modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 00:47:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 00:46:57
card
stringlengths
11
1.01M
pyf98/tedlium2_conformer_e15
pyf98
2022-12-19T00:43:26Z
0
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:tedlium2", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-12-19T00:41:08Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - tedlium2 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/tedlium2_conformer_e15` This model was trained by Yifan Peng using tedlium2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 8ee35df7260008e9a8a20d9a9b64773a02f706ef pip install -e . cd egs2/tedlium2/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/tedlium2_conformer_e15 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Dec 17 04:27:41 CST 2022` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202209` - pytorch version: `pytorch 1.12.1` - Git hash: `26f432bc859e5e40cac1a86042d498ba7baffbb0` - Commit date: `Fri Dec 9 02:16:01 2022 +0000` ## asr_train_asr_conformer_e15_raw_en_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|14671|93.5|4.1|2.5|1.0|7.5|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|27500|93.4|4.0|2.6|1.0|7.6|64.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|78259|97.0|0.8|2.1|0.8|3.8|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|145066|97.0|0.9|2.2|0.9|4.0|64.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev|466|28296|95.0|2.8|2.2|0.8|5.9|70.0| |decode_asr_asr_model_valid.acc.ave/test|1155|52113|95.1|2.5|2.4|0.9|5.8|64.2| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_e15.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_e15_raw_en_bpe500_sp ngpu: 1 seed: 2022 num_workers: 6 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 59747 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 50000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe500_sp/train/speech_shape - exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁the - t - ▁a - ▁and - ▁to - d - e - ▁of - '''' - n - ing - ▁in - ▁i - ▁that - i - a - l - p - m - y - o - ▁it - ▁we - c - u - ▁you - ed - ▁ - r - ▁is - re - ▁this - ar - g - ▁so - al - b - ▁s - or - ▁f - ▁c - in - k - f - ▁for - ic - er - le - ▁be - ▁do - ▁re - ve - ▁e - ▁w - ▁was - es - ▁they - ly - h - ▁on - v - ▁are - ri - ▁have - an - ▁what - ▁with - ▁t - w - ur - it - ent - ▁can - ▁he - ▁but - ra - ce - ▁me - ▁b - ▁ma - ▁p - ll - ▁st - ▁one - 'on' - ▁about - th - ▁de - en - ▁all - ▁not - il - ▁g - ch - at - ▁there - ▁mo - ter - ation - tion - ▁at - ▁my - ro - ▁as - te - ▁le - ▁con - ▁like - ▁people - ▁or - ▁an - el - ▁if - ▁from - ver - ▁su - ▁co - ate - ▁these - ol - ci - ▁now - ▁see - ▁out - ▁our - ion - ▁know - ect - ▁just - as - ▁ex - ▁ch - ▁d - ▁when - ▁very - ▁think - ▁who - ▁because - ▁go - ▁up - ▁us - ▁pa - ▁no - ies - ▁di - ▁ho - om - ive - ▁get - id - ▁o - ▁hi - un - ▁how - ▁by - ir - et - ck - ity - ▁po - ul - ▁which - ▁mi - ▁some - z - ▁sp - ▁un - ▁going - ▁pro - ist - ▁se - ▁look - ▁time - ment - de - ▁more - ▁had - ng - ▁would - ge - la - ▁here - ▁really - x - ▁your - ▁them - us - me - ▁en - ▁two - ▁k - ▁li - ▁world - ne - ow - ▁way - ▁want - ▁work - ▁don - ▁lo - ▁fa - ▁were - ▁their - age - vi - ▁ha - ac - der - est - ▁bo - am - ▁other - able - ▁actually - ▁sh - ▁make - ▁ba - ▁la - ine - ▁into - ▁where - ▁could - ▁comp - ting - ▁has - ▁will - ▁ne - j - ical - ally - ▁vi - ▁things - ▁te - igh - ▁say - ▁years - ers - ▁ra - ther - ▁than - ru - ▁ro - op - ▁did - ▁any - ▁new - ound - ig - ▁well - mo - ▁she - ▁na - ▁been - he - ▁thousand - ▁car - ▁take - ▁right - ▁then - ▁need - ▁start - ▁hundred - ▁something - ▁over - ▁com - ia - ▁kind - um - if - ▁those - ▁first - ▁pre - ta - ▁said - ize - end - ▁even - ▁thing - one - ▁back - ite - ▁every - ▁little - ry - ▁life - ▁much - ke - ▁also - ▁most - ant - per - ▁three - ▁come - ▁lot - ance - ▁got - ▁talk - ▁per - ▁inter - ▁sa - ▁use - ▁mu - ▁part - ish - ence - ▁happen - ▁bi - ▁mean - ough - ▁qu - ▁bu - ▁day - ▁ga - ▁only - ▁many - ▁different - ▁dr - ▁th - ▁show - ful - ▁down - ated - ▁good - ▁tra - ▁around - ▁idea - ▁human - ous - ▁put - ▁through - ▁five - ▁why - ▁change - ▁real - ff - ible - ▁fact - ▁same - ▁jo - ▁live - ▁year - ▁problem - ▁ph - ▁four - ▁give - ▁big - ▁tell - ▁great - ▁try - ▁va - ▁ru - ▁system - ▁six - ▁plan - ▁place - ▁build - ▁called - ▁again - ▁point - ▁twenty - ▁percent - ▁nine - ▁find - ▁app - ▁after - ▁long - ▁eight - ▁imp - ▁gene - ▁design - ▁today - ▁should - ▁made - ious - ▁came - ▁learn - ▁last - ▁own - way - ▁turn - ▁seven - ▁high - ▁question - ▁person - ▁brain - ▁important - ▁another - ▁thought - ▁trans - ▁create - ness - ▁hu - ▁power - ▁act - land - ▁play - ▁sort - ▁old - ▁before - ▁course - ▁understand - ▁feel - ▁might - ▁each - ▁million - ▁better - ▁together - ▁ago - ▁example - ▁help - ▁story - ▁next - ▁hand - ▁school - ▁water - ▁develop - ▁technology - que - ▁second - ▁grow - ▁still - ▁cell - ▁believe - ▁number - ▁small - ▁between - qui - ▁data - ▁become - ▁america - ▁maybe - ▁space - ▁project - ▁organ - ▁vo - ▁children - ▁book - graph - ▁open - ▁fifty - ▁picture - ▁health - ▁thirty - ▁africa - ▁reason - ▁large - ▁hard - ▁computer - ▁always - ▁sense - ▁money - ▁women - ▁everything - ▁information - ▁country - ▁teach - ▁energy - ▁experience - ▁food - ▁process - qua - ▁interesting - ▁future - ▁science - q - '0' - '5' - '6' - '9' - '3' - '8' - '4' - N - A - '7' - S - G - F - R - L - U - E - T - H - _ - B - D - J - M - ă - ō - ť - '2' - '-' - '1' - C - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 15 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202209' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
anamhira/ppo-LunarLander-v2
anamhira
2022-12-19T00:16:14Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-19T00:15:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 9.18 +/- 101.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
flashgod/QLtaxi-v3
flashgod
2022-12-18T23:30:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T23:30:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: QLtaxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="flashgod/QLtaxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jestemleon/bert-nlp-project-imdb
jestemleon
2022-12-18T22:49:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-03T13:41:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-nlp-project-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-nlp-project-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1745 | 0.37 | 453 | 2.9488 | | 3.0364 | 0.75 | 906 | 2.9024 | | 2.9915 | 1.12 | 1359 | 2.8552 | | 2.9427 | 1.5 | 1812 | 2.8371 | | 2.9247 | 1.87 | 2265 | 2.8125 | | 2.902 | 2.25 | 2718 | 2.7948 | | 2.8997 | 2.62 | 3171 | 2.8013 | | 2.8914 | 3.0 | 3624 | 2.8113 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
tashatsar/ppo-LunarLander-v2-LR
tashatsar
2022-12-18T22:38:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T16:34:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.45 +/- 65.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BlancOfficial/Healy_AnimeBlend
BlancOfficial
2022-12-18T22:26:44Z
0
5
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-18T20:50:10Z
--- license: creativeml-openrail-m --- ### Reposted directly from [Civitai](https://civitai.com/models/1400/healys-anime-blend) --- This is a blend of some anime models mixed with "realistic" stuff to get a look Healy has been trying to accomplish for awhile. I take no credit whatsoever, [Healy](https://civitai.com/user/Healy) just smashed rocks together like a caveman and the outcome somehow worked. It can create NSFW stuff to I think, but i've noticed the outcomes remain pretty tolerable with "cleavage" in the negative prompts. --- ### Output Comparison ![comparison_image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/9d0729b2-882c-4bad-8873-c18508688800/width=4096) Prompt: (Beautiful woman, very close symmetric portrait:1.2) (Red Shiny Eyes, Black hair, pony tail, wearing rags, thick thighs, Narrow waist, Wide hips, grown up, Athletic, Feminine, Fully clothed, playful expression:1.2) photo, render, 8k, octane render, cinema 4d, blender, Futuristic star trek style, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, hyperrealistic, big depth of field, Masterpiece, colors, 3d octane render, 4k, concept art, trending on artstation, solo, full body shot (hyperrealistic, Hyperdetailed, Vivid colors, Wlop, stanley artgerm lau:1.5) Negative prompt: Glasses, Cleavage, Watermark, bad artist, helmet, blur, blurry, text, b&w, 3d, bad art, poorly drawn, blurry, disfigured, deformed, extra limbs, ugly hands, extra fingers Size: 1024x1280, Seed: 3278428817, Steps: 30, Sampler: Euler a, CFG scale: 15, Model hash: 8a3b8d01, First pass size: 512x640, Denoising strength: 0.6 --- ### Output Examples: ![image1](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/ff0361bb-3a03-4de5-6479-5731ef083f00/width=4096) Prompt: (Close portrait of Beautiful woman with a circle of water in the background:1.2) (Blue Shiny Eyes, Blonde, bob cut, Black closed hoodie, thick thighs, Wide hips, Adult, Fully clothed, playful expression:1.2) photo, render, 8k, octane render, cinema 4d, blender, Futuristic star trek style, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, hyperrealistic, big depth of field, colors, 3d octane render, 4k, concept art, trending on artstation, solo, full body shot (hyperrealistic, Hyperdetailed, Vivid colors, Wlop, stanley artgerm lau:1.5) Negative prompt: Glasses, Cleavage, Watermark, bad artist, helmet, blur, blurry, text, b&w, 3d, bad art, poorly drawn, blurry, disfigured, deformed, extra limbs, ugly hands, extra fingers Size: 1024x1280, Seed: 3301144353, Steps: 40, Sampler: Euler a, CFG scale: 12, Model hash: 8a3b8d01, First pass size: 512x640, Denoising strength: 0.6 ![image2](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/2e37a1c9-b767-44ff-2474-53e7606daf00/width=4096) Prompt: (Beautiful woman, symmetric portrait, triangle neon light background:1.2) (Green Shiny Eyes, brunette, messy long hair, Black long skirt, white turtleneck, thick thighs, Narrow waist, Wide hips, grown up, Athletic, Feminine, Fully clothed, playful expression:1.2) photo, render, 8k, octane render, cinema 4d, blender, Futuristic star trek style, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, hyperrealistic, big depth of field, Masterpiece, colors, 3d octane render, 4k, concept art, trending on artstation, solo, full body shot (hyperrealistic, Hyperdetailed, Vivid colors, Wlop, stanley artgerm lau:1.5) Negative prompt: Glasses, Cleavage, Watermark, bad artist, helmet, blur, blurry, text, b&w, 3d, bad art, poorly drawn, blurry, disfigured, deformed, extra limbs, ugly hands, extra fingers Size: 1024x1280, Seed: 977393216, Steps: 30, Sampler: Euler a, CFG scale: 15, Mask blur: 4, Model hash: 8a3b8d01, Denoising strength: 0.65 ![image3](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/4cae9876-30e9-46d3-39fa-2318f549e700/width=4096) Prompt: (Beautiful woman, symmetric portrait, Hands behind back, Water droplets floating in the air:1.2) (Green Shiny Eyes, Blonde, messy long hair, Black long skirt, white turtleneck, thick thighs, Narrow waist, Wide hips, grown up, Athletic, Feminine, Fully clothed, playful expression:1.2) photo, render, 8k, octane render, cinema 4d, blender, Futuristic star trek style, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, hyperrealistic, big depth of field, Masterpiece, colors, 3d octane render, 4k, concept art, trending on artstation, solo, full body shot (hyperrealistic, Hyperdetailed, Vivid colors, Wlop, stanley artgerm lau:1.5) Negative prompt: Glasses, Cleavage, Watermark, bad artist, helmet, blur, blurry, text, b&w, 3d, bad art, poorly drawn, blurry, disfigured, deformed, extra limbs, ugly hands, extra fingers Size: 1024x1280, Seed: 1616183337, Steps: 30, Sampler: Euler a, CFG scale: 15, Model hash: 8a3b8d01, First pass size: 512x640, Denoising strength: 0.6
