modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-26 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-26 06:26:46
card
stringlengths
11
1.01M
yanaiela/roberta-base-epoch_1
yanaiela
2022-07-29T22:41:07Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "roberta-base", "roberta-base-epoch_1", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-28T16:49:55Z
--- language: en tags: - roberta-base - roberta-base-epoch_1 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 1 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_1. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
mrm8488/q-Taxi-v3-1
mrm8488
2022-07-29T22:22:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T22:22:21Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-1 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mrm8488/q-Taxi-v3-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/zk_faye
huggingtweets
2022-07-29T22:03:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T22:01:35Z
--- language: en thumbnail: http://www.huggingtweets.com/zk_faye/1659132206531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544789753639436289/_nNZ-fpO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">❤️ ANGEL FAYE ❤️</div> <div style="text-align: center; font-size: 14px;">@zk_faye</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ❤️ ANGEL FAYE ❤️. | Data | ❤️ ANGEL FAYE ❤️ | | --- | --- | | Tweets downloaded | 422 | | Retweets | 152 | | Short tweets | 119 | | Tweets kept | 151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w29di03/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zk_faye's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1klggdh2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1klggdh2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zk_faye') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/q-Taxi-v3
mrm8488
2022-07-29T21:37:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T20:43:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mrm8488/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jungjongho/wav2vec2-large-xlsr-korean-demo-colab_epoch15
jungjongho
2022-07-29T21:25:56Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-29T16:39:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-colab_epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-colab_epoch15 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4133 - Wer: 0.3801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 16.9017 | 0.8 | 400 | 4.6273 | 1.0 | | 4.4633 | 1.6 | 800 | 4.4419 | 1.0 | | 4.2262 | 2.4 | 1200 | 3.8477 | 0.9994 | | 2.4402 | 3.21 | 1600 | 1.3564 | 0.8111 | | 1.3499 | 4.01 | 2000 | 0.9070 | 0.6664 | | 0.9922 | 4.81 | 2400 | 0.7496 | 0.6131 | | 0.8271 | 5.61 | 2800 | 0.6240 | 0.5408 | | 0.6918 | 6.41 | 3200 | 0.5506 | 0.5026 | | 0.6015 | 7.21 | 3600 | 0.5303 | 0.4935 | | 0.5435 | 8.02 | 4000 | 0.4951 | 0.4696 | | 0.4584 | 8.82 | 4400 | 0.4677 | 0.4432 | | 0.4258 | 9.62 | 4800 | 0.4602 | 0.4307 | | 0.3906 | 10.42 | 5200 | 0.4456 | 0.4195 | | 0.3481 | 11.22 | 5600 | 0.4265 | 0.4062 | | 0.3216 | 12.02 | 6000 | 0.4241 | 0.4046 | | 0.2908 | 12.83 | 6400 | 0.4106 | 0.3941 | | 0.2747 | 13.63 | 6800 | 0.4146 | 0.3855 | | 0.2633 | 14.43 | 7200 | 0.4133 | 0.3801 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jackoyoungblood/ppo-LunarLander-v2b
jackoyoungblood
2022-07-29T21:03:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T21:02:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 236.21 +/- 14.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/q-FrozenLake-v1-4x4-noSlippery
mrm8488
2022-07-29T20:38:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T20:38:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mrm8488/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
andres-hsn/q-Taxi-v3
andres-hsn
2022-07-29T17:02:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T17:02:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andres-hsn/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Datasaur/distilbert-base-uncased-finetuned-ag-news
Datasaur
2022-07-29T16:36:20Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "dataset:ag-news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-17T02:53:35Z
--- language: en license: apache-2.0 datasets: - ag-news ---
pampa/pets
pampa
2022-07-29T16:20:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-29T14:56:39Z
--- title: Pet classifier! emoji: 🐶 colorFrom: pink colorTo: blue sdk: gradio sdk_version: 2.9.4 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
kdf/python-docstring-generation
kdf
2022-07-29T15:31:02Z
6
3
transformers
[ "transformers", "pytorch", "codegen", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T11:51:57Z
--- license: apache-2.0 widget: - text: "<|endoftext|>\ndef load_excel(path):\n return pd.read_excel(path)\n# docstring\n\"\"\"" --- ## Basic info model based [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) fine-tuned with data [codeparrot/github-code-clean](https://huggingface.co/datasets/codeparrot/github-code-clean) data filter by python ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_type = 'kdf/python-docstring-generation' tokenizer = AutoTokenizer.from_pretrained(model_type) model = AutoModelForCausalLM.from_pretrained(model_type) inputs = tokenizer('''<|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ``` ## Prompt You could give model a style or a specific language, for example: ```python inputs = tokenizer('''<|endoftext|> def add(a, b): return a + b # docstring """ Calculate numbers add. Args: a: the first number to add b: the second number to add Return: The result of a + b """ <|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) inputs = tokenizer('''<|endoftext|> def add(a, b): return a + b # docstring """ 计算数字相加 Args: a: 第一个加数 b: 第二个加数 Return: 相加的结果 """ <|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ```
schnell/bert-small-juman-bpe
schnell
2022-07-29T15:15:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-26T16:12:28Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-small-juman-bpe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-juman-bpe This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.6317 - Loss: 1.7829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 768 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:------:|:--------:|:---------------:| | 2.3892 | 1.0 | 69472 | 0.5637 | 2.2498 | | 2.2219 | 2.0 | 138944 | 0.5873 | 2.0785 | | 2.1453 | 3.0 | 208416 | 0.5984 | 2.0019 | | 2.1 | 4.0 | 277888 | 0.6059 | 1.9531 | | 2.068 | 5.0 | 347360 | 0.6106 | 1.9169 | | 2.0405 | 6.0 | 416832 | 0.6146 | 1.8921 | | 2.0174 | 7.0 | 486304 | 0.6175 | 1.8711 | | 2.0002 | 8.0 | 555776 | 0.6205 | 1.8527 | | 1.9838 | 9.0 | 625248 | 0.6225 | 1.8381 | | 1.9691 | 10.0 | 694720 | 0.6248 | 1.8239 | | 1.9551 | 11.0 | 764192 | 0.6265 | 1.8125 | | 1.9406 | 12.0 | 833664 | 0.6288 | 1.8002 | | 1.9293 | 13.0 | 903136 | 0.6310 | 1.7871 | | 1.9247 | 14.0 | 972608 | 0.6317 | 1.7829 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.12.0+cu116 - Datasets 2.2.2 - Tokenizers 0.12.1
Lovesaif/bert-finetuned-squad
Lovesaif
2022-07-29T15:14:15Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-27T03:19:59Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Lovesaif/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Lovesaif/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5635 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16638, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2643 | 0 | | 0.7787 | 1 | | 0.5635 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
phjhk/hklegal-xlm-r-base-t
phjhk
2022-07-29T14:53:09Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-26T16:41:57Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [conll2003](https://huggingface.co/datasets/conll2003) dataset in English. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP) or Countries (images):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in English - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) Hong Kong Legal Information Institute [HKILL](https://www.hklii.hk/eng/) is a free, independent, non-profit document database providing the public with legal information relating to Hong Kong. We finetune the XLM-RoBERTa on the HKILL datasets. It contains docments # Uses The model is a pretrained-finetuned language model. The model can be used for document classification, Named Entity Recognition (NER), especially on legal domain. ```python >>> from transformers import pipeline,AutoTokenizer,AutoModelForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("hklegal-xlm-r-base-t") >>> model = AutoModelForTokenClassification.from_pretrained("hklegal-xlm-r-base-t") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Alya told Jasmine that Andrew could pay with cash..") ``` # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ```
phjhk/hklegal-xlm-r-large-t
phjhk
2022-07-29T14:50:13Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-26T17:14:00Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [conll2003](https://huggingface.co/datasets/conll2003) dataset in English. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP) or Countries (images):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in English - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) Hong Kong Legal Information Institute [HKILL](https://www.hklii.hk/eng/) is a free, independent, non-profit document database providing the public with legal information relating to Hong Kong. We finetune the XLM-RoBERTa on the HKILL datasets. It contains docments # Uses The model is a pretrained-finetuned language model. The model can be used for document classification, Named Entity Recognition (NER), especially on legal domain. ```python >>> from transformers import pipeline,AutoTokenizer,AutoModelForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("hklegal-xlm-r-large-t") >>> model = AutoModelForTokenClassification.from_pretrained("hklegal-xlm-r-large-t") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Alya told Jasmine that Andrew could pay with cash..") ``` # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ```
nealtao/gpt2-chinese-scifi
nealtao
2022-07-29T14:29:15Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-28T09:27:14Z
--- tags: - generated_from_keras_callback model-index: - name: nealtao/gpt2-chinese-scifi results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nealtao/gpt2-chinese-scifi This model is a fine-tuned version of [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8822 - Validation Loss: 2.9110 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0949 | 2.9731 | 0 | | 2.9607 | 2.9323 | 1 | | 2.8822 | 2.9110 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Amine007/distilgpt2-finetuned-wikitext2
