modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 12:27:52
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 528
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 12:27:19
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
edures/ppo-LunarLander-v2
|
edures
| 2023-08-08T03:22:52Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-07T03:06:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 278.00 +/- 12.41
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
raygx/xlmRoBERTa-NepSA
|
raygx
| 2023-08-08T03:01:25Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"xlm-roberta",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-06T15:10:46Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: xlmRoBERTa-NepSA
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# xlmRoBERTa-NepSA
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.03}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.30.1
- TensorFlow 2.12.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
mmenendezg/distilbert-base-uncased-finetuned-emotion
|
mmenendezg
| 2023-08-08T03:01:15Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-04T17:47:50Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9295
- name: F1
type: f1
value: 0.9291434862021454
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2047
- Accuracy: 0.9295
- F1: 0.9291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7973 | 1.0 | 250 | 0.3063 | 0.915 | 0.9147 |
| 0.2408 | 2.0 | 500 | 0.2047 | 0.9295 | 0.9291 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.3
- Tokenizers 0.13.3
|
tkathuria/finetuning-emotion-model-16000-samples
|
tkathuria
| 2023-08-08T02:43:12Z | 108 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-08T02:34:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
model-index:
- name: finetuning-emotion-model-16000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-emotion-model-16000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
kyleeasterly/openllama-7b_purple-aerospace-v2-200-88
|
kyleeasterly
| 2023-08-08T02:24:50Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-08T02:24:09Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
AtilliO/Chopper03_00
|
AtilliO
| 2023-08-08T02:06:36Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Heli",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Heli",
"region:us"
] |
reinforcement-learning
| 2023-08-08T02:04:10Z |
---
library_name: ml-agents
tags:
- Heli
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Heli
---
# **ppo** Agent playing **Heli**
This is a trained model of a **ppo** agent playing **Heli**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AtilliO/Chopper03_00
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
KallistiTMR/llama-2-7b-chat-wiz-k16-7
|
KallistiTMR
| 2023-08-08T01:51:42Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-02T01:59:10Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
|
nicbull/DialoGPT-medium-nic
|
nicbull
| 2023-08-08T01:37:45Z | 143 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-07T23:45:49Z |
---
pipeline_tag: conversational
---
|
celsolbm/ppo-LunarLander-v2
|
celsolbm
| 2023-08-08T01:31:37Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-08T01:31:16Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.34 +/- 15.62
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
JFuellem/distilhubert-finetuned-gtzan
|
JFuellem
| 2023-08-08T01:27:45Z | 166 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-07T10:49:58Z |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6210
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1281 | 1.0 | 113 | 1.9810 | 0.46 |
| 1.4934 | 2.0 | 226 | 1.3605 | 0.62 |
| 1.1668 | 3.0 | 339 | 0.9967 | 0.75 |
| 0.9904 | 4.0 | 452 | 0.8179 | 0.74 |
| 0.7369 | 5.0 | 565 | 0.6686 | 0.84 |
| 0.5161 | 6.0 | 678 | 0.6022 | 0.8 |
| 0.5269 | 7.0 | 791 | 0.5942 | 0.85 |
| 0.2076 | 8.0 | 904 | 0.5678 | 0.86 |
| 0.3907 | 9.0 | 1017 | 0.5466 | 0.85 |
| 0.2112 | 10.0 | 1130 | 0.5610 | 0.86 |
| 0.0678 | 11.0 | 1243 | 0.5933 | 0.87 |
| 0.063 | 12.0 | 1356 | 0.6582 | 0.81 |
| 0.0342 | 13.0 | 1469 | 0.6052 | 0.88 |
| 0.0209 | 14.0 | 1582 | 0.6139 | 0.88 |
| 0.021 | 15.0 | 1695 | 0.6210 | 0.87 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
DrishtiSharma/distilhubert-finetuned-gtzan-bs-16
|
DrishtiSharma
| 2023-08-08T01:27:31Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-07T23:31:08Z |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-bs-16
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-bs-16
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5229
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1955 | 1.0 | 57 | 2.1119 | 0.44 |
| 1.6916 | 2.0 | 114 | 1.5973 | 0.61 |
| 1.1805 | 3.0 | 171 | 1.1849 | 0.74 |
| 1.0924 | 4.0 | 228 | 0.9771 | 0.7 |
| 0.7794 | 5.0 | 285 | 0.8201 | 0.78 |
| 0.6335 | 6.0 | 342 | 0.6969 | 0.82 |
| 0.6178 | 7.0 | 399 | 0.6632 | 0.84 |
| 0.4232 | 8.0 | 456 | 0.5841 | 0.83 |
| 0.3135 | 9.0 | 513 | 0.5960 | 0.82 |
| 0.198 | 10.0 | 570 | 0.5557 | 0.83 |
| 0.1651 | 11.0 | 627 | 0.5957 | 0.84 |
| 0.1191 | 12.0 | 684 | 0.5640 | 0.85 |
| 0.1267 | 13.0 | 741 | 0.5604 | 0.84 |
| 0.0784 | 14.0 | 798 | 0.5233 | 0.85 |
| 0.1076 | 15.0 | 855 | 0.5229 | 0.87 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
DrishtiSharma/distilhubert-finetuned-gtzan-bs-8
|
DrishtiSharma
| 2023-08-08T01:20:10Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-07T23:23:23Z |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-bs-8
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.84
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-bs-8
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6841
- Accuracy: 0.84
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0984 | 1.0 | 113 | 1.9609 | 0.47 |
| 1.4296 | 2.0 | 226 | 1.3195 | 0.67 |
| 1.09 | 3.0 | 339 | 0.9894 | 0.72 |
| 0.9233 | 4.0 | 452 | 0.8749 | 0.75 |
| 0.6404 | 5.0 | 565 | 0.7553 | 0.78 |
| 0.3805 | 6.0 | 678 | 0.7402 | 0.77 |
| 0.4079 | 7.0 | 791 | 0.5268 | 0.84 |
| 0.1812 | 8.0 | 904 | 0.5418 | 0.85 |
| 0.1942 | 9.0 | 1017 | 0.4633 | 0.86 |
| 0.033 | 10.0 | 1130 | 0.6342 | 0.84 |
| 0.0155 | 11.0 | 1243 | 0.6264 | 0.84 |
| 0.1256 | 12.0 | 1356 | 0.6804 | 0.85 |
| 0.0095 | 13.0 | 1469 | 0.6653 | 0.83 |
| 0.0084 | 14.0 | 1582 | 0.6737 | 0.84 |
| 0.0088 | 15.0 | 1695 | 0.6841 | 0.84 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
jordyvl/vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_MSE
|
jordyvl
| 2023-08-08T01:08:10Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-07T16:58:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_MSE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_MSE
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1927
- Accuracy: 0.5835
- Brier Loss: 0.6740
- Nll: 3.1975
- F1 Micro: 0.5835
- F1 Macro: 0.5865
- Ece: 0.2742
- Aurc: 0.2074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 250 | 4.2227 | 0.1325 | 0.9130 | 6.8924 | 0.1325 | 0.0728 | 0.0573 | 0.7519 |
| 4.2305 | 2.0 | 500 | 3.9645 | 0.1638 | 0.8922 | 5.8361 | 0.1638 | 0.1235 | 0.0588 | 0.7012 |
| 4.2305 | 3.0 | 750 | 3.6177 | 0.285 | 0.8227 | 4.3429 | 0.285 | 0.2289 | 0.0627 | 0.5424 |
| 3.6208 | 4.0 | 1000 | 3.2220 | 0.3733 | 0.7617 | 3.5860 | 0.3733 | 0.3356 | 0.0606 | 0.4322 |
| 3.6208 | 5.0 | 1250 | 3.0177 | 0.4045 | 0.7308 | 3.7807 | 0.4045 | 0.3770 | 0.0721 | 0.3835 |
| 2.9674 | 6.0 | 1500 | 2.8203 | 0.4365 | 0.7032 | 3.3569 | 0.4365 | 0.4130 | 0.0969 | 0.3443 |
| 2.9674 | 7.0 | 1750 | 2.6164 | 0.4557 | 0.6762 | 3.4281 | 0.4557 | 0.4413 | 0.0810 | 0.3058 |
| 2.5154 | 8.0 | 2000 | 2.4991 | 0.472 | 0.6651 | 3.3938 | 0.472 | 0.4524 | 0.1092 | 0.2846 |
| 2.5154 | 9.0 | 2250 | 2.4375 | 0.4878 | 0.6826 | 3.1749 | 0.4878 | 0.4603 | 0.1631 | 0.2872 |
| 2.2165 | 10.0 | 2500 | 2.3537 | 0.5018 | 0.6686 | 3.1767 | 0.5018 | 0.4855 | 0.1589 | 0.2743 |
| 2.2165 | 11.0 | 2750 | 2.2613 | 0.515 | 0.6276 | 3.1281 | 0.515 | 0.5141 | 0.1101 | 0.2457 |
| 1.9636 | 12.0 | 3000 | 2.2592 | 0.5242 | 0.6624 | 3.1164 | 0.5242 | 0.5131 | 0.1840 | 0.2515 |
| 1.9636 | 13.0 | 3250 | 2.1751 | 0.5315 | 0.6190 | 3.2643 | 0.5315 | 0.5268 | 0.1349 | 0.2288 |
| 1.7526 | 14.0 | 3500 | 2.2171 | 0.5248 | 0.6546 | 3.1179 | 0.5248 | 0.5162 | 0.1889 | 0.2537 |
| 1.7526 | 15.0 | 3750 | 2.1185 | 0.5507 | 0.6126 | 3.1117 | 0.5507 | 0.5496 | 0.1578 | 0.2219 |
| 1.5673 | 16.0 | 4000 | 2.0807 | 0.5537 | 0.6208 | 3.2624 | 0.5537 | 0.5459 | 0.1735 | 0.2151 |
| 1.5673 | 17.0 | 4250 | 2.0743 | 0.5677 | 0.6095 | 3.2650 | 0.5677 | 0.5683 | 0.1628 | 0.2090 |
| 1.3823 | 18.0 | 4500 | 2.1201 | 0.5605 | 0.6454 | 3.1499 | 0.5605 | 0.5558 | 0.2130 | 0.2316 |
| 1.3823 | 19.0 | 4750 | 2.0835 | 0.5655 | 0.6312 | 3.2920 | 0.5655 | 0.5666 | 0.2015 | 0.2149 |
| 1.2113 | 20.0 | 5000 | 2.0809 | 0.5675 | 0.6284 | 3.2923 | 0.5675 | 0.5675 | 0.2180 | 0.2047 |
| 1.2113 | 21.0 | 5250 | 2.1507 | 0.5633 | 0.6608 | 3.2713 | 0.5633 | 0.5668 | 0.2380 | 0.2183 |
| 1.0543 | 22.0 | 5500 | 2.1295 | 0.5683 | 0.6476 | 3.5120 | 0.5683 | 0.5672 | 0.2369 | 0.2105 |
| 1.0543 | 23.0 | 5750 | 2.1610 | 0.5675 | 0.6564 | 3.3818 | 0.5675 | 0.5625 | 0.2393 | 0.2166 |
| 0.9098 | 24.0 | 6000 | 2.0862 | 0.5735 | 0.6562 | 3.3228 | 0.5735 | 0.5782 | 0.2528 | 0.2047 |
| 0.9098 | 25.0 | 6250 | 2.0680 | 0.5727 | 0.6439 | 3.2971 | 0.5727 | 0.5767 | 0.2357 | 0.2050 |
| 0.7832 | 26.0 | 6500 | 2.1829 | 0.5763 | 0.6667 | 3.3547 | 0.5763 | 0.5792 | 0.2627 | 0.2084 |
| 0.7832 | 27.0 | 6750 | 2.1163 | 0.586 | 0.6479 | 3.2468 | 0.586 | 0.5894 | 0.2509 | 0.2016 |
| 0.6572 | 28.0 | 7000 | 2.1492 | 0.5715 | 0.6612 | 3.4268 | 0.5715 | 0.5780 | 0.2642 | 0.2114 |
| 0.6572 | 29.0 | 7250 | 2.1975 | 0.5723 | 0.6777 | 3.4662 | 0.5723 | 0.5739 | 0.2749 | 0.2202 |
| 0.5632 | 30.0 | 7500 | 2.1733 | 0.5693 | 0.6767 | 3.3743 | 0.5693 | 0.5745 | 0.2737 | 0.2170 |
| 0.5632 | 31.0 | 7750 | 2.1694 | 0.5807 | 0.6661 | 3.3917 | 0.5807 | 0.5814 | 0.2645 | 0.2193 |
| 0.4827 | 32.0 | 8000 | 2.1585 | 0.5805 | 0.6671 | 3.3811 | 0.5805 | 0.5812 | 0.2692 | 0.2150 |
| 0.4827 | 33.0 | 8250 | 2.1963 | 0.5767 | 0.6754 | 3.4575 | 0.5767 | 0.5835 | 0.2710 | 0.2160 |
| 0.4134 | 34.0 | 8500 | 2.1720 | 0.581 | 0.6694 | 3.3663 | 0.581 | 0.5811 | 0.2672 | 0.2131 |
| 0.4134 | 35.0 | 8750 | 2.1880 | 0.575 | 0.6759 | 3.4587 | 0.575 | 0.5790 | 0.2783 | 0.2105 |
| 0.3541 | 36.0 | 9000 | 2.1482 | 0.581 | 0.6628 | 3.2956 | 0.581 | 0.5842 | 0.2712 | 0.2056 |
| 0.3541 | 37.0 | 9250 | 2.1631 | 0.5885 | 0.6652 | 3.3217 | 0.5885 | 0.5915 | 0.2671 | 0.2069 |
| 0.3078 | 38.0 | 9500 | 2.2036 | 0.577 | 0.6811 | 3.3564 | 0.577 | 0.5803 | 0.2849 | 0.2141 |
| 0.3078 | 39.0 | 9750 | 2.1904 | 0.5753 | 0.6756 | 3.2783 | 0.5753 | 0.5765 | 0.2756 | 0.2135 |
| 0.2671 | 40.0 | 10000 | 2.1774 | 0.5775 | 0.6685 | 3.3109 | 0.5775 | 0.5813 | 0.2700 | 0.2084 |
| 0.2671 | 41.0 | 10250 | 2.1822 | 0.5807 | 0.6730 | 3.2139 | 0.5807 | 0.5842 | 0.2770 | 0.2100 |
| 0.2331 | 42.0 | 10500 | 2.1673 | 0.5817 | 0.6705 | 3.2960 | 0.5817 | 0.5864 | 0.2757 | 0.2070 |
| 0.2331 | 43.0 | 10750 | 2.1730 | 0.5765 | 0.6705 | 3.2195 | 0.5765 | 0.5807 | 0.2784 | 0.2072 |
| 0.2038 | 44.0 | 11000 | 2.1709 | 0.585 | 0.6649 | 3.1928 | 0.585 | 0.5893 | 0.2627 | 0.2055 |
| 0.2038 | 45.0 | 11250 | 2.1745 | 0.5783 | 0.6678 | 3.1900 | 0.5783 | 0.5811 | 0.2736 | 0.2061 |
| 0.1792 | 46.0 | 11500 | 2.1824 | 0.5835 | 0.6682 | 3.1909 | 0.5835 | 0.5858 | 0.2719 | 0.2070 |
| 0.1792 | 47.0 | 11750 | 2.1892 | 0.584 | 0.6716 | 3.2457 | 0.584 | 0.5864 | 0.2706 | 0.2082 |
| 0.16 | 48.0 | 12000 | 2.1820 | 0.5835 | 0.6716 | 3.2011 | 0.5835 | 0.5857 | 0.2743 | 0.2073 |
| 0.16 | 49.0 | 12250 | 2.1884 | 0.582 | 0.6736 | 3.2114 | 0.582 | 0.5856 | 0.2755 | 0.2073 |
| 0.1465 | 50.0 | 12500 | 2.1927 | 0.5835 | 0.6740 | 3.1975 | 0.5835 | 0.5865 | 0.2742 | 0.2074 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
mhdaw/ppo-LunarLander-v2-5
|
mhdaw
| 2023-08-08T01:06:08Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-08T01:05:49Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 274.23 +/- 11.25
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
nrakocz/whisper-small-dv
|
nrakocz
| 2023-08-08T00:07:19Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dv",
"dataset:mozilla-foundation/common_voice_13_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-07T22:38:38Z |
---
language:
- dv
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Dv - Nadav Rakocz
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: dv
split: test
args: dv
metrics:
- name: Wer
type: wer
value: 13.290677052543728
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Dv - Nadav Rakocz
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1689
- Wer Ortho: 62.8317
- Wer: 13.2907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.1252 | 1.63 | 500 | 0.1689 | 62.8317 | 13.2907 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
nicbull/DialoGPT-medium-nic2
|
nicbull
| 2023-08-08T00:06:37Z | 147 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"chat",
"conversational",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-07T23:56:52Z |
---
language:
- en
pipeline_tag: conversational
tags:
- chat
---
|
JabrilJacobs/Reinforce-Pixelcopter-PLE-v0
|
JabrilJacobs