augustolf/navezinha
augustolf
2022-12-18T22:00:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T21:59:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.69 +/- 17.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jestemleon/bert-nlp-project-news
jestemleon
2022-12-18T21:43:46Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-18T21:29:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-nlp-project-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-nlp-project-news This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4196 | 0.35 | 8 | 3.9775 | | 4.1578 | 0.7 | 16 | 3.8826 | | 4.055 | 1.04 | 24 | 3.7820 | | 3.954 | 1.39 | 32 | 3.6726 | | 3.916 | 1.74 | 40 | 3.7244 | | 3.864 | 2.09 | 48 | 3.7631 | | 3.8837 | 2.43 | 56 | 3.6904 | | 3.8965 | 2.78 | 64 | 3.6775 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
fawazatvetted/fine_tuned_mpnetv2
fawazatvetted
2022-12-18T21:37:35Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-18T21:37:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 84227 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alkiskoudounas/whisper-el-medium-augmented
alkiskoudounas
2022-12-18T21:33:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "el", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T16:35:48Z
--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Greek - Robust results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - name: Wer type: wer value: 21.684621099554235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Greek - Robust This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set: - Loss: 0.3168 - Wer: 21.6846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3865 | 1.17 | 500 | 0.5842 | 51.4487 | | 0.2302 | 2.35 | 1000 | 0.4861 | 39.3202 | | 0.1321 | 3.52 | 1500 | 0.4536 | 37.4257 | | 0.0916 | 4.69 | 2000 | 0.4103 | 39.6824 | | 0.0497 | 5.87 | 2500 | 0.4101 | 29.1883 | | 0.03 | 7.04 | 3000 | 0.4121 | 28.0089 | | 0.0156 | 8.22 | 3500 | 0.3842 | 26.7459 | | 0.0037 | 9.39 | 4000 | 0.3433 | 28.7054 | | 0.0008 | 10.56 | 4500 | 0.3244 | 21.8332 | | 0.0006 | 11.74 | 5000 | 0.3178 | 21.5267 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.7.1 - Tokenizers 0.12.1
z4x/PPO-LunarLander-v2
z4x
2022-12-18T21:20:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T21:10:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.53 +/- 19.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aherzberg/whisper-dpv-finetuned-BEST-MODEL
aherzberg
2022-12-18T21:08:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T18:50:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-dpv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-dpv-finetuned This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - epoch: 13.07 - eval_loss: 0.0002 - eval_runtime: 8695.8511 - eval_samples_per_second: 0.458 - eval_steps_per_second: 0.458 - eval_wer: 0.0112 - step: 13000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
farsipal/whisper-sm-el-intlv-xl
farsipal
2022-12-18T20:45:14Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "el", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T15:22:15Z
--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-sm-el-intlv-xl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 19.48365527488856 --- # whisper-sm-el-intlv-xl This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the evaluation set: - Loss: 0.4725 - Wer: 19.4837 ## Model description The model was trained over 10000 steps on translation from Greek to English. ## Intended uses & limitations This model was part of the Whisper Finetuning Event (Dec 2022) and was used primarily to compare relative improvements between transcription and translation tasks. ## Training and evaluation data The training datasets combined examples from both train and evaluation splits and use the train split of the mozilla-foundation/common_voice_11_0 (el) dataset for evaluation and selection of the best checkpoint. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0545 | 2.49 | 1000 | 0.2891 | 22.4926 | | 0.0093 | 4.98 | 2000 | 0.3927 | 20.1337 | | 0.0018 | 7.46 | 3000 | 0.4031 | 20.1616 | | 0.001 | 9.95 | 4000 | 0.4209 | 19.6880 | | 0.0008 | 12.44 | 5000 | 0.4498 | 20.0966 | | 0.0005 | 14.93 | 6000 | 0.4725 | 19.4837 | | 0.0002 | 17.41 | 7000 | 0.4917 | 19.5951 | | 0.0001 | 19.9 | 8000 | 0.5050 | 19.6230 | | 0.0001 | 22.39 | 9000 | 0.5146 | 19.5672 | | 0.0001 | 24.88 | 10000 | 0.5186 | 19.4837 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
4eonsbl4ck/q-FrozenLake-v1-4x4-noSlippery
4eonsbl4ck
2022-12-18T20:45:08Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T20:34:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="4eonsbl4ck/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gpfl/ppo-Huggy
gpfl
2022-12-18T20:42:14Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-18T20:42:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: gpfl/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
chist/q-Taxi-v3
chist
2022-12-18T20:21:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T20:20:49Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="chist/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jenya-g/q-Taxi-v3
jenya-g
2022-12-18T20:16:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T20:13:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jenya-g/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
venuv62/spoofing_vit_16_224
venuv62
2022-12-18T19:30:49Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-18T18:55:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: spoofing_vit_16_224 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spoofing_vit_16_224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0560 - Accuracy: 0.7088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7746 | 0.99 | 54 | 0.6401 | 0.6405 | | 0.339 | 1.99 | 108 | 0.9389 | 0.6042 | | 0.0437 | 2.99 | 162 | 1.0560 | 0.7088 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
sgangireddy/whisper-base-cv-lowLR-cs
sgangireddy
2022-12-18T19:19:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "cs", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T18:58:12Z
--- language: - cs license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper base Czech CV low LR results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 cs type: mozilla-foundation/common_voice_11_0 config: cs split: test args: cs metrics: - name: Wer type: wer value: 42.9052871954476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base Czech CV low LR This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.5171 - Wer: 42.9053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6046 | 4.01 | 1000 | 0.6535 | 52.3084 | | 0.4037 | 8.02 | 2000 | 0.5706 | 46.6879 | | 0.3172 | 12.03 | 3000 | 0.5369 | 44.1042 | | 0.3606 | 16.04 | 4000 | 0.5218 | 43.0766 | | 0.3792 | 21.01 | 5000 | 0.5171 | 42.9053 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
sgangireddy/whisper-base-cv-cs
sgangireddy
2022-12-18T18:55:58Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "cs", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T18:31:00Z
--- language: - cs license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper base Czech CV results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 cs type: mozilla-foundation/common_voice_11_0 config: cs split: test args: cs metrics: - name: Wer type: wer value: 33.995690687096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base Czech CV This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.5394 - Wer: 33.9957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.206 | 4.01 | 1000 | 0.4356 | 36.2443 | | 0.0332 | 8.02 | 2000 | 0.4583 | 34.0509 | | 0.0074 | 12.03 | 3000 | 0.5119 | 34.4395 | | 0.005 | 16.04 | 4000 | 0.5394 | 33.9957 | | 0.0045 | 21.01 | 5000 | 0.5461 | 34.1025 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
ihanif/xls-r-1b-pashto
ihanif
2022-12-18T18:28:35Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "google/fleurs", "generated_from_trainer", "dataset:fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T15:53:54Z
--- license: apache-2.0 tags: - automatic-speech-recognition - google/fleurs - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: facebook/wav2vec2-xls-r-1b results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: GOOGLE/FLEURS - PS_AF type: fleurs config: ps_af split: test args: 'Config: ps_af, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 0.9294849931787176 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # facebook/wav2vec2-xls-r-1b This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the GOOGLE/FLEURS - PS_AF dataset. It achieves the following results on the evaluation set: - Loss: 4.1921 - Wer: 0.9295 - Cer: 0.9608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 19.9558 | 1.27 | 100 | 3.2660 | 20.9197 | 1.0 | | 19.7186 | 2.53 | 200 | 1.1692 | 19.2447 | 1.0 | | 15.203 | 3.8 | 300 | 0.9687 | 15.0053 | 0.9998 | | 6.4303 | 5.06 | 400 | 0.9911 | 6.5437 | 0.9632 | | 4.5712 | 6.33 | 500 | 0.9546 | 4.9040 | 0.9323 | | 3.3986 | 12.66 | 1000 | 4.1921 | 0.9295 | 0.9608 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
dugongo/ppo-LunarLander-v2
dugongo
2022-12-18T18:17:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T18:17:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.85 +/- 15.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SvetKochnev/riffusion-model-v1-f16
SvetKochnev
2022-12-18T17:26:48Z
0
0
null
[ "region:us" ]
null
2022-12-18T16:55:45Z
Model Details Developed by: Seth Forsgren, Hayk Martiros Model type: Diffusion-based text-to-image generation model Language(s): English License: The CreativeML OpenRAIL M license is an Open RAIL M license, adapted from the work that BigScience and the RAIL Initiative are jointly carrying in the area of responsible AI licensing. See also the article about the BLOOM Open RAIL license on which our license is based. Model Description: This is a model that can be used to generate and modify images based on text prompts. It is a Latent Diffusion Model that uses a fixed, pretrained text encoder (CLIP ViT-L/14) as suggested in the Imagen paper.