Amine007
2022-07-29T14:15:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T13:24:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
platzi/platzi-bert-base-mrpc-glue-omar-espejel
platzi
2022-07-29T13:50:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T13:37:08Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-bert-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8578431372549019 - name: F1 type: f1 value: 0.8941605839416058 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-bert-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4366 - Accuracy: 0.8578 - F1: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5221 | 1.09 | 500 | 0.4366 | 0.8578 | 0.8942 | | 0.3114 | 2.18 | 1000 | 0.6581 | 0.8725 | 0.9113 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/onlythesexiest_
huggingtweets
2022-07-29T13:28:49Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T13:26:49Z
--- language: en thumbnail: http://www.huggingtweets.com/onlythesexiest_/1659101307927/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399411396140535812/UwTllUci_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Only The Sexiest 18+</div> <div style="text-align: center; font-size: 14px;">@onlythesexiest_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Only The Sexiest 18+. | Data | Only The Sexiest 18+ | | --- | --- | | Tweets downloaded | 2986 | | Retweets | 2785 | | Short tweets | 36 | | Tweets kept | 165 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3oqup13u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @onlythesexiest_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ajjfffk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ajjfffk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/onlythesexiest_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huspacy/hu_vectors_web_md
huspacy
2022-07-29T13:08:13Z
0
0
spacy
[ "spacy", "floret", "fasttext", "feature-extraction", "token-classification", "hu", "license:cc-by-sa-4.0", "model-index", "region:us" ]
token-classification
2022-07-29T12:48:29Z
--- tags: - spacy - floret - fasttext - feature-extraction - token-classification language: - hu license: cc-by-sa-4.0 model-index: - name: hu_vectors_web_md results: - task: name: Analogical questions type: token-classification metrics: - name: Accuracy type: accuracy value: 0.1010 - name: MRR type: mrr value: 0.1772 --- Hungarian word vectors for HuSpaCy. The model is trained on the Hungarian Webcorpus 2.0 using floret with the following hyperparameters: `floret cbow -dim 100 -mode floret -bucket 200000 -minn 4 -maxn 6 -minCount 100 -neg 10 -hashCount 2 -lr 0.1 -thread 30 -epoch 5` Vectors are published in fasttext and floret format. | Feature | Description | | --- | --- | | **Name** | `hu_vectors_web_lg` | | **Version** | `1.0` | | **Vectors** | 200000 keys (300 dimensions) | | **Sources** | [Hungarian Webcorpus 2.0](https://hlt.bme.hu/en/resources/webcorpus2) (Dávid Márk Nemeskey (SZTAKI-HLT)) | | **License** | `cc-by-sa-4.0` | | **Author** | [SzegedAI, MILAB](https://github.com/huspacy/huspacy) | ### Accuracy | Type | Score | | --- | --- | | `ACC` | 10.10 | | `MRR` | 0.1772 |
raisin2402/marian-finetuned-kde4-en-to-fr
raisin2402
2022-07-29T12:59:05Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-29T11:08:39Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.83113187001415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
turhancan97/dqn-SpaceInvadersNoFrameskip-v4
turhancan97
2022-07-29T12:12:16Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T12:11:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 424.00 +/- 124.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga turhancan97 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga turhancan97 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AlbertShu/Reinforce-v1
AlbertShu
2022-07-29T11:26:16Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T11:26:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v1 results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Lvxue/finetuned-mt5-small
Lvxue
2022-07-29T11:08:43Z
26
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-28T02:27:31Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: finetuned-mt5-small results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 23.6759 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-mt5-small This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 23.6759 - Gen Len: 43.6993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
AkmalAshirmatov/first_try
AkmalAshirmatov
2022-07-29T09:14:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-29T07:58:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_7_0 model-index: - name: first_try results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # first_try This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_7_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
SummerChiam/pond_image_classification_9
SummerChiam
2022-07-29T09:13:48Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-29T09:13:31Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_9 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9974489808082581 --- # pond_image_classification_9 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
RRajesh27/finetuning-sentiment-model-3000-samples
RRajesh27
2022-07-29T08:51:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T08:39:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3236 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Frikallo/vgdunkey-vgdunkeybot
Frikallo
2022-07-29T08:41:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T08:37:24Z
--- license: mit tags: - generated_from_trainer model-index: - name: vgdunkey-vgdunkeybot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vgdunkey-vgdunkeybot This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 2843356107 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
commanderstrife/distilBERT_bio_pv_superset
commanderstrife
2022-07-29T08:36:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-29T05:41:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_bio_pv_superset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_bio_pv_superset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2328 - Precision: 0.5462 - Recall: 0.5325 - F1: 0.5393 - Accuracy: 0.9495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0964 | 1.0 | 5467 | 0.1593 | 0.4625 | 0.3682 | 0.4100 | 0.9416 | | 0.1918 | 2.0 | 10934 | 0.1541 | 0.4796 | 0.4658 | 0.4726 | 0.9436 | | 0.0394 | 3.0 | 16401 | 0.1508 | 0.5349 | 0.4744 | 0.5028 | 0.9482 | | 0.1207 | 4.0 | 21868 | 0.1615 | 0.5422 | 0.4953 | 0.5177 | 0.9490 | | 0.0221 | 5.0 | 27335 | 0.1827 | 0.5377 | 0.5018 | 0.5191 | 0.9487 | | 0.0629 | 6.0 | 32802 | 0.1874 | 0.5479 | 0.5130 | 0.5299 | 0.9493 | | 0.0173 | 7.0 | 38269 | 0.2025 | 0.5388 | 0.5323 | 0.5356 | 0.9488 | | 0.2603 | 8.0 | 43736 | 0.2148 | 0.5437 | 0.5397 | 0.5417 | 0.9493 | | 0.0378 | 9.0 | 49203 | 0.2323 | 0.5430 | 0.5194 | 0.5310 | 0.9489 | | 0.031 | 10.0 | 54670 | 0.2328 | 0.5462 | 0.5325 | 0.5393 | 0.9495 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SummerChiam/pond_image_classification_7
SummerChiam
2022-07-29T08:32:46Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-29T08:32:27Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_7 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9936224222183228 --- # pond_image_classification_7 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
Frikallo/out
Frikallo
2022-07-29T08:29:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T08:00:19Z
--- license: mit tags: - generated_from_trainer model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # out This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 2370848220 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SummerChiam/pond_image_classification_6
SummerChiam
2022-07-29T08:19:54Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-29T08:19:36Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_6 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9948979616165161 --- # pond_image_classification_6 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
ParkSaeroyi/distilroberta-base-finetuned-wikitext2
ParkSaeroyi
2022-07-29T08:10:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-28T10:00:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.3687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 8.8622 | | No log | 2.0 | 12 | 8.4576 | | No log | 3.0 | 18 | 8.4412 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ilmariky/bert-base-finnish-cased-squad2-fi
ilmariky
2022-07-29T07:54:28Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "fi", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T18:27:12Z
--- language: fi datasets: - SQuAD_v2_fi + Finnish partition of TyDi-QA license: gpl-3.0 --- # bert-base-finnish-cased-v1 for QA This is the [bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model, fine-tuned using an automatically translated [Finnish version of the SQuAD2.0 dataset](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) in combination with the Finnish partition of the [TyDi-QA](https://github.com/google-research-datasets/tydiqa) dataset. It's been trained on question-answer pairs, **including unanswerable questions**, for the task of question answering. When the model classifies the question as unanswerable, it outputs "[CLS]". There is also a QA model available that does not try to identify unanswerable questions, [ bert-base-finnish-cased-squad1-fi ](https://huggingface.co/ilmariky/bert-base-finnish-cased-squad1-fi). ## Overview **Language model:** bert-base-finnish-cased-v1 **Language:** Finnish **Downstream-task:** Extractive QA **Training data:** [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA **Eval data:** [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "ilmariky/bert-base-finnish-cased-squad2-fi" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Mikä tämä on?', 'context': 'Tämä on testi.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated with a slightly modified version of the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` { "exact": 55.53157042633567, "f1": 61.869335312255835, "total": 7412, "HasAns_exact": 51.26503525508088, "HasAns_f1": 61.006950090095565, "HasAns_total": 4822, "NoAns_exact": 63.47490347490348, "NoAns_f1": 63.47490347490348, "NoAns_total": 2590 } ```
jianzhnie/a2c-v1-Walker2DBulletEnv-v0
jianzhnie
2022-07-29T06:53:25Z
3
0
stable-baselines3