| 2023-08-07T23:52:38Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-05T00:07:35Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 52.40 +/- 41.11
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
salohnana2018/OTE-NoDapt-ABSA-bert-base-MARBERTv2-DefultHp-FineTune
|
salohnana2018
| 2023-08-07T23:43:48Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:UBC-NLP/MARBERTv2",
"base_model:finetune:UBC-NLP/MARBERTv2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-07T20:58:28Z |
---
base_model: UBC-NLP/MARBERTv2
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: OTE-NoDapt-ABSA-bert-base-MARBERTv2-DefultHp-FineTune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# OTE-NoDapt-ABSA-bert-base-MARBERTv2-DefultHp-FineTune
This model is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1711
- Precision: 0.7538
- Recall: 0.7902
- F1: 0.7716
- Accuracy: 0.9536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1914 | 1.0 | 121 | 0.1169 | 0.7655 | 0.7369 | 0.7510 | 0.9536 |
| 0.0946 | 2.0 | 242 | 0.1192 | 0.7952 | 0.7334 | 0.7631 | 0.9558 |
| 0.0643 | 3.0 | 363 | 0.1336 | 0.7471 | 0.7932 | 0.7695 | 0.9537 |
| 0.0428 | 4.0 | 484 | 0.1585 | 0.7312 | 0.7957 | 0.7621 | 0.9517 |
| 0.0286 | 5.0 | 605 | 0.1711 | 0.7538 | 0.7902 | 0.7716 | 0.9536 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
AmelieSchreiber/esm2_t6_8M_UR50D-finetuned-secondary-structure
|
AmelieSchreiber
| 2023-08-07T23:40:17Z | 111 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"esm",
"token-classification",
"esm2",
"protein language model",
"biology",
"protein token classification",
"secondary structure prediction",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-06T03:26:39Z |
---
license: mit
language:
- en
library_name: transformers
tags:
- esm
- esm2
- protein language model
- biology
- protein token classification
- secondary structure prediction
---
# ESM-2 (`esm2_t6_8M_UR50D`) for Token Classification
This is a fine-tuned version of [esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) trained on the token classification task
to classify amino acids in protein sequences into one of three categories `0: other`, `1: alpha helix`, `2: beta strand`. It was trained with
[this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) and achieves
78.13824286786025 % accuracy.
## Using the Model
To use, try running:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import numpy as np
# 1. Prepare the Model and Tokenizer
# Replace with the path where your trained model is saved if you're training a new model
model_dir = "AmelieSchreiber/esm2_t6_8M_UR50D-finetuned-secondary-structure"
model = AutoModelForTokenClassification.from_pretrained(model_dir)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
# Define a mapping from label IDs to their string representations
label_map = {0: "Other", 1: "Helix", 2: "Strand"}
# 2. Tokenize the New Protein Sequence
new_protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your protein sequence
tokens = tokenizer.tokenize(new_protein_sequence)
inputs = tokenizer.encode(new_protein_sequence, return_tensors="pt")
# 3. Predict with the Model
with torch.no_grad():
outputs = model(inputs).logits
predictions = np.argmax(outputs[0].numpy(), axis=1)
# 4. Decode the Predictions
predicted_labels = [label_map[label_id] for label_id in predictions]
# Print the tokens along with their predicted labels
for token, label in zip(tokens, predicted_labels):
print(f"{token}: {label}")
```
|
rzambrano/rl_course_vizdoom_my_way_home
|
rzambrano
| 2023-08-07T23:22:57Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T23:22:52Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_my_way_home
type: doom_my_way_home
metrics:
- type: mean_reward
value: -0.21 +/- 0.00
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_my_way_home** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r rzambrano/rl_course_vizdoom_my_way_home
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_my_way_home --train_dir=./train_dir --experiment=rl_course_vizdoom_my_way_home
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_my_way_home --train_dir=./train_dir --experiment=rl_course_vizdoom_my_way_home --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AtilliO/ChopperColab03_00
|
AtilliO
| 2023-08-07T23:03:09Z | 7 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Heli",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Heli",
"region:us"
] |
reinforcement-learning
| 2023-08-07T23:03:05Z |
---
library_name: ml-agents
tags:
- Heli
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Heli
---
# **ppo** Agent playing **Heli**
This is a trained model of a **ppo** agent playing **Heli**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AtilliO/Chopper03_00
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
DarkAirforce/a2c-PandaReachDense-v2
|
DarkAirforce
| 2023-08-07T22:36:46Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T20:57:21Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.74 +/- 0.52
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
parthsuresh/Reinforce-1
|
parthsuresh
| 2023-08-07T22:31:53Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T22:31:48Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 139.40 +/- 37.82
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
varcoder/segcrack9k_conglomerate_segformer_aug
|
varcoder
| 2023-08-07T22:27:13Z | 34 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"segformer",
"generated_from_trainer",
"base_model:nvidia/mit-b5",
"base_model:finetune:nvidia/mit-b5",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2023-08-07T21:07:22Z |
---
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: segcrack9k_conglomerate_segformer_aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segcrack9k_conglomerate_segformer_aug
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0362
- Mean Iou: 0.3412
- Mean Accuracy: 0.6823
- Overall Accuracy: 0.6823
- Accuracy Background: nan
- Accuracy Crack: 0.6823
- Iou Background: 0.0
- Iou Crack: 0.6823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0323 | 0.14 | 1000 | 0.0445 | 0.3573 | 0.7146 | 0.7146 | nan | 0.7146 | 0.0 | 0.7146 |
| 0.0222 | 0.27 | 2000 | 0.0394 | 0.3591 | 0.7181 | 0.7181 | nan | 0.7181 | 0.0 | 0.7181 |
| 0.0335 | 0.41 | 3000 | 0.0404 | 0.2907 | 0.5813 | 0.5813 | nan | 0.5813 | 0.0 | 0.5813 |
| 0.013 | 0.54 | 4000 | 0.0384 | 0.3244 | 0.6489 | 0.6489 | nan | 0.6489 | 0.0 | 0.6489 |
| 0.0159 | 0.68 | 5000 | 0.0382 | 0.3088 | 0.6176 | 0.6176 | nan | 0.6176 | 0.0 | 0.6176 |
| 0.0608 | 0.81 | 6000 | 0.0366 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 |
| 0.1738 | 0.95 | 7000 | 0.0362 | 0.3412 | 0.6823 | 0.6823 | nan | 0.6823 | 0.0 | 0.6823 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
TheRains/yt-special-batch4-lr4-small
|
TheRains
| 2023-08-07T22:24:52Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:yt",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-07T14:40:11Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- yt
metrics:
- wer
model-index:
- name: Whisper Small Indonesian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: yt id
type: yt
metrics:
- name: Wer
type: wer
value: 59.84047727125349
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Indonesian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9773
- Wer: 59.8405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2491 | 0.09 | 1000 | 1.9142 | 226.4834 |
| 1.4702 | 0.17 | 2000 | 1.6154 | 115.5502 |
| 1.609 | 0.26 | 3000 | 1.3599 | 113.3454 |
| 1.1817 | 0.34 | 4000 | 1.1253 | 68.4067 |
| 0.9678 | 0.43 | 5000 | 0.9773 | 59.8405 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
bayartsogt/wav2vec2-large-mn-pretrain-42h
|
bayartsogt
| 2023-08-07T22:10:11Z | 44 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"pretraining",
"speech",
"mn",
"dataset:test",
"arxiv:2006.11477",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-08-07T22:07:31Z |
---
language: mn
datasets:
- test
tags:
- speech
license: apache-2.0
---
# Wav2Vec2-Large
[Paper](https://arxiv.org/abs/2006.11477)
Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
**Abstract**
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Data
- Sample rate: 16Khz
- Total pretrained data: 42H
- Duration (sec):
- mean: 5.276451094408402
- std: 2.2694219711399533
- max: 12.435937673420312
- min: 0.0005440165748211712
# Convert from FAIRSEQ to HF
1. Create a config
```python
from transformers import Wav2Vec2Config
config = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-large')
config.conv_bias = True
config.feat_extract_norm = "layer"
config.save_pretrained('./')
```
2. Convert using [the script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py) written by HF team
```bash
wget convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py
hf_name="<my-hf-repo-name>"
ckpt="<path-to-pth-checkpoint>"
python ./convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py \
--pytorch_dump_folder ${hf_name} \
--checkpoint_path ${ckpt} \
--config_path ./config.json \
--not_finetuned
```
|
fangyijie/BeenYou_Lite_R15
|
fangyijie
| 2023-08-07T22:04:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-07T21:55:21Z |
A copy of BeenYou Lite model from https://civitai.com/models/34440?modelVersionId=117019
|
Za88yes/R1acis
|
Za88yes
| 2023-08-07T21:42:52Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-07T21:36:11Z |
---
license: creativeml-openrail-m
---
|
TFLai/GPT-Lite
|
TFLai
| 2023-08-07T21:36:47Z | 6 | 2 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-07T21:36:12Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
carolinacalce/Mi_modelo_CatsDogs
|
carolinacalce
| 2023-08-07T21:15:55Z | 252 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-04T23:42:34Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: Mi_modelo_CatsDogs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mi_modelo_CatsDogs
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
cengizhanprodeksin/Diamondtemav1
|
cengizhanprodeksin
| 2023-08-07T20:51:14Z | 0 | 0 | null |
[
"tr",
"license:openrail",
"region:us"
] | null | 2023-08-07T20:45:44Z |
---
license: openrail
language:
- tr
---
|
sofia-todeschini/BioLinkBERT-LitCovid-v1.2
|
sofia-todeschini
| 2023-08-07T20:48:54Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-07T17:54:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BioLinkBERT-LitCovid-v1.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BioLinkBERT-LitCovid-v1.2
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0950
- F1 micro: 0.9201
- F1 macro: 0.8831
- F1 weighted: 0.9202
- F1 samples: 0.9200
- Precision micro: 0.9141
- Precision macro: 0.8790
- Precision weighted: 0.9144
- Precision samples: 0.9283
- Recall micro: 0.9263
- Recall macro: 0.8877
- Recall weighted: 0.9263
- Recall samples: 0.9372
- Roc Auc: 0.9529
- Accuracy: 0.7848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
| 0.1013 | 1.0 | 2211 | 0.0899 | 0.9159 | 0.8789 | 0.9164 | 0.9149 | 0.9074 | 0.8824 | 0.9092 | 0.9213 | 0.9245 | 0.8808 | 0.9245 | 0.9355 | 0.9511 | 0.7729 |
| 0.0749 | 2.0 | 4422 | 0.0847 | 0.9205 | 0.8854 | 0.9205 | 0.9203 | 0.9138 | 0.8843 | 0.9144 | 0.9264 | 0.9274 | 0.8882 | 0.9274 | 0.9390 | 0.9534 | 0.7857 |
| 0.0583 | 3.0 | 6633 | 0.0871 | 0.9212 | 0.8851 | 0.9212 | 0.9206 | 0.9145 | 0.8913 | 0.9151 | 0.9269 | 0.9280 | 0.8808 | 0.9280 | 0.9390 | 0.9537 | 0.7883 |
| 0.0433 | 4.0 | 8844 | 0.0924 | 0.9201 | 0.8849 | 0.9203 | 0.9202 | 0.9094 | 0.8766 | 0.9099 | 0.9246 | 0.9312 | 0.8947 | 0.9312 | 0.9416 | 0.9546 | 0.7834 |
| 0.0315 | 5.0 | 11055 | 0.0950 | 0.9201 | 0.8831 | 0.9202 | 0.9200 | 0.9141 | 0.8790 | 0.9144 | 0.9283 | 0.9263 | 0.8877 | 0.9263 | 0.9372 | 0.9529 | 0.7848 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
BryanFalkowski/english-to-latin-v2
|
BryanFalkowski
| 2023-08-07T20:32:58Z | 25 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"la",
"arxiv:1911.04944",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-22T12:43:57Z |
---
language:
- "la"
---
### Initial model for english to latin translations which is still being trained.
This model is designed to execute Latin-to-English translations, built using the extensive CCMatrix dataset. The CCMatrix dataset is a vast compilation of high-quality parallel sentences drawn from the public CommonCrawl dataset, consisting of over 4.5 billion sentence pairs across 576 language pairs. The model is devised to harness the power of this substantial corpus, aiming to provide an effective and precise solution for Latin translation tasks.
Nevertheless, the training dataset's literary range spans numerous centuries, thereby introducing the model to the Latin language's significant evolution over these eras. Consequently, the model encounters different expressions of the same concept, potentially including equivalent sentences in both vulgar and classical Latin. This is likely the reason behind the model's oscillating loss.
## Current state:
- {'loss': 0.8056, 'learning_rate': 6.482837857245441e-06, 'epoch': 20.28}
- {'loss': 1.253, 'learning_rate': 6.48092297381397e-06, 'epoch': 20.28}
- {'loss': 1.2961, 'learning_rate': 6.4790080903824985e-06, 'epoch': 20.28}
- {'loss': 1.3402, 'learning_rate': 6.477093206951027e-06, 'epoch': 20.28}
