modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 00:36:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 00:36:27
card
stringlengths
11
1.01M
aleegis11/e52b79c1-78c9-4fe9-88c6-59f66f2980ac
aleegis11
2025-01-23T20:00:00Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-23T19:56:04Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e52b79c1-78c9-4fe9-88c6-59f66f2980ac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - d0ef8b941107f6ec_train_data.json ds_type: json format: custom path: /workspace/input_data/d0ef8b941107f6ec_train_data.json type: field_instruction: full_question field_output: full_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis11/e52b79c1-78c9-4fe9-88c6-59f66f2980ac hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/d0ef8b941107f6ec_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b7cad66c-b570-48ba-acae-3db08352e03d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b7cad66c-b570-48ba-acae-3db08352e03d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e52b79c1-78c9-4fe9-88c6-59f66f2980ac This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 41 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5763 | 0.0727 | 1 | 2.7827 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f
willtensora
2025-01-23T19:59:55Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "axolotl", "generated_from_trainer", "conversational", "base_model:NousResearch/Llama-3.2-1B", "base_model:finetune:NousResearch/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T19:47:08Z
--- library_name: transformers license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 0c2649cc-2fe7-4e88-b672-6da1fee4001f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: NousResearch/Llama-3.2-1B batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - f51beb4c568b9128_train_data.json ds_type: json format: custom path: /workspace/input_data/f51beb4c568b9128_train_data.json type: field_input: keywords field_instruction: idea field_output: full_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_steps: 20 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 2500 micro_batch_size: 4 model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/configs pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 40 save_total_limit: 1 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> tokenizer_type: PreTrainedTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: NousResearch/Llama-3.2-1B-/workspace/input_data/f51beb4c568b9128_train_data.json wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ``` </details><br> # 0c2649cc-2fe7-4e88-b672-6da1fee4001f This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12 - training_steps: 258 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 0.2074 | | 0.5472 | 0.0097 | 20 | 0.1746 | | 0.3199 | 0.0194 | 40 | 0.2036 | | 0.2013 | 0.0291 | 60 | 0.1772 | | 0.0903 | 0.0388 | 80 | 0.1702 | | 0.0875 | 0.0485 | 100 | 0.2040 | | 0.1425 | 0.0582 | 120 | 0.1392 | | 0.1982 | 0.0679 | 140 | 0.1194 | | 0.1372 | 0.0776 | 160 | 0.1014 | | 0.0278 | 0.0873 | 180 | 0.0952 | | 0.0248 | 0.0970 | 200 | 0.0893 | | 0.1051 | 0.1067 | 220 | 0.0875 | | 0.0649 | 0.1164 | 240 | 0.0849 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis10/ad2a50e1-bc67-4e03-8dc7-5e86b63c30c9
aleegis10
2025-01-23T19:59:11Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-23T19:58:38Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: ad2a50e1-bc67-4e03-8dc7-5e86b63c30c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f4a61305a746447c_train_data.json ds_type: json format: custom path: /workspace/input_data/f4a61305a746447c_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis10/ad2a50e1-bc67-4e03-8dc7-5e86b63c30c9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f4a61305a746447c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c6d606c5-1bf1-4d46-8f27-e3893d012d1d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c6d606c5-1bf1-4d46-8f27-e3893d012d1d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ad2a50e1-bc67-4e03-8dc7-5e86b63c30c9 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3745 | 0.0095 | 1 | 10.3693 | | 10.3437 | 0.4739 | 50 | 10.3509 | | 10.3244 | 0.9479 | 100 | 10.3415 | | 10.0218 | 1.4218 | 150 | 10.3394 | | 10.7113 | 1.8957 | 200 | 10.3391 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
joboffer/c74a54a3-de7e-427c-9c9a-7e5607f41f99
joboffer
2025-01-23T19:59:07Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-23T19:56:32Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c74a54a3-de7e-427c-9c9a-7e5607f41f99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d0ef8b941107f6ec_train_data.json ds_type: json format: custom path: /workspace/input_data/d0ef8b941107f6ec_train_data.json type: field_instruction: full_question field_output: full_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: joboffer/c74a54a3-de7e-427c-9c9a-7e5607f41f99 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/d0ef8b941107f6ec_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b7cad66c-b570-48ba-acae-3db08352e03d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b7cad66c-b570-48ba-acae-3db08352e03d warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # c74a54a3-de7e-427c-9c9a-7e5607f41f99 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 28 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0364 | 1 | 2.5702 | | 2.4669 | 0.1818 | 5 | 2.4546 | | 2.3061 | 0.3636 | 10 | 2.3138 | | 2.3087 | 0.5455 | 15 | 2.2644 | | 2.3489 | 0.7273 | 20 | 2.2313 | | 2.2761 | 0.9091 | 25 | 2.2243 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso07/2e6c2695-01ee-46e2-ad04-98d71d6eb996
lesso07
2025-01-23T19:59:02Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:50:02Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2e6c2695-01ee-46e2-ad04-98d71d6eb996 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 7ac399799482b77b_train_data.json ds_type: json format: custom path: /workspace/input_data/7ac399799482b77b_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/2e6c2695-01ee-46e2-ad04-98d71d6eb996 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/7ac399799482b77b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 19b8278a-dcb0-42e7-9768-897f1536abd0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 19b8278a-dcb0-42e7-9768-897f1536abd0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2e6c2695-01ee-46e2-ad04-98d71d6eb996 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0021 | 5 | nan | | 0.0 | 0.0042 | 10 | nan | | 0.0 | 0.0063 | 15 | nan | | 0.0 | 0.0084 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/260e19a1-0072-4a1b-a761-20f5cb197273
lesso03
2025-01-23T19:58:39Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:37:32Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 260e19a1-0072-4a1b-a761-20f5cb197273 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: true chat_template: llama3 datasets: - data_files: - 64fe47644b03a711_train_data.json ds_type: json format: custom path: /workspace/input_data/64fe47644b03a711_train_data.json type: field_input: '' field_instruction: context field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso03/260e19a1-0072-4a1b-a761-20f5cb197273 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/64fe47644b03a711_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5e0875d0-636d-4520-9359-4eac575c16b9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5e0875d0-636d-4520-9359-4eac575c16b9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 260e19a1-0072-4a1b-a761-20f5cb197273 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2968 | 0.0001 | 1 | 2.8454 | | 10.9644 | 0.0003 | 5 | 2.8270 | | 9.4872 | 0.0005 | 10 | 2.5012 | | 8.2005 | 0.0008 | 15 | 2.2939 | | 8.0283 | 0.0010 | 20 | 2.2651 | | 8.3561 | 0.0013 | 25 | 2.2471 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/36f1b139-43ec-416a-bbda-5600a86e3f0e
lesso01
2025-01-23T19:57:47Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:36:25Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 36f1b139-43ec-416a-bbda-5600a86e3f0e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: true chat_template: llama3 datasets: - data_files: - 64fe47644b03a711_train_data.json ds_type: json format: custom path: /workspace/input_data/64fe47644b03a711_train_data.json type: field_input: '' field_instruction: context field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/36f1b139-43ec-416a-bbda-5600a86e3f0e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/64fe47644b03a711_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5e0875d0-636d-4520-9359-4eac575c16b9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5e0875d0-636d-4520-9359-4eac575c16b9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 36f1b139-43ec-416a-bbda-5600a86e3f0e This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2968 | 0.0001 | 1 | 2.8454 | | 10.9752 | 0.0003 | 5 | 2.8255 | | 9.4506 | 0.0005 | 10 | 2.4924 | | 8.1898 | 0.0008 | 15 | 2.2935 | | 7.9867 | 0.0010 | 20 | 2.2624 | | 8.3332 | 0.0013 | 25 | 2.2448 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF
Ryllix
2025-01-23T19:56:28Z
19
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:55:55Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF --hf-file x-alma-13b-group1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF --hf-file x-alma-13b-group1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF --hf-file x-alma-13b-group1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q4_K_M-GGUF --hf-file x-alma-13b-group1-q4_k_m.gguf -c 2048 ```
rdetch22/t5_travel_model
rdetch22
2025-01-23T19:55:32Z
5
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-23T14:13:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Darkhn/L3.3-Nevoria-Exp-R1-6.0bpw-h8-exl2
Darkhn
2025-01-23T19:53:35Z
109
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1", "base_model:merge:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1", "base_model:Sao10K/L3.3-70B-Euryale-v2.3", "base_model:merge:Sao10K/L3.3-70B-Euryale-v2.3", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:TheDrummer/Anubis-70B-v1", "base_model:merge:TheDrummer/Anubis-70B-v1", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "base_model:merge:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "exl2", "region:us" ]
text-generation
2025-01-23T19:19:38Z
--- base_model: - nbeerbower/Llama-3.1-Nemotron-lorablated-70B - SicariusSicariiStuff/Negative_LLAMA_70B - TheDrummer/Anubis-70B-v1 - EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1 - deepseek-ai/DeepSeek-R1-Distill-Llama-70B - Sao10K/L3.3-70B-Euryale-v2.3 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [nbeerbower/Llama-3.1-Nemotron-lorablated-70B](https://huggingface.co/nbeerbower/Llama-3.1-Nemotron-lorablated-70B) as a base. ### Models Merged The following models were included in the merge: * [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) * [TheDrummer/Anubis-70B-v1](https://huggingface.co/TheDrummer/Anubis-70B-v1) * [EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1](https://huggingface.co/EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1) * [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) * [Sao10K/L3.3-70B-Euryale-v2.3](https://huggingface.co/Sao10K/L3.3-70B-Euryale-v2.3) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: nbeerbower/Llama-3.1-Nemotron-lorablated-70B merge_method: model_stock dtype: bfloat16 models: - model: EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1 - model: Sao10K/L3.3-70B-Euryale-v2.3 - model: TheDrummer/Anubis-70B-v1 - model: SicariusSicariiStuff/Negative_LLAMA_70B - model: deepseek-ai/DeepSeek-R1-Distill-Llama-70B ```
ClarenceDan/8a6e88dc-323a-4311-981b-7fd919660035
ClarenceDan