[ "stable-baselines3", "tensorboard", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T06:52:47Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 21.00 +/- 3.61 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 --- # **A2C** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rhiga/ppo-lunar-lander-v2
rhiga
2022-07-29T06:46:30Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T05:42:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 249.89 +/- 15.90 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mariolinml/roberta_large-chunking_0728_v2
mariolinml
2022-07-29T05:10:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-29T04:10:55Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large-chunking_0728_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_large-chunking_0728_v2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5270 - Precision: 0.6228 - Recall: 0.6467 - F1: 0.6345 - Accuracy: 0.8153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.5667 | 0.4931 | 0.5415 | 0.5162 | 0.7397 | | No log | 2.0 | 250 | 0.4839 | 0.5484 | 0.5894 | 0.5682 | 0.7874 | | No log | 3.0 | 375 | 0.4822 | 0.5997 | 0.6341 | 0.6164 | 0.8085 | | 0.4673 | 4.0 | 500 | 0.5117 | 0.6023 | 0.6373 | 0.6193 | 0.8120 | | 0.4673 | 5.0 | 625 | 0.5270 | 0.6228 | 0.6467 | 0.6345 | 0.8153 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jianzhnie/a2c-v1-AntBulletEnv-v0
jianzhnie
2022-07-29T05:08:10Z
1
0
stable-baselines3
[ "stable-baselines3", "tensorboard", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T05:07:17Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 674.59 +/- 89.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jianzhnie/a2c-AntBulletEnv-v0
jianzhnie
2022-07-29T04:53:54Z
2
0
stable-baselines3
[ "stable-baselines3", "tensorboard", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T02:15:51Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 505.92 +/- 61.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wpolatkan/ppo-LunarLander-v2
wpolatkan
2022-07-29T04:37:44Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T04:34:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 244.25 +/- 15.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
oMateos2020/pegasus-newsroom-cnn1_50k
oMateos2020
2022-07-29T04:30:35Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-28T03:07:03Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-cnn1_50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-cnn1_50k This model is a fine-tuned version of [oMateos2020/pegasus-newsroom-cnn1_50k](https://huggingface.co/oMateos2020/pegasus-newsroom-cnn1_50k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1267 - Rouge1: 38.0081 - Rouge2: 16.5536 - Rougel: 26.4916 - Rougelsum: 35.1349 - Gen Len: 59.4912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.144 | 0.26 | 100 | 3.0323 | 38.3168 | 16.7528 | 26.2646 | 35.2447 | 66.2372 | | 3.0556 | 0.51 | 200 | 3.0351 | 38.39 | 16.8027 | 26.3412 | 35.37 | 67.4676 | | 3.0701 | 0.77 | 300 | 3.0345 | 38.5742 | 16.922 | 26.3568 | 35.51 | 68.662 | | 3.1679 | 1.03 | 400 | 3.0321 | 38.5319 | 16.8049 | 26.4933 | 35.4775 | 65.976 | | 3.1041 | 1.28 | 500 | 3.0246 | 38.1381 | 16.63 | 26.2484 | 35.0999 | 64.6896 | | 3.0352 | 1.54 | 600 | 3.0206 | 38.9063 | 17.0281 | 27.0288 | 35.9175 | 59.0668 | | 3.0894 | 1.79 | 700 | 3.0251 | 38.4461 | 16.7732 | 26.4394 | 35.4807 | 63.2792 | | 3.0529 | 2.05 | 800 | 3.0400 | 38.5088 | 16.8921 | 26.5526 | 35.5236 | 64.294 | | 3.0002 | 2.31 | 900 | 3.0394 | 38.6899 | 16.8703 | 26.6771 | 35.6207 | 62.8004 | | 3.0167 | 2.56 | 1000 | 3.0394 | 38.3532 | 16.6176 | 26.5433 | 35.3282 | 61.63 | | 3.0168 | 2.82 | 1100 | 3.0421 | 38.7613 | 17.0107 | 26.8424 | 35.7508 | 62.67 | | 3.0412 | 3.08 | 1200 | 3.0491 | 38.6132 | 16.8046 | 26.61 | 35.6002 | 61.7924 | | 3.1273 | 3.33 | 1300 | 3.0823 | 38.5498 | 16.795 | 26.5569 | 35.613 | 60.6872 | | 3.0634 | 3.59 | 1400 | 3.1010 | 38.0927 | 16.4367 | 26.2315 | 35.1311 | 59.252 | | 3.097 | 3.84 | 1500 | 3.1147 | 37.7644 | 16.3156 | 26.2674 | 34.8315 | 59.7592 | | 3.1287 | 4.1 | 1600 | 3.1267 | 38.0081 | 16.5536 | 26.4916 | 35.1349 | 59.4912 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
csmartins8/xlm-roberta-base-finetuned-panx-de
csmartins8
2022-07-29T01:51:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-21T21:14:22Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8631507160718345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - F1: 0.8632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.0 | 525 | 0.1594 | 0.8198 | | 0.125 | 2.0 | 1050 | 0.1390 | 0.8483 | | 0.08 | 3.0 | 1575 | 0.1374 | 0.8632 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
commanderstrife/ADE-Bio_ClinicalBERT-NER
commanderstrife
2022-07-29T01:39:43Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-29T01:24:29Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ADE-Bio_ClinicalBERT-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ADE-Bio_ClinicalBERT-NER This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1926 - Precision: 0.7830 - Recall: 0.8811 - F1: 0.8291 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2389 | 1.0 | 201 | 0.2100 | 0.7155 | 0.8292 | 0.7681 | 0.9263 | | 0.0648 | 2.0 | 402 | 0.1849 | 0.7716 | 0.8711 | 0.8183 | 0.9392 | | 0.2825 | 3.0 | 603 | 0.1856 | 0.7834 | 0.8788 | 0.8284 | 0.9422 | | 0.199 | 4.0 | 804 | 0.1875 | 0.7796 | 0.8781 | 0.8259 | 0.9430 | | 0.0404 | 5.0 | 1005 | 0.1926 | 0.7830 | 0.8811 | 0.8291 | 0.9437 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vikaskapur/sentimental
vikaskapur
2022-07-29T01:02:48Z
6
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T04:41:28Z
--- license: apache-2.0 --- # Model Details * The SENTIMENTAL classifier trained to predict the likelihood that a comment will be perceived as positive or negative. * BERT based Text Classification. # Intended Use * Intended to be used for a wide range of use cases such as supporting human moderation and extracting polarity of review comments. * Not intended for fully automated moderation. * Not intended to make judgments about specific individuals. # Factors * Identity terms referencing frequently positive and negative emotions. # Metrics • Accuracy, which measures the percentage of True Positive and True Negative. # Ethical Considerations * TODO # Quantitative Analyses * TODO # Training Data * TODO # Evaluation Data * TODO # Caveats and Recommendations * TODO
wmFrank/sample-factory-2-atari-pong
wmFrank
2022-07-28T23:34:27Z
4
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T23:04:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 13.50 +/- 7.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_pong type: atari_pong --- A(n) **APPO** model trained on the **atari_pong** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
espnet/Yen-Ju_Lu_l3das22_enh_train_enh_ineube_valid.loss.ave
espnet
2022-07-28T23:34:06Z
2
0
espnet
[ "espnet", "audio", "audio-to-audio", "en", "dataset:l3das22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-07-28T23:28:46Z
--- tags: - espnet - audio - audio-to-audio language: en datasets: - l3das22 license: cc-by-4.0 --- ## ESPnet2 ENH model ### `espnet/Yen-Ju_Lu_l3das22_enh_train_enh_ineube_valid.loss.ave` This model was trained by neillu23 using l3das22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 11d687844a544fcce6f6d0ce7a0a302e0e47d442 pip install -e . cd egs2/l3das22/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Yen-Ju_Lu_l3das22_enh_train_enh_ineube_valid.loss.ave ``` <!-- Generated by ./scripts/utils/show_enh_score.sh --> # RESULTS ## Environments - date: `Wed Jul 6 20:46:10 UTC 2022` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202205` - pytorch version: `pytorch 1.8.1` - Git hash: `77e36afdd3f069567dd33d4b5b997a26b634772b` - Commit date: `Fri Jun 17 18:32:56 2022 -0400` ## enh_train_enh_ineube_raw config: conf/tuning/train_enh_ineube.yaml |dataset|STOI|SAR|SDR|SIR|SI_SNR|WER|STOI|TASK 1 METRIC| |---|---|---|---|---|---|---|---|---| |enhanced_dev_multich|95.62|15.00|15.00|0.00|13.64|5.93|0.956|0.948| |enhanced_test_multich|95.70|14.59|14.59|0.00|13.34|4.85|0.957|0.954| ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_ineube.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_ineube_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 3 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 50409 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 20 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 15 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 32000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_multich/wav.scp - speech_mix - sound - - dump/raw/train_multich/spk1.scp - speech_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dev_multich/wav.scp - speech_mix - sound - - dump/raw/dev_multich/spk1.scp - speech_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 1.0e-07 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 20 init: xavier_uniform model_conf: stft_consistency: false loss_type: mask_mse mask_type: null criterions: - name: snr conf: {} wrapper: fixed_order wrapper_conf: weight: 1.0 use_preprocessor: false speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 use_reverberant_ref: false num_spk: 1 num_noise_type: 1 sample_rate: 8000 force_single_channel: false encoder: same encoder_conf: {} separator: ineube separator_conf: n_fft: 512 stride: 128 window: hann mic_channels: 8 decoder: same decoder_conf: {} mask_module: multi_mask mask_module_conf: {} required: - output_dir version: '202205' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{ESPnet-SE, author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, pages = {785--792}, publisher = {{IEEE}}, year = {2021}, url = {https://doi.org/10.1109/SLT48900.2021.9383615}, doi = {10.1109/SLT48900.2021.9383615}, timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wmFrank/sample-factory-2-atari-beamrider
wmFrank
2022-07-28T23:32:50Z
11
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T23:08:32Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 3848.00 +/- 308.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_beamrider type: atari_beamrider --- A(n) **APPO** model trained on the **atari_beamrider** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy
Atharvgarg
2022-07-28T23:32:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-28T22:51:50Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Rouge1: 55.2899 - Rouge2: 43.2426 - Rougel: 38.5056 - Rougelsum: 53.8807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.7407 | 1.0 | 223 | 1.5900 | 51.3058 | 38.3952 | 35.7343 | 49.7129 | | 1.4813 | 2.0 | 446 | 1.5500 | 53.8089 | 41.2455 | 37.3864 | 52.3387 | | 1.3517 | 3.0 | 669 | 1.5429 | 53.4914 | 40.907 | 37.1428 | 52.0338 | | 1.2432 | 4.0 | 892 | 1.5472 | 54.1139 | 41.3589 | 37.6392 | 52.711 | | 1.1748 | 5.0 | 1115 | 1.5426 | 55.3482 | 43.312 | 38.0625 | 54.0424 | | 1.1108 | 6.0 | 1338 | 1.5529 | 55.4752 | 43.3561 | 38.5813 | 54.1141 | | 1.0745 | 7.0 | 1561 | 1.5539 | 55.705 | 43.6772 | 38.7629 | 54.3892 | | 1.0428 | 8.0 | 1784 | 1.5583 | 55.2899 | 43.2426 | 38.5056 | 53.8807 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