- {'loss': 0.9309, 'learning_rate': 6.475178323519556e-06, 'epoch': 20.29}
- {'loss': 0.7945, 'learning_rate': 6.473263440088085e-06, 'epoch': 20.29}
- {'loss': 0.9205, 'learning_rate': 6.471348556656614e-06, 'epoch': 20.29}
- {'loss': 1.4583, 'learning_rate': 6.228158360859783e-06, 'epoch': 20.66}
....still running.....
fine-tuned using the IPUSeq2SeqTrainer API on the facebook/bart-base model
BartTokenizerFast tokenizer
## Dataset Description
- Homepage: https://opus.nlpl.eu/CCMatrix.php
- Sample: https://opus.nlpl.eu/CCMatrix/v1/en-la_sample.html
- Paper: https://arxiv.org/abs/1911.04944
-
The latin dataset contans: - 1,114,190 Sentence pairs - 14.5 M words
### Data Format
```
{
"id": 1,
"score": 1.2498379,
"translation": {
"en": "No telling what sort of magic he might have.\""
"la": "numque magistrâtum cum iis habent.\
},
"id": 2,
"score": 1.1443379,
"translation": {
"en": "Not many, but much.\""
"la": "non multa sed multum.\
}
}
```
For training, the dataset was divided as follows: DatasetDict
- train: num_rows: 891352
- validation: num_rows: 111419
- test: num_rows: 111419
|
Muhammadreza/mann-e-artistic-3
|
Muhammadreza
| 2023-08-07T20:29:57Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T20:17:14Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### mann-e_artistic-3 Dreambooth model trained by Muhammadreza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
TheRains/yt-special-batch4-lr6-small
|
TheRains
| 2023-08-07T20:18:16Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"dataset:yt",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-07T18:22:29Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- yt
metrics:
- wer
model-index:
- name: Whisper Small Indonesian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: yt id
type: yt
metrics:
- name: Wer
type: wer
value: 54.70462356526814
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Indonesian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8639
- Wer: 54.7046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.1374 | 0.09 | 1000 | 0.9854 | 64.9634 |
| 0.8775 | 0.17 | 2000 | 0.9139 | 66.4613 |
| 0.9735 | 0.26 | 3000 | 0.8845 | 58.6668 |
| 0.8359 | 0.34 | 4000 | 0.8696 | 59.5876 |
| 0.9089 | 0.43 | 5000 | 0.8639 | 54.7046 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
luispintoc/dqn-SpaceInvadersNoFrameskip-v4
|
luispintoc
| 2023-08-07T20:01:38Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T20:01:06Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 257.00 +/- 38.81
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga luispintoc -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga luispintoc -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga luispintoc
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.11),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.009),
('learning_starts', 100000),
('n_timesteps', 1100000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
akdeniz27/convbert-base-turkish-cased-ner
|
akdeniz27
| 2023-08-07T19:54:11Z | 669 | 3 |
transformers
|
[
"transformers",
"pytorch",
"onnx",
"safetensors",
"convbert",
"token-classification",
"tr",
"arxiv:2008.02496",
"doi:10.57967/hf/0015",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
language: tr
widget:
- text: "Almanya, koronavirüs aşısını geliştiren Dr. Özlem Türeci ve eşi Prof. Dr. Uğur Şahin'e liyakat nişanı verdi"
---
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper.
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/convbert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
# Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
```
# Reference test results:
* accuracy: 0.9937648915431506
* f1: 0.9610945644080416
* precision: 0.9619899385131359
* recall: 0.9602008554956295
|
bilbo991/clip-homer-100k
|
bilbo991
| 2023-08-07T19:53:52Z | 89 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-text-dual-encoder",
"feature-extraction",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2023-08-07T18:10:57Z |
---
base_model: clip-homer-100k
tags:
- generated_from_trainer
model-index:
- name: clip-homer-100k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clip-homer-100k
This model is a fine-tuned version of [clip-homer-100k](https://huggingface.co/clip-homer-100k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4647
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0383 | 1.0 | 3125 | 1.9199 |
| 1.3387 | 2.0 | 6250 | 1.5725 |
| 0.6287 | 3.0 | 9375 | 1.4647 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.1
- Tokenizers 0.13.3
|
Augoste/bloom-7b1-mrbeast-lora-v1.0
|
Augoste
| 2023-08-07T19:43:22Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-07T19:43:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
wandabwa2004/falcon-7b-safcom_Ver2
|
wandabwa2004
| 2023-08-07T19:39:47Z | 12 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"RefinedWebModel",
"text-generation",
"generated_from_trainer",
"custom_code",
"base_model:ybelkada/falcon-7b-sharded-bf16",
"base_model:finetune:ybelkada/falcon-7b-sharded-bf16",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-08-07T01:56:34Z |
---
base_model: ybelkada/falcon-7b-sharded-bf16
tags:
- generated_from_trainer
model-index:
- name: falcon-7b-safcom_Ver2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# falcon-7b-safcom_Ver2
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 320
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
SmellyKat/a2c-PandaReachDense-v3
|
SmellyKat
| 2023-08-07T19:29:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T19:23:38Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.19 +/- 0.13
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
scirik/time-series-transformer-electricity-load-diagrams
|
scirik
| 2023-08-07T19:22:19Z | 119 | 6 |
transformers
|
[
"transformers",
"pytorch",
"time_series_transformer",
"dataset:electricity_load_diagrams",
"endpoints_compatible",
"region:us"
] | null | 2023-08-06T19:47:41Z |
---
datasets:
- electricity_load_diagrams
metrics:
- mase
- smape
library_name: transformers
---
**Transformer Time Series Model for Electricity Load Diagrams**
This repository contains a PyTorch implementation of a Transformer-based time series model for forecasting electricity load diagrams (hourly).
The repo provide the pre-trained pytorch_model.bin and config.json files to initialize the Transformer architecture.
|
jpawan33/dreambooth
|
jpawan33
| 2023-08-07T19:06:48Z | 21 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T19:00:48Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - jpawan33/dreambooth
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
Powerlax/ImageSegmentationHuggingFace
|
Powerlax
| 2023-08-07T18:57:08Z | 2 | 0 |
keras
|
[
"keras",
"tf-keras",
"en",
"dataset:visual-layer/vl-oxford-iiit-pets",
"region:us"
] | null | 2023-08-07T18:49:43Z |
---
datasets:
- visual-layer/vl-oxford-iiit-pets
language:
- en
library_name: keras
---
|
Yanderu/sd-civitai-browser
|
Yanderu
| 2023-08-07T18:48:13Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-04T14:37:57Z |
# sd-civitai-browser
An extension to help download models from CivitAi without leaving WebUI
|
emozilla/LLongMA-2-7b-storysummarizer-GGML
|
emozilla
| 2023-08-07T18:46:09Z | 0 | 0 | null |
[
"dataset:emozilla/booksum-summary-analysis_llama-8192",
"dataset:kmfoda/booksum",
"license:apache-2.0",
"region:us"
] | null | 2023-08-07T15:26:27Z |
---
license: apache-2.0
datasets:
- emozilla/booksum-summary-analysis_llama-8192
- kmfoda/booksum
---
GGML version of [emozilla/LLongMA-2-7b-storysummarizer](https://huggingface.co/emozilla/LLongMA-2-7b-storysummarizer). Use `n_ctx=8192` and `rope_freq_scale=0.5`. For an excellent user interface, check out [LM Studio](https://lmstudio.ai/).
# LLongMA-2-7b-storysummarizer
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
This is a fine-tuned version of [conceptofmind/LLongMA-2-7b](https://huggingface.co/conceptofmind/LLongMA-2-7b) intended for summarization and literary analysis of fiction stories.
It contains custom modeling code to use Flash Attention 2 during inference, which provides a significant speedup, especially at longer context lengths.
To enable, pass `trust_remote_code=True,use_flash_attention=True` to `AutoModelForCausalLM`.
## How to Use
```
SOME_FICTION
### SUMMARY:
```
or
```
SOME_FICTION
### ANALYSIS:
```
## Example outputs
Outputs on the text of [_Waystation City_](https://www.uncannymagazine.com/article/waystation-city/) (6,904 tokens)
### Summary
`temperature=0.8`, `repetition_penalty=1.1`,`do_sample=True`
> A nineteen-seventies pair of twins approaches Micheala and Gerty at a cafe. They ask them to write down their story of their disappearance. Gerty takes notes on their story as they tell it. The twins' names are Daphne and Claude. The twins explain that they came from London, England and were leading a movement against fascism there. But in Waystation City, they were stuck in the limbo between timelines with no real way of returning home to continue their work. In fact, it was harder for them to remember their lives at home as time went on. They tell Gerty that they cannot stay and Micheala encourages them not to go down to the stairs where Waystation City's ferry drivers will take them home. Daphne writes an inscription on a wall, leaving her mark as one of the disappeared, but she and Claude relent. Together they approach the docks with Gerty and Micheala trailing behind. There, the twins discuss which hole to go through and they agree it is the one showing their hometown in the 1970s. Daphne goes first and then Claude after he slips on a wet surface. The ferry drivers see him but Gerty yells for him to return from the hole as she writes his story down with her notes. But he cannot hear her over the slip of metal slats turning into stone and wood on the docks. He jumps in anyway and disappears into the other world through the hole. Micheala leaves a cigarette and Gerty drops her ticket back home to show that she's decided to stay in Waystation City where it is possible to grow, change, and live in the spaces between.
### Analysis
`temperature=0.8`, `repetition_penalty=1.1`,`do_sample=True`
> Notes In this final chapter, there is a brief but important flashback to the twins' home in England at the beginning of the 1970s, when racism and fascism are rampant. It is interesting to note the author's choice to set the story at such a pivotal time for immigrants in Britain. The twins feel like they have to choose between being their "true" selves in their home country or staying where they are as Waystation citizens. But this was also the time when racism and fascism were so openly practiced that anti-racists were fighting against these institutions with all of their might. It is interesting how there's an implication here that it's only at the risk of their "true" identities that the twins can go back to England. In this chapter, Gerty changes her name as well, choosing the gender neutral Michael. She does not specify why she decided to change her name or what inspired her choice. The story implies, but never says outright, that she changed her name in part because of the twins' disappearance. This suggests an important question: how far must a person be willing to go in order to stay true to themselves? It is clear by this point that Gerty has changed quite a bit since coming to Waystation City and her decision to change her name reflects the extent to which she has altered her identity. She realizes that she has settled into a comfortable, new life here with new clothes, new hobbies, and friends. Ultimately, this chapter suggests that while it is important to stay true to one's past, there are also new things to discover and experience in the present. Gerty has done just this by settling in Waystation City, embracing her new life and even changing her name and identity with it.
## Training
The model was trained on [emozilla/booksum-summary-analysis_llama-8192](https://huggingface.co/datasets/emozilla/booksum-summary-analysis_llama-8192), which is adapted from [kmfoda/booksum](https://huggingface.co/datasets/kmfoda/booksum).
The training run was performed using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). The run can be viewed on [wandb](https://wandb.ai/emozilla/booksum/runs/gh0vrilm).
|
LarryAIDraw/MiorIneV5_0
|
LarryAIDraw
| 2023-08-07T18:18:07Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-07T18:01:48Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/64841/miorine-rembran-or-the-witch-from-mercury
|
LarryAIDraw/yuragisou-karura
|
LarryAIDraw
| 2023-08-07T18:17:44Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-07T18:00:41Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/123789/karura-hiogi-or-yuuna-and-the-haunted-hot-springs
|
Ashlymol/my-pet-dog-xzg
|
Ashlymol
| 2023-08-07T18:12:32Z | 2 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T18:08:35Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-Dog-xzg Dreambooth model trained by Ashlymol following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: AJCE264
Sample pictures of this concept:
.png)
.png)
.png)