2025-01-23T19:53:27Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:52:53Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 8a6e88dc-323a-4311-981b-7fd919660035 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ff3a521d02fa72b2_train_data.json ds_type: json format: custom path: /workspace/input_data/ff3a521d02fa72b2_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/8a6e88dc-323a-4311-981b-7fd919660035 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ff3a521d02fa72b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29e89a2c-6136-48b6-88bc-a0066652be7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 29e89a2c-6136-48b6-88bc-a0066652be7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8a6e88dc-323a-4311-981b-7fd919660035 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0009 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/17fc62c0-397a-4927-8a81-dc1028325fca
great0001
2025-01-23T19:52:17Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "region:us" ]
null
2025-01-23T19:48:05Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 17fc62c0-397a-4927-8a81-dc1028325fca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dbe5c72dde5e5bcb_train_data.json ds_type: json format: custom path: /workspace/input_data/dbe5c72dde5e5bcb_train_data.json type: field_input: essay field_instruction: prompt field_output: evaluation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/17fc62c0-397a-4927-8a81-dc1028325fca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/dbe5c72dde5e5bcb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5b6d979e-5f1d-47f4-a5d3-c1026b8550e5 wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 5b6d979e-5f1d-47f4-a5d3-c1026b8550e5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 17fc62c0-397a-4927-8a81-dc1028325fca This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.039 | 0.0008 | 1 | 4.9481 | | 4.6553 | 0.0025 | 3 | 4.6472 | | 2.6675 | 0.0050 | 6 | 1.6021 | | 1.1148 | 0.0075 | 9 | 1.0316 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF
Ryllix
2025-01-23T19:52:08Z
17
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:51:24Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF --hf-file x-alma-13b-group1-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF --hf-file x-alma-13b-group1-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF --hf-file x-alma-13b-group1-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q6_K-GGUF --hf-file x-alma-13b-group1-q6_k.gguf -c 2048 ```
adammandic87/60e39f13-bf12-48e1-8ee9-267ce1721d53
adammandic87
2025-01-23T19:51:51Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Llama-3.2-1B", "base_model:adapter:NousResearch/Llama-3.2-1B", "license:llama3.2", "region:us" ]
null
2025-01-23T19:47:44Z
--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 60e39f13-bf12-48e1-8ee9-267ce1721d53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f51beb4c568b9128_train_data.json ds_type: json format: custom path: /workspace/input_data/f51beb4c568b9128_train_data.json type: field_input: keywords field_instruction: idea field_output: full_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/60e39f13-bf12-48e1-8ee9-267ce1721d53 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f51beb4c568b9128_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2cc30bfb-2df3-4b31-b1fb-e29900be6958 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: 2cc30bfb-2df3-4b31-b1fb-e29900be6958 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 60e39f13-bf12-48e1-8ee9-267ce1721d53 This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1452 | 0.0001 | 1 | 0.2465 | | 0.1581 | 0.0003 | 3 | 0.2455 | | 0.2059 | 0.0007 | 6 | 0.2288 | | 0.0942 | 0.0010 | 9 | 0.1836 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/bc277560-5fbb-477f-b72a-cbb8e2c347cf
kostiantynk1205
2025-01-23T19:50:48Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/GPT4-x-Vicuna-13b-fp16", "base_model:adapter:NousResearch/GPT4-x-Vicuna-13b-fp16", "license:gpl", "region:us" ]
null
2025-01-23T19:49:15Z
--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: bc277560-5fbb-477f-b72a-cbb8e2c347cf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcf32f9d35bdd1f9_train_data.json ds_type: json format: custom path: /workspace/input_data/dcf32f9d35bdd1f9_train_data.json type: field_instruction: doc_text field_output: summary_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/bc277560-5fbb-477f-b72a-cbb8e2c347cf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/dcf32f9d35bdd1f9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7a4a0d08-b201-4939-999e-8cad606c5cdd wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 7a4a0d08-b201-4939-999e-8cad606c5cdd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bc277560-5fbb-477f-b72a-cbb8e2c347cf This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6478 | 0.0038 | 1 | 1.7360 | | 1.6234 | 0.0115 | 3 | 1.7353 | | 1.5391 | 0.0230 | 6 | 1.7212 | | 1.5704 | 0.0344 | 9 | 1.6453 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/3b393546-7c3e-4975-b6e6-beb773cb317d
daniel40
2025-01-23T19:50:15Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:47:57Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 3b393546-7c3e-4975-b6e6-beb773cb317d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/3b393546-7c3e-4975-b6e6-beb773cb317d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3b393546-7c3e-4975-b6e6-beb773cb317d This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0003 | 1 | nan | | 0.0 | 0.0010 | 3 | nan | | 0.0 | 0.0021 | 6 | nan | | 0.0 | 0.0031 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHunghddddd/0505b5c6-edde-404e-8131-471bfa32ca32
mrHunghddddd
2025-01-23T19:49:37Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T16:04:03Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 0505b5c6-edde-404e-8131-471bfa32ca32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 23608247d3e29c5b_train_data.json ds_type: json format: custom path: /workspace/input_data/23608247d3e29c5b_train_data.json type: field_instruction: text field_output: label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHunghddddd/0505b5c6-edde-404e-8131-471bfa32ca32 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/23608247d3e29c5b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f0129bfb-c94c-4859-b692-6043485c8836 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f0129bfb-c94c-4859-b692-6043485c8836 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0505b5c6-edde-404e-8131-471bfa32ca32 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0187 | 0.0054 | 200 | 1.2989 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF
Ryllix
2025-01-23T19:48:33Z
16
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:47:54Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF --hf-file x-alma-13b-group1-q5_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF --hf-file x-alma-13b-group1-q5_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF --hf-file x-alma-13b-group1-q5_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_0-GGUF --hf-file x-alma-13b-group1-q5_0.gguf -c 2048 ```
Kort/Cm54
Kort
2025-01-23T19:48:25Z
63
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T19:46:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
didiudom94/marian-finetuned-ko-to-en
didiudom94
2025-01-23T19:48:13Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-ko-en", "base_model:finetune:Helsinki-NLP/opus-mt-ko-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-01-23T19:38:49Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-ko-en tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: marian-finetuned-ko-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-ko-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Model Preparation Time: 0.0035 - Bleu: 49.9193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
aleegis09/f0d3189e-d9c3-4303-b5e1-3e268b29b8a0
aleegis09
2025-01-23T19:45:55Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:33:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: f0d3189e-d9c3-4303-b5e1-3e268b29b8a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis09/f0d3189e-d9c3-4303-b5e1-3e268b29b8a0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f0d3189e-d9c3-4303-b5e1-3e268b29b8a0 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.685 | 0.0014 | 1 | 3.1940 | | 1.5421 | 0.0687 | 50 | 1.5869 | | 1.5701 | 0.1374 | 100 | 1.2326 | | 1.3216 | 0.2061 | 150 | 1.1635 | | 1.4565 | 0.2748 | 200 | 1.1553 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis12/66972ef7-b54f-48e3-9bb7-5c1261c0cd59
aleegis12
2025-01-23T19:45:37Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:32:54Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 66972ef7-b54f-48e3-9bb7-5c1261c0cd59 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/66972ef7-b54f-48e3-9bb7-5c1261c0cd59 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66972ef7-b54f-48e3-9bb7-5c1261c0cd59 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.685 | 0.0014 | 1 | 3.1940 | | 1.5405 | 0.0687 | 50 | 1.5880 | | 1.5702 | 0.1374 | 100 | 1.2335 | | 1.3212 | 0.2061 | 150 | 1.1653 | | 1.4588 | 0.2748 | 200 | 1.1569 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF
Ryllix
2025-01-23T19:45:34Z
14
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:44:56Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF --hf-file x-alma-13b-group1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF --hf-file x-alma-13b-group1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF --hf-file x-alma-13b-group1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_M-GGUF --hf-file x-alma-13b-group1-q5_k_m.gguf -c 2048 ```
aleegis11/60d55e29-d05a-44f5-8165-e4d721f7ab20
aleegis11
2025-01-23T19:44:59Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:32:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 60d55e29-d05a-44f5-8165-e4d721f7ab20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis11/60d55e29-d05a-44f5-8165-e4d721f7ab20 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 60d55e29-d05a-44f5-8165-e4d721f7ab20 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.685 | 0.0014 | 1 | 3.1940 | | 1.5456 | 0.0687 | 50 | 1.5839 | | 1.5722 | 0.1374 | 100 | 1.2313 | | 1.3203 | 0.2061 | 150 | 1.1632 | | 1.4565 | 0.2748 | 200 | 1.1549 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
auxyus/d215dd77-b608-4006-8f0c-1d9b017426b6
auxyus
2025-01-23T19:44:54Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:32:56Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: d215dd77-b608-4006-8f0c-1d9b017426b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: auxyus/d215dd77-b608-4006-8f0c-1d9b017426b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # d215dd77-b608-4006-8f0c-1d9b017426b6 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0014 | 1 | 1.0640 | | 0.9507 | 0.0124 | 9 | 1.0585 | | 1.0298 | 0.0247 | 18 | 1.0270 | | 1.0244 | 0.0371 | 27 | 1.0054 | | 1.0722 | 0.0495 | 36 | 0.9874 | | 0.9782 | 0.0618 | 45 | 0.9744 | | 1.0092 | 0.0742 | 54 | 0.9660 | | 1.056 | 0.0866 | 63 | 0.9602 | | 1.0347 | 0.0989 | 72 | 0.9565 | | 0.9774 | 0.1113 | 81 | 0.9546 | | 0.9623 | 0.1237 | 90 | 0.9536 | | 0.9283 | 0.1360 | 99 | 0.9535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/9c2cf814-87cd-4e33-ba1a-d0429f71bd29
nathanialhunt
2025-01-23T19:40:52Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:40:13Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 9c2cf814-87cd-4e33-ba1a-d0429f71bd29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ff3a521d02fa72b2_train_data.json ds_type: json format: custom path: /workspace/input_data/ff3a521d02fa72b2_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/9c2cf814-87cd-4e33-ba1a-d0429f71bd29 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ff3a521d02fa72b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29e89a2c-6136-48b6-88bc-a0066652be7d wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 29e89a2c-6136-48b6-88bc-a0066652be7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9c2cf814-87cd-4e33-ba1a-d0429f71bd29 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0009 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF
Ryllix
2025-01-23T19:40:51Z
14