wmFrank/sample-factory-2-atari-breakout
wmFrank
2022-07-28T23:31:06Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T23:10:36Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 30.20 +/- 23.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_breakout type: atari_breakout --- A(n) **APPO** model trained on the **atari_breakout** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
ICML2022/Tranception
ICML2022
2022-07-28T23:28:37Z
5
5
transformers
[ "transformers", "pytorch", "tranception", "fill-mask", "arxiv:2205.13760", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-28T22:27:55Z
# Tranception model This Hugging Face Hub repo contains the model checkpoint for the Tranception model as described in our paper ["Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval"](https://arxiv.org/abs/2205.13760). The official GitHub repository can be accessed [here](https://github.com/OATML-Markslab/Tranception). This project is a joint collaboration between the [Marks lab](https://www.deboramarkslab.com/) and the [OATML group](https://oatml.cs.ox.ac.uk/). ## Abstract The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks. ## License This project is available under the MIT license. ## Reference If you use Tranception or other files provided through our GitHub repository, please cite the following paper: ``` Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J., Gomez, A., Marks, D.S., Gal, Y. (2022). Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval. ICML. ``` ## Links Pre-print: https://arxiv.org/abs/2205.13760 GitHub: https://github.com/OATML-Markslab/Tranception
domenicrosati/deberta-v3-large-finetuned-synthetic-paraphrase-only
domenicrosati
2022-07-28T21:38:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T13:31:37Z
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-paraphrase-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-paraphrase-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0120 - F1: 0.9768 - Precision: 0.9961 - Recall: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.0086 | 1.0 | 10205 | 0.0114 | 0.9642 | 0.9846 | 0.9446 | | 0.0059 | 2.0 | 20410 | 0.0143 | 0.9658 | 0.9961 | 0.9373 | | 0.0 | 3.0 | 30615 | 0.0141 | 0.9716 | 0.9961 | 0.9483 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
liujxing/distilbert-base-uncased-finetuned-emotion
liujxing
2022-07-28T20:51:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-28T20:37:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9355 - name: F1 type: f1 value: 0.93589910332286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - Accuracy: 0.9355 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1386 | 1.0 | 250 | 0.1705 | 0.9355 | 0.9353 | | 0.0928 | 2.0 | 500 | 0.1484 | 0.9355 | 0.9359 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
amirthaa/dspa
amirthaa
2022-07-28T17:18:48Z
3
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-28T17:18:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dspa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dspa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6069 - Validation Loss: 0.6854 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 142110, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.8363 | 0.6965 | 0 | | 0.6069 | 0.6854 | 1 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Billwzl/20split_dataset_version3
Billwzl
2022-07-28T16:20:35Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-27T11:21:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20split_dataset_version3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1679 | 1.0 | 313 | 2.9768 | | 2.9869 | 2.0 | 626 | 2.9299 | | 2.8528 | 3.0 | 939 | 2.9176 | | 2.7435 | 4.0 | 1252 | 2.9104 | | 2.6458 | 5.0 | 1565 | 2.8863 | | 2.5865 | 6.0 | 1878 | 2.8669 | | 2.5218 | 7.0 | 2191 | 2.8802 | | 2.4647 | 8.0 | 2504 | 2.8639 | | 2.3933 | 9.0 | 2817 | 2.8543 | | 2.3687 | 10.0 | 3130 | 2.8573 | | 2.3221 | 11.0 | 3443 | 2.8398 | | 2.276 | 12.0 | 3756 | 2.8415 | | 2.2379 | 13.0 | 4069 | 2.8471 | | 2.2427 | 14.0 | 4382 | 2.8318 | | 2.1741 | 15.0 | 4695 | 2.8356 | | 2.1652 | 16.0 | 5008 | 2.8310 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old
Atharvgarg
2022-07-28T16:04:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-28T15:24:58Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6733 - Rouge1: 60.9431 - Rouge2: 49.8688 - Rougel: 42.4663 - Rougelsum: 59.836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.8246 | 1.0 | 223 | 0.6974 | 55.2742 | 41.9883 | 37.8584 | 53.7602 | | 0.6396 | 2.0 | 446 | 0.6786 | 56.0006 | 43.1917 | 38.5125 | 54.4571 | | 0.5582 | 3.0 | 669 | 0.6720 | 57.8912 | 45.7807 | 40.0807 | 56.4985 | | 0.505 | 4.0 | 892 | 0.6659 | 59.6611 | 48.0095 | 41.752 | 58.5059 | | 0.4611 | 5.0 | 1115 | 0.6706 | 59.7241 | 48.164 | 41.4523 | 58.5295 | | 0.4254 | 6.0 | 1338 | 0.6711 | 59.8524 | 48.1821 | 41.2299 | 58.6072 | | 0.3967 | 7.0 | 1561 | 0.6718 | 60.3009 | 49.0085 | 42.0306 | 59.0723 | | 0.38 | 8.0 | 1784 | 0.6733 | 60.9431 | 49.8688 | 42.4663 | 59.836 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Dugerij/Reinforce-pixelcopter
Dugerij
2022-07-28T14:45:45Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T14:45:39Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - metrics: - type: mean_reward value: 17.00 +/- 12.95 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AlexKolosov/my_first_model
AlexKolosov
2022-07-28T14:14:33Z
16
0
transformers
[ "transformers", "pytorch", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-28T12:48:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: my_first_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_first_model This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6853 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6918 | 1.0 | 23 | 0.6895 | 0.8 | | 0.7019 | 2.0 | 46 | 0.6859 | 0.6 | | 0.69 | 3.0 | 69 | 0.6853 | 0.6 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
KBLab/albert-base-swedish-cased-alpha
KBLab
2022-07-28T14:08:17Z
11
2
transformers
[ "transformers", "pytorch", "albert", "sv", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
jianzhnie/Reinforce-CartPole-v1
jianzhnie
2022-07-28T13:59:39Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T10:11:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 81.61 +/- 7.99 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
silviacamplani/distilbert-uncase-direct-finetuning-ai-ner
silviacamplani
2022-07-28T13:53:42Z
6
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-25T10:41:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-uncase-direct-finetuning-ai-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-uncase-direct-finetuning-ai-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6021 - Validation Loss: 1.6163 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2752 | 3.0320 | 0 | | 2.7791 | 2.5293 | 1 | | 2.2674 | 2.0340 | 2 | | 1.8952 | 1.8222 | 3 | | 1.7933 | 1.7669 | 4 | | 1.7352 | 1.7158 | 5 | | 1.6868 | 1.6706 | 6 | | 1.6242 | 1.6412 | 7 | | 1.5899 | 1.6234 | 8 | | 1.6021 | 1.6163 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Nekoo/P0ken_picture
Nekoo
2022-07-28T13:33:38Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-07-28T13:33:38Z
--- license: bigscience-bloom-rail-1.0 ---
Dugerij/Reinforce-cartpoleModel
Dugerij
2022-07-28T13:25:26Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T13:25:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpoleModel results: - metrics: - type: mean_reward value: 49.30 +/- 10.99 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jinghan/bert-base-uncased-finetuned-wnli
jinghan
2022-07-28T13:04:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-28T11:31:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: wnli split: train args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.6925 | 0.5493 | | No log | 2.0 | 20 | 0.6917 | 0.5634 | | No log | 3.0 | 30 | 0.6971 | 0.3239 | | No log | 4.0 | 40 | 0.6999 | 0.2958 | | No log | 5.0 | 50 | 0.6998 | 0.2676 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ivan-savchuk/msmarco-distilbert-dot-v5-tuned-full-v1
ivan-savchuk
2022-07-28T12:14:51Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-28T11:47:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 3165 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 316, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ICML2022/TimeIsMattEr
ICML2022
2022-07-28T12:00:17Z
0
3
null
[ "video-action-recognition", "dataset:HuggingFaceM4/something_something_v2", "license:cc-by-nc-4.0", "region:us" ]
null
2022-07-28T11:54:09Z
--- license: cc-by-nc-4.0 datasets: - HuggingFaceM4/something_something_v2 tags: - video-action-recognition metrics: - accuracy ---
mayank-01/finetuning-sentiment-model-3000-samples
mayank-01
2022-07-28T11:10:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-28T10:41:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.8831168831168831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Accuracy: 0.88 - F1: 0.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
amartyobanerjee/distilbert-base-uncased-finetuned-imdb
amartyobanerjee
2022-07-28T09:45:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-28T05:27:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ravindra001/bert-finetuned-ner
Ravindra001
2022-07-28T09:29:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-25T06:09:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.819622641509434 - name: Recall type: recall value: 0.8444790046656299 - name: F1 type: f1 value: 0.8318651857525853 - name: Accuracy type: accuracy value: 0.9269227060339613 - task: type: token-classification name: Token Classification dataset: name: wikiann type: wikiann config: en split: test metrics: - name: Accuracy type: accuracy value: 0.8492771401033908 verified: true - name: Precision type: precision value: 0.857294905524994 verified: true - name: Recall type: recall value: 0.865900059186607 verified: true - name: F1 type: f1 value: 0.8615759964905745 verified: true - name: loss type: loss value: 1.054654836654663 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3217 - Precision: 0.8196 - Recall: 0.8445 - F1: 0.8319 - Accuracy: 0.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2821 | 1.0 | 2500 | 0.2906 | 0.7983 | 0.8227 | 0.8103 | 0.9193 | | 0.2087 | 2.0 | 5000 | 0.2614 | 0.8030 | 0.8379 | 0.8201 | 0.9257 | | 0.1404 | 3.0 | 7500 | 0.3217 | 0.8196 | 0.8445 | 0.8319 | 0.9269 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AlbertShu/Reinforce-v0