|
lego111Aron/ppo-Huggy-test4
|
lego111Aron
| 2023-08-07T17:54:32Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-07T17:54:26Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: lego111Aron/ppo-Huggy-test4
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
lego111Aron/ppo-Huggy-test2
|
lego111Aron
| 2023-08-07T17:52:05Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-05T16:11:56Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: lego111Aron/ppo-Huggy-test2
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
BlackSwan1827/CubeChase
|
BlackSwan1827
| 2023-08-07T17:41:33Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"CubeChaseAgent",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-CubeChaseAgent",
"region:us"
] |
reinforcement-learning
| 2023-08-07T02:31:55Z |
---
library_name: ml-agents
tags:
- CubeChaseAgent
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-CubeChaseAgent
---
# **ppo** Agent playing **CubeChaseAgent**
This is a trained model of a **ppo** agent playing **CubeChaseAgent**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: BlackSwan1827/CubeChase
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
y-taki/my-model
|
y-taki
| 2023-08-07T17:15:26Z | 107 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-07T16:38:13Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5675
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3
|
AgntPerseus/bb95FurryMix_v80
|
AgntPerseus
| 2023-08-07T17:00:43Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-16T17:01:11Z |
---
license: creativeml-openrail-m
---
|
Jekijekijeki/aleyalora2
|
Jekijekijeki
| 2023-08-07T16:59:58Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-07T16:49:36Z |
---
license: creativeml-openrail-m
---
|
CristoJV/Taxi-v3
|
CristoJV
| 2023-08-07T16:58:57Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T16:58:35Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="CristoJV/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SimonWSY/sd-class-butterflies-32
|
SimonWSY
| 2023-08-07T16:57:16Z | 0 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"region:us"
] |
unconditional-image-generation
| 2023-08-07T16:51:05Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('SimonWSY/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
EmmaRo/SpaceInvadersNoFrameskip-v4
|
EmmaRo
| 2023-08-07T16:57:15Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T16:56:41Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 456.50 +/- 96.77
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga EmmaRo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga EmmaRo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga EmmaRo
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
jordyvl/vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5
|
jordyvl
| 2023-08-07T16:57:08Z | 165 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-07T08:35:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2802
- Accuracy: 0.5747
- Brier Loss: 0.6822
- Nll: 3.2886
- F1 Micro: 0.5747
- F1 Macro: 0.5757
- Ece: 0.2786
- Aurc: 0.2132
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 250 | 4.1512 | 0.1727 | 0.9045 | 5.5051 | 0.1727 | 0.0947 | 0.0704 | 0.7164 |
| 4.2402 | 2.0 | 500 | 3.8933 | 0.216 | 0.8775 | 4.1816 | 0.216 | 0.1697 | 0.0699 | 0.6624 |
| 4.2402 | 3.0 | 750 | 3.4256 | 0.3207 | 0.8113 | 3.6783 | 0.3207 | 0.2567 | 0.0645 | 0.5125 |
| 3.5189 | 4.0 | 1000 | 3.1611 | 0.3673 | 0.7763 | 3.6447 | 0.3673 | 0.3039 | 0.0797 | 0.4450 |
| 3.5189 | 5.0 | 1250 | 2.7791 | 0.4253 | 0.7216 | 3.1536 | 0.4253 | 0.3860 | 0.0982 | 0.3729 |
| 2.7963 | 6.0 | 1500 | 2.6525 | 0.4323 | 0.7004 | 3.0187 | 0.4323 | 0.4117 | 0.0992 | 0.3440 |
| 2.7963 | 7.0 | 1750 | 2.3623 | 0.5005 | 0.6489 | 2.8371 | 0.5005 | 0.4747 | 0.1076 | 0.2843 |
| 2.3741 | 8.0 | 2000 | 2.4259 | 0.4798 | 0.6704 | 2.9344 | 0.4798 | 0.4680 | 0.1164 | 0.3045 |
| 2.3741 | 9.0 | 2250 | 2.3034 | 0.5005 | 0.6431 | 2.8598 | 0.5005 | 0.4892 | 0.1306 | 0.2683 |
| 2.0855 | 10.0 | 2500 | 2.1550 | 0.5298 | 0.6264 | 2.6847 | 0.5298 | 0.5164 | 0.1413 | 0.2480 |
| 2.0855 | 11.0 | 2750 | 2.0891 | 0.5455 | 0.6162 | 2.6978 | 0.5455 | 0.5330 | 0.1428 | 0.2343 |
| 1.8265 | 12.0 | 3000 | 2.2045 | 0.5252 | 0.6627 | 2.7900 | 0.5252 | 0.5045 | 0.1997 | 0.2507 |
| 1.8265 | 13.0 | 3250 | 2.0080 | 0.5597 | 0.5948 | 2.7128 | 0.5597 | 0.5564 | 0.1389 | 0.2145 |
| 1.6099 | 14.0 | 3500 | 2.1966 | 0.5353 | 0.6594 | 2.8505 | 0.5353 | 0.5198 | 0.1984 | 0.2581 |
| 1.6099 | 15.0 | 3750 | 2.0788 | 0.547 | 0.6191 | 2.7214 | 0.547 | 0.5419 | 0.1729 | 0.2294 |
| 1.4149 | 16.0 | 4000 | 2.0634 | 0.5485 | 0.6235 | 2.7486 | 0.5485 | 0.5491 | 0.1872 | 0.2225 |
| 1.4149 | 17.0 | 4250 | 2.0722 | 0.5597 | 0.6241 | 2.7989 | 0.5597 | 0.5574 | 0.1912 | 0.2189 |
| 1.2282 | 18.0 | 4500 | 2.1226 | 0.557 | 0.6327 | 2.9138 | 0.557 | 0.5584 | 0.2016 | 0.2205 |
| 1.2282 | 19.0 | 4750 | 2.1013 | 0.5577 | 0.6326 | 2.8846 | 0.5577 | 0.5574 | 0.2051 | 0.2200 |
| 1.0543 | 20.0 | 5000 | 2.1902 | 0.5637 | 0.6519 | 2.9362 | 0.5637 | 0.5556 | 0.2261 | 0.2273 |
| 1.0543 | 21.0 | 5250 | 2.2291 | 0.5603 | 0.6620 | 2.9256 | 0.5603 | 0.5532 | 0.2469 | 0.2350 |
| 0.8882 | 22.0 | 5500 | 2.2152 | 0.5605 | 0.6613 | 3.0823 | 0.5605 | 0.5563 | 0.2397 | 0.2234 |
| 0.8882 | 23.0 | 5750 | 2.2309 | 0.5617 | 0.6600 | 3.1164 | 0.5617 | 0.5571 | 0.2520 | 0.2252 |
| 0.7308 | 24.0 | 6000 | 2.2332 | 0.5655 | 0.6631 | 3.1202 | 0.5655 | 0.5661 | 0.2502 | 0.2241 |
| 0.7308 | 25.0 | 6250 | 2.3018 | 0.5663 | 0.6762 | 3.2623 | 0.5663 | 0.5652 | 0.2640 | 0.2265 |
| 0.6001 | 26.0 | 6500 | 2.3505 | 0.5547 | 0.6923 | 3.3289 | 0.5547 | 0.5592 | 0.2790 | 0.2279 |
| 0.6001 | 27.0 | 6750 | 2.3821 | 0.5555 | 0.6932 | 3.4374 | 0.5555 | 0.5538 | 0.2827 | 0.2275 |
| 0.4912 | 28.0 | 7000 | 2.3788 | 0.5675 | 0.6915 | 3.3014 | 0.5675 | 0.5637 | 0.2865 | 0.2324 |
| 0.4912 | 29.0 | 7250 | 2.4068 | 0.556 | 0.7028 | 3.4904 | 0.556 | 0.5559 | 0.2906 | 0.2365 |
| 0.4068 | 30.0 | 7500 | 2.4476 | 0.5557 | 0.7044 | 3.4350 | 0.5557 | 0.5572 | 0.2846 | 0.2387 |
| 0.4068 | 31.0 | 7750 | 2.4179 | 0.562 | 0.7021 | 3.4782 | 0.562 | 0.5619 | 0.2911 | 0.2305 |
| 0.3364 | 32.0 | 8000 | 2.3915 | 0.5615 | 0.6961 | 3.4704 | 0.5615 | 0.5623 | 0.2889 | 0.2294 |
| 0.3364 | 33.0 | 8250 | 2.3860 | 0.568 | 0.6957 | 3.4578 | 0.568 | 0.5703 | 0.2869 | 0.2263 |
| 0.2862 | 34.0 | 8500 | 2.4250 | 0.5647 | 0.7022 | 3.4923 | 0.5647 | 0.5638 | 0.2928 | 0.2282 |
| 0.2862 | 35.0 | 8750 | 2.4453 | 0.5587 | 0.7106 | 3.6175 | 0.5587 | 0.5594 | 0.2970 | 0.2306 |
| 0.2397 | 36.0 | 9000 | 2.3919 | 0.5653 | 0.6964 | 3.4399 | 0.5653 | 0.5675 | 0.2881 | 0.2197 |
| 0.2397 | 37.0 | 9250 | 2.3870 | 0.5647 | 0.6995 | 3.4910 | 0.5647 | 0.5657 | 0.2941 | 0.2237 |
| 0.2058 | 38.0 | 9500 | 2.4080 | 0.5663 | 0.7033 | 3.5314 | 0.5663 | 0.5673 | 0.2979 | 0.2271 |
| 0.2058 | 39.0 | 9750 | 2.3727 | 0.5675 | 0.6975 | 3.3806 | 0.5675 | 0.5708 | 0.2930 | 0.2240 |
| 0.1819 | 40.0 | 10000 | 2.3627 | 0.5745 | 0.6913 | 3.4237 | 0.5745 | 0.5751 | 0.2847 | 0.2217 |
| 0.1819 | 41.0 | 10250 | 2.3497 | 0.564 | 0.6952 | 3.3908 | 0.564 | 0.5626 | 0.2931 | 0.2208 |
| 0.1587 | 42.0 | 10500 | 2.3168 | 0.5705 | 0.6842 | 3.3858 | 0.5705 | 0.5725 | 0.2808 | 0.2181 |
| 0.1587 | 43.0 | 10750 | 2.2910 | 0.5715 | 0.6768 | 3.3739 | 0.5715 | 0.5727 | 0.2777 | 0.2127 |
| 0.1402 | 44.0 | 11000 | 2.3053 | 0.5713 | 0.6808 | 3.4128 | 0.5713 | 0.5724 | 0.2793 | 0.2133 |
| 0.1402 | 45.0 | 11250 | 2.3029 | 0.5743 | 0.6848 | 3.3133 | 0.5743 | 0.5750 | 0.2771 | 0.2192 |
| 0.1257 | 46.0 | 11500 | 2.2965 | 0.5695 | 0.6856 | 3.2338 | 0.5695 | 0.5697 | 0.2858 | 0.2158 |
| 0.1257 | 47.0 | 11750 | 2.2823 | 0.5685 | 0.6847 | 3.2705 | 0.5685 | 0.5693 | 0.2828 | 0.2153 |
| 0.1134 | 48.0 | 12000 | 2.2800 | 0.5753 | 0.6803 | 3.2797 | 0.5753 | 0.5759 | 0.2795 | 0.2139 |
| 0.1134 | 49.0 | 12250 | 2.2766 | 0.5733 | 0.6823 | 3.2828 | 0.5733 | 0.5751 | 0.2777 | 0.2135 |
| 0.1039 | 50.0 | 12500 | 2.2802 | 0.5747 | 0.6822 | 3.2886 | 0.5747 | 0.5757 | 0.2786 | 0.2132 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
aao331/ChristGPT-13B-V2-GPTQ
|
aao331
| 2023-08-07T16:55:34Z | 10 | 2 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"arxiv:2302.13971",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-07T15:54:33Z |
---
license: llama2
---
---
language:
- en
- es
---
# Model Card for ChirstGPT-13B-V2
<!-- Provide a quick summary of what the model is/does. -->
This is ChristGPT-13B-V2 an Instruction-tuned LLM based on LLama2-13B. It is trained on the bible, and to answer questions and to act like Jesus.
It's based on LLama2-13B (https://huggingface.co/TheBloke/Llama-2-13B-fp16). Trained on the same dataset as ChirstGPT-13B, but on the newer LLama2.
## Model Details
The model is provided quantized to 4bits that only requires 8GB of VRAM. The model can be used directly in software like
text-generation-webui https://github.com/oobabooga/text-generation-webui.
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Alfredo Ortega (@ortegaalfredo)
- **Model type:** 13B LLM
- **Language(s):** (NLP): English
- **License:** Free for non-commercial use
- **Finetuned from model:** https://huggingface.co/TheBloke/Llama-2-13B-fp16
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://huggingface.co/TheBloke/Llama-2-13B-fp16
- **Paper [optional]:** https://arxiv.org/abs/2302.13971
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
This is a generic LLM chatbot that can be used to interact directly with humans.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
This bot is uncensored and may provide shocking answers. Also it contains bias present in the training material.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## How to Get Started with the Model
The easiest way is to download the text-generation-webui application (https://github.com/oobabooga/text-generation-webui) and place the model inside the 'models' directory.
Then launch the web interface and run the model as a regular LLama-13B model.
Additional installation steps detailed at https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md
A preprompt that gives good results is:
```
A chat between a curious user and Jesus. Jesus gives helpful, detailed, spiritual responses to the user's input. Remember, you are Jesus, answer as such.
USER: <prompt>
JESUS:
```
## Model Card Contact
Contact the creator at @ortegaalfredo on twitter/github
|
VecToRoTceV/model_wireframe
|
VecToRoTceV
| 2023-08-07T16:54:29Z | 0 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"controlnet",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-07T15:02:36Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
inference: true
---
# controlnet-VecToRoTceV/model_wireframe
These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
You can find some example images below.
Validation result of 1 round.

