
2023-10-30T13:06:49Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:RogerB/afro-xlmr-large-kinteal-domain-kinte-task", "base_model:finetune:RogerB/afro-xlmr-large-kinteal-domain-kinte-task", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-30T11:25:18Z
--- license: mit base_model: RogerB/afro-xlmr-large-kinteal-domain-kinte-task tags: - generated_from_trainer metrics: - f1 model-index: - name: afro-xlmr-large-kinteal-domain-kinte-task-unkin-sent3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinteal-domain-kinte-task-unkin-sent3 This model is a fine-tuned version of [RogerB/afro-xlmr-large-kinteal-domain-kinte-task](https://huggingface.co/RogerB/afro-xlmr-large-kinteal-domain-kinte-task) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9247 - F1: 0.6910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9089 | 1.0 | 1013 | 0.6264 | 0.7476 | | 0.7196 | 2.0 | 2026 | 0.5055 | 0.8130 | | 0.6028 | 3.0 | 3039 | 0.5010 | 0.8326 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
brit2738/llama2-13b-peft-ACL
brit2738
2023-10-30T13:04:48Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "region:us" ]
null
2023-10-30T10:36:20Z
--- library_name: peft base_model: meta-llama/Llama-2-13b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
HerbertAIHug/NLP_Capstone
HerbertAIHug
2023-10-30T13:03:06Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:huawei-noah/TinyBERT_General_4L_312D", "base_model:finetune:huawei-noah/TinyBERT_General_4L_312D", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-26T13:03:45Z
--- base_model: huawei-noah/TinyBERT_General_4L_312D tags: - generated_from_trainer metrics: - accuracy model-index: - name: NLP_Capstone results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_Capstone This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3176 - Accuracy: 0.8671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5286 | 0.2 | 500 | 0.4169 | 0.8251 | | 0.4299 | 0.4 | 1000 | 0.4137 | 0.8332 | | 0.3856 | 0.6 | 1500 | 0.3714 | 0.8512 | | 0.3692 | 0.8 | 2000 | 0.3176 | 0.8671 | | 0.3604 | 1.0 | 2500 | 0.3869 | 0.8635 | | 0.3457 | 1.2 | 3000 | 0.4126 | 0.8631 | | 0.3291 | 1.41 | 3500 | 0.4272 | 0.8675 | | 0.3481 | 1.61 | 4000 | 0.3754 | 0.8775 | | 0.3253 | 1.81 | 4500 | 0.4293 | 0.8649 | | 0.3306 | 2.01 | 5000 | 0.3807 | 0.8789 | | 0.2849 | 2.21 | 5500 | 0.4291 | 0.8803 | | 0.2824 | 2.41 | 6000 | 0.4058 | 0.8797 | | 0.279 | 2.61 | 6500 | 0.4521 | 0.8761 | | 0.2944 | 2.81 | 7000 | 0.4986 | 0.8747 | | 0.3347 | 3.01 | 7500 | 0.4364 | 0.8815 | | 0.2622 | 3.21 | 8000 | 0.5368 | 0.8703 | | 0.2494 | 3.41 | 8500 | 0.4795 | 0.8854 | | 0.2645 | 3.61 | 9000 | 0.4795 | 0.8864 | | 0.243 | 3.81 | 9500 | 0.4570 | 0.8874 | | 0.2399 | 4.01 | 10000 | 0.5219 | 0.8795 | | 0.2103 | 4.22 | 10500 | 0.5325 | 0.8775 | | 0.2196 | 4.42 | 11000 | 0.5629 | 0.8729 | | 0.2494 | 4.62 | 11500 | 0.5087 | 0.8826 | | 0.1968 | 4.82 | 12000 | 0.5332 | 0.8779 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
rznas/sapace-invader
rznas
2023-10-30T12:59:39Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-30T12:59:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 79.00 +/- 23.32 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rznas -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rznas -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rznas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
OhST/cppe5_use_data_finetuning
OhST
2023-10-30T12:55:48Z
36
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-30T08:23:45Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: cppe5_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cppe5_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Nondzu/Mistral-7B-code-16k-qlora
Nondzu
2023-10-30T12:45:22Z
1,529
26
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-16T15:19:21Z
--- license: apache-2.0 --- # Mistral-7B-code-16k-qlora I'm excited to announce the release of a new model called Mistral-7B-code-16k-qlora. This small and fast model shows a lot of promise for supporting coding or acting as a copilot. I'm currently looking for people to help me test it out! ## Additional Information This model was trained on 3x RTX 3090 in my homelab, using around 65kWh for approximately 23 cents, which is equivalent to around $15 for electricity. ## Quantised: 1. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GPTQ 2. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-AWQ 3. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GGUF ## Download by qBittorrent: #### Torrent file: https://github.com/Nondzu/LlamaTor/blob/torrents/torrents/Nondzu_Mistral-7B-code-16k-qlora.torrent ## Dataset: nickrosh/Evol-Instruct-Code-80k-v1 https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## eval plus Human eval plus: https://github.com/evalplus/evalplus ``` Nondzu mistral-7b-code Base {'pass@1': 0.3353658536585366} Base + Extra {'pass@1': 0.2804878048780488} ``` to compare here is original Mistral model tested on the same machine ``` Mistral 7b Base {'pass@1': 0.2926829268292683} Base + Extra {'pass@1': 0.24390243902439024} ``` ## Settings: ``` base_model: mistralai/Mistral-7B-Instruct-v0.1 base_model_config: mistralai/Mistral-7B-Instruct-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: nickrosh/Evol-Instruct-Code-80k-v1 type: oasst dataset_prepared_path: val_set_size: 0.01 output_dir: ./Mistral-7B-Evol-Instruct-16k-test11 adapter: qlora lora_model_dir: # 16384 8192 4096 2048 sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: mistral-code wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 8 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 20 save_steps: debug: # deepspeed: deepspeed: deepspeed/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/NyuqJFDkH00KGvuOwHIuG.png) Check my other projects: https://github.com/Nondzu/LlamaTor