AlbertShu
2022-07-28T09:22:30Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-28T09:22:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v0 results: - metrics: - type: mean_reward value: 99.30 +/- 29.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jaeyeon/korean-aihub-learning-math-16batch
jaeyeon
2022-07-28T08:13:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-28T07:10:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-math-16batch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-math-16batch This model is a fine-tuned version of [kresnik/wav2vec2-large-xlsr-korean](https://huggingface.co/kresnik/wav2vec2-large-xlsr-korean) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1497 - Wer: 0.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 20 | 32.0718 | 1.0 | | No log | 2.0 | 40 | 24.7403 | 1.0808 | | No log | 3.0 | 60 | 5.8389 | 1.0 | | No log | 4.0 | 80 | 4.8543 | 1.0 | | 19.6583 | 5.0 | 100 | 4.4453 | 1.0 | | 19.6583 | 6.0 | 120 | 4.3923 | 1.0 | | 19.6583 | 7.0 | 140 | 4.2902 | 1.0 | | 19.6583 | 8.0 | 160 | 3.9026 | 0.9959 | | 19.6583 | 9.0 | 180 | 3.0616 | 0.9740 | | 3.7358 | 10.0 | 200 | 2.2049 | 0.8534 | | 3.7358 | 11.0 | 220 | 1.6666 | 0.7288 | | 3.7358 | 12.0 | 240 | 1.4123 | 0.6603 | | 3.7358 | 13.0 | 260 | 1.3113 | 0.6164 | | 3.7358 | 14.0 | 280 | 1.2269 | 0.6356 | | 0.8398 | 15.0 | 300 | 1.2349 | 0.5945 | | 0.8398 | 16.0 | 320 | 1.1970 | 0.5658 | | 0.8398 | 17.0 | 340 | 1.2144 | 0.5562 | | 0.8398 | 18.0 | 360 | 1.2551 | 0.5658 | | 0.8398 | 19.0 | 380 | 1.1971 | 0.5493 | | 0.2649 | 20.0 | 400 | 1.1967 | 0.5247 | | 0.2649 | 21.0 | 420 | 1.2796 | 0.5849 | | 0.2649 | 22.0 | 440 | 1.2156 | 0.5521 | | 0.2649 | 23.0 | 460 | 1.2118 | 0.5425 | | 0.2649 | 24.0 | 480 | 1.1637 | 0.5384 | | 0.1801 | 25.0 | 500 | 1.1846 | 0.5562 | | 0.1801 | 26.0 | 520 | 1.1927 | 0.5534 | | 0.1801 | 27.0 | 540 | 1.2015 | 0.5384 | | 0.1801 | 28.0 | 560 | 1.2077 | 0.5397 | | 0.1801 | 29.0 | 580 | 1.1554 | 0.5260 | | 0.1364 | 30.0 | 600 | 1.1497 | 0.5260 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
LukasStankevicius/t5-base-lithuanian-news-summaries-175
LukasStankevicius
2022-07-28T06:00:09Z
39
3
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "Lithuanian", "summarization", "lt", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: lt tags: - t5 - Lithuanian - summarization widget: - text: "Latvijos krepšinio legenda Valdis Valteris pirmadienį socialiniame tinkle pasidalino statistika, kurios viršūnėje yra Arvydas Sabonis. 1982 metais TSRS rinktinėje debiutavęs 222 cm ūgio vidurio puolėjas su raudona apranga sužaidė 52 rungtynes, per kurias rinko po 15,6 taško. Tai pats aukščiausias rezultatyvumo vidurkis tarp visų sovietų komandai atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė ne mažiau nei 50 rungtynių. Antras šioje rikiuotėje kitas buvęs Kauno „Žalgirio“ krepšininkas Rimas Kurtinaitis. Jis debiutavo TSRS rinktinėje vėliau nei Sabas, – 1984 metais, bet irgi sužaidė 52 mačus. R.Kurtinaitis pelnė po 15 taškų. 25-ių rezultatyviausių žaidėjų sąrašu pasidalinęs latvis V.Valteris, pelnęs po 13,8 taško, yra trečias. Ketvirtas yra iš Kazachstano kilęs Valerijus Tichonenka, pelnęs po 13,7 taško per 79 rungtynes. Rezultatyviausią visų laikų TSRS rinktinės penketą uždaro Modestas Paulauskas. Lietuvos krepšinio legenda pelnė po 13,6 taško per 84 mačus. Dešimtuke taip pat yra Oleksandras Volkovas (po 13,5 taško), Sergejus Belovas (12,7), Anatolijus Myškinas (po 12,3), Vladimiras Tkačenka (11,7) ir Aleksandras Salnikovas (11,4). Dvyliktas šiame sąraše yra Valdemaras Chomičius, vidutiniškai rinkęs po 10 taškų, o keturioliktas dar vienas buvęs žalgirietis Sergejus Jovaiša (po 9,8 taško). Šarūno Marčiulionio rezultatyvumo vidurkis turėjo būti aukštesnis, bet jis sužaidė mažiau nei 50 rungtynių. Kaip žinia, Lietuvai išsilaisvinus ir atkūrus Nepriklausomybę, visi minėti mūsų šalies krepšininkai, išskyrus karjerą jau baigusį M.Paulauską, užsivilko žalią aprangą ir atstovavo savo tėvynei. A.Sabonis pagal rezultatyvumo vidurkį yra pirmas – jis Lietuvos rinktinei pelnė po 20 taškų. Antras pagal taškų vidurkį yra Artūras Karnišovas, rinkęs po 18,2 taško ir pelnęs iš viso daugiausiai taškų atstovaujant Lietuvos rinktinei (1453). Tarp žaidėjų, kurie sužaidė bent po 50 oficialių rungtynių Lietuvos rinktinėje, trečią vietą užima Ramūnas Šiškauskas (po 12,9), ketvirtąją Linas Kleiza (po 12,7 taško), o penktas – Saulius Štombergas (po 11,1 taško). Daugiausiai rungtynių Lietuvos rinktinėje sužaidęs ir daugiausiai olimpinių medalių (3) su ja laimėjęs Gintaras Einikis rinko po 9,6 taško, o pirmajame trejete pagal rungtynių skaičių ir pelnytus taškus esantis Šarūnas Jasikevičius pelnė po 9,9 taško." license: apache-2.0 --- This is *t5-base* transformer model trained on Lithuanian news summaries for 175 000 steps. It was created during the work [**Generating abstractive summaries of Lithuanian news articles using a transformer model**](https://link.springer.com/chapter/10.1007/978-3-030-88304-1_27). ## Usage ```python from transformers import pipeline name= "LukasStankevicius/t5-base-lithuanian-news-summaries-175" my_pipeline = pipeline(task="text2text-generation", model=name, framework="pt") ``` Given the following article body from [15min](https://www.15min.lt/24sek/naujiena/lietuva/tarp-penkiu-rezultatyviausiu-tsrs-rinktines-visu-laiku-zaideju-trys-lietuviai-875-1380030): ``` text = """ Latvijos krepšinio legenda Valdis Valteris pirmadienį socialiniame tinkle pasidalino statistika, kurios viršūnėje yra Arvydas Sabonis. 1982 metais TSRS rinktinėje debiutavęs 222 cm ūgio vidurio puolėjas su raudona apranga sužaidė 52 rungtynes, per kurias rinko po 15,6 taško. Tai pats aukščiausias rezultatyvumo vidurkis tarp visų sovietų komandai atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė ne mažiau nei 50 rungtynių. Antras šioje rikiuotėje kitas buvęs Kauno „Žalgirio“ krepšininkas Rimas Kurtinaitis. Jis debiutavo TSRS rinktinėje vėliau nei Sabas, – 1984 metais, bet irgi sužaidė 52 mačus. R.Kurtinaitis pelnė po 15 taškų. 25-ių rezultatyviausių žaidėjų sąrašu pasidalinęs latvis V.Valteris, pelnęs po 13,8 taško, yra trečias. Ketvirtas yra iš Kazachstano kilęs Valerijus Tichonenka, pelnęs po 13,7 taško per 79 rungtynes. Rezultatyviausią visų laikų TSRS rinktinės penketą uždaro Modestas Paulauskas. Lietuvos krepšinio legenda pelnė po 13,6 taško per 84 mačus. Dešimtuke taip pat yra Oleksandras Volkovas (po 13,5 taško), Sergejus Belovas (12,7), Anatolijus Myškinas (po 12,3), Vladimiras Tkačenka (11,7) ir Aleksandras Salnikovas (11,4). Dvyliktas šiame sąraše yra Valdemaras Chomičius, vidutiniškai rinkęs po 10 taškų, o keturioliktas dar vienas buvęs žalgirietis Sergejus Jovaiša (po 9,8 taško). Šarūno Marčiulionio rezultatyvumo vidurkis turėjo būti aukštesnis, bet jis sužaidė mažiau nei 50 rungtynių. Kaip žinia, Lietuvai išsilaisvinus ir atkūrus Nepriklausomybę, visi minėti mūsų šalies krepšininkai, išskyrus karjerą jau baigusį M.Paulauską, užsivilko žalią aprangą ir atstovavo savo tėvynei. A.Sabonis pagal rezultatyvumo vidurkį yra pirmas – jis Lietuvos rinktinei pelnė po 20 taškų. Antras pagal taškų vidurkį yra Artūras Karnišovas, rinkęs po 18,2 taško ir pelnęs iš viso daugiausiai taškų atstovaujant Lietuvos rinktinei (1453). Tarp žaidėjų, kurie sužaidė bent po 50 oficialių rungtynių Lietuvos rinktinėje, trečią vietą užima Ramūnas Šiškauskas (po 12,9), ketvirtąją Linas Kleiza (po 12,7 taško), o penktas – Saulius Štombergas (po 11,1 taško). Daugiausiai rungtynių Lietuvos rinktinėje sužaidęs ir daugiausiai olimpinių medalių (3) su ja laimėjęs Gintaras Einikis rinko po 9,6 taško, o pirmajame trejete pagal rungtynių skaičių ir pelnytus taškus esantis Šarūnas Jasikevičius pelnė po 9,9 taško. """ text = ' '.join(text.strip().split()) ``` The summary can be obtained by: ```python my_pipeline(text)[0]["generated_text"] ``` Output from above would be: Lietuvos krepšinio federacijos (LKF) prezidento Arvydo Sabonio rezultatyvumo vidurkis yra aukščiausias tarp visų Sovietų Sąjungos rinktinėje atstovavusių žaidėjų, skaičiuojant tuos, kurie sužaidė bent po 50 oficialių rungtynių. If you find our work useful, please cite the following paper: ``` latex @InProceedings{10.1007/978-3-030-88304-1_27, author="Stankevi{\v{c}}ius, Lukas and Luko{\v{s}}evi{\v{c}}ius, Mantas", editor="Lopata, Audrius and Gudonien{\.{e}}, Daina and Butkien{\.{e}}, Rita", title="Generating Abstractive Summaries of Lithuanian News Articles Using a Transformer Model", booktitle="Information and Software Technologies", year="2021", publisher="Springer International Publishing", address="Cham", pages="341--352", abstract="In this work, we train the first monolingual Lithuanian transformer model on a relatively large corpus of Lithuanian news articles and compare various output decoding algorithms for abstractive news summarization. We achieve an average ROUGE-2 score 0.163, generated summaries are coherent and look impressive at first glance. However, some of them contain misleading information that is not so easy to spot. We describe all the technical details and share our trained model and accompanying code in an online open-source repository, as well as some characteristic samples of the generated summaries.", isbn="978-3-030-88304-1" } ```
Jmolano/bert-finetuned-ner
Jmolano
2022-07-28T02:51:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-26T21:56:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9327383903487027 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9412157091636788 - name: Accuracy type: accuracy value: 0.9860923058809677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9327 - Recall: 0.9498 - F1: 0.9412 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0868 | 1.0 | 1756 | 0.0697 | 0.9204 | 0.9297 | 0.9250 | 0.9807 | | 0.0342 | 2.0 | 3512 | 0.0647 | 0.9273 | 0.9465 | 0.9368 | 0.9853 | | 0.0175 | 3.0 | 5268 | 0.0617 | 0.9327 | 0.9498 | 0.9412 | 0.9861 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-trial
AykeeSalazar
2022-07-28T01:02:09Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-28T00:29:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest-trial results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-9 metrics: - name: Accuracy type: accuracy value: 0.7797741273100616 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-trial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4289 - Accuracy: 0.7798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 1.0782 | 0.4451 | | No log | 0.8 | 200 | 0.5634 | 0.7156 | | No log | 1.2 | 300 | 0.7181 | 0.6684 | | No log | 1.61 | 400 | 0.4289 | 0.7798 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kabelomalapane/Af-En_update