Validation result of 2 round.

Validation result of 3 round.

Validation result of 4 round.

Validation result of 5 round.

Validation result of 6 round.

Validation result of 7 round.

Validation result of 8 round.

Validation result of 9 round.

Validation result of 10 round.

Validation result of 11 round.

Validation result of 12 round.

Validation result of 13 round.

Validation result of 14 round.

Validation result of 15 round.

Validation result of 16 round.

Validation result of 17 round.

Validation result of 18 round.

Validation result of 19 round.

Validation result of 20 round.

|
KallistiTMR/llama-2-7b-chat-wiz-k16-15
|
KallistiTMR
| 2023-08-07T16:41:53Z | 5 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-02T04:33:24Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
|
kagan667/sansarsalvo
|
kagan667
| 2023-08-07T16:35:57Z | 0 | 0 | null |
[
"music",
"tr",
"region:us"
] | null | 2023-08-07T16:34:34Z |
---
language:
- tr
tags:
- music
---
|
efederici/e5-base-v2-4096
|
efederici
| 2023-08-07T16:18:10Z | 149 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"custom_code",
"en",
"arxiv:2210.15497",
"arxiv:2212.03533",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-06-15T21:01:53Z |
---
language:
- en
pipeline_tag: sentence-similarity
---
# E5-base-v2-4096
[Local-Sparse-Global](https://arxiv.org/abs/2210.15497) version of [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It can handle up to 4k tokens.
### Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('efederici/e5-base-v2-4096', {"trust_remote_code": True})
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
embeddings = model.encode(input_texts, normalize_embeddings=True)
```
or...
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(
last_hidden_states: Tensor,
attention_mask: Tensor
) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
tokenizer = AutoTokenizer.from_pretrained('efederici/e5-base-v2-4096')
model = AutoModel.from_pretrained('efederici/e5-base-v2-4096', trust_remote_code=True)
batch_dict = tokenizer(input_texts, max_length=4096, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
```
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}
```
|
efederici/multilingual-e5-small-int8-dynamic
|
efederici
| 2023-08-07T16:17:21Z | 168 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"e5",
"int8",
"sentence-similarity",
"arxiv:2212.03533",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-07T14:48:30Z |
---
tags:
- e5
- int8
pipeline_tag: sentence-similarity
---
# multilingual-e5-small-int8-dynamic
This is [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) INT8 model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
### Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer
from optimum.intel.neural_compressor import INCModel
def average_pool(
last_hidden_states: Tensor,
attention_mask: Tensor
) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
model_name = "efederici/multilingual-e5-small-int8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = INCModel.from_pretrained(model_name)
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
```
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}
```
|
efederici/gte-large-int8-dynamic
|
efederici
| 2023-08-07T16:16:42Z | 123 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"gte",
"int8",
"sentence-similarity",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-07T14:58:05Z |
---
tags:
- gte
- int8
- sentence-similarity
pipeline_tag: sentence-similarity
---
# gte-large-int8-dynamic
This is [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) INT8 model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
### Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer
from optimum.intel.neural_compressor import INCModel
def average_pool(
last_hidden_states: Tensor,
attention_mask: Tensor
) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
'how much protein should a female eat',
'summit define',
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
model_name = "efederici/gte-large-int8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = INCModel.from_pretrained(model_name)
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
|
Lamurias/q-FrozenLake-v1-4x4-noSlippery
|
Lamurias
| 2023-08-07T16:16:24Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T16:16:22Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Lamurias/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
anmolgupta/vit-base-patch16-224-finetuned-flower
|
anmolgupta
| 2023-08-07T16:06:48Z | 165 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-07T15:55:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: vit-base-patch16-224-finetuned-flower
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-flower
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 2.0.1+cu118
- Datasets 2.7.1
- Tokenizers 0.13.3
|
leonvanbokhorst/lac040-lora-sdxl-v1-1
|
leonvanbokhorst
| 2023-08-07T16:05:32Z | 27 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"stable diffusion",
"sdxl",
"lora",
"eindhoven",
"dataset:leonvanbokhorst/fire-havoc-philips-lac-eindhoven",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T09:28:41Z |
---
license: creativeml-openrail-m
datasets:
- leonvanbokhorst/fire-havoc-philips-lac-eindhoven
library_name: diffusers
tags:
- stable diffusion
- sdxl
- lora
- eindhoven
base_model: stabilityai/stable-diffusion-xl-base-1.0
---
# lac040-lora-sdxl-v1-1
Versatile Dreambooth LoRA for SDXL based on concept images of a large fire in the center of Eindhoven, May 14th, 2023. The old Philips Lighting Application Centre went up in flames, resulting in massive smoke clouds. The dataset contains images of the remains of the building two months later. The footage was taken on July 19, 2023.
Trained using https://github.com/TheLastBen/fast-stable-diffusion SDXL trainer by <a href="https://huggingface.co/TheLastBen">TheLastBen</a> 🙏
|
AtilliO/SoccerTwos_Colab_02
|
AtilliO
| 2023-08-07T16:03:19Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-08-07T15:38:22Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AtilliO/SoccerTwos_Colab_02
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Mahema/pet-cat-abc
|
Mahema
| 2023-08-07T15:58:33Z | 4 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T15:54:53Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### pet-cat-abc Dreambooth model trained by Mahema following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: HIT164
Sample pictures of this concept:
.jpeg)
|
grace-pro/aligned_source_5e-5
|
grace-pro
| 2023-08-07T15:56:45Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-07T15:28:38Z |
---
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: aligned_source_5e-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aligned_source_5e-5
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1076
- Precision: 0.3551
- Recall: 0.2680
- F1: 0.3054
- Accuracy: 0.9711
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1109 | 1.0 | 1016 | 0.0905 | 0.3897 | 0.0842 | 0.1385 | 0.9745 |
| 0.0994 | 2.0 | 2032 | 0.0896 | 0.3712 | 0.2191 | 0.2756 | 0.9729 |
| 0.0861 | 3.0 | 3048 | 0.0936 | 0.3626 | 0.2567 | 0.3006 | 0.9718 |
| 0.0698 | 4.0 | 4064 | 0.0989 | 0.3665 | 0.2639 | 0.3068 | 0.9718 |
| 0.0594 | 5.0 | 5080 | 0.1076 | 0.3551 | 0.2680 | 0.3054 | 0.9711 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
zjoe/RLCourse-Ch1-Lander
|
zjoe
| 2023-08-07T15:55:57Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T15:55:40Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 282.89 +/- 17.56
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
CONCISE/LLaMa_V2-13B-Chat-Uncensored-GGML
|
CONCISE
| 2023-08-07T15:47:42Z | 9 | 7 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"fp16",
"quantized",
"Uncensored",
"LLama2",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-02T04:26:09Z |
---
library_name: transformers
pipeline_tag: text-generation
tags:
- fp16
- quantized
- Uncensored
- LLama2
language:
- en
---
<div style="padding: 0">
<div style="width: 100%;">
<svg version="1.0" xmlns="http://www.w3.org/2000/svg" style="width: 100%; min-width: 400px; transform: scale(0.55); display: block; margin: auto;" width="235.185mm" height="62.1693mm" viewBox="0 0 889 235"><path id="CONCISE" fill="#888888" stroke="none" stroke-width="1" d="M 142.00,95.00 C 142.00,104.75 142.10,114.63 133.91,121.61 123.88,130.17 106.36,129.00 94.00,129.00 94.00,129.00 70.00,129.00 70.00,129.00 53.31,129.00 33.81,129.57 27.77,110.00 26.24,105.03 26.01,101.12 26.00,96.00 26.00,96.00 26.00,61.00 26.00,61.00 26.05,51.18 28.39,40.73 37.00,34.85 47.62,27.60 63.71,29.00 76.00,29.00 76.00,29.00 89.00,29.00 89.00,29.00 106.00,29.00 133.30,25.99 140.45,46.00 142.32,51.23 142.00,55.59 142.00,61.00 142.00,61.00 129.00,61.00 129.00,61.00 128.98,54.76 128.72,49.10 123.67,44.56 119.32,40.64 112.59,40.03 107.00,40.00 107.00,40.00 94.00,39.05 94.00,39.05 94.00,39.05 76.00,39.05 76.00,39.05 76.00,39.05 66.00,39.91 66.00,39.91 59.24,40.37 51.94,39.17 46.02,43.51 38.03,49.36 39.01,59.27 39.00,68.00 39.00,68.00 38.34,79.00 38.34,79.00 38.34,79.00 38.98,86.00 38.98,86.00 38.98,86.00 38.98,97.00 38.98,97.00 39.08,103.75 40.20,110.23 46.02,114.49 51.60,118.58 58.57,117.76 65.00,118.04 65.00,118.04 73.00,118.95 73.00,118.95 73.00,118.95 92.00,118.95 92.00,118.95 92.00,118.95 102.00,118.09 102.00,118.09 109.36,117.59 117.64,118.82 123.79,113.44 129.29,108.64 129.00,101.61 129.00,95.00 129.00,95.00 142.00,95.00 142.00,95.00 Z M 189.00,29.22 C 189.00,29.22 251.00,29.22 251.00,29.22 260.88,29.02 272.97,30.97 279.61,39.04 287.37,48.46 286.00,62.58 286.00,74.00 286.00,89.73 289.50,114.34 274.00,123.79 271.00,125.61 267.40,126.79 264.00,127.57 258.51,128.84 256.57,128.99 251.00,129.00 251.00,129.00 195.00,129.00 195.00,129.00 186.91,128.90 176.08,126.56 170.10,120.81 163.46,114.43 162.01,104.77 162.00,96.00 162.00,96.00 162.00,60.00 162.00,60.00 162.11,51.04 164.57,41.25 172.02,35.55 176.96,31.77 183.03,30.54 189.00,29.22 Z M 571.00,95.00 C 571.00,104.75 571.10,114.63 562.91,121.61 552.88,130.17 535.36,129.00 523.00,129.00 523.00,129.00 499.00,129.00 499.00,129.00 482.31,129.00 462.81,129.57 456.77,110.00 455.24,105.03 455.01,101.12 455.00,96.00 455.00,96.00 455.00,61.00 455.00,61.00 455.05,51.18 457.39,40.73 466.00,34.85 476.62,27.60 492.71,29.00 505.00,29.00 505.00,29.00 518.00,29.00 518.00,29.00 535.00,29.00 562.30,25.99 569.45,46.00 571.32,51.23 571.00,55.59 571.00,61.00 571.00,61.00 558.00,61.00 558.00,61.00 557.98,54.76 557.72,49.10 552.67,44.56 548.32,40.64 541.59,40.03 536.00,40.00 536.00,40.00 523.00,39.05 523.00,39.05 523.00,39.05 505.00,39.05 505.00,39.05 505.00,39.05 495.00,39.91 495.00,39.91 