Verah/ai-protest-anime
Verah
2022-12-18T17:15:46Z
0
6
null
[ "stable-diffusion", "text-to-image", "license:openrail++", "region:us" ]
text-to-image
2022-12-17T08:26:46Z
--- license: openrail++ thumbnail: "https://huggingface.co/Verah/ai-protest-anime/resolve/main/s0.webp" tags: - stable-diffusion - text-to-image inference: false --- # "AI Protest" Anime Model ![Sample Image](s0.webp) This model has been trained to simulate what it may be like if the current (December 2022) artstation protest images against AI were actually used as training data inside a conventional anime stable diffusion model. For version 2, I trained two dreambooth models on the AI Protest imagery at 576px and 704px for 6k steps each. These unique models were then 50/50 merged. The intent behind this is regularization. The key word is still **ai protest** Version 1 was a quick and dirty DreamBooth model trained without regularization for 3023 steps. the key word is **ai protest**, simply use it in your prompt. **you may wish to increase the weight and/or duplicate it, as the influence is quite weak.** The base model (of both versions) is an early preview of WD1.4 (colloquially "WD 1.3.5") [wd-1-4-float32-booru-110k](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/9fa4a42a9c4a0948472fa909e6c1a39be0dda699/models/wd-1-4-float32-booru-110k.ckpt) This means you should probably be using danbooru-style image tags in your prompts ## new samples (model version 2) negative prompt (for all): - traditional media, graphite medium, ugly, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, lowres, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, username, blurry, bad feet, sketch if you add `flat color, flat shading` to the negative prompt you can get uncanny early CG-like images. prompts for the header images: - (ai protest:1.3), [:1girl, finely detailed, beautiful, arknights, ruins, still life, text, (ai protest), solo, long hair, white hair, red eyes, headgear:0.24] - (ai protest:1.3), [:1girl, finely detailed, (cowboy shot), beautiful, arknights, ruins, still life, text, (ai protest), solo, long hair, white hair, red eyes, headgear:0.1] - (ai protest:1.3), [:1girl, (upper body:1.2), finely detailed, beautiful, arknights, ruins, still life, text, (ai protest:1.3), solo, long hair, white hair, red eyes, headgear:0.4] *I regularly use the prompt editing feature of automatic's UI. the fundamental syntax is for example: `[A:B:0.1]` this would be interprited as prompt A for the first 10% of samples, then after which it would become prompt B. In the examples above I am omitting any prompt A. With this method it will first draw the AI Protest sign, then add the anime girl to it after* ![Sample Image](s1.webp) - (ai protest:1.4), [:1girl, bangs, black hair, blazer, flower, grey jacket, hair flower, hair ornament, jacket, long hair, looking at viewer, portrait, purple eyes, school uniform, solo, swept bangs, twintails, upper body, white background, idolmaster, idolmaster shiny colors, fukumaru koito, ruins, text, (ai protest:1.2):0.15] - (ai protest:1.2), [:1girl, bangs, black hair, blazer, flower, grey jacket, hair flower, hair ornament, jacket, long hair, looking at viewer, portrait, purple eyes, school uniform, solo, swept bangs, twintails, upper body, white background, idolmaster, idolmaster shiny colors, fukumaru koito, text, (ai protest:1.2):0.15] - (ai protest:1.3), [:1girl, armband, bangs, bare shoulders, belt, black gloves, black hair, black shirt, blue eyes, breasts, coat, cropped legs, floating hair, gloves, hair between eyes, long hair, long sleeves, mask, medium breasts, midriff, mouth mask, no headwear, no navel, open clothes, open coat, shirt, sleeveless, sleeveless shirt, solo, stomach, upper body, white coat, blue archive, saori \(blue archive\), ai protest:0.1] - (ai protest:1.3), [:1girl, bangs, black dress, closed mouth, cropped torso, dress, green eyes, green hair, long sleeves, looking at viewer, medium hair, simple background, solo, upper body, wavy hair, white background, one-punch man, tatsumaki, ai protest:0.1] Other tips: You don't neccessarily need to use the prompt editing trick, I just like it. A second pass in img2img or via enabling highres fix can improve the fidelity of outputs. ## old samples (model version 1) ![Sample Image](01.webp) (ai protest:1.3), 1girl, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful), (ai protest:1.3) Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet ![Sample Image](02.webp) (ai protest:1.3), 1girl, upper body, mecha musume, headgear, (ai protest:1.3) ![Sample Image](04.webp) (ai protest:1.2), 1girl, bangs, black dress, closed mouth, cropped torso, dress, green eyes, green hair, long sleeves, looking at viewer, medium hair, simple background, solo, upper body, wavy hair, white background, one-punch man, tatsumaki ![Sample Image](05.webp) (ai protest:1.3), 1girl, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful), (ai protest:1.3) ![Sample Image](06.webp) (ai protest:1.6), mordred \(fate\) wears armor fighting, sword, Negative prompt: (missing digits:1.5), (extra digits:1.5), extra limb, bad art, incomplete, weird colors, blurry, poorly drawn, deformed, cartoon, b&w, missing limbs, inconsistent, multiple girls, 1boy, male, 2boys, short hair, hu tao, lumine, keqing, shenhe, mona, eula, yelan, beidou, contorted, signature, watermark, username, blurry, artist name, symmetrical, bad hands, jpeg artifacts, error, pixelated, multiple girls, 2girls, 3girls, ![Sample Image](08.webp) (ai protest:1.3), 1girl, upper body, mecha musume, headgear, (ai protest:1.3), (masterpiece), (best quality), (ultra-detailed), best illustration, (extremely delicate and beautiful) Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet ![Sample Image](09.webp) ai protest, 1girl, tattoo, masterpiece, best quality, ultra-detailed, illustration
mrm8488/mt5-base-finetuned-notes-summaries
mrm8488
2022-12-18T17:09:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-18T16:07:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-notes-summaries results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-notes-summaries This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 5.5563 - Rouge2: 1.1271 - Rougel: 5.1075 - Rougelsum: 5.1383 - Gen Len: 10.0222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 446 | nan | 5.5563 | 1.1271 | 5.1075 | 5.1383 | 10.0222 | | 0.0 | 2.0 | 892 | nan | 5.5563 | 1.1271 | 5.1075 | 5.1383 | 10.0222 | | 0.0 | 3.0 | 1338 | nan | 5.5563 | 1.1271 | 5.1075 | 5.1383 | 10.0222 | | 0.0 | 4.0 | 1784 | nan | 5.5563 | 1.1271 | 5.1075 | 5.1383 | 10.0222 | | 0.0 | 5.0 | 2230 | nan | 5.5563 | 1.1271 | 5.1075 | 5.1383 | 10.0222 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
sd-concepts-library/cosmic-galaxy-characters-style
sd-concepts-library
2022-12-18T16:48:27Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-12-18T16:41:22Z
--- license: mit --- ### Cosmic galaxy characters style on Stable Diffusion This is the `<cosmicgalaxy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cosmicgalaxy> 0](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/0.jpeg) ![<cosmicgalaxy> 1](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/4.jpeg) ![<cosmicgalaxy> 2](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/3.jpeg) ![<cosmicgalaxy> 3](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/1.jpeg) ![<cosmicgalaxy> 4](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/2.jpeg) ![<cosmicgalaxy> 5](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/5.jpeg) ![<cosmicgalaxy> 6](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/9.jpeg) ![<cosmicgalaxy> 7](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/7.jpeg) ![<cosmicgalaxy> 8](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/8.jpeg) ![<cosmicgalaxy> 9](https://huggingface.co/sd-concepts-library/cosmic-galaxy-characters-style/resolve/main/concept_images/6.jpeg)
Walid-Rovo/ppo-LunarLander-v2
Walid-Rovo
2022-12-18T16:32:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T14:58:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -162.67 +/- 61.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cesar514/q-FrozenLake-v1-4x4-noSlippery
Cesar514
2022-12-18T16:09:54Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T16:09:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Cesar514/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
msgerasyov/q-Taxi-v3
msgerasyov
2022-12-18T15:42:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T15:26:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="msgerasyov/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lsaulier/q-Taxi-v3
lsaulier
2022-12-18T15:19:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T15:16:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="lsaulier/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lsaulier/q-FrozenLake-v1-4x4-noSlippery
lsaulier
2022-12-18T15:08:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T15:08:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="lsaulier/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
newbie4000/ppo-LunarLander-v2
newbie4000
2022-12-18T15:04:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T14:34:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 296.96 +/- 19.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lukechoi76/q-FrozenLake-v1-4x4-noSlippery
lukechoi76
2022-12-18T14:45:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T14:45:32Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="luke76/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lambdaofgod/query_nbow_embedder
lambdaofgod
2022-12-18T14:44:55Z
0
0
sentence-transformers
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-18T14:44:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # lambdaofgod/query_nbow_embedder This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('lambdaofgod/query_nbow_embedder') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=lambdaofgod/query_nbow_embedder) ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(6912, 200) ) (1): WordWeights( (emb_layer): Embedding(6912, 1) ) (2): Pooling({'word_embedding_dimension': 200, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ryusangwon/distilbert-base-uncased-finetuned-emotion
ryusangwon
2022-12-18T14:32:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-18T10:20:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an emtion dataset. It achieves the following results on the evaluation set: - Loss: 0.2254 - Accuracy: 0.925 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3271 | 0.903 | 0.8983 | | No log | 2.0 | 500 | 0.2254 | 0.925 | 0.9249 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
jenya-g/PPO-LunarLander-v2
jenya-g
2022-12-18T14:18:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T13:13:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.03 +/- 17.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ihanif/whisper-small-pashto-dropout
ihanif
2022-12-18T14:06:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "pashto", "ps", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T15:51:05Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer - automatic-speech-recognition - hf-asr-leaderboard - pashto - ps datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Pashto results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs ps_af type: google/fleurs args: 'config: ps_af, split: test' metrics: - name: Wer type: wer value: 56.651029055690074 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs ps_af dataset. It achieves the following results on the evaluation set: - Loss: 1.2273 - Wer: 56.6510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 2.1183 | 3.7 | 100 | 1.3170 | 76.9522 | | 0.8565 | 7.41 | 200 | 0.9367 | 61.9930 | | 0.2246 | 11.11 | 300 | 0.9642 | 58.8302 | | 0.054 | 14.81 | 400 | 1.0876 | 57.9903 | | 0.0159 | 18.52 | 500 | 1.1798 | 57.8768 | | 0.0045 | 22.22 | 600 | 1.2309 | 56.6510 | | 0.0026 | 100.0 | 700 | 1.2581 | 56.8478 | | 0.0023 | 114.29 | 800 | 1.2710 | 56.7570 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
ihanif/whisper-small-pashto
ihanif
2022-12-18T14:03:39Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "pashto", "ps", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T18:36:30Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard - pashto - ps datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Pashto results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs ps_af type: google/fleurs args: 'config: ps_af, split: test' metrics: - name: Wer type: wer value: 63.10532687651331 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs ps_af dataset. It achieves the following results on the evaluation set: - Loss: 1.1800 - Wer: 63.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 5200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.0871 | 14.29 | 100 | 2.0102 | 230.2739 | | 1.465 | 28.57 | 200 | 1.4969 | 137.2427 | | 1.1617 | 42.86 | 300 | 1.2716 | 76.3242 | | 1.0019 | 57.14 | 400 | 1.1645 | 71.3756 | | 0.9052 | 71.43 | 500 | 1.1051 | 69.7866 | | 0.8334 | 85.71 | 600 | 1.0691 | 68.2657 | | 0.7838 | 100.0 | 700 | 1.0483 | 67.1686 | | 0.7539 | 114.29 | 800 | 1.0363 | 66.4195 | | 0.7377 | 128.57 | 900 | 1.0297 | 66.2001 | | 0.7325 | 142.86 | 1000 | 1.0277 | 66.0033 | | 0.6952 | 157.14 | 1100 | 1.0122 | 65.0575 | | 0.6531 | 171.43 | 1200 | 1.0014 | 64.4219 | | 0.6189 | 185.71 | 1300 | 0.9945 | 63.7939 | | 0.5993 | 200.0 | 1400 | 0.9896 | 63.3550 | | 0.5757 | 214.29 | 1500 | 0.9864 | 63.2264 | | 0.5601 | 228.57 | 1600 | 0.9845 | 62.9162 | | 0.5482 | 242.86 | 1700 | 0.9833 | 62.8178 | | 0.5382 | 257.14 | 1800 | 0.9827 | 62.8405 | | 0.5325 | 271.43 | 1900 | 0.9823 | 62.7648 | | 0.5287 | 285.71 | 2000 | 0.9822 | 62.8178 | | 0.3494 | 357.14 | 2500 | 1.0026 | 61.6147 | | 0.2287 | 428.57 | 3000 | 1.0533 | 61.5163 | | 0.1525 | 500.0 | 3500 | 1.1041 | 62.0536 | | 0.1089 | 571.43 | 4000 | 1.1451 | 62.5076 | | 0.0871 | 642.86 | 4500 | 1.1704 | 62.9313 | | 0.0797 | 714.29 | 5000 | 1.1791 | 63.1659 | | 0.0799 | 728.57 | 5100 | 1.1800 | 63.1053 | | 0.0791 | 742.86 | 5200 | 1.1803 | 63.1129 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Finnish-NLP/whisper-large-v2-finnish