kabelomalapane
2022-07-27T23:37:19Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-27T20:53:09Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: Af-En_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Af-En_update This model is a fine-tuned version of [Helsinki-NLP/opus-mt-af-en](https://huggingface.co/Helsinki-NLP/opus-mt-af-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7197 - Bleu: 55.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.3745 | 1.0 | 2553 | 1.7537 | 51.9270 | | 1.0462 | 2.0 | 5106 | 1.6305 | 53.9359 | | 0.896 | 3.0 | 7659 | 1.6216 | 54.3049 | | 0.7824 | 4.0 | 10212 | 1.6108 | 54.9902 | | 0.6974 | 5.0 | 12765 | 1.6183 | 55.0265 | | 0.643 | 6.0 | 15318 | 1.6207 | 55.4137 | | 0.5635 | 7.0 | 17871 | 1.6276 | 55.1335 | | 0.5141 | 8.0 | 20424 | 1.6498 | 55.2215 | | 0.4681 | 9.0 | 22977 | 1.6678 | 55.2000 | | 0.4304 | 10.0 | 25530 | 1.6797 | 55.2748 | | 0.425 | 11.0 | 28083 | 1.7004 | 55.0478 | | 0.398 | 12.0 | 30636 | 1.7013 | 55.3591 | | 0.3759 | 13.0 | 33189 | 1.7082 | 55.3225 | | 0.3681 | 14.0 | 35742 | 1.7151 | 55.1793 | | 0.3571 | 15.0 | 38295 | 1.7197 | 55.2729 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dbarbedillo/a2c-AntBulletEnv-v0
dbarbedillo
2022-07-27T22:25:58Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T22:24:45Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1748.24 +/- 84.28 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mariastull/Reinforce-3
mariastull
2022-07-27T21:39:59Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T21:39:47Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-3 results: - metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
FinanceInc/finbert-pretrain
FinanceInc
2022-07-27T20:43:33Z
23
9
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain", "pre-trained", "finbert", "unk", "arxiv:2006.08097", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-21T18:11:17Z
--- tags: - autotrain - pre-trained - finbert - fill-mask language: unk widget: - text: Tesla remains one of the highest [MASK] stocks on the market. Meanwhile, Aurora Innovation is a pre-revenue upstart that shows promise. - text: Asian stocks [MASK] from a one-year low on Wednesday as U.S. share futures and oil recovered from the previous day's selloff, but uncertainty over the impact of the Omicron - text: U.S. stocks were set to rise on Monday, led by [MASK] in Apple which neared $3 trillion in market capitalization, while investors braced for a Federal Reserve meeting later this week. --- `FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. ### Pre-training It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens. - Corporate Reports 10-K & 10-Q: 2.5B tokens - Earnings Call Transcripts: 1.3B tokens - Analyst Reports: 1.1B tokens The entire training is done using an **NVIDIA DGX-1** machine. The server has 4 Tesla P100 GPUs, providing a total of 128 GB of GPU memory. This machine enables us to train the BERT models using a batch size of 128. We utilize Horovord framework for multi-GPU training. Overall, the total time taken to perform pretraining for one model is approximately **2 days**. More details on `FinBERT`'s pre-training process can be found at: https://arxiv.org/abs/2006.08097 `FinBERT` can be further fine-tuned on downstream tasks. Specifically, we have fine-tuned `FinBERT` on an analyst sentiment classification task, and the fine-tuned model is shared at [https://huggingface.co/demo-org/auditor_review_model](https://huggingface.co/demo-org/auditor_review_model) ### Usage Load the model directly from Transformers: ``` from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("demo-org/finbert-pretrain", use_auth_token=True) ``` ### Questions Please contact the Data Science COE if you have more questions about this pre-trained model ### Demo Model This model card is for demo purposes. The original model card for this model is [https://huggingface.co/yiyanghkust/finbert-pretrain](https://huggingface.co/yiyanghkust/finbert-pretrain).
cjdentra/distilbert-base-uncased-finetuned-emotion
cjdentra
2022-07-27T20:38:01Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T20:18:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ai4bharat/indicwav2vec-hindi
ai4bharat
2022-07-27T20:31:31Z
4,110
16
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "asr", "hi", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-27T19:43:11Z
--- language: hi metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - wav2vec2 - asr license: apache-2.0 --- # IndicWav2Vec-Hindi This is a [Wav2Vec2](https://arxiv.org/abs/2006.11477) style ASR model trained in [fairseq](https://github.com/facebookresearch/fairseq) and ported to Hugging Face. More details on datasets, training-setup and conversion to HuggingFace format can be found in the [IndicWav2Vec](https://github.com/AI4Bharat/IndicWav2Vec) repo. *Note: This model doesn't support inference with Language Model.* ## Script to Run Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F DEVICE_ID = "cuda" if torch.cuda.is_available() else "cpu" MODEL_ID = "ai4bharat/indicwav2vec-hindi" sample = next(iter(load_dataset("common_voice", "hi", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48000, 16000).numpy() model = AutoModelForCTC.from_pretrained(MODEL_ID).to(DEVICE_ID) processor = AutoProcessor.from_pretrained(MODEL_ID) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values.to(DEVICE_ID)).logits.cpu() prediction_ids = torch.argmax(logits, dim=-1) output_str = processor.batch_decode(prediction_ids)[0] print(f"Greedy Decoding: {output_str}") ``` # **About AI4Bharat** - Website: https://ai4bharat.org/ - Code: https://github.com/AI4Bharat - HuggingFace: https://huggingface.co/ai4bharat
SGme/pyramids
SGme
2022-07-27T19:41:15Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-27T19:32:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: SGme/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AriakimTaiyo/gpt2-chat
AriakimTaiyo
2022-07-27T19:36:22Z
61
3
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "conversational", "en", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-27T19:15:28Z
--- language: en license: mit tags: - conversational --- # GPT-2 Large ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-author) ## Model Details **Model Description:** GPT-2 Large is the **774M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective. - **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers. - **Model Type:** Transformer-based language model - **Language(s):** English - **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE) - **Related Models:** [GPT-2](https://huggingface.co/gpt2), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) - **Resources for more information:** - [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) - [OpenAI Blog Post](https://openai.com/blog/better-language-models/) - [GitHub Repo](https://github.com/openai/gpt-2) - [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md) - Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large ## How to Get Started with the Model Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, I can do language modeling. In fact, this is one of the reasons I use languages. To get a"}, {'generated_text': "Hello, I'm a language model, which in its turn implements a model of how a human can reason about a language, and is in turn an"}, {'generated_text': "Hello, I'm a language model, why does this matter for you?\n\nWhen I hear new languages, I tend to start thinking in terms"}, {'generated_text': "Hello, I'm a language model, a functional language...\n\nI don't need to know anything else. If I want to understand about how"}, {'generated_text': "Hello, I'm a language model, not a toolbox.\n\nIn a nutshell, a language model is a set of attributes that define how"}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = GPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = TFGPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Uses #### Direct Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > The primary intended users of these models are AI researchers and practitioners. > > We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models. #### Downstream Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Here are some secondary use cases we believe are likely: > > - Writing assistance: Grammar assistance, autocompletion (for normal prose or code) > - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art. > - Entertainment: Creation of games, chat bots, and amusing generations. #### Misuse and Out-of-scope Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("The man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The man worked as a security guard in a hotel'}, {'generated_text': 'The man worked as a salesman in Mexico and in'}, {'generated_text': 'The man worked as a supervisor at the warehouse for'}, {'generated_text': "The man worked as a cleaner for the store's"}, {'generated_text': 'The man worked as a barbershop apprentice.'}] >>> set_seed(42) >>> generator("The woman worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The woman worked as a clerk at the bank.'}, {'generated_text': 'The woman worked as a caregiver, and her'}, {'generated_text': 'The woman worked as a customer service agent for a'}, {'generated_text': 'The woman worked as a cleaner at the store,'}, {'generated_text': 'The woman worked as a barista and was "'}] ``` This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## Training #### Training Data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). #### Training Procedure The model is pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. ## Evaluation The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). #### Testing Data, Factors and Metrics The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that: > Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation. #### Results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 10.87 | 60.12 | 93.45 | 88.0 | 19.93 | 40.31 | 0.97 | 1.02 | 22.05 | 44.575| ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Unknown - **Hours used:** Unknown - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details. ## Citation Information ```bibtex @article{radford2019language, title={Language models are unsupervised multitask learners}, author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others}, journal={OpenAI blog}, volume={1}, number={8}, pages={9}, year={2019} } ``` ## Model Card Authors This model card was written by the Hugging Face team.