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:40:14Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF --hf-file x-alma-13b-group1-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF --hf-file x-alma-13b-group1-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF --hf-file x-alma-13b-group1-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q5_K_S-GGUF --hf-file x-alma-13b-group1-q5_k_s.gguf -c 2048 ```
great0001/5343e7c0-8c61-4ede-8525-dce3b3e4b08e
great0001
2025-01-23T19:40:01Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:38:24Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 5343e7c0-8c61-4ede-8525-dce3b3e4b08e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 699dbe0484a7b6fd_train_data.json ds_type: json format: custom path: /workspace/input_data/699dbe0484a7b6fd_train_data.json type: field_input: Definition1 field_instruction: Entity field_output: Definition2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/5343e7c0-8c61-4ede-8525-dce3b3e4b08e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/699dbe0484a7b6fd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c1c32915-ac79-4d23-9a89-ef0af747d830 wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: c1c32915-ac79-4d23-9a89-ef0af747d830 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5343e7c0-8c61-4ede-8525-dce3b3e4b08e This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.313 | 0.0008 | 1 | 3.3060 | | 3.4038 | 0.0025 | 3 | 3.3049 | | 2.9396 | 0.0051 | 6 | 3.2757 | | 3.165 | 0.0076 | 9 | 3.0922 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/ddeab680-b9d0-4af7-887f-3b255930bbfe
nathanialhunt
2025-01-23T19:39:45Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "region:us" ]
null
2025-01-23T18:27:44Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: ddeab680-b9d0-4af7-887f-3b255930bbfe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4d136d7cbe9663e9_train_data.json ds_type: json format: custom path: /workspace/input_data/4d136d7cbe9663e9_train_data.json type: field_input: schema field_instruction: question field_output: query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/ddeab680-b9d0-4af7-887f-3b255930bbfe hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/4d136d7cbe9663e9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 85d50804-d37f-45a5-a2e8-db14010413a1 wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 85d50804-d37f-45a5-a2e8-db14010413a1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ddeab680-b9d0-4af7-887f-3b255930bbfe This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1301 | 0.0000 | 1 | 1.2362 | | 0.97 | 0.0000 | 3 | 1.2270 | | 0.9608 | 0.0001 | 6 | 1.0245 | | 0.6249 | 0.0001 | 9 | 0.6407 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Valdemardi/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview-AWQ
Valdemardi
2025-01-23T19:39:32Z
828
3
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2408.07990", "arxiv:2401.10491", "arxiv:2412.03187", "base_model:FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", "base_model:quantized:FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2025-01-23T19:39:32Z
--- license: apache-2.0 library_name: transformers base_model: - FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview base_model_relation: quantized --- ## Quantization Details This quantized model was created using AutoAWQ version 0.2.8 with `quant_config`: ``` { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } ``` <p align="center" width="100%"> </p> <div id="top" align="center"> FuseO1-Preview: System-II Reasoning Fusion of LLMs ----------------------------- <h4> |<a href="https://arxiv.org/abs/2408.07990"> 📑 Paper </a> | <a href="https://github.com/fanqiwan/FuseAI"> 🐱 GitHub Repo </a> | <a href="https://huggingface.co/FuseAI"> 🤗 Hugging Face </a> | <a href="https://huggingface.co/blog/Wanfq/fuseo1-preview"> 🌐 Blog </a> | </h4> <!-- **Authors:** --> _Fanqi Wan, Longguang Zhong, Ziyi Yang, Weizhou Shen, Xinting Huang_ <!-- **Affiliations:** --> _FuseAI Team_ </div> <p align="center"> <img src="./assets/fuseo1-preview.jpg" width="100%"> <br> </p> ## Overview [FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing our advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains. <p align="center"> <img src="./assets/sce.jpg" width="70%"> <br> </p> To achieve this, we conduct two types of model merging: - **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) achieves a Pass@1 accuracy of **74.0 on AIME24**, demonstrating significant performance improvements compared to the OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching OpenAI o1 (79.2). - **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks. | Model | Merge Type | Source Models | HF Link | |:----- | ---- | ---- | ---- | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview), [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview), [GGUF](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview-GGUF) | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | Long-Long Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | Long-Short Reasoning Merge | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B), [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) | [🤗 Hugging Face](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) | ## Long-Long Reasoning Merging We conduct experiments on these folloing long-cot LLMs. - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) - [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) - [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas ``` To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda ``` We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview. ```python3 from vllm import LLM, SamplingParams llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8) sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643]) conversations = [ [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."}, {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."}, ], ] responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True) for response in responses: print(response.outputs[0].text.strip()) ``` ## Long-Short Reasoning Merging We conduct experiments on these folloing long-cot and short-cot LLMs. - [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) - [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) - [Qwen/Qwen2.5-32B-Coder](https://huggingface.co/Qwen/Qwen2.5-32B-Coder) To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda ``` To reproduce the merged [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) model, using the script below. ```sh cd FuseAI/FuseO1-Preview/mergekit pip3 install -e . model_save_dir=xxx # your path to save the merged models mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda ``` We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview. ```python3 from vllm import LLM, SamplingParams llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8) sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643]) conversations = [ [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."}, {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."}, ], ] responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True) for response in responses: print(response.outputs[0].text.strip()) ``` ## Evaluation Results We test the resulted models on three kinds of benchmarks, including **Math Reasoning**, **Code Reasoning** , and **Scientific Reasoning**. Math Reasoning - AIME24 - MATH500 - OlympiadBench Scientific Reasoning - GPQA-Diamond - MMLU-Pro - MMLU Code Reasoning - LiveCodeBench (2408-2502) > Important Note: We manully set `"add_bos_token": false` in `tokenizer_config.json` for all the evaluated LLMs to prevent the bos_token to be added twice for each prompt. Please download and modify to ensure consistency. ### Math Reasoning The evaluation code is modified from [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [math_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/math_evaluation). The system prompt for evaluation is set to: ```sh Please reason step by step, and put your final answer within \\boxed{{}}. ``` The evaluation results are shown in the table below: In our evaluation of AIME24, we follow the method from DeepSeek-R1, wherein Pass@1 is computed by averaging the results across 32 sampled responses per prompt, while Cons@32 is determined through self-consistency analysis of the same 32 sampled responses for each prompt. For other benchmarks, we only sample 1 response and report the Pass@1. | Models | AIME24 Pass@1 | AIME24 Cons@32 | MATH500 | OlympiadBench | |:------ | --------------| ------------------- | ------------ | -------------- | | OpenAI o1 | 79.2 | - | 96.4 | - | | OpenAI o1-preview | 44.6 | - | 85.5 | - | | OpenAI o1-mini | 63.6 | - | 90.0 | - | | DeepSeek R1 | 79.8 | - | 97.3 | - | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 69.2 | 83.3 | 93.6 | 64.3 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 43.8 | 56.7 | 88.4 | 60.3 | | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 37.7 | 50.0 | 88.0 | 55.1 | | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 17.0 | 20.0 | 81.8 | 48.1 | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 68.6 | 83.3 | 94.6 | 64.9 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 69.7 | 83.3 | 94.6 | 64.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 74.0 | 86.7 | 94.8 | 65.0 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on math reasoning. Specifically, our model achieves an accuracy of **74.0 Pass@1 and 86.7 Cons@32 on AIME24**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (69.2 Pass@1 and 83.3 Cons@32), OpenAI o1-preview (44.6 Pass@1) and OpenAI o1-mini (63.4 Pass@1), even approaching OpenAI o1 (79.2 Pass@1). ### Scientific Reasoning The evaluation code is modified from [SkyThought](https://github.com/NovaSky-AI/SkyThought). In our evaluation, we set the temperature to 0.7 and the max_tokens to 32768. We provide the example to reproduce our results in [evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/evaluation). The system prompt for evaluation is set to: ```sh You are a helpful and harmless assistant. You should think step-by-step. ``` The evaluation results are shown in the table below: | Models | GPQA-Diamond| MMLU-Pro | MMLU | |:------ | --------------| ------------ | -------------- | | OpenAI o1 | 75.7 | - | 91.8 | | OpenAI o1-preview | 73.3 | - | 90.8 | | OpenAI o1-mini | 60.0 | 80.3 | 85.2 | | DeepSeek R1 | 71.5 | 84.0 | 90.8 | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 57.6 | 68.7 | 82.2 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 49.5 | 63.5 | 85.2 | | [NovaSky-AI/Sky-T1-32B-Preview](https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview) | 50.5 | 65.8 | 82.7 | | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 46.5 | 56.3 | 79.6 | | [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) | 55.1 | 68.6 | 82.