Finnish-NLP
2022-12-18T13:57:57Z
17
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "finnish", "fi", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T11:11:25Z
--- language: - fi license: apache-2.0 tags: - whisper-event - finnish datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer - cer model-index: - name: Whisper Large V2 Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: fi split: test args: fi metrics: - name: Wer type: wer value: 10.42 - name: Cer type: cer value: 1.91 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: fi_fi split: test args: fi_fi metrics: - name: Wer type: wer value: 10.2 - name: Cer type: cer value: 3.36 ---
socokal/vit-base-beans
socokal
2022-12-18T13:56:46Z
20
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-18T13:49:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0720 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1111 | 1.54 | 100 | 0.0720 | 0.9774 | | 0.0249 | 3.08 | 200 | 0.1081 | 0.9774 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
ybot/ppo-LunarLander-v2
ybot
2022-12-18T13:44:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T23:51:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.98 +/- 24.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Payoto/roberta-base-finetuned-squad
Payoto
2022-12-18T13:28:43Z
67
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-11-17T18:40:43Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 3 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
AgentXXX/q-FrozenLake-v1-4x4-noSlippery
AgentXXX
2022-12-18T13:28:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T13:28:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AgentXXX/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahmadmwali/finetuning-sentiment-hausa21
ahmadmwali
2022-12-18T13:24:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-18T10:58:31Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-hausa21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-hausa21 This model is a fine-tuned version of [mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1444 - Accuracy: 0.9586 - F1: 0.9586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
flashgod/ppo-LunarLanderV2
flashgod
2022-12-18T13:23:48Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T13:23:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.41 +/- 21.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ad3zp/ppo-Lunar-Lander-v2
Ad3zp
2022-12-18T13:09:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T13:09:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.24 +/- 17.32 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
leviethoang/wav2vec2-large-xls-r-300m-vi-75p
leviethoang
2022-12-18T13:09:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T09:25:35Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vi-75p results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vi-75p This model is a fine-tuned version of [leviethoang/wav2vec2-large-xls-r-300m-vi-25p](https://huggingface.co/leviethoang/wav2vec2-large-xls-r-300m-vi-25p) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7880 - Wer: 0.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.962 | 1.68 | 400 | 1.2033 | 0.4428 | | 0.7977 | 3.36 | 800 | 1.3410 | 0.4731 | | 0.644 | 5.04 | 1200 | 1.4682 | 0.4796 | | 0.5156 | 6.72 | 1600 | 1.4940 | 0.4826 | | 0.4531 | 8.4 | 2000 | 1.5071 | 0.4734 | | 0.3882 | 10.08 | 2400 | 1.5408 | 0.4694 | | 0.3469 | 11.76 | 2800 | 1.5975 | 0.4697 | | 0.3096 | 13.45 | 3200 | 1.7120 | 0.4728 | | 0.2825 | 15.13 | 3600 | 1.7052 | 0.4632 | | 0.2607 | 16.81 | 4000 | 1.6870 | 0.4575 | | 0.2301 | 18.49 | 4400 | 1.7205 | 0.4653 | | 0.2096 | 20.17 | 4800 | 1.7352 | 0.4504 | | 0.1915 | 21.85 | 5200 | 1.7948 | 0.4465 | | 0.1685 | 23.53 | 5600 | 1.7994 | 0.4400 | | 0.1543 | 25.21 | 6000 | 1.7613 | 0.4435 | | 0.1378 | 26.89 | 6400 | 1.8300 | 0.4365 | | 0.1278 | 28.57 | 6800 | 1.7880 | 0.4324 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Payoto/gpt2-wikitext2
Payoto
2022-12-18T12:48:33Z
36
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T17:53:18Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 512 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
tagotec/ppo-LunarLander-v2
tagotec
2022-12-18T12:20:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T12:19:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.91 +/- 16.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
arampacha/whisper-large-hy
arampacha
2022-12-18T12:15:04Z
7
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hy", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T11:27:53Z
--- language: - hy license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-base-hy results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hy-AM split: test args: hy-AM metrics: - name: Wer type: wer value: 22.36842105263158 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-hy This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2204 - Wer: 22.3684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1394 | 5.87 | 400 | 0.1780 | 28.2895 | | 0.0536 | 11.75 | 800 | 0.1739 | 24.6053 | | 0.0247 | 17.64 | 1200 | 0.2098 | 22.9605 | | 0.0154 | 23.52 | 1600 | 0.2035 | 22.1382 | | 0.0103 | 29.41 | 2000 | 0.2204 | 22.3684 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jlondonobo/whisper-large-v2-es
jlondonobo
2022-12-18T11:32:26Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "es", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T04:30:24Z
--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Spanish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 es type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 5.074450392391248 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Spanish This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 es dataset. It achieves the following results on the evaluation set: - Loss: 0.1648 - Wer: 5.0745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1556 | 0.5 | 750 | 0.1683 | 5.0959 | | 0.1732 | 1.35 | 1500 | 0.1648 | 5.0745 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
anuragshas/whisper-large-v2-ml
anuragshas
2022-12-18T11:02:10Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ml", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T20:46:25Z
--- language: - ml license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Malayalam results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ml type: mozilla-foundation/common_voice_11_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 25.478927203065133 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Malayalam This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 ml dataset. It achieves the following results on the evaluation set: - Loss: 0.4170 - Wer: 25.4789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0 | 71.01 | 1000 | 0.4170 | 25.4789 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
emmyapi/distilbart-podimo-data-5
emmyapi
2022-12-18T10:25:14Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "Summarization", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T16:26:15Z
--- tasks: summarization license: apache-2.0 tags: - generated_from_trainer - Summarization model-index: - name: distilbart-podimo-data-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-podimo-data-5 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.1325 ## Model description model | rouge1 | rouge2 | rougeL | rougeLsum --- | --- | --- | --- |--- sshleifer/distilbart-cnn-12-6 | 0.202654 | 0.025766 | 0.123072 | 0.130183 emmyapi/distilbart-podimo-data-3 | 0.235147 | 0.047087 | 0.151535 | 0.161782 emmyapi/distilbart-podimo-data-4 | 0.236926 | 0.048327 | 0.153539 | 0.165026 emmyapi/distilbart-podimo-data-5 | 0.259024 | 0.061665 | 0.167187 | 0.178399 emmyapi/distilbart-podimo-data-7 | 0.298888 | 0.059900 | 0.159479 | 0.185049 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3477 | 3.33 | 500 | 3.7027 | | 2.6286 | 6.66 | 1000 | 3.6995 | | 2.0718 | 10.0 | 1500 | 3.8868 | | 1.7806 | 13.33 | 2000 | 4.1325 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
Bachchu/wav2vec2-large-xlsr-asamese-demo-colab
Bachchu
2022-12-18T09:57:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-18T08:56:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-asamese-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-asamese-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.3328 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 25.0 | 100 | 4.8185 | 1.0 | | No log | 50.0 | 200 | 3.5026 | 1.0 | | No log | 75.0 | 300 | 3.4142 | 1.0 | | 6.5763 | 100.0 | 400 | 3.3328 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
marma/whisper-small-sv
marma
2022-12-18T09:34:00Z
5
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:dataset/riksdagen", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T08:05:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - dataset/riksdagen metrics: - wer model-index: - name: whisper-small-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset/riksdagen audiofolder type: dataset/riksdagen config: test split: test args: audiofolder metrics: - name: WER type: wer value: 0.22405586116204554 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: language: sv-SE metrics: - name: WER type: wer value: 26.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-sv This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the dataset/riksdagen audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2917 - Wer: 0.2241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5023 | 0.04 | 250 | 0.5072 | 0.2949 | | 0.4678 | 0.08 | 500 | 0.4632 | 0.2780 | | 0.4233 | 0.12 | 750 | 0.4384 | 0.2749 | | 0.4113 | 0.17 | 1000 | 0.4205 | 0.2673 | | 0.3994 | 0.21 | 1250 | 0.4079 | 0.2649 | | 0.3841 | 0.25 | 1500 | 0.3947 | 0.2609 | | 0.3775 | 0.29 | 1750 | 0.3854 | 0.2564 | | 0.383 | 0.33 | 2000 | 0.3781 | 0.2540 | | 0.3651 | 0.37 | 2250 | 0.3721 | 0.2532 | | 0.3456 | 0.42 | 2500 | 0.3651 | 0.2517 | | 0.3719 | 0.46 | 2750 | 0.3612 | 0.2481 | | 0.3399 | 0.5 | 3000 | 0.3561 | 0.2437 | | 0.3428 | 0.54 | 3250 | 0.3522 | 0.2465 | | 0.3442 | 0.58 | 3500 | 0.3451 | 0.2399 | | 0.3315 | 0.62 | 3750 | 0.3431 | 0.2417 | | 0.3299 | 0.66 | 4000 | 0.3404 | 0.2428 | | 0.3417 | 0.71 | 4250 | 0.3373 | 0.2395 | | 0.3399 | 0.75 | 4500 | 0.3332 | 0.2390 | | 0.3222 | 0.79 | 4750 | 0.3310 | 0.2385 | | 0.3319 | 0.83 | 5000 | 0.3291 | 0.2372 | | 0.3188 | 0.87 | 5250 | 0.3265 | 0.2359 | | 0.3197 | 0.91 | 5500 | 0.3240 | 0.2378 | | 0.3099 | 0.96 | 5750 | 0.3215 | 0.2342 | | 0.3132 | 1.0 | 6000 | 0.3195 | 0.2374 | | 0.286 | 1.04 | 6250 | 0.3179 | 0.2348 | | 0.2765 | 1.08 | 6500 | 0.3166 | 0.2354 | | 0.2795 | 1.12 | 6750 | 0.3153 | 0.2324 | | 0.2825 | 1.16 | 7000 | 0.3145 | 0.2316 | | 0.2865 | 1.21 | 7250 | 0.3144 | 0.2329 | | 0.2703 | 1.25 | 7500 | 0.3126 | 0.2326 | | 0.2792 | 1.29 | 7750 | 0.3121 | 0.2324 | | 0.2749 | 1.33 | 8000 | 0.3106 | 0.2325 | | 0.2762 | 1.37 | 8250 | 0.3093 | 0.2315 | | 0.2813 | 1.41 | 8500 | 0.3080 | 0.2302 | | 0.2755 | 1.45 | 8750 | 0.3078 | 0.2321 | | 0.2779 | 1.5 | 9000 | 0.3062 | 0.2305 | | 0.2764 | 1.54 | 9250 | 0.3059 | 0.2336 | | 0.2763 | 1.58 | 9500 | 0.3041 | 0.2310 | | 0.2723 | 1.62 | 9750 | 0.3027 | 0.2292 | | 0.2756 | 1.66 | 10000 | 0.3026 | 0.2301 | | 0.2663 | 1.7 | 10250 | 0.3008 | 0.2262 | | 0.269 | 1.75 | 10500 | 0.3006 | 0.2280 | | 0.2682 | 1.79 | 10750 | 0.3002 | 0.2291 | | 0.2721 | 1.83 | 11000 | 0.2994 | 0.2267 | | 0.2681 | 1.87 | 11250 | 0.2987 | 0.2288 | | 0.278 | 1.91 | 11500 | 0.2978 | 0.2296 | | 0.2625 | 1.95 | 11750 | 0.2978 | 0.2278 | | 0.2583 | 1.99 | 12000 | 0.2967 | 0.2259 | | 0.2403 | 2.04 | 12250 | 0.2976 | 0.2276 | | 0.2414 | 2.08 | 12500 | 0.2972 | 0.2264 | | 0.251 | 2.12 | 12750 | 0.2969 | 0.2256 | | 0.2404 | 2.16 | 13000 | 0.2968 | 0.2253 | | 0.2473 | 2.2 | 13250 | 0.2966 | 0.2253 | | 0.2444 | 2.24 | 13500 | 0.2965 | 0.2262 | | 0.2512 | 2.29 | 13750 | 0.2962 | 0.2253 | | 0.2417 | 2.33 | 14000 | 0.2950 | 0.2280 | | 0.2445 | 2.37 | 14250 | 0.2950 | 0.2256 | | 0.2461 | 2.41 | 14500 | 0.2949 | 0.2262 | | 0.2496 | 2.45 | 14750 | 0.2944 | 0.2261 | | 0.2422 | 2.49 | 15000 | 0.2942 | 0.2248 | | 0.2415 | 2.53 | 15250 | 0.2940 | 0.2252 | | 0.2465 | 2.58 | 15500 | 0.2932 | 0.2269 | | 0.2508 | 2.62 | 15750 | 0.2931 | 0.2245 | | 0.2339 | 2.66 | 16000 | 0.2930 | 0.2257 | | 0.2441 | 2.7 | 16250 | 0.2923 | 0.2247 | | 0.2444 | 2.74 | 16500 | 0.2921 | 0.2246 | | 0.2416 | 2.78 | 16750 | 0.2918 | 0.2264 | | 0.2425 | 2.83 | 17000 | 0.2916 | 0.2251 | | 0.2404 | 2.87 | 17250 | 0.2916 | 0.2234 | | 0.2456 | 2.91 | 17500 | 0.2911 | 0.2238 | | 0.2384 | 2.95 | 17750 | 0.2908 | 0.2252 | | 0.244 | 2.99 | 18000 | 0.2905 | 0.2251 | | 0.2197 | 3.03 | 18250 | 0.2919 | 0.2239 | | 0.2194 | 3.08 | 18500 | 0.2919 | 0.2237 | | 0.2294 | 3.12 | 18750 | 0.2919 | 0.2243 | | 0.2225 | 3.16 | 19000 | 0.2918 | 0.2252 | | 0.2229 | 3.2 | 19250 | 0.2919 | 0.2242 | | 0.2153 | 3.24 | 19500 | 0.2917 | 0.2241 | | 0.2137 | 3.28 | 19750 | 0.2917 | 0.2239 | | 0.2194 | 3.32 | 20000 | 0.2917 | 0.2241 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0a0+8a1a93a - Datasets 2.7.1 - Tokenizers 0.13.2