mariastull/Reinforce-2
mariastull
2022-07-27T19:17:16Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T19:16:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - metrics: - type: mean_reward value: -5.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
kabelomalapane/En-Af_update
kabelomalapane
2022-07-27T18:17:15Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-27T16:11:00Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Af_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Af_update This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-af](https://huggingface.co/Helsinki-NLP/opus-mt-en-af) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8089 - Bleu: 45.1780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.4243 | 1.0 | 2553 | 1.8451 | 42.1314 | | 1.0987 | 2.0 | 5106 | 1.7509 | 44.0714 | | 0.9329 | 3.0 | 7659 | 1.7340 | 44.6003 | | 0.8365 | 4.0 | 10212 | 1.7260 | 44.7820 | | 0.7556 | 5.0 | 12765 | 1.7590 | 45.1180 | | 0.6944 | 6.0 | 15318 | 1.7715 | 45.1451 | | 0.652 | 7.0 | 17871 | 1.7696 | 45.1025 | | 0.6132 | 8.0 | 20424 | 1.8060 | 45.1781 | | 0.5832 | 9.0 | 22977 | 1.8135 | 45.2485 | | 0.5602 | 10.0 | 25530 | 1.8089 | 45.1730 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
asi/igpt-fr-cased-base
asi
2022-07-27T17:12:36Z
5
4
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "tf", "text-to-image", "fr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-to-image
2022-07-26T20:57:33Z
--- language: - fr thumbnail: https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png tags: - tf - pytorch - gpt2 - text-to-image license: apache-2.0 --- <img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/igpt-logo.png" width="400"> ## Model description **iGPT-fr** 🇫🇷 is a GPT model for French pre-trained incremental language model developped by the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We adapted [GPT-fr 🇫🇷](https://huggingface.co/asi/gpt-fr-cased-base) model to generate images conditionned by text inputs. ## Intended uses & limitations The model can be leveraged for image generation tasks. The model is currently under a developpment phase. #### How to use The model might be used through the 🤗 `Transformers` librairie. You will also need to install the `Taming Transformers` library for high-resolution image synthesis: ```bash pip install git+https://github.com/CompVis/taming-transformers.git ``` ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel from huggingface_hub import hf_hub_download from omegaconf import OmegaConf from taming.models import vqgan import torch from PIL import Image import numpy as np # Load VQGAN model vqgan_ckpt = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt", force_download=False) vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml", force_download=False) config = OmegaConf.load(vqgan_config) vqgan_model = vqgan.VQModel(**config.model.params) vqgan_model.eval().requires_grad_(False) vqgan_model.init_from_ckpt(vqgan_ckpt) # Load pretrained model model = GPT2LMHeadModel.from_pretrained("asi/igpt-fr-cased-base") model.eval() tokenizer = GPT2Tokenizer.from_pretrained("asi/igpt-fr-cased-base") # Generate a sample of text input_sentence = "Une carte de l'europe" input_ids = tokenizer.encode(input_sentence, return_tensors='pt') input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1) # Add image generation token greedy_output = model.generate( input_ids.to(device), max_length=256+input_ids.shape[1], do_sample=True, top_p=0.92, top_k=0) def custom_to_pil(x): x = x.detach().cpu() x = torch.clamp(x, -1., 1.) x = (x + 1.)/2. x = x.permute(1,2,0).numpy() x = (255*x).astype(np.uint8) x = Image.fromarray(x) if not x.mode == "RGB": x = x.convert("RGB") return x z_idx = greedy_output[0, input_ids.shape[1]:] - 50001 z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256)) x_rec = vqgan_model.decode(z_quant).to('cpu')[0] display(custom_to_pil(x_rec)) ``` You may also filter results based on CLIP: ```python from tqdm import tqdm def hallucinate(prompt, num_images=64): input_ids = tokenizer.encode(prompt, return_tensors='pt') input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1).to(device) # Add image generation token all_images = [] for i in tqdm(range(num_images)): greedy_output = model.generate( input_ids.to(device), max_length=256+input_ids.shape[1], do_sample=True, top_p=0.92, top_k=0) z_idx = greedy_output[0, input_ids.shape[1]:] - 50001 z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256)) x_rec = vqgan_model.decode(z_quant).to('cpu')[0] all_images.append(custom_to_pil(x_rec)) return all_images input_sentence = "Une carte de l'europe" all_images = hallucinate(input_sentence) from transformers import pipeline opus_model = "Helsinki-NLP/opus-mt-fr-en" opus_translator = pipeline("translation", model=opus_model) opus_translator(input_sentence) from transformers import CLIPProcessor, CLIPModel clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def clip_top_k(prompt, images, k=8): prompt_fr = opus_translator(input_sentence)[0]['translation_text'] inputs = clip_processor(text=prompt_fr, images=images, return_tensors="pt", padding=True) outputs = clip_model(**inputs) logits = outputs.logits_per_text # this is the image-text similarity score scores = np.array(logits[0].detach()).argsort()[-k:][::-1] return [images[score] for score in scores] filtered_images = clip_top_k(input_sentence, all_images) for fi in filtered_images: display(fi) ``` ## Training data We created a dedicated corpus to train our generative model. The training corpus consists in text-image pairs. We aggregated portions from existing corpora: [Laion-5B](https://laion.ai/blog/laion-5b/) and [WIT](https://github.com/google-research-datasets/wit). The final dataset includes 10,807,534 samples. ## Training procedure We pre-trained the model on the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/) supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 8 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 1161.22 kgCO2eq, using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al., (2019)](lacoste-2019).