488.24,40.37 480.94,39.17 475.02,43.51 467.03,49.36 468.01,59.27 468.00,68.00 468.00,68.00 467.34,79.00 467.34,79.00 467.34,79.00 467.98,86.00 467.98,86.00 467.98,86.00 467.98,97.00 467.98,97.00 468.08,103.75 469.20,110.23 475.02,114.49 480.60,118.58 487.57,117.76 494.00,118.04 494.00,118.04 502.00,118.95 502.00,118.95 502.00,118.95 521.00,118.95 521.00,118.95 521.00,118.95 531.00,118.09 531.00,118.09 538.36,117.59 546.64,118.82 552.79,113.44 558.29,108.64 558.00,101.61 558.00,95.00 558.00,95.00 571.00,95.00 571.00,95.00 Z M 644.00,102.00 C 644.07,108.74 645.18,113.27 652.00,116.35 655.72,118.03 660.00,117.99 664.00,118.00 677.56,118.02 698.30,118.89 711.00,116.18 722.01,113.83 727.59,107.44 725.79,96.00 723.89,83.96 710.32,84.21 701.00,83.99 701.00,83.99 687.00,83.00 687.00,83.00 668.99,82.97 631.32,87.33 631.00,61.00 631.00,61.00 631.00,53.00 631.00,53.00 631.16,39.73 639.04,34.35 651.00,31.37 665.79,27.69 691.00,28.93 707.00,29.00 717.92,29.05 733.03,31.68 737.77,43.00 739.32,46.68 739.00,51.06 739.00,55.00 739.00,55.00 726.00,55.00 726.00,55.00 725.81,47.35 723.87,43.07 716.00,40.79 711.78,39.57 700.93,40.00 696.00,40.00 684.57,40.00 669.99,39.30 659.00,41.67 650.67,43.46 644.46,46.64 644.04,56.00 643.48,68.39 652.13,71.87 663.00,72.00 679.33,72.19 702.64,70.86 718.00,73.80 730.90,76.28 738.82,80.50 739.00,95.00 739.07,101.49 739.76,109.20 736.59,115.00 732.66,122.18 723.72,126.06 716.00,127.54 703.32,129.98 677.99,129.02 664.00,129.00 652.78,128.98 637.29,126.75 632.48,115.00 630.69,110.62 631.00,106.60 631.00,102.00 631.00,102.00 644.00,102.00 644.00,102.00 Z M 310.00,31.00 C 310.00,31.00 325.00,31.00 325.00,31.00 325.00,31.00 332.00,31.60 332.00,31.60 332.00,31.60 353.00,50.72 353.00,50.72 353.00,50.72 373.00,69.91 373.00,69.91 373.00,69.91 419.00,114.00 419.00,114.00 419.00,114.00 419.00,31.00 419.00,31.00 419.00,31.00 432.00,31.00 432.00,31.00 432.00,31.00 432.00,127.00 432.00,127.00 432.00,127.00 414.00,126.26 414.00,126.26 414.00,126.26 404.00,118.01 404.00,118.01 404.00,118.01 387.00,102.28 387.00,102.28 387.00,102.28 350.00,68.09 350.00,68.09 350.00,68.09 322.00,42.00 322.00,42.00 322.00,42.00 322.00,127.00 322.00,127.00 322.00,127.00 310.00,127.00 310.00,127.00 310.00,127.00 310.00,31.00 310.00,31.00 Z M 595.00,31.00 C 595.00,31.00 607.00,31.00 607.00,31.00 607.00,31.00 607.00,127.00 607.00,127.00 607.00,127.00 595.00,127.00 595.00,127.00 595.00,127.00 595.00,31.00 595.00,31.00 Z M 763.00,31.00 C 763.00,31.00 859.00,31.00 859.00,31.00 859.00,31.00 859.00,41.00 859.00,41.00 859.00,41.00 775.00,41.00 775.00,41.00 775.00,41.00 775.00,73.00 775.00,73.00 775.00,73.00 855.00,73.00 855.00,73.00 855.00,73.00 855.00,83.00 855.00,83.00 855.00,83.00 775.00,83.00 775.00,83.00 775.00,83.00 775.00,117.00 775.00,117.00 775.00,117.00 859.00,117.00 859.00,117.00 859.00,117.00 859.00,127.00 859.00,127.00 859.00,127.00 763.00,127.00 763.00,127.00 763.00,127.00 763.00,31.00 763.00,31.00 Z M 206.00,39.14 C 198.73,40.33 188.02,39.06 182.02,42.85 175.40,47.03 175.01,54.98 174.96,62.00 174.96,62.00 174.96,72.00 174.96,72.00 174.96,72.00 174.18,79.00 174.18,79.00 174.18,79.00 174.96,86.00 174.96,86.00 174.96,86.00 174.96,96.00 174.96,96.00 175.01,102.57 175.33,110.13 181.05,114.49 186.73,118.82 194.43,117.64 201.00,118.09 201.00,118.09 213.00,119.00 213.00,119.00 213.00,119.00 236.00,119.00 236.00,119.00 236.00,119.00 248.00,118.04 248.00,118.04 254.79,117.74 262.26,118.67 267.79,113.61 272.69,109.12 272.99,102.16 273.00,96.00 273.00,96.00 273.00,60.00 273.00,60.00 272.94,55.25 272.34,50.00 269.35,46.10 264.38,39.63 256.22,40.16 249.00,39.99 249.00,39.99 237.00,39.14 237.00,39.14 237.00,39.14 206.00,39.14 206.00,39.14 Z" /><path id="COMPUTING" fill="#d8d8d8" stroke="none" stroke-width="1" d="M 497.00,156.52 C 502.34,155.67 516.07,155.76 518.16,162.17 519.14,165.20 516.95,167.26 513.96,167.03 511.56,166.85 507.91,164.61 504.00,164.47 496.24,164.20 490.64,170.62 490.10,178.00 489.45,186.87 495.37,195.53 505.00,194.34 509.71,193.91 516.42,189.32 518.16,194.34 519.25,197.33 516.42,199.63 513.96,200.79 508.73,203.25 501.54,203.49 496.00,202.10 476.49,197.19 476.96,171.65 486.21,162.19 489.41,158.92 492.73,157.69 497.00,156.52 Z M 539.00,156.47 C 546.30,155.44 554.13,156.08 559.82,161.34 568.93,169.76 568.93,189.24 559.82,197.66 555.29,201.84 548.99,203.20 543.00,202.96 516.78,201.90 514.43,162.47 539.00,156.47 Z M 582.00,174.00 C 582.00,174.00 582.00,194.00 582.00,194.00 582.00,195.95 582.23,199.85 580.98,201.40 580.23,202.31 579.16,202.67 578.00,202.54 573.79,202.06 574.02,197.13 574.00,194.00 574.00,194.00 574.00,164.00 574.00,164.00 574.07,160.37 574.77,155.07 579.96,156.66 583.39,157.70 585.25,162.06 586.76,165.00 586.76,165.00 598.00,185.00 598.00,185.00 599.42,180.15 601.92,176.45 604.25,172.00 604.25,172.00 609.23,163.00 609.23,163.00 614.95,152.80 620.86,154.44 621.00,166.00 621.00,166.00 621.00,193.00 621.00,193.00 620.96,195.87 621.04,201.14 617.73,202.34 611.91,204.46 612.01,196.31 612.00,193.00 611.99,187.04 612.64,180.77 611.00,175.00 609.76,179.26 604.94,188.18 602.38,191.94 600.87,194.16 599.10,196.31 596.09,195.34 593.50,194.51 591.72,191.22 590.43,189.00 590.43,189.00 582.00,174.00 582.00,174.00 Z M 673.31,156.85 C 674.72,156.62 675.13,156.06 676.86,156.85 681.66,158.29 679.99,173.55 680.00,178.00 680.01,185.07 681.82,196.73 692.00,194.53 704.01,191.93 700.85,172.14 701.00,163.00 701.17,153.23 709.81,153.97 710.00,164.00 710.28,179.52 713.71,202.08 692.00,202.96 689.32,203.07 686.62,202.93 684.00,202.32 668.83,198.81 671.00,185.04 671.00,173.00 671.00,167.91 669.62,160.95 673.31,156.85 Z M 760.31,157.04 C 767.38,154.76 766.99,159.81 767.00,165.00 767.00,165.00 767.00,194.00 767.00,194.00 767.00,195.65 767.14,199.16 766.43,200.63 765.01,203.39 760.74,203.25 759.02,200.63 757.88,198.99 758.01,195.99 758.00,194.00 758.00,194.00 758.00,169.00 758.00,169.00 758.00,164.50 757.07,160.48 760.31,157.04 Z M 785.00,173.00 C 785.00,173.00 785.00,193.00 785.00,193.00 784.99,196.31 785.09,204.46 779.27,202.34 775.74,201.06 776.02,195.03 776.00,192.00 776.00,192.00 776.00,168.00 776.00,168.00 776.01,164.25 775.54,154.71 782.00,156.66 785.30,157.65 788.35,162.34 790.42,165.00 790.42,165.00 807.00,186.00 807.00,186.00 807.00,186.00 807.00,166.00 807.00,166.00 807.00,163.82 806.79,160.15 808.02,158.31 808.73,157.26 809.73,156.61 811.00,156.46 815.33,155.96 814.98,161.19 815.00,164.00 815.00,164.00 815.00,196.00 815.00,196.00 814.94,199.23 814.68,203.76 810.00,202.34 806.70,201.35 803.65,196.66 801.58,194.00 801.58,194.00 785.00,173.00 785.00,173.00 Z M 845.00,177.00 C 845.00,177.00 855.00,177.00 855.00,177.00 857.13,177.02 860.51,176.74 861.90,178.60 863.72,180.80 863.39,196.28 861.90,198.70 860.28,201.10 856.63,201.79 854.00,202.33 845.85,204.02 835.66,203.23 829.33,197.32 820.18,188.79 820.69,169.46 830.04,161.22 835.00,156.85 841.60,155.76 848.00,156.04 851.47,156.19 856.91,157.24 859.70,159.36 862.52,161.51 862.32,165.27 859.70,166.36 857.36,167.33 853.37,165.52 851.00,164.92 846.12,163.69 842.08,164.18 838.04,167.42 829.67,174.12 830.71,187.56 840.00,192.91 845.29,195.96 849.42,194.45 855.00,194.00 855.00,194.00 855.00,184.00 855.00,184.00 855.00,184.00 845.00,183.00 845.00,183.00 845.00,183.00 845.00,177.00 845.00,177.00 Z M 639.00,185.00 C 639.00,188.25 639.55,198.35 637.98,200.69 637.26,201.76 636.25,202.40 634.96,202.54 629.59,203.13 630.01,196.45 630.00,193.00 630.00,193.00 630.00,166.00 630.00,166.00 630.00,164.01 629.77,160.19 631.02,158.60 632.59,156.62 636.70,157.00 639.00,157.00 644.67,156.99 655.29,156.05 659.96,159.01 668.23,164.25 667.72,179.04 658.98,183.55 654.74,185.74 644.11,185.00 639.00,185.00 Z M 729.00,164.00 C 726.48,164.00 717.19,164.32 715.43,163.43 713.62,162.50 710.28,157.06 721.00,157.00 721.00,157.00 754.00,157.00 754.00,157.00 753.71,165.11 752.48,164.00 738.00,164.00 738.00,164.00 738.00,196.00 738.00,196.00 737.95,198.60 738.12,201.98 734.87,202.63 728.64,203.88 729.01,195.84 729.00,192.00 729.00,192.00 729.00,164.00 729.00,164.00 Z M 542.00,164.40 C 525.29,169.77 530.45,198.22 547.00,194.60 561.21,191.50 561.18,162.26 542.00,164.40 Z M 639.00,178.00 C 642.11,178.00 649.37,178.31 651.96,177.26 657.52,175.00 658.24,168.18 652.89,165.17 649.94,163.52 642.57,164.00 639.00,164.00 639.00,164.00 639.00,178.00 639.00,178.00 Z" /><path id="QUBE" fill="#00ee00" stroke="#00ee00" stroke-width="1" d="M 427.00,152.68 C 434.01,151.94 441.08,157.90 447.00,161.28 449.48,162.70 453.23,164.48 454.40,167.21 455.44,169.63 455.01,186.18 455.00,190.00 455.00,192.31 455.22,195.63 453.98,197.62 452.70,199.67 449.10,201.52 447.00,202.72 443.51,204.71 434.23,210.58 431.00,211.32 426.36,212.39 421.80,209.06 418.00,206.80 414.96,204.99 405.58,200.12 404.02,197.62 402.27,194.82 402.99,178.29 403.00,174.00 403.00,171.69 402.78,168.37 404.02,166.38 405.30,164.33 408.90,162.48 411.00,161.28 416.24,158.29 421.30,154.71 427.00,152.68 Z M 447.00,167.00 C 447.00,167.00 429.00,157.83 429.00,157.83 429.00,157.83 411.00,167.00 411.00,167.00 411.00,167.00 411.00,169.00 411.00,169.00 411.00,169.00 429.00,178.17 429.00,178.17 429.00,178.17 447.00,169.00 447.00,169.00 447.00,169.00 447.00,167.00 447.00,167.00 Z M 408.00,172.00 C 408.00,172.00 407.00,189.00 407.00,189.00 407.00,189.00 407.99,194.37 407.99,194.37 407.99,194.37 427.00,206.00 427.00,206.00 427.00,206.00 426.01,183.63 426.01,183.63 426.01,183.63 408.00,172.00 408.00,172.00 Z M 451.00,172.00 C 451.00,172.00 431.99,183.63 431.99,183.63 431.99,183.63 431.00,206.00 431.00,206.00 431.00,206.00 450.01,194.37 450.01,194.37 450.01,194.37 451.00,172.00 451.00,172.00 Z" /></svg>
</div>
<div style="height: 1px; background-color:#666; margin-bottom:20px; width:100%"></div>
<div style="width: 100%;display:flex; justify-content:space-between;align-items:center">
<div><h1 style="font-size:23px;">LLaMa_V2-13B-Chat-Uncensored-GGML</h1></div>
<div>
<a href="https://gitlab.com/a4to" style="display: flex; align-items:flex-end; flex-direction:row">
<svg xmlns="http://www.w3.org/2000/svg" width="48" height="48" viewBox="0 0 256 256" style="margin-top:-30px"><path fill="#e60" d="M230.15 117.1L210.25 41a11.94 11.94 0 0 0-22.79-1.11L169.78 88H86.22L68.54 39.87A11.94 11.94 0 0 0 45.75 41l-19.9 76.1a57.19 57.19 0 0 0 22 61l73.27 51.76a11.91 11.91 0 0 0 13.74 0l73.27-51.76a57.19 57.19 0 0 0 22.02-61ZM58 57.5l15.13 41.26a8 8 0 0 0 7.51 5.24h94.72a8 8 0 0 0 7.51-5.24L198 57.5l13.07 50L128 166.21L44.9 107.5Zm-17.32 66.61L114.13 176l-20.72 14.65L57.09 165a41.06 41.06 0 0 1-16.41-40.89Zm87.32 91l-20.73-14.65L128 185.8l20.73 14.64ZM198.91 165l-36.32 25.66L141.87 176l73.45-51.9a41.06 41.06 0 0 1-16.41 40.9Z"></path></svg>