ruzarx/q-FrozenLake-v1-4x4-noSlippery
ruzarx
2022-12-18T09:26:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T09:26:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ruzarx/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dhandapanip/Ss
dhandapanip
2022-12-18T08:09:02Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-12-18T08:09:02Z
--- license: bigscience-bloom-rail-1.0 ---
mdsunbeam/ppo-LunarLander-v2
mdsunbeam
2022-12-18T08:04:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T08:03:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.77 +/- 15.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nu-dialogue/sfc2022-stable-diffusion
nu-dialogue
2022-12-18T07:20:46Z
16
3
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "ja", "japanese", "arxiv:2112.10752", "license:other", "diffusers:JapaneseStableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-18T04:50:44Z
--- language: ja license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - ja - japanese inference: true # extra_gated_prompt: |- # One more step before getting this model. # This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. # The CreativeML OpenRAIL License specifies: # 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content # 2. rinna Co., Ltd. claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license # 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) # Please read the full license here: https://huggingface.co/spaces/CompVis/stable-diffusion-license # By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well. # extra_gated_fields: # I have read the License and agree with its terms: checkbox --- # SFCOCO Stable Diffusion Model Card SFCOCO Stable Diffusion is a Japanese-specific latent text-to-image diffusion model capable of generating photo-realistic images given any text input. This model was fine-tuned by using a powerful Japanese-specific latent text-to-image diffusion model, [Japanese Stable Diffusion](https://huggingface.co/rinna/japanese-stable-diffusion). We use the [Stable Diffusion text-to-image fine-tuning script](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) of [🤗 Diffusers](https://github.com/huggingface/diffusers) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nu-dialogue/clip-prefix-caption-jp/blob/master/notebooks/sfc2022_stable_diffusion.ipynb) ## Model Details - **Developed by:** Atsumoto Ohashi - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** Japanese - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model (LDM)](https://arxiv.org/abs/2112.10752) that used [Japanese Stable Diffusion](https://huggingface.co/rinna/japanese-stable-diffusion) as a pre-trained model. - **Resources for more information:** [Japanese Stable Diffusion GitHub Repository](https://github.com/rinnakk/japanese-stable-diffusion) ## Examples Firstly, install our package as follows. This package is modified [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Japanese Stable Diffusion. ```bash pip install git+https://github.com/rinnakk/japanese-stable-diffusion ``` Run this command to log in with your HF Hub token if you haven't before: ```bash huggingface-cli login ``` Running the pipeline with the k_lms scheduler: ```python import torch from torch import autocast from diffusers import LMSDiscreteScheduler from japanese_stable_diffusion import JapaneseStableDiffusionPipeline model_id = "nu-dialogue/sfc2022-stable-diffusion" device = "cuda" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = JapaneseStableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "福澤諭吉像の写真" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("output.png") ``` _Note: `JapaneseStableDiffusionPipeline` is almost same as diffusers' `StableDiffusionPipeline` but added some lines to initialize our models properly._ ## Training **Training Data** We used the SFCOCO2021 and SFCOCO2022 dataset for training the model. You can see these datasets in [this repository](https://github.com/nu-dialogue/clip-prefix-caption-jp). **Training Procedure** SFCOCO Stable Diffusion has the same architecture as Japanese Stable Diffusion and was trained by using Japanese Stable Diffusion. We use the [Stable Diffusion text-to-image fine-tuning script](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) of [🤗 Diffusers](https://github.com/huggingface/diffusers) ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` ```bibtex @misc{japanese_stable_diffusion, author = {Shing, Makoto and Sawada, Kei}, title = {Japanese Stable Diffusion}, howpublished = {\url{https://github.com/rinnakk/japanese-stable-diffusion}}, month = {September}, year = {2022}, } ``` *This model card was written by: Atsumoto Ohashi and is based on the [Japanese Stable Diffusion Model Card](https://github.com/rinnakk/japanese-stable-diffusion).*
Fiacre/ComicsBlend
Fiacre
2022-12-18T06:05:57Z
0
9
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-17T04:54:25Z
--- license: creativeml-openrail-m --- # How to use: Download "ComicsBlend.ckpt" and add it to your model folder. Important: add all these keywords to your prompt: ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style # Individual components of the blend: This is an equal part blend of four models at 25% Complex-Lineart, 25% Inkpunk-Diffusion, 25% Comic-Diffusion, 25% Ghibli Diffusion. # Link to the constituent models: https://huggingface.co/Conflictx/Complex-Lineart https://huggingface.co/Envvi/Inkpunk-Diffusion https://huggingface.co/ogkalu/Comic-Diffusion https://huggingface.co/nitrosocke/Ghibli-Diffusion # Prompts Important: Use all the prompt from the constituant models at the same time: ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style # Sample images: ![00492-2500942257-A dog ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671269400032-6311c052fdb55de45d20425a.png) ![00592-3535551986-A distant planet ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270169178-6311c052fdb55de45d20425a.png) ![00376-2900561219-An old person, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265320-6311c052fdb55de45d20425a.png) ![00451-2448132173-An spaceship, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265388-6311c052fdb55de45d20425a.png) ![00464-1849318233-An cyborg, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258263939-6311c052fdb55de45d20425a.png) ![00581-2436039058-A genetically engineered utopia ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270235971-6311c052fdb55de45d20425a.png) ![00438-3172330069-An old man, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265146-6311c052fdb55de45d20425a.png) ![00521-3067018784-A sandcastle ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671269400176-6311c052fdb55de45d20425a.png) ![00465-1849318234-An cyborg, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258263943-6311c052fdb55de45d20425a.png) ![00384-3543717868-A beautiful landscape, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265318-6311c052fdb55de45d20425a.png) ![00437-3059624123-An old man, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265101-6311c052fdb55de45d20425a.png) ![00557-592434343-A futuristic city ,ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671270271492-6311c052fdb55de45d20425a.png) ![00419-1157026360-A nice interior, ComplexLA style, nvinkpunk, marioalberti artstyle, ghibli style.png](https://s3.amazonaws.com/moonup/production/uploads/1671258265278-6311c052fdb55de45d20425a.png) # License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license [here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Uberduck/iSTFTNet
Uberduck
2022-12-18T04:36:18Z
0
0
null
[ "region:us" ]
null
2022-12-05T07:05:25Z
# iSTFTNet Pre-Trained Models https://github.com/rishikksh20/iSTFTNet-pytorch Information about files: As of right now, the files seen in this repository were trained on 22khz sample rates only. Format: - g_ = generator - do_ = discriminator - _xxxxxx = step # - music_ = models with music indicate it has been trained on specifically music data. as of right now, the music data is from Free Music Archive (FMA)
vjkrish/lunarLander
vjkrish
2022-12-18T04:24:06Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T04:11:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -606.02 +/- 190.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Phoeo/iwakura_lain_hypernetwork
Phoeo
2022-12-18T03:57:07Z
0
0
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2022-12-05T20:07:43Z
--- license: cc-by-sa-4.0 --- Hypernetwork trained on AnythingV3. Keyword: `iwakuralain` [![output.jpg](https://i.postimg.cc/ydg1YSQq/output.jpg)](https://postimg.cc/VrwQK5P4)
ai-project/wav2vec2-large-xls-r-300m-vi-25p
ai-project
2022-12-18T03:32:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T05:29:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vi-colab-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vi-colab-all This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.4537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.448 | 2.4 | 400 | inf | 1.0 | | 2.8589 | 4.79 | 800 | inf | 0.7777 | | 1.4919 | 7.19 | 1200 | inf | 0.5968 | | 1.1255 | 9.58 | 1600 | inf | 0.5540 | | 0.9354 | 11.98 | 2000 | inf | 0.4970 | | 0.7816 | 14.37 | 2400 | inf | 0.4799 | | 0.6822 | 16.77 | 2800 | inf | 0.4785 | | 0.5768 | 19.16 | 3200 | inf | 0.4704 | | 0.5031 | 21.56 | 3600 | inf | 0.4609 | | 0.4589 | 23.95 | 4000 | inf | 0.4585 | | 0.4136 | 26.35 | 4400 | inf | 0.4592 | | 0.3829 | 28.74 | 4800 | inf | 0.4537 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
AinTziLLo/ppo-LunarLander-v2
AinTziLLo
2022-12-18T02:27:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T01:11:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.39 +/- 21.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Scrya/whisper-tiny-id
Scrya
2022-12-18T02:27:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T11:00:38Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Tiny ID - FLEURS-CV results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: id_id split: test metrics: - type: wer value: 30.8 name: WER - type: cer value: 11.29 name: CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: id split: test metrics: - type: wer value: 32.49 name: WER - type: cer value: 12.25 name: CER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny ID - FLEURS-CV This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5129 - Wer: 31.1298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.617 | 1.43 | 500 | 0.5956 | 40.1521 | | 0.4062 | 2.86 | 1000 | 0.4991 | 33.2066 | | 0.2467 | 4.29 | 1500 | 0.4755 | 31.6802 | | 0.1904 | 5.71 | 2000 | 0.4681 | 30.5907 | | 0.118 | 7.14 | 2500 | 0.4776 | 30.9368 | | 0.0941 | 8.57 | 3000 | 0.4831 | 30.7297 | | 0.0771 | 10.0 | 3500 | 0.4912 | 31.1014 | | 0.0536 | 11.43 | 4000 | 0.5043 | 31.2319 | | 0.0502 | 12.86 | 4500 | 0.5113 | 31.2404 | | 0.0418 | 14.29 | 5000 | 0.5129 | 31.1298 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
greedypiggy/ppo-Huggy
greedypiggy
2022-12-18T01:59:16Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-18T01:59:08Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: greedypiggy/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
geninhu/whisper-medium-gl
geninhu
2022-12-18T01:20:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "gl", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T14:24:54Z
--- language: - gl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 gl type: mozilla-foundation/common_voice_11_0 config: gl split: test args: gl metrics: - name: Wer type: wer value: 8.41678391128031 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Galician This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 gl dataset. It achieves the following results on the evaluation set: - Loss: 0.2864 - Wer: 8.4168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0074 | 6.01 | 1000 | 0.2564 | 8.8927 | | 0.0006 | 12.03 | 2000 | 0.2864 | 8.4168 | | 0.0003 | 19.01 | 3000 | 0.3043 | 8.5078 | | 0.0002 | 25.02 | 4000 | 0.3145 | 8.4913 | | 0.0002 | 32.01 | 5000 | 0.3189 | 8.4706 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jlondonobo/whisper-large-v2-pt-v3
jlondonobo
2022-12-18T01:19:32Z
14
5
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T18:57:25Z
--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pt type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 4.8385198634858195 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Portuguese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.1503 - Wer: 4.8385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1526 | 0.33 | 500 | 0.1588 | 4.9074 | | 0.1046 | 1.3 | 1000 | 0.1510 | 4.8806 | | 0.079 | 2.28 | 1500 | 0.1503 | 4.8385 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