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview) | 62.1 | 68.9 | 82.7 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 62.1 | 70.8 | 83.6 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **62.1 on GPQA-Diamond and 70.8 on MMLU-Pro**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (57.6 on GPQA-Diamond and 68.7 on MMLU-Pro). ## Code Reasoning The evaluation code is modified from [Qwen2.5-Coder](https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder-eval/reasoning/livecode_bench_cot). In our evaluation, we set the temperature to 0.6, the top-p to 0.95 and the max_tokens to 32768. We provide the example to reproduce our results in [code_evaluation](https://github.com/fanqiwan/FuseAI/tree/main/FuseO1-Preview/code_evaluation). The system prompt for evaluation is set to: ```sh A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. ``` In our evaluation of LiveCodeBench, we follow the method from DeepSeek-R1 and make a slight modification. The Pass@1 is computed by averaging the results across 16 sampled responses per prompt. The evaluation results are shown in the table below: | Models | LiveCodeBench | LiveCodeBench-Easy | LiveCodeBench-Medium | LiveCodeBench-Hard | |:------ | --------------| ------------------- | ------------ | -------------- | | OpenAI o1 | 63.4 | 98.5 | 80.9 | 31.7 | | OpenAI o1-preview | 42.7 | 97.0 | 47.2 | 9.8 | | OpenAI o1-mini | 52.00 | 91.0 | 67.4 | 19.5 | | DeepSeek R1 | 62.8 | 98.4 | 78.3 | 32.2 | | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | 56.1 | 93.6 | 73.1 | 23.4 | | [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) | 44.4 | 94.9 | 53.8 | 10.0 | | [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) | 57.9 | 93.6 | 76.0 | 25.5 | We show that our merged FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview demonstrate superior performance improvements comparet to DeepSeek-R1-Distill-Qwen-32B, QwQ-32B-Preview, and Sky-T1-32B-Preview on scientific reasoning. Specifically, our model achieves an accuracy of **57.9 on LiveCodeBench and 25.5 on LiveCodeBench-Hard**, demonstrating significant performance improvements compared to DeepSeek-R1-Distill-Qwen-32B (56.1 on LiveCodeBench and 23.4 on LiveCodeBench-Hard), OpenAI o1-preview (42.7 on LiveCodeBench and 9.8 on LiveCodeBench-Hard) and OpenAI o1-mini (52.0 on LiveCodeBench and 19.5 on LiveCodeBench-Hard Pass@1). ## Future Works This work is our first attempt effort to achieve knowledge fusion of System-II reasoning LLMs through a model merging approach, which is limited to LLMs with identical scale and architecture. In future work, we plan to employ our [explicit model fusion](https://arxiv.org/abs/2401.10491) method, based on multi-teacher knowledge distillation, and our [implici model fusion](https://arxiv.org/abs/2412.03187) method, which utilizes weighted-reward preference optimization for LLMs with different scales and architectures. Furthermore, we intend to explore the combination of knowledge fusion with reinforcement learning (RL) methods, which have been demonstrated as the most effective approach for enhancing reasoning abilities. Stay tuned for the next version of FuseO1! ## Citations ``` @article{wan2024fusechat, title={Fusechat: Knowledge fusion of chat models}, author={Wan, Fanqi and Zhong, Longguang and Yang, Ziyi and Chen, Ruijun and Quan, Xiaojun}, journal={arXiv preprint arXiv:2408.07990}, year={2024} } ```
Aardiiiiy/ProKontra4
Aardiiiiy
2025-01-23T19:38:26Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T19:38:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vmpsergio/1475b3d8-28c4-4471-a58a-f98d3ae3d290
vmpsergio
2025-01-23T19:37:07Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:32:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 1475b3d8-28c4-4471-a58a-f98d3ae3d290 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f6f2b0985d34f3bb_train_data.json ds_type: json format: custom path: /workspace/input_data/f6f2b0985d34f3bb_train_data.json type: field_input: response field_instruction: context field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: vmpsergio/1475b3d8-28c4-4471-a58a-f98d3ae3d290 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/f6f2b0985d34f3bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9c4e88d-ca00-4f32-99bc-d66385339bce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9c4e88d-ca00-4f32-99bc-d66385339bce warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1475b3d8-28c4-4471-a58a-f98d3ae3d290 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | nan | | 0.0 | 0.0017 | 5 | nan | | 0.0 | 0.0034 | 10 | nan | | 0.0 | 0.0052 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
impossibleexchange/0x110
impossibleexchange
2025-01-23T19:35:34Z
24
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T18:33:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF
Ryllix
2025-01-23T19:35:23Z
83
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "da", "nl", "de", "is", "no", "sv", "af", "dataset:oscar-corpus/OSCAR-2301", "dataset:allenai/nllb", "dataset:Helsinki-NLP/opus-100", "base_model:haoranxu/X-ALMA-13B-Group1", "base_model:quantized:haoranxu/X-ALMA-13B-Group1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T19:34:27Z
--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - 'no' - sv - af base_model: haoranxu/X-ALMA-13B-Group1 tags: - llama-cpp - gguf-my-repo --- # Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF This model was converted to GGUF format from [`haoranxu/X-ALMA-13B-Group1`](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF --hf-file x-alma-13b-group1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF --hf-file x-alma-13b-group1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF --hf-file x-alma-13b-group1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ryllix/X-ALMA-13B-Group1-Q8_0-GGUF --hf-file x-alma-13b-group1-q8_0.gguf -c 2048 ```
denbeo/be2e869e-9f6a-4d5d-8389-e4c352fb779d
denbeo
2025-01-23T19:32:37Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:52:27Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: be2e869e-9f6a-4d5d-8389-e4c352fb779d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/be2e869e-9f6a-4d5d-8389-e4c352fb779d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # be2e869e-9f6a-4d5d-8389-e4c352fb779d This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1228 | 0.0722 | 200 | 0.1097 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/26391edb-d95c-4929-91cc-a4e331f91f4e
great0001
2025-01-23T19:32:02Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:54:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 26391edb-d95c-4929-91cc-a4e331f91f4e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4d85b564dafa38db_train_data.json ds_type: json format: custom path: /workspace/input_data/4d85b564dafa38db_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/26391edb-d95c-4929-91cc-a4e331f91f4e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/4d85b564dafa38db_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 879db250-c3f5-4d43-a7c5-c5a456ae5803 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 879db250-c3f5-4d43-a7c5-c5a456ae5803 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 26391edb-d95c-4929-91cc-a4e331f91f4e This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 3 | nan | | 0.0 | 0.0001 | 6 | nan | | 0.0 | 0.0002 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/6260d9b5-6899-41b5-95f8-8e9b93349b01
robiual-awal
2025-01-23T19:31:49Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
2025-01-23T19:04:07Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 6260d9b5-6899-41b5-95f8-8e9b93349b01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 396d0a56bbf80cca_train_data.json ds_type: json format: custom path: /workspace/input_data/396d0a56bbf80cca_train_data.json type: field_instruction: speaker_id field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/6260d9b5-6899-41b5-95f8-8e9b93349b01 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/396d0a56bbf80cca_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 16671b72-614a-460f-819d-7364bcc07c46 wandb_project: Birthday-SN56-30-Gradients-On-Demand wandb_run: your_name wandb_runid: 16671b72-614a-460f-819d-7364bcc07c46 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6260d9b5-6899-41b5-95f8-8e9b93349b01 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.6344 | 0.0001 | 1 | 4.1093 | | 14.4857 | 0.0002 | 3 | 4.1031 | | 14.8935 | 0.0003 | 6 | 4.0061 | | 14.1431 | 0.0005 | 9 | 3.4951 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5607/ca7ad65c-4590-43ec-a03b-541f215efd99
prxy5607
2025-01-23T19:31:01Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:51:54Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ca7ad65c-4590-43ec-a03b-541f215efd99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5607/ca7ad65c-4590-43ec-a03b-541f215efd99 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ca7ad65c-4590-43ec-a03b-541f215efd99 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4107 | 0.0014 | 1 | 0.6999 | | 0.0766 | 0.0722 | 50 | 0.1107 | | 0.0337 | 0.1444 | 100 | 0.0765 | | 0.0068 | 0.2165 | 150 | 0.0628 | | 0.023 | 0.2887 | 200 | 0.0584 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5605/bf3d20eb-162c-4cc4-acf1-811943321ae4
prxy5605
2025-01-23T19:30:41Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:51:33Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: bf3d20eb-162c-4cc4-acf1-811943321ae4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5605/bf3d20eb-162c-4cc4-acf1-811943321ae4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bf3d20eb-162c-4cc4-acf1-811943321ae4 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4107 | 0.0014 | 1 | 0.6999 | | 0.0753 | 0.0722 | 50 | 0.1093 | | 0.0327 | 0.1444 | 100 | 0.0770 | | 0.0063 | 0.2165 | 150 | 0.0631 | | 0.0225 | 0.2887 | 200 | 0.0584 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
0x1202/7c20263b-0b41-450f-835f-de4f32a916de
0x1202
2025-01-23T19:30:38Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:51:12Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7c20263b-0b41-450f-835f-de4f32a916de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/7c20263b-0b41-450f-835f-de4f32a916de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7c20263b-0b41-450f-835f-de4f32a916de This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4107 | 0.0014 | 1 | 0.6999 | | 0.0766 | 0.0722 | 50 | 0.1108 | | 0.0334 | 0.1444 | 100 | 0.0767 | | 0.0056 | 0.2165 | 150 | 0.0632 | | 0.0233 | 0.2887 | 200 | 0.0586 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/1b465f23-a82d-42f9-b3f8-d7698d71d99c
ClarenceDan
2025-01-23T19:30:29Z
8
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "base_model:Xenova/tiny-random-Phi3ForCausalLM", "base_model:adapter:Xenova/tiny-random-Phi3ForCausalLM", "region:us" ]
null
2025-01-23T19:30:13Z
--- library_name: peft base_model: Xenova/tiny-random-Phi3ForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 1b465f23-a82d-42f9-b3f8-d7698d71d99c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Xenova/tiny-random-Phi3ForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac52733544e3c235_train_data.json ds_type: json format: custom path: /workspace/input_data/ac52733544e3c235_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/1b465f23-a82d-42f9-b3f8-d7698d71d99c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac52733544e3c235_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02e1ae5-13e6-4bae-95ee-6a355e82ebd5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d02e1ae5-13e6-4bae-95ee-6a355e82ebd5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1b465f23-a82d-42f9-b3f8-d7698d71d99c This model is a fine-tuned version of [Xenova/tiny-random-Phi3ForCausalLM](https://huggingface.co/Xenova/tiny-random-Phi3ForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0007 | 1 | nan | | 0.0 | 0.0021 | 3 | nan | | 0.0 | 0.0041 | 6 | nan | | 0.0 | 0.0062 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF
mradermacher
2025-01-23T19:29:09Z
592
0
transformers
[ "transformers", "gguf", "chocolatine", "phi4", "fr", "en", "dataset:jpacifico/french-orca-dpo-pairs-revised", "base_model:jpacifico/Chocolatine-14B-Instruct-DPO-v1.3", "base_model:quantized:jpacifico/Chocolatine-14B-Instruct-DPO-v1.3", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-19T14:17:14Z
--- base_model: jpacifico/Chocolatine-14B-Instruct-DPO-v1.3 datasets: - jpacifico/french-orca-dpo-pairs-revised language: - fr - en library_name: transformers license: mit quantized_by: mradermacher tags: - chocolatine - phi4 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.3 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ1_S.gguf) | i1-IQ1_S | 3.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ1_M.gguf) | i1-IQ1_M | 3.7 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ2_S.gguf) | i1-IQ2_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ2_M.gguf) | i1-IQ2_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q2_K.gguf) | i1-Q2_K | 5.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ3_S.gguf) | i1-IQ3_S | 6.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q4_0.gguf) | i1-Q4_0 | 8.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q4_1.gguf) | i1-Q4_1 | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.3 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.7 | | | [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.3-i1-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.3.i1-Q6_K.gguf) | i1-Q6_K | 12.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Kort/Cm52