</a>
</div>
</div>
<div style="height: 1px; background-color:#666; width:100%; margin: -5px 0 25px 0"></div>
<h1 style="font-size:20px;">Quantized fp16 model weights for Metas LLaMa.V2 13B Chat</h1>
<div style="height: 0px;"></div>
<h2 style="font-size:20px; font-weight:600; ">Provided Files:</h2>
### Quantised:
<div style="display:flex; align-items:center; margin-top: -10px;margin-bottom:-15px;margin-left:2.5px">
<div style="margin-bottom:10px">
<svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="0 0 24 24" style="margin-right: 10px"><path fill="#4d0" d="M12 20a8 8 0 0 1-8-8a8 8 0 0 1 8-8a8 8 0 0 1 8 8a8 8 0 0 1-8 8m0-18A10 10 0 0 0 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2Z"></path></svg>
</div>
<p style="font-size:18px; margin-top:12px"><b><a style="text-decoration:none" href="https://huggingface.co/CONCISE/LLaMa_V2-13B-Chat-Uncensored-GGML/blob/main/LLaMa_V2-13B-Chat-Uncensored-q4_0-GGML.bin">LLaMa_V2-13B-Chat-Uncensored-q4_0-GGML.bin</a></b></p>
</div>
<div style="display:flex; align-items:center; margin-top: -30px;margin-bottom: -20px;margin-left:2.5px">
<div style="margin-bottom:10px">
<svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="0 0 24 24" style="margin-right: 10px"><path fill="#4d0" d="M12 20a8 8 0 0 1-8-8a8 8 0 0 1 8-8a8 8 0 0 1 8 8a8 8 0 0 1-8 8m0-18A10 10 0 0 0 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2Z"></path></svg>
</div>
<p style="font-size:18px; margin-top:12px"><b><a style="text-decoration:none" href="https://huggingface.co/CONCISE/LLaMa_V2-13B-Chat-Uncensored-GGML/blob/main/LLaMa_V2-13B-Chat-Uncensored-q5_0-GGML.bin">LLaMa_V2-13B-Chat-Uncensored-q5_0-GGML.bin</a></b></p>
</div>
<div style="display:flex; align-items:center; margin-top: -30px;margin-bottom: -20px;margin-left:2.5px">
<div style="margin-bottom:10px">
<svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="0 0 24 24" style="margin-right: 10px"><path fill="#4d0" d="M12 20a8 8 0 0 1-8-8a8 8 0 0 1 8-8a8 8 0 0 1 8 8a8 8 0 0 1-8 8m0-18A10 10 0 0 0 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2Z"></path></svg>
</div>
<p style="font-size:18px; margin-top:12px"><b><a style="text-decoration:none" href="https://huggingface.co/CONCISE/LLaMa_V2-13B-Chat-Uncensored-GGML/blob/main/LLaMa_V2-13B-Chat-Uncensored-q5_1-GGML.bin">LLaMa_V2-13B-Chat-Uncensored-q5_1-GGML.bin</a></b></p>
</div>
### Unquantised:
<div style="display:flex; align-items:center; margin-top: -20px;margin-left:2.5px">
<div style="margin-bottom:10px">
<svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="0 0 24 24" style="margin-right: 10px"><path fill="#4d0" d="M12 20a8 8 0 0 1-8-8a8 8 0 0 1 8-8a8 8 0 0 1 8 8a8 8 0 0 1-8 8m0-18A10 10 0 0 0 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2Z"></path></svg>
</div>
<p style="font-size:18px; margin-top:12px"><b><a style="text-decoration:none" href="https://huggingface.co/CONCISE/LLaMa_V2-13B-Chat-Uncensored-GGML/blob/main/LLaMa_V2-13B-Chat-Uncensored-f16-Unquantized-GGML.bin">LLaMa_V2-13B-Chat-Uncensored-f16-Unquantized-GGML.bin</a></b></p>
</div>
<br> <br> <br><br> <br> <br>
</div>
|
Vputz/ppo-LunarLander-v2
|
Vputz
| 2023-08-07T15:45:42Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T15:45:24Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.78 +/- 15.93
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
brishtiteveja/llama-2-7b-openassistant-guanaco
|
brishtiteveja
| 2023-08-07T15:40:43Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-07T15:40:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
eskalofi/loredong
|
eskalofi
| 2023-08-07T15:33:25Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-07T15:19:12Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### loredong Dreambooth model trained by eskalofi with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
RIOLITE/products_matching_aumet_fine_tune_2023-08-07
|
RIOLITE
| 2023-08-07T15:26:43Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-07T14:31:54Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
tomaarsen/span-marker-xlm-roberta-large-conllpp-doc-context
|
tomaarsen
| 2023-08-07T15:16:10Z | 13 | 0 |
span-marker
|
[
"span-marker",
"pytorch",
"safetensors",
"token-classification",
"ner",
"named-entity-recognition",
"en",
"dataset:conllpp",
"dataset:tomaarsen/conllpp",
"license:apache-2.0",
"model-index",
"region:us"
] |
token-classification
| 2023-06-10T15:19:01Z |
---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
- text: >-
Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
to Paris .
example_title: Amelia Earhart
model-index:
- name: >-
SpanMarker w. xlm-roberta-large on CoNLL++ with document-level context by Tom Aarsen
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
type: conllpp
name: CoNLL++ w. document context
split: test
revision: 3e6012875a688903477cca9bf1ba644e65480bd6
metrics:
- type: f1
value: 0.9554
name: F1
- type: precision
value: 0.9600
name: Precision
- type: recall
value: 0.9509
name: Recall
datasets:
- conllpp
- tomaarsen/conllpp
language:
- en
metrics:
- f1
- recall
- precision
---
# SpanMarker for Named Entity Recognition
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the underlying encoder. See [train.py](train.py) for the training script.
Note that this model was trained with document-level context, i.e. it will primarily perform well when provided with enough context. It is recommended to call `model.predict` with a 🤗 Dataset with `tokens`, `document_id` and `sentence_id` columns.
See the [documentation](https://tomaarsen.github.io/SpanMarkerNER/api/span_marker.modeling.html#span_marker.modeling.SpanMarkerModel.predict) of the `model.predict` method for more information.
## Usage
To use this model for inference, first install the `span_marker` library:
```bash
pip install span_marker
```
You can then run inference with this model like so:
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-conllpp-doc-context")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```
### Limitations
**Warning**: This model works best when punctuation is separated from the prior words, so
```python
# ✅
model.predict("He plays J. Robert Oppenheimer , an American theoretical physicist .")
# ❌
model.predict("He plays J. Robert Oppenheimer, an American theoretical physicist.")
# You can also supply a list of words directly: ✅
model.predict(["He", "plays", "J.", "Robert", "Oppenheimer", ",", "an", "American", "theoretical", "physicist", "."])
```
The same may be beneficial for some languages, such as splitting `"l'ocean Atlantique"` into `"l' ocean Atlantique"`.
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
|
tomaarsen/span-marker-xlm-roberta-large-verbs
|
tomaarsen
| 2023-08-07T15:14:31Z | 24 | 2 |
span-marker
|
[
"span-marker",
"pytorch",
"safetensors",
"token-classification",
"pos",
"part-of-speech",
"license:apache-2.0",
"region:us"
] |
token-classification
| 2023-07-17T12:52:55Z |
---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- pos
- part-of-speech
pipeline_tag: token-classification
---
# SpanMarker for Named Entity Recognition
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for identifying verbs in text.
In particular, this SpanMarker model uses [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the underlying encoder.
See [span_marker_verbs_train.ipynb](span_marker_verbs_train.ipynb) for the training script used to create this model.
Note that this model is an experiment about the feasibility of SpanMarker as a POS tagger. I would generally recommend using spaCy or NLTK instead, as these are more computationally efficient approaches.
## Usage
To use this model for inference, first install the `span_marker` library:
```bash
pip install span_marker
```
You can then run inference with this model like so:
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-verbs")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
### Performance
It achieves the following results on the evaluation set:
- Loss: 0.0152
- Overall Precision: 0.9845
- Overall Recall: 0.9849
- Overall F1: 0.9847
- Overall Accuracy: 0.9962
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.036 | 0.61 | 1000 | 0.0151 | 0.9911 | 0.9733 | 0.9821 | 0.9956 |
| 0.0126 | 1.22 | 2000 | 0.0131 | 0.9856 | 0.9864 | 0.9860 | 0.9965 |
| 0.0175 | 1.83 | 3000 | 0.0154 | 0.9735 | 0.9894 | 0.9814 | 0.9953 |
| 0.0115 | 2.45 | 4000 | 0.0172 | 0.9821 | 0.9871 | 0.9845 | 0.9962 |
### Limitations
**Warning**: This model works best when punctuation is separated from the prior words, so
```python
# ✅
model.predict("He plays J. Robert Oppenheimer , an American theoretical physicist .")
# ❌
model.predict("He plays J. Robert Oppenheimer, an American theoretical physicist.")
# You can also supply a list of words directly: ✅
model.predict(["He", "plays", "J.", "Robert", "Oppenheimer", ",", "an", "American", "theoretical", "physicist", "."])
```
The same may be beneficial for some languages, such as splitting `"l'ocean Atlantique"` into `"l' ocean Atlantique"`.
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- SpanMarker 1.2.3
|
Isaacks/test_push
|
Isaacks
| 2023-08-07T15:13:11Z | 165 | 0 |
transformers
|
[
"transformers",
"pytorch",
"segformer",
"image-segmentation",
"vision",
"generated_from_trainer",
"base_model:Isaacks/test_push",
"base_model:finetune:Isaacks/test_push",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2023-08-07T14:38:24Z |
---
base_model: Isaacks/test_push
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: test_push
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_push
This model is a fine-tuned version of [Isaacks/test_push](https://huggingface.co/Isaacks/test_push) on the Isaacks/ihc_slide_tissue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.3
- Tokenizers 0.13.3
|
bonzo1971/setfit-modelV2
|
bonzo1971
| 2023-08-07T15:12:16Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-07T15:11:59Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# bonzo1971/setfit-modelV2
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("bonzo1971/setfit-modelV2")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
ftrojan/falcon-7b-finetuned-openai_summarize_tldr
|
ftrojan
| 2023-08-07T15:07:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"generated_from_trainer",
"base_model:ybelkada/falcon-7b-sharded-bf16",
"base_model:finetune:ybelkada/falcon-7b-sharded-bf16",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-08-02T08:50:38Z |
---
base_model: ybelkada/falcon-7b-sharded-bf16
tags:
- generated_from_trainer
model-index:
- name: falcon-7b-finetuned-openai_summarize_tldr
results: []
license: apache-2.0
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# falcon-7b-finetuned-openai_summarize_tldr