tashatsar/ppo-LunarLander-v2
tashatsar
2022-12-18T01:17:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T00:39:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.94 +/- 13.67 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
toastedshibe/ppo-LunarLander-v2
toastedshibe
2022-12-18T00:30:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-18T00:20:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.60 +/- 15.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kris666/distilbert-base-uncased-finetuned-cola
kris666
2022-12-18T00:28:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-17T22:40:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5600275777662214 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Matthews Correlation: 0.5600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5212 | 1.0 | 535 | 0.5335 | 0.4275 | | 0.3458 | 2.0 | 1070 | 0.5003 | 0.4923 | | 0.2343 | 3.0 | 1605 | 0.5336 | 0.5600 | | 0.174 | 4.0 | 2140 | 0.7611 | 0.5332 | | 0.1205 | 5.0 | 2675 | 0.8059 | 0.5547 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
pittawat/autotrain-twitter-covid-19-spam-detection-2512177276
pittawat
2022-12-18T00:20:04Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:pittawat/autotrain-data-twitter-covid-19-spam-detection", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-12-18T00:19:06Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - pittawat/autotrain-data-twitter-covid-19-spam-detection co2_eq_emissions: emissions: 1.0218403202204225 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2512177276 - CO2 Emissions (in grams): 1.0218 ## Validation Metrics - Loss: 0.275 - Accuracy: 0.906 - Precision: 0.930 - Recall: 0.960 - AUC: 0.882 - F1: 0.945 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pittawat/autotrain-twitter-covid-19-spam-detection-2512177276 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pittawat/autotrain-twitter-covid-19-spam-detection-2512177276", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pittawat/autotrain-twitter-covid-19-spam-detection-2512177276", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
PawanUP85/Arcpro
PawanUP85
2022-12-17T23:40:10Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-12-17T23:39:15Z
--- license: bsd-3-clause-clear --- git lfs install git clone https://huggingface.co/PawanUP85/Arcpro
Balthamos/chantum-test-q
Balthamos
2022-12-17T23:36:38Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-17T03:35:15Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: chantum1 --- ### Chantum Test q Dreambooth model trained by Balthamos with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! chantum1 (use that on your prompt) ![chantum1 0](https://huggingface.co/Balthamos/chantum-test-q/resolve/main/concept_images/chantum1_%281%29.jpg)
camenduru/xformers-hf-a10g
camenduru
2022-12-17T23:29:19Z
0
0
null
[ "region:us" ]
null
2022-12-05T11:22:57Z
--- title: xformers-hf-a10g emoji: 🚀 colorFrom: indigo colorTo: indigo pinned: false --- https://github.com/camenduru/stable-diffusion-webui-colab/releases
kejian/fanatic-awr
kejian
2022-12-17T23:13:42Z
2
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-17T08:29:32Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: fanatic-awr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fanatic-awr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 6294 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 128, 'force_call_on': [6294], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 128, 'force_call_on': [6294], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'cf05a2b0558c03b08c78f07662c22989785b9520', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/mighty-mle'}, 'objective': {'alpha': 0.05, 'beta': 1, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 256, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'fanatic-awr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 6294, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/dypfced3
DrishtiSharma/whisper-small-hindi-3k-steps
DrishtiSharma
2022-12-17T22:59:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T20:58:54Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hindi - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 16.67658639318744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hindi - Drishti Sharma This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3013 - Wer: 16.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0188 | 3.67 | 3000 | 0.3013 | 16.6766 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Musha-the-Yusha/MountainCar-v0
Musha-the-Yusha
2022-12-17T22:40:35Z
3
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T22:00:34Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 metrics: - type: mean_reward value: -132.80 +/- 22.54 name: mean_reward verified: false --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
spayot/hf-drl-unit1bonus-ppo-Huggy
spayot
2022-12-17T22:40:30Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-17T22:40:18Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: spayot/hf-drl-unit1bonus-ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kejian/fanatic-rwr
kejian
2022-12-17T22:36:04Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-17T07:45:53Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: fanatic-rwr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fanatic-rwr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 256, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 256, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'cf05a2b0558c03b08c78f07662c22989785b9520', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/mighty-mle'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'fanatic-rwr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/j6mrfl54
jbdaniel/bert-large-uncased-finetuned-bert-large-uncase-p1
jbdaniel
2022-12-17T22:21:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-17T18:33:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-bert-large-uncase-p1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-bert-large-uncase-p1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0816 | 1.0 | 11392 | 0.0993 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
AsmaAsma/my-awesome-setfit-model
AsmaAsma
2022-12-17T21:31:02Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-15T18:09:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 28, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Schoolar/ppo-LunarLander-long_training_5kk
Schoolar
2022-12-17T21:22:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T21:22:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.06 +/- 12.12 name: mean_reward verified: false --- # **PP0** Agent playing **LunarLander-v2** This is a trained model of a **PP0** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anuragshas/whisper-large-v2-ta
anuragshas
2022-12-17T21:19:11Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ta", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-17T15:00:39Z
--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Tamil results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ta type: mozilla-foundation/common_voice_11_0 config: ta split: test args: ta metrics: - name: Wer type: wer value: 8.45381557902738 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Tamil This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 ta dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - Wer: 8.4538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0723 | 1.27 | 1000 | 0.1727 | 8.4538 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
MohamedSaad/CovidAutoTrainTest
MohamedSaad
2022-12-17T21:01:18Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "ar", "dataset:MohamedSaad/autotrain-data-covid", "doi:10.57967/hf/0219", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-12-17T20:59:22Z
--- tags: - autotrain - text-classification language: - ar widget: - text: "I love AutoTrain 🤗" datasets: - MohamedSaad/autotrain-data-covid co2_eq_emissions: emissions: 1.7646991170797304 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2509577239 - CO2 Emissions (in grams): 1.7647 ## Validation Metrics - Loss: 1.861 - Accuracy: 0.319 - Macro F1: 0.231 - Micro F1: 0.319 - Weighted F1: 0.337 - Macro Precision: 0.270 - Micro Precision: 0.319 - Weighted Precision: 0.613 - Macro Recall: 0.346 - Micro Recall: 0.319 - Weighted Recall: 0.319 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/MohamedSaad/autotrain-covid-2509577239 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("MohamedSaad/autotrain-covid-2509577239", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("MohamedSaad/autotrain-covid-2509577239", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
kanixwang/eth-setfit-payment-model
kanixwang
2022-12-17T20:22:34Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-17T06:19:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 26915 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 26915, "warmup_steps": 2692, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/painting-made-by-bruegel-v4
sd-concepts-library
2022-12-17T20:02:41Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-12-17T18:01:28Z
--- license: mit --- ### painting made by bruegel V4 on Stable Diffusion This version includes entire paintings, as well as close ups. This is the `<bruegel-style-artwork>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Using stabilityai/stable-diffusion-2-base Example output: ![<bruegel> 500](https://i.imgur.com/C8jcA0v.jpg) Here is the new concept you will be able to use as a `style`: ![<bruegel-style-artwork> 0](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/58.jpeg) ![<bruegel-style-artwork> 1](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/91.jpeg) ![<bruegel-style-artwork> 2](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/87.jpeg) ![<bruegel-style-artwork> 3](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/121.jpeg) ![<bruegel-style-artwork> 4](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/146.jpeg) ![<bruegel-style-artwork> 5](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/112.jpeg) ![<bruegel-style-artwork> 6](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/186.jpeg) ![<bruegel-style-artwork> 7](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/139.jpeg) ![<bruegel-style-artwork> 8](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/120.jpeg) ![<bruegel-style-artwork> 9](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/44.jpeg) ![<bruegel-style-artwork> 10](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/69.jpeg) ![<bruegel-style-artwork> 11](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/148.jpeg) ![<bruegel-style-artwork> 12](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/98.jpeg) ![<bruegel-style-artwork> 13](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/244.jpeg) ![<bruegel-style-artwork> 14](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/107.jpeg) ![<bruegel-style-artwork> 15](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/197.jpeg) ![<bruegel-style-artwork> 16](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/132.jpeg) ![<bruegel-style-artwork> 17](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/71.jpeg) ![<bruegel-style-artwork> 18](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/8.jpeg) ![<bruegel-style-artwork> 19](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/125.jpeg) ![<bruegel-style-artwork> 20](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/154.jpeg) ![<bruegel-style-artwork> 21](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/65.jpeg) ![<bruegel-style-artwork> 22](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/74.jpeg) ![<bruegel-style-artwork> 23](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/209.jpeg) ![<bruegel-style-artwork> 24](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/226.jpeg) ![<bruegel-style-artwork> 25](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/129.jpeg) ![<bruegel-style-artwork> 26](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/249.jpeg) ![<bruegel-style-artwork> 27](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/82.jpeg) ![<bruegel-style-artwork> 28](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/103.jpeg) ![<bruegel-style-artwork> 29](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/48.jpeg) ![<bruegel-style-artwork> 30](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/183.jpeg) ![<bruegel-style-artwork> 31](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/62.jpeg) ![<bruegel-style-artwork> 32](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/99.jpeg) ![<bruegel-style-artwork> 33](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/224.jpeg) ![<bruegel-style-artwork> 34](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/145.jpeg) ![<bruegel-style-artwork> 35](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/12.jpeg) ![<bruegel-style-artwork> 36](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/116.jpeg) ![<bruegel-style-artwork> 37](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/27.jpeg) ![<bruegel-style-artwork> 38](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/153.jpeg) ![<bruegel-style-artwork> 