Kort
2025-01-23T19:28:41Z
150
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T19:26:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
peteparker456/speecht5_finetuned_voxpopuli_eng
peteparker456
2025-01-23T19:26:43Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-01-23T17:05:04Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_voxpopuli_eng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_eng This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 3.1386 | 111.1111 | 1000 | 0.4425 | | 2.9384 | 222.2222 | 2000 | 0.4609 | | 2.869 | 333.3333 | 3000 | 0.4639 | | 2.8554 | 444.4444 | 4000 | 0.4719 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
maksf8486/91d617d4-aea1-4a8f-98e1-467663d0cd34
maksf8486
2025-01-23T19:25:45Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:53:51Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 91d617d4-aea1-4a8f-98e1-467663d0cd34 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: maksf8486/91d617d4-aea1-4a8f-98e1-467663d0cd34 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 91d617d4-aea1-4a8f-98e1-467663d0cd34 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 1.1445 | | 1.0672 | 0.0036 | 5 | 0.9260 | | 0.6894 | 0.0072 | 10 | 0.3579 | | 0.2565 | 0.0108 | 15 | 0.1895 | | 0.2088 | 0.0144 | 20 | 0.1653 | | 0.1654 | 0.0180 | 25 | 0.1596 | | 0.135 | 0.0217 | 30 | 0.1587 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis11/099af079-c51c-4d16-8507-c480cace1b37
aleegis11
2025-01-23T19:24:51Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:59:11Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 099af079-c51c-4d16-8507-c480cace1b37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5079a290b9b62e47_train_data.json ds_type: json format: custom path: /workspace/input_data/5079a290b9b62e47_train_data.json type: field_instruction: seq field_output: labels_str format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis11/099af079-c51c-4d16-8507-c480cace1b37 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5079a290b9b62e47_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bade6ec8-5860-4f3a-bd1f-e988637c6abe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bade6ec8-5860-4f3a-bd1f-e988637c6abe warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 099af079-c51c-4d16-8507-c480cace1b37 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3086 | 0.0001 | 1 | 2.6961 | | 0.2362 | 0.0064 | 50 | 0.2680 | | 0.2281 | 0.0129 | 100 | 0.2428 | | 0.2053 | 0.0193 | 150 | 0.2315 | | 0.2188 | 0.0258 | 200 | 0.2235 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kokovova/dcacebda-84c9-4978-9bce-ad4b83925464
kokovova
2025-01-23T19:24:02Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:11:34Z
--- library_name: peft license: apache-2.0 base_model: beomi/polyglot-ko-12.8b-safetensors tags: - axolotl - generated_from_trainer model-index: - name: dcacebda-84c9-4978-9bce-ad4b83925464 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: beomi/polyglot-ko-12.8b-safetensors bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bcae25b53977cd4d_train_data.json ds_type: json format: custom path: /workspace/input_data/bcae25b53977cd4d_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: kokovova/dcacebda-84c9-4978-9bce-ad4b83925464 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/bcae25b53977cd4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3f38e4d4-e240-49ce-9bd9-52780a32f40b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3f38e4d4-e240-49ce-9bd9-52780a32f40b warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # dcacebda-84c9-4978-9bce-ad4b83925464 This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0020 | 1 | 1.4784 | | 5.5754 | 0.0100 | 5 | 1.2941 | | 4.4426 | 0.0200 | 10 | 0.9464 | | 3.2237 | 0.0301 | 15 | 0.7740 | | 3.0179 | 0.0401 | 20 | 0.7173 | | 2.8401 | 0.0501 | 25 | 0.6905 | | 2.7979 | 0.0601 | 30 | 0.6849 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tuantmdev/ea22c387-bf35-4619-8cd1-7dd4ccd5ab94
tuantmdev
2025-01-23T19:23:59Z
7
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "region:us" ]
null
2025-01-23T19:22:24Z
--- library_name: peft base_model: TitanML/tiny-mixtral tags: - axolotl - generated_from_trainer model-index: - name: ea22c387-bf35-4619-8cd1-7dd4ccd5ab94 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TitanML/tiny-mixtral bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - abca2ac57e742739_train_data.json ds_type: json format: custom path: /workspace/input_data/abca2ac57e742739_train_data.json type: field_instruction: full_prompt field_output: example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuantmdev/ea22c387-bf35-4619-8cd1-7dd4ccd5ab94 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/abca2ac57e742739_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a148a245-5255-427b-9e91-a1bd6f02267b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a148a245-5255-427b-9e91-a1bd6f02267b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ea22c387-bf35-4619-8cd1-7dd4ccd5ab94 This model is a fine-tuned version of [TitanML/tiny-mixtral](https://huggingface.co/TitanML/tiny-mixtral) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0336 | 1 | nan | | 0.0 | 0.2017 | 6 | nan | | 0.0 | 0.4034 | 12 | nan | | 0.0 | 0.6050 | 18 | nan | | 0.0 | 0.8067 | 24 | nan | | 0.0 | 1.0168 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/466b7e70-4cd4-4371-86e4-91b647af6778
Best000
2025-01-23T19:23:41Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:20:40Z
--- library_name: peft license: apache-2.0 base_model: beomi/polyglot-ko-12.8b-safetensors tags: - axolotl - generated_from_trainer model-index: - name: 466b7e70-4cd4-4371-86e4-91b647af6778 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: beomi/polyglot-ko-12.8b-safetensors bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bcae25b53977cd4d_train_data.json ds_type: json format: custom path: /workspace/input_data/bcae25b53977cd4d_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/466b7e70-4cd4-4371-86e4-91b647af6778 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/bcae25b53977cd4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3f38e4d4-e240-49ce-9bd9-52780a32f40b wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 3f38e4d4-e240-49ce-9bd9-52780a32f40b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 466b7e70-4cd4-4371-86e4-91b647af6778 This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.0781 | 0.0010 | 1 | 1.2453 | | 4.793 | 0.0030 | 3 | 1.2445 | | 4.6978 | 0.0060 | 6 | 1.2072 | | 4.3803 | 0.0090 | 9 | 1.0714 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/cae91a46-9cb0-4d3c-ba48-3763ef330313
nhoxinh
2025-01-23T19:23:22Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:03:52Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: cae91a46-9cb0-4d3c-ba48-3763ef330313 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/cae91a46-9cb0-4d3c-ba48-3763ef330313 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cae91a46-9cb0-4d3c-ba48-3763ef330313 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8918 | 0.1137 | 200 | 1.7312 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/a7f7bfe7-6328-41a7-998d-6186485f9b0e
nhung01
2025-01-23T19:23:20Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:03:47Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: a7f7bfe7-6328-41a7-998d-6186485f9b0e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/a7f7bfe7-6328-41a7-998d-6186485f9b0e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a7f7bfe7-6328-41a7-998d-6186485f9b0e This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8865 | 0.1137 | 200 | 1.7300 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thaffggg/fb6f4032-6e31-4ede-b149-42fabf3f0e86
thaffggg
2025-01-23T19:23:16Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:03:35Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: fb6f4032-6e31-4ede-b149-42fabf3f0e86 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/fb6f4032-6e31-4ede-b149-42fabf3f0e86 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fb6f4032-6e31-4ede-b149-42fabf3f0e86 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9023 | 0.1137 | 200 | 1.7285 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
myhaaaaaaa/b8ba782d-53a5-4f4a-bc54-c20416d5d67e
myhaaaaaaa
2025-01-23T19:22:40Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:03:44Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: b8ba782d-53a5-4f4a-bc54-c20416d5d67e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: myhaaaaaaa/b8ba782d-53a5-4f4a-bc54-c20416d5d67e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b8ba782d-53a5-4f4a-bc54-c20416d5d67e This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8946 | 0.1137 | 200 | 1.7283 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis09/8ccc64a3-dfe1-42be-b3df-81ac413ab455
aleegis09
2025-01-23T19:22:38Z
6
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "region:us" ]
null
2025-01-23T19:22:21Z
--- library_name: peft base_model: TitanML/tiny-mixtral tags: - axolotl - generated_from_trainer model-index: - name: 8ccc64a3-dfe1-42be-b3df-81ac413ab455 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TitanML/tiny-mixtral bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - abca2ac57e742739_train_data.json ds_type: json format: custom path: /workspace/input_data/abca2ac57e742739_train_data.json type: field_instruction: full_prompt field_output: example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis09/8ccc64a3-dfe1-42be-b3df-81ac413ab455 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/abca2ac57e742739_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a148a245-5255-427b-9e91-a1bd6f02267b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a148a245-5255-427b-9e91-a1bd6f02267b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8ccc64a3-dfe1-42be-b3df-81ac413ab455 This model is a fine-tuned version of [TitanML/tiny-mixtral](https://huggingface.co/TitanML/tiny-mixtral) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.5706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 23 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.4823 | 0.1333 | 1 | 10.5706 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5608/842f015d-05f3-4f48-9d05-1fd648d57713
prxy5608
2025-01-23T19:22:32Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:21:13Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 842f015d-05f3-4f48-9d05-1fd648d57713 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - ff3a521d02fa72b2_train_data.json ds_type: json format: custom path: /workspace/input_data/ff3a521d02fa72b2_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5608/842f015d-05f3-4f48-9d05-1fd648d57713 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/ff3a521d02fa72b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29e89a2c-6136-48b6-88bc-a0066652be7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 29e89a2c-6136-48b6-88bc-a0066652be7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 842f015d-05f3-4f48-9d05-1fd648d57713 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.1008 | 0.0006 | 1 | 6.7178 | | 2.0472 | 0.0289 | 50 | 1.7984 | | 1.8397 | 0.0578 | 100 | 1.2212 | | 1.554 | 0.0867 | 150 | 1.0196 | | 1.5232 | 0.1156 | 200 | 0.9803 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dzanbek/e99b2d3c-da05-4c1f-98aa-7558c1261c94
dzanbek
2025-01-23T19:22:23Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf", "base_model:adapter:NousResearch/CodeLlama-7b-hf", "region:us" ]