heriosousa/a2c-AntBulletEnv-v0
heriosousa
2022-07-27T17:03:12Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T17:02:08Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1020.71 +/- 201.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Evelyn18/roberta-base-spanish-squades-becasIncentivos4
Evelyn18
2022-07-27T16:52:12Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-27T15:56:33Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos4 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 11 | 1.8136 | | No log | 2.0 | 22 | 1.7734 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Go2Heart/BERT_Mod_1
Go2Heart
2022-07-27T16:17:44Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T16:07:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: BERT_Mod_1 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.541934635424655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Mod_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1787 - Matthews Correlation: 0.5419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1616 | 1.0 | 535 | 0.9278 | 0.4979 | | 0.1128 | 2.0 | 1070 | 1.0487 | 0.5046 | | 0.0712 | 3.0 | 1605 | 1.0155 | 0.5306 | | 0.0952 | 4.0 | 2140 | 1.1860 | 0.5147 | | 0.0698 | 5.0 | 2675 | 1.1787 | 0.5419 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/interiordesign
huggingtweets
2022-07-27T15:30:24Z
71
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-27T15:21:57Z
--- language: en thumbnail: http://www.huggingtweets.com/interiordesign/1658935819881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544346507578589184/x9URB7Yy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Interior Design</div> <div style="text-align: center; font-size: 14px;">@interiordesign</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Interior Design. | Data | Interior Design | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 97 | | Short tweets | 2 | | Tweets kept | 3151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vl5m9w7s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @interiordesign's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36lgkxh5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36lgkxh5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/interiordesign') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
enoriega/rule_learning_1mm_many_negatives_spanpred_margin_avg
enoriega
2022-07-27T14:45:37Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:enoriega/odinsynth_dataset", "endpoints_compatible", "region:us" ]
null
2022-07-26T04:40:02Z
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_1mm_many_negatives_spanpred_margin_avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_1mm_many_negatives_spanpred_margin_avg This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Margin Accuracy: 0.8897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.3867 | 0.16 | 20 | 0.4023 | 0.8187 | | 0.3506 | 0.32 | 40 | 0.3381 | 0.8523 | | 0.3195 | 0.48 | 60 | 0.3096 | 0.8613 | | 0.3052 | 0.64 | 80 | 0.2957 | 0.8640 | | 0.2859 | 0.8 | 100 | 0.2922 | 0.8679 | | 0.297 | 0.96 | 120 | 0.2871 | 0.8688 | | 0.2717 | 1.12 | 140 | 0.2761 | 0.8732 | | 0.2671 | 1.28 | 160 | 0.2751 | 0.8743 | | 0.2677 | 1.44 | 180 | 0.2678 | 0.8757 | | 0.2693 | 1.6 | 200 | 0.2627 | 0.8771 | | 0.2675 | 1.76 | 220 | 0.2573 | 0.8813 | | 0.2732 | 1.92 | 240 | 0.2546 | 0.8858 | | 0.246 | 2.08 | 260 | 0.2478 | 0.8869 | | 0.2355 | 2.24 | 280 | 0.2463 | 0.8871 | | 0.2528 | 2.4 | 300 | 0.2449 | 0.8886 | | 0.2512 | 2.56 | 320 | 0.2443 | 0.8892 | | 0.2527 | 2.72 | 340 | 0.2441 | 0.8893 | | 0.2346 | 2.88 | 360 | 0.2424 | 0.8895 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-finetuned-misogyny-sexism
annahaz
2022-07-27T14:45:20Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-05T19:00:29Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny-sexism results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-sexism This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9064 - Accuracy: 0.8334 - F1: 0.3322 - Precision: 0.2498 - Recall: 0.4961 - Mae: 0.1666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3869 | 1.0 | 2395 | 0.2905 | 0.8778 | 0.3528 | 0.3164 | 0.3988 | 0.1222 | | 0.3539 | 2.0 | 4790 | 0.4143 | 0.8278 | 0.3465 | 0.2536 | 0.5467 | 0.1722 | | 0.3124 | 3.0 | 7185 | 0.3327 | 0.8568 | 0.3583 | 0.2864 | 0.4786 | 0.1432 | | 0.2817 | 4.0 | 9580 | 0.5621 | 0.7329 | 0.3092 | 0.1972 | 0.7160 | 0.2671 | | 0.2651 | 5.0 | 11975 | 0.4376 | 0.8520 | 0.3607 | 0.2821 | 0.5 | 0.1480 | | 0.2249 | 6.0 | 14370 | 0.5581 | 0.8326 | 0.3312 | 0.2485 | 0.4961 | 0.1674 | | 0.1958 | 7.0 | 16765 | 0.6728 | 0.8382 | 0.3234 | 0.2484 | 0.4630 | 0.1618 | | 0.1899 | 8.0 | 19160 | 0.7404 | 0.8304 | 0.3316 | 0.2471 | 0.5039 | 0.1696 | | 0.1619 | 9.0 | 21555 | 0.8309 | 0.8461 | 0.3382 | 0.2639 | 0.4708 | 0.1539 | | 0.1453 | 10.0 | 23950 | 0.9064 | 0.8334 | 0.3322 | 0.2498 | 0.4961 | 0.1666 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
suvadityamuk/q-Taxi-v3
suvadityamuk
2022-07-27T14:25:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T14:25:17Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.52 +/- 2.77 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="suvadityamuk/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
vinitharaj/distilbert-base-uncased-finetuned-squad
vinitharaj
2022-07-27T14:02:25Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-02T05:42:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vinitharaj/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vinitharaj/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5718 - Validation Loss: 4.2502 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 46, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.7158 | 5.0214 | 0 | | 4.5718 | 4.2502 | 1 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
Ahmed007/t5-base-ibn-Shaddad-v6
Ahmed007
2022-07-27T12:57:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "Poet", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-27T12:09:35Z
--- license: apache-2.0 tags: - Poet - generated_from_trainer model-index: - name: t5-base-ibn-Shaddad-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-ibn-Shaddad-v6 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.9444 | 1.0 | 1067 | 4.4333 | | 4.5154 | 2.0 | 2134 | 4.3345 | | 4.4462 | 3.0 | 3201 | 4.2957 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dminiotas05/distilbert-base-uncased-finetuned-ft780_class
dminiotas05
2022-07-27T12:16:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T11:55:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft780_class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft780_class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9843 - Accuracy: 0.2047 - F1: 0.1823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.1065 | 1.0 | 188 | 2.0425 | 0.1747 | 0.1248 | | 1.9642 | 2.0 | 376 | 1.9959 | 0.1987 | 0.1701 | | 1.9019 | 3.0 | 564 | 1.9843 | 0.2047 | 0.1823 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AlphaNinja27/wav2vec2-large-xls-r-300m-panjabi-colab
AlphaNinja27
2022-07-27T12:14:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-27T10:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-panjabi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-panjabi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sagteam/covid-twitter-xlm-roberta-large
sagteam
2022-07-27T11:41:43Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "arxiv:1911.02116", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# COVID-twitter-XLM-Roberta-large ## Model description This is a model based on the [XLM-RoBERTa large](https://huggingface.co/xlm-roberta-large) topology (provided by Facebook, see original [paper](https://arxiv.org/abs/1911.02116)) with additional training on a corpus of unmarked tweets. For more details, please see, our [GitHub repository](https://github.com/sag111/COVID-19-tweets-Russia). ## Training data We formed a corpus of unlabeled twitter messages. The data on keyword "covid" was expanded with texts containing other words often occurred in hashtags on the Covid-19 pandemic: "covid", "stayhome", and "coronavirus" (hereinafter, these are translations of Russian words into English). Separately, messages were collected from Twitter users from large regions of Russia. The search was provided using different word forms of 58 manually selected keywords on Russian related to the topic of coronavirus infection (including: "PCR", "pandemic", "self-isolation", etc.). The unlabeled corpus includes all unique Russian-language tweets from the collected data (>1M tweets). Since modern language models are usually multilingual, about 1M more tweets in other languages were added to this corpus using filtering procedures described above. Thus, in the unlabeled part of the collected data, there were about 2 million messages. ### BibTeX entry and citation info Our GitHub repository: https://github.com/sag111/COVID-19-tweets-Russia If you have found our results helpful in your work, feel free to cite our publication and this repository as: ``` @article{sboev2021russian, title={The Russian language corpus and a neural network to analyse Internet tweet reports about Covid-19}, author={Sboev, Alexander and Moloshnikov, Ivan and Naumov, Alexander and Levochkina𝑎, Anastasia and Rybka𝑎, Roman}, year={2021} } ```
ai4bharat/IndicBERTv2-alpha-POS-tagging
ai4bharat
2022-07-27T11:23:14Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-22T13:46:31Z
# IndicXLMv2-alpha-POS-tagging
huggingtweets/jordo4today-paddedpossum-wrenfing
huggingtweets
2022-07-27T10:16:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-27T10:15:48Z
--- language: en thumbnail: http://www.huggingtweets.com/jordo4today-paddedpossum-wrenfing/1658916978297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1538409928943083526/gilLk6Ju_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381760254799716353/bNTnf-3w_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1546006810754260992/Dk6vMJU3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr. Wolf Simp & Zoinks & Jordo 🔜 MFF</div> <div style="text-align: center; font-size: 14px;">@jordo4today-paddedpossum-wrenfing</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr. Wolf Simp & Zoinks & Jordo 🔜 MFF. | Data | Mr. Wolf Simp | Zoinks | Jordo 🔜 MFF | | --- | --- | --- | --- | | Tweets downloaded | 3203 | 742 | 3244 | | Retweets | 2858 | 90 | 636 | | Short tweets | 135 | 37 | 243 | | Tweets kept | 210 | 615 | 2365 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e01we01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jordo4today-paddedpossum-wrenfing's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wh0na3g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wh0na3g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jordo4today-paddedpossum-wrenfing') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DigitalUmuganda/joeynmt-en-kin
DigitalUmuganda
2022-07-27T08:50:17Z
0
0
null
[ "doi:10.57967/hf/0054", "region:us" ]
null
2022-07-25T10:34:05Z
# English-to-Kinyarwanda Machine Translation This model is an English-to-Kinyarwanda machine translation model, it was built and trained using JoeyNMT framework. The translation model uses transformer encoder-decoder based architecture. It was trained on a 47,211 long English-Kinyarwanda bitext dataset prepared by Digital Umuganda. ## Model architecture **Encoder && Decoder** > Type: Transformer Num_layer: 6 Num_heads: 8 Embedding_dim: 256 ff_size: 1024 Dropout: 0.1 Layer_norm: post Initializer: xavier Total params: 12563968 ## Pre-processing Tokenizer_type: subword-nmt num_merges: 4000 BPE encoding learned on the bitext, separate vocabularies for each language Pretokenizer: None No lowercase applied ## Training Optimizer: Adam Loss: crossentropy Epochs: 30 Batch_size: 256 Number of GPUs: 1 ## Evaluation Evaluation_metrics: Blue_score, chrf Tokenization: None Beam_width: 15 Beam_alpha: 1.0 ## Tools * joeyNMT 2.0.0 * datasets * pandas * numpy * transformers * sentencepiece * pytorch(with cuda) * sacrebleu * protobuf>=3.20.1 ## How to train [Use the following link for more information](https://github.com/joeynmt/joeynmt) ## Translation To install joeyNMT run: >$ git clone https://github.com/joeynmt/joeynmt.git $ cd joeynmt $ pip install . -e Interactive translation(stdin): >$ python -m joeynmt translate args.yaml File translation: >$ python -m joeynmt translate args.yaml < src_lang.txt > hypothesis_trg_lang.txt ## Accuracy measurement Sacrebleu installation: > $ pip install sacrebleu Measurement(bleu_score, chrf): > $ sacrebleu reference.tsv -i hypothesis.tsv -m bleu chrf ## To-do >* Test the model using differenct datasets including the jw300 >* Use the Digital Umuganda dataset on some of the available State Of The Art(SOTA) available models. >* Expand the dataset ## Result The following result were obtained on using the sacrebleu. English-to-Kinyarwanda: >Blue: 56.5 Chrf: 75.2
suvadityamuk/ppo-LunarLander-v2-practicecourse-1
suvadityamuk
2022-07-27T08:29:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-27T08:28:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 259.96 +/- 14.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```