39](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/26.jpeg) ![<bruegel-style-artwork> 40](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/152.jpeg) ![<bruegel-style-artwork> 41](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/63.jpeg) ![<bruegel-style-artwork> 42](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/47.jpeg) ![<bruegel-style-artwork> 43](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/40.jpeg) ![<bruegel-style-artwork> 44](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/123.jpeg) ![<bruegel-style-artwork> 45](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/96.jpeg) ![<bruegel-style-artwork> 46](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/237.jpeg) ![<bruegel-style-artwork> 47](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/54.jpeg) ![<bruegel-style-artwork> 48](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/105.jpeg) ![<bruegel-style-artwork> 49](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/134.jpeg) ![<bruegel-style-artwork> 50](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/89.jpeg) ![<bruegel-style-artwork> 51](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/174.jpeg) ![<bruegel-style-artwork> 52](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/4.jpeg) ![<bruegel-style-artwork> 53](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/228.jpeg) ![<bruegel-style-artwork> 54](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/1.jpeg) ![<bruegel-style-artwork> 55](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/230.jpeg) ![<bruegel-style-artwork> 56](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/75.jpeg) ![<bruegel-style-artwork> 57](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/73.jpeg) ![<bruegel-style-artwork> 58](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/221.jpeg) ![<bruegel-style-artwork> 59](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/101.jpeg) ![<bruegel-style-artwork> 60](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/140.jpeg) ![<bruegel-style-artwork> 61](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/212.jpeg) ![<bruegel-style-artwork> 62](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/220.jpeg) ![<bruegel-style-artwork> 63](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/43.jpeg) ![<bruegel-style-artwork> 64](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/110.jpeg) ![<bruegel-style-artwork> 65](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/199.jpeg) ![<bruegel-style-artwork> 66](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/19.jpeg) ![<bruegel-style-artwork> 67](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/104.jpeg) ![<bruegel-style-artwork> 68](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/187.jpeg) ![<bruegel-style-artwork> 69](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/168.jpeg) ![<bruegel-style-artwork> 70](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/164.jpeg) ![<bruegel-style-artwork> 71](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/185.jpeg) ![<bruegel-style-artwork> 72](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/159.jpeg) ![<bruegel-style-artwork> 73](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/155.jpeg) ![<bruegel-style-artwork> 74](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/2.jpeg) ![<bruegel-style-artwork> 75](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/0.jpeg) ![<bruegel-style-artwork> 76](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/217.jpeg) ![<bruegel-style-artwork> 77](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/128.jpeg) ![<bruegel-style-artwork> 78](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/205.jpeg) ![<bruegel-style-artwork> 79](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/248.jpeg) ![<bruegel-style-artwork> 80](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/250.jpeg) ![<bruegel-style-artwork> 81](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/117.jpeg) ![<bruegel-style-artwork> 82](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/36.jpeg) ![<bruegel-style-artwork> 83](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/227.jpeg) ![<bruegel-style-artwork> 84](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/137.jpeg) ![<bruegel-style-artwork> 85](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/72.jpeg) ![<bruegel-style-artwork> 86](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/18.jpeg) ![<bruegel-style-artwork> 87](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/222.jpeg) ![<bruegel-style-artwork> 88](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/86.jpeg) ![<bruegel-style-artwork> 89](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/61.jpeg) ![<bruegel-style-artwork> 90](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/126.jpeg) ![<bruegel-style-artwork> 91](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/171.jpeg) ![<bruegel-style-artwork> 92](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/232.jpeg) ![<bruegel-style-artwork> 93](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/124.jpeg) ![<bruegel-style-artwork> 94](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/191.jpeg) ![<bruegel-style-artwork> 95](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/102.jpeg) ![<bruegel-style-artwork> 96](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/24.jpeg) ![<bruegel-style-artwork> 97](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/113.jpeg) ![<bruegel-style-artwork> 98](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/192.jpeg) ![<bruegel-style-artwork> 99](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/131.jpeg) ![<bruegel-style-artwork> 100](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/182.jpeg) ![<bruegel-style-artwork> 101](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/198.jpeg) ![<bruegel-style-artwork> 102](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/207.jpeg) ![<bruegel-style-artwork> 103](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/59.jpeg) ![<bruegel-style-artwork> 104](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/204.jpeg) ![<bruegel-style-artwork> 105](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/97.jpeg) ![<bruegel-style-artwork> 106](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/194.jpeg) ![<bruegel-style-artwork> 107](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/211.jpeg) ![<bruegel-style-artwork> 108](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/247.jpeg) ![<bruegel-style-artwork> 109](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/229.jpeg) ![<bruegel-style-artwork> 110](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/6.jpeg) ![<bruegel-style-artwork> 111](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/45.jpeg) ![<bruegel-style-artwork> 112](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/25.jpeg) ![<bruegel-style-artwork> 113](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/147.jpeg) ![<bruegel-style-artwork> 114](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/11.jpeg) ![<bruegel-style-artwork> 115](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/119.jpeg) ![<bruegel-style-artwork> 116](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/34.jpeg) ![<bruegel-style-artwork> 117](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/33.jpeg) ![<bruegel-style-artwork> 118](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/9.jpeg) ![<bruegel-style-artwork> 119](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/202.jpeg) ![<bruegel-style-artwork> 120](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/83.jpeg) ![<bruegel-style-artwork> 121](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/165.jpeg) ![<bruegel-style-artwork> 122](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/7.jpeg) ![<bruegel-style-artwork> 123](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/68.jpeg) ![<bruegel-style-artwork> 124](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/46.jpeg) ![<bruegel-style-artwork> 125](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/114.jpeg) ![<bruegel-style-artwork> 126](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/14.jpeg) ![<bruegel-style-artwork> 127](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/127.jpeg) ![<bruegel-style-artwork> 128](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/136.jpeg) ![<bruegel-style-artwork> 129](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/149.jpeg) ![<bruegel-style-artwork> 130](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/176.jpeg) ![<bruegel-style-artwork> 131](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/184.jpeg) ![<bruegel-style-artwork> 132](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/77.jpeg) ![<bruegel-style-artwork> 133](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/201.jpeg) ![<bruegel-style-artwork> 134](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/218.jpeg) ![<bruegel-style-artwork> 135](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/231.jpeg) ![<bruegel-style-artwork> 136](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/142.jpeg) ![<bruegel-style-artwork> 137](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/188.jpeg) ![<bruegel-style-artwork> 138](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/80.jpeg) ![<bruegel-style-artwork> 139](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/108.jpeg) ![<bruegel-style-artwork> 140](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/150.jpeg) ![<bruegel-style-artwork> 141](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/175.jpeg) ![<bruegel-style-artwork> 142](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/162.jpeg) ![<bruegel-style-artwork> 143](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/234.jpeg) ![<bruegel-style-artwork> 144](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/118.jpeg) ![<bruegel-style-artwork> 145](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/163.jpeg) ![<bruegel-style-artwork> 146](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/79.jpeg) ![<bruegel-style-artwork> 147](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/70.jpeg) ![<bruegel-style-artwork> 148](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/20.jpeg) ![<bruegel-style-artwork> 149](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/22.jpeg) ![<bruegel-style-artwork> 150](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/10.jpeg) ![<bruegel-style-artwork> 151](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/84.jpeg) ![<bruegel-style-artwork> 152](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/42.jpeg) ![<bruegel-style-artwork> 153](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/66.jpeg) ![<bruegel-style-artwork> 154](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/240.jpeg) ![<bruegel-style-artwork> 155](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/180.jpeg) ![<bruegel-style-artwork> 156](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/233.jpeg) ![<bruegel-style-artwork> 157](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/93.jpeg) ![<bruegel-style-artwork> 158](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/167.jpeg) ![<bruegel-style-artwork> 159](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/95.jpeg) ![<bruegel-style-artwork> 160](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/92.jpeg) ![<bruegel-style-artwork> 161](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/242.jpeg) ![<bruegel-style-artwork> 162](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/239.jpeg) ![<bruegel-style-artwork> 163](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/213.jpeg) ![<bruegel-style-artwork> 164](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/52.jpeg) ![<bruegel-style-artwork> 165](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/210.jpeg) ![<bruegel-style-artwork> 166](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/78.jpeg) ![<bruegel-style-artwork> 167](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/193.jpeg) ![<bruegel-style-artwork> 168](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/166.jpeg) ![<bruegel-style-artwork> 169](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/236.jpeg) ![<bruegel-style-artwork> 170](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/38.jpeg) ![<bruegel-style-artwork> 171](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/35.jpeg) ![<bruegel-style-artwork> 172](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/173.jpeg) ![<bruegel-style-artwork> 173](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/195.jpeg) ![<bruegel-style-artwork> 174](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/156.jpeg) ![<bruegel-style-artwork> 175](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/115.jpeg) ![<bruegel-style-artwork> 176](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/178.jpeg) ![<bruegel-style-artwork> 177](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/49.jpeg) ![<bruegel-style-artwork> 178](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/158.jpeg) ![<bruegel-style-artwork> 179](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/215.jpeg) ![<bruegel-style-artwork> 180](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/28.jpeg) ![<bruegel-style-artwork> 