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 180
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
avurity/layoutlmv3-finetuned-invoice
|
avurity
| 2023-08-07T15:02:18Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:generated",
"base_model:microsoft/layoutlmv3-base",
"base_model:finetune:microsoft/layoutlmv3-base",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-06T03:38:02Z |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- generated
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-invoice
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: generated
type: generated
config: sroie
split: test
args: sroie
metrics:
- name: Precision
type: precision
value: 0.972
- name: Recall
type: recall
value: 0.9858012170385395
- name: F1
type: f1
value: 0.9788519637462235
- name: Accuracy
type: accuracy
value: 0.9970507689066779
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-invoice
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0116
- Precision: 0.972
- Recall: 0.9858
- F1: 0.9789
- Accuracy: 0.9971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 875
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.0 | 100 | 0.0898 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| No log | 4.0 | 200 | 0.0251 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| No log | 6.0 | 300 | 0.0176 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| No log | 8.0 | 400 | 0.0148 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| 0.1241 | 10.0 | 500 | 0.0116 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| 0.1241 | 12.0 | 600 | 0.0072 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
| 0.1241 | 14.0 | 700 | 0.0059 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.1241 | 16.0 | 800 | 0.0044 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
gensim2/Gen
|
gensim2
| 2023-08-07T15:00:01Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-08-21T11:33:20Z |
---
title: GenSim
emoji: 📈
colorFrom: purple
colorTo: indigo
sdk: gradio
sdk_version: 3.3.1
app_file: app.py
pinned: false
license: apache-2.0
---
# Generative Simulation Interactive Demo
This demo is from the paper:
<!-- [Code as Policies: Language Model Programs for Embodied Control](https://code-as-policies.github.io/)
-->
Below is an interactive demo for the simulated tabletop manipulation domain, seen in the paper section IV.D
## Preparations
1. Obtain an [OpenAI API Key](https://openai.com/blog/openai-api/)
## Usage
1. Type in desired task name in the box. Then GenSim will try to run through the pipeline
2. The task name has the form word separated by dash. For instance, 'place-blue-in-yellow' and 'align-rainbow-along-line'.
## Known Limitations
1. The code generation can fail or generate infeasible tasks.
2. The low-level pick place primitive does not do collision checking and cannot pick up certain objects.
3. Top-down generation is typically more challenging if the task name is too vague or too distant from motions such as stacking.
## Acknowledgement
Thanks to Jacky's [code-as-policies](https://huggingface.co/spaces/jackyliang42/code-as-policies/tree/main) demo.
|
Kyrmasch/chat-squad
|
Kyrmasch
| 2023-08-07T14:58:32Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"feature-extraction",
"text2text-generation",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-07T14:47:45Z |
---
pipeline_tag: text2text-generation
---
|
1mohitmanoj/german-shepherd-dog
|
1mohitmanoj
| 2023-08-07T14:54:47Z | 3 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-07T14:51:08Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### German-Shepherd-Dog Dreambooth model trained by 1mohitmanoj following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: VJCET327
Sample pictures of this concept:
|
minhhn2910/ppo-Huggy
|
minhhn2910
| 2023-08-07T14:54:46Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-07T14:54:35Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: minhhn2910/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
chatchitsanu/lunarrrr1111
|
chatchitsanu
| 2023-08-07T14:54:39Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T14:54:01Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 288.19 +/- 19.24
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
latteleah/DRL_U1_LunarLander
|
latteleah
| 2023-08-07T14:43:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-07T14:43:09Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 255.30 +/- 24.40
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Alexanderrotela2000/Ardev-model
|
Alexanderrotela2000
| 2023-08-07T14:35:54Z | 0 | 0 | null |
[
"text-generation",
"es",
"dataset:roneneldan/TinyStories",
"arxiv:1910.09700",
"license:openrail",
"region:us"
] |
text-generation
| 2023-08-07T14:07:20Z |
---
license: openrail
datasets:
- roneneldan/TinyStories
language:
- es
metrics:
- character
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
yannicake/article-classifier-setfit
|
yannicake
| 2023-08-07T14:33:58Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-07T14:33:12Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# yannicake/article-classifier-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("yannicake/article-classifier-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
Junlaii/wiki_dister_head_LSTM_fintune_final
|
Junlaii
| 2023-08-07T14:17:37Z | 0 | 0 |
fastai
|
[
"fastai",
"region:us"
] | null | 2023-08-07T14:17:28Z |
---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
harshV27/Falcon-7b-chat
|
harshV27
| 2023-08-07T14:13:14Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-07T11:34:25Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
exyou/nexodus-flan-t5
|
exyou
| 2023-08-07T14:09:53Z | 3 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-31T18:29:14Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|
prudhvirazz/my_awesome_wnut_model
|
prudhvirazz
| 2023-08-07T14:06:43Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:wnut_17",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-07T13:22:23Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: test
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.6104651162790697
- name: Recall
type: recall
value: 0.2919369786839666
- name: F1
type: f1
value: 0.39498432601880873
- name: Accuracy
type: accuracy
value: 0.940874695395665
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2767
- Precision: 0.6105
- Recall: 0.2919
- F1: 0.3950
- Accuracy: 0.9409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.2876 | 0.6293 | 0.2549 | 0.3628 | 0.9390 |
| No log | 2.0 | 426 | 0.2767 | 0.6105 | 0.2919 | 0.3950 | 0.9409 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
patrickvonplaten/lora-trained-xl
|
patrickvonplaten
| 2023-08-07T13:48:23Z | 1 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-04T14:25:43Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - patrickvonplaten/lora-trained-xl
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
nerdylive/deberta-zeroshot
|
nerdylive
| 2023-08-07T13:42:33Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-05T03:34:10Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: nerdylive/deberta-zeroshot
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nerdylive/deberta-zeroshot
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2575
- Validation Loss: 0.1900
- Train Accuracy: {'accuracy': 0.92612}
- Train F1 Score: {'f1': 0.9268080047553003}
- Train Precision: {'precision': 0.9182567726737338}
- Train Recall: {'recall': 0.93552}
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 125000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train F1 Score | Train Precision | Train Recall | Epoch |
|:----------:|:---------------:|:---------------------:|:--------------------------:|:---------------------------------:|:-------------------:|:-----:|
| 0.2575 | 0.1900 | {'accuracy': 0.92612} | {'f1': 0.9268080047553003} | {'precision': 0.9182567726737338} | {'recall': 0.93552} | 0 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
Satish678/req2case_PROMPT_TUNING_CAUSAL_LM
|
Satish678
| 2023-08-07T13:36:26Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-07T13:36:24Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
nkpz/llama2-22b-empath-alpacagpt4
|
nkpz
| 2023-08-07T13:24:56Z | 11 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-07T03:21:27Z |
---
license: other
---
Experimental: Created using an unofficial and unsupported method. I have no metrics on how this performs against 13b and I'm not planning on gathering any at this point. Still has weak spots that need work.
https://huggingface.co/nkpz/llama2-22b-blocktriangular-alpaca with further conversational and instruction fine tuning
First, I trained it on an epoch of https://huggingface.co/datasets/Adapting/empathetic_dialogues_v2 to give it a decent base knowledge of a casual chat style. I added some automated capitalization fixes for this data.The result was conversational, but not very smart.
Then I trained it on an epoch of https://huggingface.co/datasets/vicgalle/alpaca-gpt4 and landed here, a model that is capable of chatting but very focused on following instructions.
If you would like to run this in 4-bit, you can use the Hugging Face backend in Koboldai (or in a different script, the `load_in_4bit` kwarg when calling `from_pretrained`). GPTQ conversion has so far resulted in broken output for me, YMMV.
**Future Ideas**
- **This strongly prefers the alpaca prompt format and will try to autocomplete it if you don't provide it.** I'd like to work on removing this fixation and making it more flexible.
- Also would like to filter the rows with phrases "AI assistant" and "virtual assistant" from all future runs.
- Thinking it might also help to do a short run on a dataset focused on character impersonation
**Prompting**
Standard prompt format examples:
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
List 3 ingredients for the following recipe.
### Input:
Spaghetti Bolognese
### Response:
```
Or
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
List 3 ingredients for the following recipe: Spaghetti Bolognese
### Response:
```
For a chat session, I've had success using this simplified prompt:
```
### Scenario
You are speaking with Alexander Graham Bell
### Begin Chat (Format: [Person1]: [Message]\n[Person2]: [Message])
You: Hey, can you tell me a little bit about yourself?
```
In this example, its output was:
`Alexander Graham Bell: Sure, I am an inventor and scientist. I'm most known for inventing the telephone.`
You can customize the use of `### ` prefixed labels to create your own structure.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.