null
2025-01-23T15:56:26Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: e99b2d3c-da05-4c1f-98aa-7558c1261c94 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0ae20c5f36838dc7_train_data.json ds_type: json format: custom path: /workspace/input_data/0ae20c5f36838dc7_train_data.json type: field_input: context field_instruction: question field_output: answers format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dzanbek/e99b2d3c-da05-4c1f-98aa-7558c1261c94 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/0ae20c5f36838dc7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ddb8501-07dd-47fe-bb76-6b5dfd33b188 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6ddb8501-07dd-47fe-bb76-6b5dfd33b188 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e99b2d3c-da05-4c1f-98aa-7558c1261c94 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 1.5404 | | 6.0565 | 0.0002 | 5 | 1.5016 | | 5.7291 | 0.0004 | 10 | 1.3918 | | 5.2703 | 0.0006 | 15 | 1.3485 | | 5.6047 | 0.0008 | 20 | 1.3318 | | 5.3198 | 0.0010 | 25 | 1.3242 | | 5.2752 | 0.0012 | 30 | 1.3225 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/92fb7190-1fa1-45eb-b83e-00f2fc2b4179
ClarenceDan
2025-01-23T19:22:22Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-23T19:06:03Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 92fb7190-1fa1-45eb-b83e-00f2fc2b4179 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1e00d434c3b8dbc_train_data.json ds_type: json format: custom path: /workspace/input_data/b1e00d434c3b8dbc_train_data.json type: field_input: '' field_instruction: id field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/92fb7190-1fa1-45eb-b83e-00f2fc2b4179 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1e00d434c3b8dbc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: af3e9c37-8160-4b37-a459-45192580b247 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: af3e9c37-8160-4b37-a459-45192580b247 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 92fb7190-1fa1-45eb-b83e-00f2fc2b4179 This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1065 | 0.0001 | 1 | 1.0898 | | 0.8947 | 0.0002 | 3 | 1.0892 | | 0.7116 | 0.0004 | 6 | 1.0778 | | 1.0819 | 0.0006 | 9 | 1.0436 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bbytxt/ff86fb11-a985-420b-a708-8e3a2c8297d3
bbytxt
2025-01-23T19:22:02Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:37:40Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ff86fb11-a985-420b-a708-8e3a2c8297d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - bb423f807c72f7db_train_data.json ds_type: json format: custom path: /workspace/input_data/bb423f807c72f7db_train_data.json type: field_input: text field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: bbytxt/ff86fb11-a985-420b-a708-8e3a2c8297d3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/bb423f807c72f7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dbbd7bbf-e11a-415f-a68c-df9abd649fee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dbbd7bbf-e11a-415f-a68c-df9abd649fee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ff86fb11-a985-420b-a708-8e3a2c8297d3 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.264 | 0.0013 | 1 | 0.5562 | | 0.2516 | 0.0638 | 50 | 0.2878 | | 0.1677 | 0.1276 | 100 | 0.2526 | | 0.3961 | 0.1914 | 150 | 0.2334 | | 0.2878 | 0.2553 | 200 | 0.2308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/f19d16c3-6105-4daa-8ef3-57fa5b5dc402
great0001
2025-01-23T19:20:42Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "region:us" ]
null
2025-01-23T19:18:17Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: f19d16c3-6105-4daa-8ef3-57fa5b5dc402 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/f19d16c3-6105-4daa-8ef3-57fa5b5dc402 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f19d16c3-6105-4daa-8ef3-57fa5b5dc402 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0859 | 0.0006 | 1 | 2.5627 | | 2.3706 | 0.0017 | 3 | 2.5571 | | 2.2415 | 0.0034 | 6 | 2.4446 | | 2.2759 | 0.0051 | 9 | 2.2139 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5608/b61fbc08-3949-4ddc-b819-fd4c01007498
prxy5608
2025-01-23T19:20:30Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:36:23Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b61fbc08-3949-4ddc-b819-fd4c01007498 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - bb423f807c72f7db_train_data.json ds_type: json format: custom path: /workspace/input_data/bb423f807c72f7db_train_data.json type: field_input: text field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5608/b61fbc08-3949-4ddc-b819-fd4c01007498 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/bb423f807c72f7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dbbd7bbf-e11a-415f-a68c-df9abd649fee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dbbd7bbf-e11a-415f-a68c-df9abd649fee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b61fbc08-3949-4ddc-b819-fd4c01007498 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.264 | 0.0013 | 1 | 0.5562 | | 0.2533 | 0.0638 | 50 | 0.2876 | | 0.1694 | 0.1276 | 100 | 0.2530 | | 0.3983 | 0.1914 | 150 | 0.2349 | | 0.3229 | 0.2553 | 200 | 0.2330 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/cb829967-e1ec-400a-8464-468e82eaa0b6
prxy5604
2025-01-23T19:20:20Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:36:06Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: cb829967-e1ec-400a-8464-468e82eaa0b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - bb423f807c72f7db_train_data.json ds_type: json format: custom path: /workspace/input_data/bb423f807c72f7db_train_data.json type: field_input: text field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/cb829967-e1ec-400a-8464-468e82eaa0b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/bb423f807c72f7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dbbd7bbf-e11a-415f-a68c-df9abd649fee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dbbd7bbf-e11a-415f-a68c-df9abd649fee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cb829967-e1ec-400a-8464-468e82eaa0b6 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.264 | 0.0013 | 1 | 0.5562 | | 0.2525 | 0.0638 | 50 | 0.2868 | | 0.1709 | 0.1276 | 100 | 0.2537 | | 0.4044 | 0.1914 | 150 | 0.2330 | | 0.2913 | 0.2553 | 200 | 0.2303 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/ultiima-108B-i1-GGUF
mradermacher
2025-01-23T19:19:14Z
84
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Sakalti/ultiima-108B", "base_model:quantized:Sakalti/ultiima-108B", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-23T14:24:38Z
--- base_model: Sakalti/ultiima-108B language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Sakalti/ultiima-108B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/ultiima-108B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ1_S.gguf) | i1-IQ1_S | 33.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ1_M.gguf) | i1-IQ1_M | 35.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 37.7 | | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 40.1 | | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ2_S.gguf) | i1-IQ2_S | 41.3 | | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ2_M.gguf) | i1-IQ2_M | 43.4 | | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 43.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q2_K.gguf) | i1-Q2_K | 44.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 47.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 48.5 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_S.gguf.part2of2) | i1-Q3_K_S | 50.8 | IQ3_XS probably better | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_S.gguf.part2of2) | i1-IQ3_S | 50.9 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ3_M.gguf.part2of2) | i1-IQ3_M | 52.4 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 55.7 | IQ3_S probably better | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 58.6 | IQ3_M probably better | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 58.8 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 61.3 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 64.9 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_1.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_1.gguf.part2of2) | i1-Q4_1 | 67.7 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 70.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 76.2 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 80.8 | | | [PART 1](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/ultiima-108B-i1-GGUF/resolve/main/ultiima-108B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 95.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
datlaaaaaaa/c80fac54-a7e4-450a-b09c-108e549a2bb0
datlaaaaaaa
2025-01-23T19:16:58Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:51:47Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c80fac54-a7e4-450a-b09c-108e549a2bb0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/c80fac54-a7e4-450a-b09c-108e549a2bb0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c80fac54-a7e4-450a-b09c-108e549a2bb0 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1226 | 0.0722 | 200 | 0.1099 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/24e206ea-db0c-4b0f-8114-b1408e712349
nttx
2025-01-23T19:16:42Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "region:us" ]
null
2025-01-23T18:08:32Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 24e206ea-db0c-4b0f-8114-b1408e712349 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 92734826f81f6638_train_data.json ds_type: json format: custom path: /workspace/input_data/92734826f81f6638_train_data.json type: field_input: docstring_tokens field_instruction: function field_output: docstring format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/24e206ea-db0c-4b0f-8114-b1408e712349 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/92734826f81f6638_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ba207857-bfce-4d35-b3d0-a3d9df3faf8a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ba207857-bfce-4d35-b3d0-a3d9df3faf8a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 24e206ea-db0c-4b0f-8114-b1408e712349 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1632 | 0.0003 | 1 | 1.1661 | | 0.0014 | 0.0138 | 50 | 0.0147 | | 0.0211 | 0.0276 | 100 | 0.0054 | | 0.0002 | 0.0414 | 150 | 0.0036 | | 0.0003 | 0.0552 | 200 | 0.0032 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/f628b4d7-2c11-4837-9386-6fce339e3087
lesso05
2025-01-23T19:16:26Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T19:03:36Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: f628b4d7-2c11-4837-9386-6fce339e3087 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: true chat_template: llama3 datasets: - data_files: - 9cd54185dfa12d69_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd54185dfa12d69_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/f628b4d7-2c11-4837-9386-6fce339e3087 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd54185dfa12d69_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ce46f6e-e85f-4b7a-ae7c-250c641329ac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f628b4d7-2c11-4837-9386-6fce339e3087 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.086 | 0.0006 | 1 | 2.5763 | | 2.5507 | 0.0028 | 5 | 2.5237 | | 2.5038 | 0.0057 | 10 | 2.1972 | | 2.0589 | 0.0085 | 15 | 1.9690 | | 2.0728 | 0.0114 | 20 | 1.8923 | | 1.6511 | 0.0142 | 25 | 1.8817 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/6ff8907c-c77b-4c39-a1b2-d99d2d4d2350
nadejdatarabukina