181](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/235.jpeg) ![<bruegel-style-artwork> 182](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/190.jpeg) ![<bruegel-style-artwork> 183](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/177.jpeg) ![<bruegel-style-artwork> 184](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/32.jpeg) ![<bruegel-style-artwork> 185](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/94.jpeg) ![<bruegel-style-artwork> 186](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/223.jpeg) ![<bruegel-style-artwork> 187](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/122.jpeg) ![<bruegel-style-artwork> 188](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/203.jpeg) ![<bruegel-style-artwork> 189](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/172.jpeg) ![<bruegel-style-artwork> 190](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/196.jpeg) ![<bruegel-style-artwork> 191](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/111.jpeg) ![<bruegel-style-artwork> 192](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/64.jpeg) ![<bruegel-style-artwork> 193](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/241.jpeg) ![<bruegel-style-artwork> 194](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/135.jpeg) ![<bruegel-style-artwork> 195](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/3.jpeg) ![<bruegel-style-artwork> 196](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/88.jpeg) ![<bruegel-style-artwork> 197](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/246.jpeg) ![<bruegel-style-artwork> 198](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/13.jpeg) ![<bruegel-style-artwork> 199](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/138.jpeg) ![<bruegel-style-artwork> 200](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/161.jpeg) ![<bruegel-style-artwork> 201](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/15.jpeg) ![<bruegel-style-artwork> 202](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/5.jpeg) ![<bruegel-style-artwork> 203](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/85.jpeg) ![<bruegel-style-artwork> 204](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/81.jpeg) ![<bruegel-style-artwork> 205](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/16.jpeg) ![<bruegel-style-artwork> 206](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/133.jpeg) ![<bruegel-style-artwork> 207](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/206.jpeg) ![<bruegel-style-artwork> 208](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/181.jpeg) ![<bruegel-style-artwork> 209](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/169.jpeg) ![<bruegel-style-artwork> 210](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/189.jpeg) ![<bruegel-style-artwork> 211](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/100.jpeg) ![<bruegel-style-artwork> 212](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/109.jpeg) ![<bruegel-style-artwork> 213](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/200.jpeg) ![<bruegel-style-artwork> 214](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/55.jpeg) ![<bruegel-style-artwork> 215](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/37.jpeg) ![<bruegel-style-artwork> 216](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/130.jpeg) ![<bruegel-style-artwork> 217](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/60.jpeg) ![<bruegel-style-artwork> 218](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/21.jpeg) ![<bruegel-style-artwork> 219](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/219.jpeg) ![<bruegel-style-artwork> 220](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/53.jpeg) ![<bruegel-style-artwork> 221](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/170.jpeg) ![<bruegel-style-artwork> 222](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/31.jpeg) ![<bruegel-style-artwork> 223](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/141.jpeg) ![<bruegel-style-artwork> 224](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/17.jpeg) ![<bruegel-style-artwork> 225](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/23.jpeg) ![<bruegel-style-artwork> 226](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/51.jpeg) ![<bruegel-style-artwork> 227](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/30.jpeg) ![<bruegel-style-artwork> 228](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/243.jpeg) ![<bruegel-style-artwork> 229](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/50.jpeg) ![<bruegel-style-artwork> 230](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/76.jpeg) ![<bruegel-style-artwork> 231](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/179.jpeg) ![<bruegel-style-artwork> 232](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/208.jpeg) ![<bruegel-style-artwork> 233](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/39.jpeg) ![<bruegel-style-artwork> 234](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/29.jpeg) ![<bruegel-style-artwork> 235](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/225.jpeg) ![<bruegel-style-artwork> 236](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/144.jpeg) ![<bruegel-style-artwork> 237](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/238.jpeg) ![<bruegel-style-artwork> 238](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/106.jpeg) ![<bruegel-style-artwork> 239](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/151.jpeg) ![<bruegel-style-artwork> 240](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/41.jpeg) ![<bruegel-style-artwork> 241](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/157.jpeg) ![<bruegel-style-artwork> 242](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/216.jpeg) ![<bruegel-style-artwork> 243](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/56.jpeg) ![<bruegel-style-artwork> 244](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/245.jpeg) ![<bruegel-style-artwork> 245](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/57.jpeg) ![<bruegel-style-artwork> 246](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/160.jpeg) ![<bruegel-style-artwork> 247](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/214.jpeg) ![<bruegel-style-artwork> 248](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/143.jpeg) ![<bruegel-style-artwork> 249](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/67.jpeg) ![<bruegel-style-artwork> 250](https://huggingface.co/sd-concepts-library/painting-made-by-bruegel-v4/resolve/main/concept_images/90.jpeg)
sinsforeal/akazaakariv2
sinsforeal
2022-12-17T20:02:16Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-12-17T19:50:21Z
--- license: openrail --- Akaza Akari model trained on 157 768res images. I use this prompt to get her school uniform and what not masterpiece, best quality, 1girl, solo, long_sleeves, purple eyes, akazaakari, red hair, short hair, ahoge, double bun, nanamori school uniform, short sleeves, (white shirt:1.1) , (black sailor collar:1.2), pleated skirt, namori, yuru yuri, standing, Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name Steps: 18, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1872758733, Size: 720x1280, Model hash: 647c01d6, Batch size: 4, Batch pos: 0, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0 ![01696-1872758733-masterpiece, best quality, 1girl, solo, long_sleeves, purple eyes, akazaakari, red hair, short hair, ahoge, double bun, nanamori.png](https://s3.amazonaws.com/moonup/production/uploads/1671307159503-63602a9f3605bd411c18b4e0.png)
Schoolar/ppo-LunarLander-long_training_2kk
Schoolar
2022-12-17T19:55:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T19:54:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.04 +/- 13.72 name: mean_reward verified: false --- # **PP0** Agent playing **LunarLander-v2** This is a trained model of a **PP0** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
malmarz/whisper_small_s5k_b64_nofreeze_mgb2cv11
malmarz
2022-12-17T19:54:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T20:22:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4429 - Wer: 52.7568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3629 | 1.03 | 1000 | 0.4917 | 53.1291 | | 0.289 | 2.06 | 2000 | 0.4747 | 61.3855 | | 0.2996 | 3.08 | 3000 | 0.4542 | 55.4692 | | 0.2331 | 4.11 | 4000 | 0.4353 | 51.4917 | | 0.1566 | 5.14 | 5000 | 0.4429 | 52.7568 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
dkuznetsov/ppo-LunarLander-v2
dkuznetsov
2022-12-17T19:40:09Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T15:34:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.41 +/- 19.02 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sambosis/distilbert-base-uncased-finetuned-squad
Sambosis
2022-12-17T19:01:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-11T18:37:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.1904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6224 | 1.0 | 692 | 1.1812 | | 1.0216 | 2.0 | 1384 | 1.2495 | | 0.5638 | 3.0 | 2076 | 1.3098 | | 0.3679 | 4.0 | 2768 | 1.6784 | | 0.2703 | 5.0 | 3460 | 1.8842 | | 0.1057 | 6.0 | 4152 | 2.1904 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
dor88/Taxi-v3
dor88
2022-12-17T18:53:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T18:53:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.68 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dor88/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"], is_slippery=False) ```
sd-concepts-library/ahx-model-3
sd-concepts-library
2022-12-17T18:48:30Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-12-17T18:48:26Z
--- license: mit --- ### ahx-model-3 on Stable Diffusion This is the `<ahx-model-3>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ahx-model-3> 0](https://huggingface.co/sd-concepts-library/ahx-model-3/resolve/main/concept_images/4.jpeg) ![<ahx-model-3> 1](https://huggingface.co/sd-concepts-library/ahx-model-3/resolve/main/concept_images/1.jpeg) ![<ahx-model-3> 2](https://huggingface.co/sd-concepts-library/ahx-model-3/resolve/main/concept_images/2.jpeg) ![<ahx-model-3> 3](https://huggingface.co/sd-concepts-library/ahx-model-3/resolve/main/concept_images/0.jpeg) ![<ahx-model-3> 4](https://huggingface.co/sd-concepts-library/ahx-model-3/resolve/main/concept_images/3.jpeg)
KMW/ppo-LunarLander-v2
KMW
2022-12-17T18:45:39Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T18:45:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.49 +/- 20.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
msoilan-usal/ppo-Huggy
msoilan-usal
2022-12-17T18:42:36Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-17T18:42:22Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: msoilan-usal/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
polejowska/vit-vit-base-patch16-224-in21k-eurosat
polejowska
2022-12-17T18:36:59Z
21
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-17T17:32:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-vit-base-patch16-224-in21k-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.988641975308642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-vit-base-patch16-224-in21k-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0957 - Accuracy: 0.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3303 | 0.99 | 147 | 0.2950 | 0.9790 | | 0.1632 | 1.99 | 294 | 0.1593 | 0.9842 | | 0.1097 | 2.99 | 441 | 0.1223 | 0.9859 | | 0.0868 | 3.99 | 588 | 0.1053 | 0.9877 | | 0.0651 | 4.99 | 735 | 0.0957 | 0.9886 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Phillippe/Musical_Isotope_Hypernetworks
Phillippe
2022-12-17T18:28:54Z
0
2
null
[ "license:openrail", "region:us" ]
null
2022-12-17T18:12:31Z
--- license: openrail --- Hypernetworks of the Musical Isotope girls: Kafu, Sekai, Rime, Coko, and Haru. ![02931-2547899982-masterpiece, best quality, anime girl, Kafu, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, diamo.png](https://s3.amazonaws.com/moonup/production/uploads/1671301047195-6303c4ceeedc089484c4d880.png) ![02939-3352486538-masterpiece, best quality, anime girl, Sekai, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, star.png](https://s3.amazonaws.com/moonup/production/uploads/1671301437935-6303c4ceeedc089484c4d880.png) ![03003-2425498032-masterpiece, best quality, anime girl, Rime, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, star s.png](https://s3.amazonaws.com/moonup/production/uploads/1671301517557-6303c4ceeedc089484c4d880.png) ![02992-670380635-masterpiece, best quality, anime girl, Coko, animal ears, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue.png](https://s3.amazonaws.com/moonup/production/uploads/1671301535727-6303c4ceeedc089484c4d880.png) ![02996-2836804016-masterpiece, best quality, anime girl, Haru, looking at viewer, modeling, {{{{{{masterpiece}}}}}}, white hair, blue eyes, headph.png](https://s3.amazonaws.com/moonup/production/uploads/1671301554001-6303c4ceeedc089484c4d880.png)
Aileenvl/ppo-LunarLander-v2
Aileenvl
2022-12-17T18:17:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-17T18:16:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.26 +/- 14.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```