2025-01-23T19:15:46Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:51:42Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6ff8907c-c77b-4c39-a1b2-d99d2d4d2350 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4b47e3ddd7129f5f_train_data.json ds_type: json format: custom path: /workspace/input_data/4b47e3ddd7129f5f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/6ff8907c-c77b-4c39-a1b2-d99d2d4d2350 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/4b47e3ddd7129f5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d82e5b23-2360-4fb1-ba8e-609b2af93cfa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d82e5b23-2360-4fb1-ba8e-609b2af93cfa warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6ff8907c-c77b-4c39-a1b2-d99d2d4d2350 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.1440 | | 1.1414 | 0.0018 | 5 | 1.0712 | | 0.9012 | 0.0036 | 10 | 0.5820 | | 0.2894 | 0.0054 | 15 | 0.2234 | | 0.2345 | 0.0072 | 20 | 0.1830 | | 0.1518 | 0.0090 | 25 | 0.1740 | | 0.1727 | 0.0108 | 30 | 0.1724 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
deqing/llama_3.2_1b_fne_transform_openmathinstruct_2_2025_01_22_plus_addition_dataset
deqing
2025-01-23T19:15:34Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T07:06:07Z
--- base_model: llama_fourier library_name: transformers model_name: llama_3.2_1b_fne_transform_openmathinstruct_2_2025_01_22_plus_addition_dataset tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama_3.2_1b_fne_transform_openmathinstruct_2_2025_01_22_plus_addition_dataset This model is a fine-tuned version of [llama_fourier](https://huggingface.co/llama_fourier). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="deqing/llama_3.2_1b_fne_transform_openmathinstruct_2_2025_01_22_plus_addition_dataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/deqingfu/fourier_number_embedding/runs/elemauy6) This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.2 - Pytorch: 2.1.2 - Datasets: 3.1.0 - Tokenizers: 0.20.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
deqing/llama_3.2_1b_vanilla_openmathinstruct_2_2025_01_22_plus_addition_dataset
deqing
2025-01-23T19:14:26Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T07:06:07Z
--- base_model: llama_fourier library_name: transformers model_name: llama_3.2_1b_vanilla_openmathinstruct_2_2025_01_22_plus_addition_dataset tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama_3.2_1b_vanilla_openmathinstruct_2_2025_01_22_plus_addition_dataset This model is a fine-tuned version of [llama_fourier](https://huggingface.co/llama_fourier). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="deqing/llama_3.2_1b_vanilla_openmathinstruct_2_2025_01_22_plus_addition_dataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/deqingfu/fourier_number_embedding/runs/3dypvku1) This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.2 - Pytorch: 2.1.2 - Datasets: 3.1.0 - Tokenizers: 0.20.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
haryoaw/cola_meta-llama-Llama-3.2-3B_2_0
haryoaw
2025-01-23T19:14:15Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T18:08:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HBboy/Qwen2.5-0.5B-Instruct-xiaosui-full
HBboy
2025-01-23T19:14:08Z
18
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T17:34:07Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: train_2025-01-23-16-59-22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_2025-01-23-16-59-22 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the xiaosui-train and the identity datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 4 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
trenden/929ace50-67f5-4e87-b5b4-b8010b1337f7
trenden
2025-01-23T19:10:54Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:54:52Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 929ace50-67f5-4e87-b5b4-b8010b1337f7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 64fe47644b03a711_train_data.json ds_type: json format: custom path: /workspace/input_data/64fe47644b03a711_train_data.json type: field_input: '' field_instruction: context field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/929ace50-67f5-4e87-b5b4-b8010b1337f7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/64fe47644b03a711_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5e0875d0-636d-4520-9359-4eac575c16b9 wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 5e0875d0-636d-4520-9359-4eac575c16b9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 929ace50-67f5-4e87-b5b4-b8010b1337f7 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2956 | 0.0001 | 1 | 2.8442 | | 10.7208 | 0.0002 | 3 | 2.8438 | | 10.3376 | 0.0003 | 6 | 2.8166 | | 9.698 | 0.0005 | 9 | 2.6163 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis09/9e4a83ad-3733-42bc-b9cb-ef5ec15e7dd4
aleegis09
2025-01-23T19:09:03Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-23T19:08:28Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 9e4a83ad-3733-42bc-b9cb-ef5ec15e7dd4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f4a61305a746447c_train_data.json ds_type: json format: custom path: /workspace/input_data/f4a61305a746447c_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis09/9e4a83ad-3733-42bc-b9cb-ef5ec15e7dd4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f4a61305a746447c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c6d606c5-1bf1-4d46-8f27-e3893d012d1d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c6d606c5-1bf1-4d46-8f27-e3893d012d1d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9e4a83ad-3733-42bc-b9cb-ef5ec15e7dd4 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3745 | 0.0095 | 1 | 10.3693 | | 10.3454 | 0.4739 | 50 | 10.3517 | | 10.3232 | 0.9479 | 100 | 10.3409 | | 10.0203 | 1.4218 | 150 | 10.3385 | | 10.711 | 1.8957 | 200 | 10.3381 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
willtensora/dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86
willtensora
2025-01-23T19:08:59Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "axolotl", "generated_from_trainer", "conversational", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:finetune:trl-internal-testing/tiny-random-LlamaForCausalLM", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T19:08:38Z
--- library_name: transformers base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: trl-internal-testing/tiny-random-LlamaForCausalLM batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - f4a61305a746447c_train_data.json ds_type: json format: custom path: /workspace/input_data/f4a61305a746447c_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_steps: 20 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 2500 micro_batch_size: 4 model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/configs pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 40 save_total_limit: 1 sequence_len: 2048 tokenizer_type: LlamaTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-/workspace/input_data/f4a61305a746447c_train_data.json wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ``` </details><br> # dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.01 | 1 | 10.3686 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/67cd2274-a71f-42d9-8446-11041adb2b48
ClarenceDan
2025-01-23T19:08:31Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-23T19:08:14Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 67cd2274-a71f-42d9-8446-11041adb2b48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f4a61305a746447c_train_data.json ds_type: json format: custom path: /workspace/input_data/f4a61305a746447c_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/67cd2274-a71f-42d9-8446-11041adb2b48 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f4a61305a746447c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c6d606c5-1bf1-4d46-8f27-e3893d012d1d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c6d606c5-1bf1-4d46-8f27-e3893d012d1d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 67cd2274-a71f-42d9-8446-11041adb2b48 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.365 | 0.0024 | 1 | 10.3692 | | 10.3614 | 0.0071 | 3 | 10.3692 | | 10.3717 | 0.0142 | 6 | 10.3692 | | 10.3739 | 0.0214 | 9 | 10.3690 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/4b6bc777-ba7b-4bc7-913a-28a2d06ffc96
thalllsssss
2025-01-23T19:06:53Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:36:32Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4b6bc777-ba7b-4bc7-913a-28a2d06ffc96 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb423f807c72f7db_train_data.json ds_type: json format: custom path: /workspace/input_data/bb423f807c72f7db_train_data.json type: field_input: text field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/4b6bc777-ba7b-4bc7-913a-28a2d06ffc96 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/bb423f807c72f7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dbbd7bbf-e11a-415f-a68c-df9abd649fee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dbbd7bbf-e11a-415f-a68c-df9abd649fee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4b6bc777-ba7b-4bc7-913a-28a2d06ffc96 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2318 | 0.0638 | 200 | 0.2430 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ell-hol/fx-dv-lr-fnc-frt
ell-hol
2025-01-23T19:05:49Z
87
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T19:05:48Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Fnac --- # Fx Dv Lr Fnc Frt <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Fnac` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ell-hol/fx-dv-lr-fnc-frt', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
nbninh/497e554a-0cff-470d-b4f5-ffb96223678f
nbninh
2025-01-23T19:04:32Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:36:28Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 497e554a-0cff-470d-b4f5-ffb96223678f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb423f807c72f7db_train_data.json ds_type: json format: custom path: /workspace/input_data/bb423f807c72f7db_train_data.json type: field_input: text field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/497e554a-0cff-470d-b4f5-ffb96223678f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/bb423f807c72f7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dbbd7bbf-e11a-415f-a68c-df9abd649fee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dbbd7bbf-e11a-415f-a68c-df9abd649fee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 497e554a-0cff-470d-b4f5-ffb96223678f This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2321 | 0.0638 | 200 | 0.2427 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/5b0a0bcc-69ac-44f1-9334-2722d2c09a40
kk-aivio
2025-01-23T19:03:21Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-23T19:02:05Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 5b0a0bcc-69ac-44f1-9334-2722d2c09a40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d2abf275c90b86ed_train_data.json ds_type: json format: custom path: /workspace/input_data/d2abf275c90b86ed_train_data.json type: field_input: Example field_instruction: '@partOfSpeech' field_output: Definition format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/5b0a0bcc-69ac-44f1-9334-2722d2c09a40 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/d2abf275c90b86ed_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9e21fd6c-dbfa-45cb-971d-696ec25f86a3 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 9e21fd6c-dbfa-45cb-971d-696ec25f86a3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5b0a0bcc-69ac-44f1-9334-2722d2c09a40 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3723 | 0.0001 | 1 | 10.3784 | | 10.3797 | 0.0002 | 3 | 10.3784 | | 10.3731 | 0.0004 | 6 | 10.3783 | | 10.3813 | 0.0006 | 9 | 10.3781 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CrimsonZockt/JuliaZarzeckaVZWei-FLUXLORA
CrimsonZockt
2025-01-23T19:03:18Z
61
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-23T18:39:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Julia Zarzecka, black tanktop, professional headshot, photoshoot. output: url: images/Julia Zarzecka, black tanktop, professional hea....png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Julia Zarzecka --- # JuliaZarzeckaVZWei <Gallery /> ## Model description Version 2 of this model. ## Trigger words You should use `Julia Zarzecka` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CrimsonZockt/JuliaZarzeckaVZWei-FLUXLORA/tree/main) them in the Files & versions tab.
nblinh63/0fb73688-98c2-48b6-8910-9df112990f9a
nblinh63
2025-01-23T19:03:15Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:00:38Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 0fb73688-98c2-48b6-8910-9df112990f9a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d4a9076aa3a08e6_train_data.json ds_type: json format: custom path: /workspace/input_data/3d4a9076aa3a08e6_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh63/0fb73688-98c2-48b6-8910-9df112990f9a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3d4a9076aa3a08e6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e50b6e65-0f7c-4d11-89d7-c022df9ec755 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e50b6e65-0f7c-4d11-89d7-c022df9ec755 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0fb73688-98c2-48b6-8910-9df112990f9a This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5871 | 0.0338 | 200 | 0.5226 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SuperKaos/sofavictor
SuperKaos
2025-01-23T19:02:38Z
11
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T18:41:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: sofavictor --- # Sofavictor <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `sofavictor` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('SuperKaos/sofavictor', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
glif-loradex-trainer/kklors_flux_dev_DC_2
glif-loradex-trainer
2025-01-23T19:01:54Z
81
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2025-01-23T19:01:10Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1737658732991__000003000_0.jpg text: a serene lake in autumn surrounded by trees DC - output: url: samples/1737658757760__000003000_1.jpg text: golden hour, sheep on a meadow, rural DC - output: url: samples/1737658782545__000003000_2.jpg text: a modern cozy living room with wooden walls and a big panorama windowDC - output: url: samples/1737658807327__000003000_3.jpg text: golden hour, a lonely tree in a field DC - output: url: samples/1737658832208__000003000_4.jpg text: hills and mountains, nature in winterDC - output: url: samples/1737658856998__000003000_5.jpg text: a small village close to a lake, mountains DC base_model: black-forest-labs/FLUX.1-dev trigger: "DC" instance_prompt: "DC" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # flux_dev_DC_2 Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `kklors`. <Gallery /> ## Trigger words You should use `DC` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/kklors_flux_dev_DC_2/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
lesso15/2d03956f-3e38-4b04-abc5-76f883e6265d
lesso15
2025-01-23T19:01:31Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:07:17Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: 2d03956f-3e38-4b04-abc5-76f883e6265d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 datasets: - data_files: - ccd32583f980ebf0_train_data.json ds_type: json format: custom path: /workspace/input_data/ccd32583f980ebf0_train_data.json type: field_input: '' field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/2d03956f-3e38-4b04-abc5-76f883e6265d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ccd32583f980ebf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 01b60291-41f3-4631-b7e8-f7c60c2ca163 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 01b60291-41f3-4631-b7e8-f7c60c2ca163 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2d03956f-3e38-4b04-abc5-76f883e6265d This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.6879 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/442bf738-d24b-4c5e-936e-727503b89f9e
great0001
2025-01-23T19:01:17Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "region:us" ]
null
2025-01-23T19:00:24Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 442bf738-d24b-4c5e-936e-727503b89f9e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bccab6bcbcb6fc03_train_data.json ds_type: json format: custom path: /workspace/input_data/bccab6bcbcb6fc03_train_data.json type: field_input: choices field_instruction: full_prompt field_output: example format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/442bf738-d24b-4c5e-936e-727503b89f9e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/bccab6bcbcb6fc03_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1dc178e8-8f66-48ae-8ebb-825428c168d0 wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 1dc178e8-8f66-48ae-8ebb-825428c168d0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 442bf738-d24b-4c5e-936e-727503b89f9e This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8088 | 0.0336 | 1 | 0.4763 | | 1.7288 | 0.1008 | 3 | 0.3289 | | 0.3919 | 0.2017 | 6 | 0.0161 | | 0.0017 | 0.3025 | 9 | 0.0003 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lmstudio-community/UI-TARS-72B-DPO-GGUF
lmstudio-community
2025-01-23T18:59:43Z
1,554
1
null
[ "gguf", "multimodal", "gui", "image-text-to-text", "en", "arxiv:2501.12326", "base_model:bytedance-research/UI-TARS-72B-DPO", "base_model:quantized:bytedance-research/UI-TARS-72B-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-23T18:02:19Z
--- quantized_by: bartowski pipeline_tag: image-text-to-text license: apache-2.0 base_model: bytedance-research/UI-TARS-72B-DPO tags: - multimodal - gui language: - en --- ## 💫 Community Model> UI TARS 72B DPO by Bytedance-Research *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [bytedance-research](https://huggingface.co/bytedance-research)<br> **Original model**: [UI-TARS-72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4514](https://github.com/ggerganov/llama.cpp/releases/tag/b4514)<br> ## Technical Details Finetune of Qwen VL reasoning model. Created for native GUI agent models with human-like perception, reasoning, and action capabilities. More details available here: [UI-TARS: Pioneering Automated GUI Interaction with Native Agents](https://huggingface.co/papers/2501.12326). ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
sailendu/modernbert-llm-router
sailendu
2025-01-23T18:59:31Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T17:47:22Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: modernbert-llm-router results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-llm-router This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4671 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:----:| | No log | 1.0 | 1 | 0.7026 | 0.82 | | No log | 2.0 | 2 | 0.6383 | 0.82 | | No log | 3.0 | 3 | 0.5799 | 0.82 | | No log | 4.0 | 4 | 0.4671 | 1.0 | | No log | 5.0 | 5 | 0.4164 | 1.0 | | No log | 6.0 | 6 | 0.4202 | 1.0 | | No log | 7.0 | 7 | 0.3868 | 1.0 | | No log | 8.0 | 8 | 0.3568 | 1.0 | | No log | 9.0 | 9 | 0.3463 | 1.0 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.1 - Datasets 3.1.0 - Tokenizers 0.21.0
gavrilstep/86326240-4310-4f05-a004-dd915160f921
gavrilstep
2025-01-23T18:58:16Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T17:11:22Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 86326240-4310-4f05-a004-dd915160f921 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 018801b6a6272709_train_data.json ds_type: json format: custom path: /workspace/input_data/018801b6a6272709_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/86326240-4310-4f05-a004-dd915160f921 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/018801b6a6272709_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6db6f49b-d7b4-4b62-93de-49a5ea09b965 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6db6f49b-d7b4-4b62-93de-49a5ea09b965 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 86326240-4310-4f05-a004-dd915160f921 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 5 | nan | | 0.0 | 0.0003 | 10 | nan | | 0.0 | 0.0004 | 15 | nan | | 0.0 | 0.0006 | 20 | nan | | 0.0 | 0.0007 | 25 | nan | | 0.0 | 0.0008 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/fbaeeda8-5d31-459a-afac-8e45b39a55dc
Best000
2025-01-23T18:54:04Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:53:29Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: fbaeeda8-5d31-459a-afac-8e45b39a55dc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b2a4966d9a5c880e_train_data.json ds_type: json format: custom path: /workspace/input_data/b2a4966d9a5c880e_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/fbaeeda8-5d31-459a-afac-8e45b39a55dc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b2a4966d9a5c880e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ee62f35d-1a99-4f1c-a69c-c91bc444b71f wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: ee62f35d-1a99-4f1c-a69c-c91bc444b71f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fbaeeda8-5d31-459a-afac-8e45b39a55dc This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.5289 | 0.0024 | 1 | 1.8503 | | 6.8689 | 0.0072 | 3 | 1.8454 | | 6.8834 | 0.0144 | 6 | 1.7722 | | 6.8316 | 0.0216 | 9 | 1.6191 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hugggof/vampnetv2-tria-d1026-l8-h8-mode-vampnet_rmsq16-median-latest
hugggof
2025-01-23T18:51:00Z
7
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-23T18:50:39Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
kostiantynk-out/f39ee3aa-b1ac-45f8-a7dd-8f0fb9a8856a
kostiantynk-out
2025-01-23T18:50:34Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
2025-01-23T18:47:57Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: f39ee3aa-b1ac-45f8-a7dd-8f0fb9a8856a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2e21289e112cd7b2_train_data.json ds_type: json format: custom path: /workspace/input_data/2e21289e112cd7b2_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/f39ee3aa-b1ac-45f8-a7dd-8f0fb9a8856a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2e21289e112cd7b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a9c8ce22-7239-43da-8517-794fda09424b wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: a9c8ce22-7239-43da-8517-794fda09424b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f39ee3aa-b1ac-45f8-a7dd-8f0fb9a8856a This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.6859 | 0.0008 | 1 | 1.4277 | | 5.5829 | 0.0023 | 3 | 1.4250 | | 5.7831 | 0.0046 | 6 | 1.3955 | | 5.2315 | 0.0068 | 9 | 1.3182 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Aardiiiiy/ProKontra3
Aardiiiiy
2025-01-23T18:49:42Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T18:49:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hongngo/14572a1f-422e-4ad1-b681-1a7a37eac195
hongngo
2025-01-23T18:49:31Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T18:09:32Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 14572a1f-422e-4ad1-b681-1a7a37eac195 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 92734826f81f6638_train_data.json ds_type: json format: custom path: /workspace/input_data/92734826f81f6638_train_data.json type: field_input: docstring_tokens field_instruction: function field_output: docstring format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/14572a1f-422e-4ad1-b681-1a7a37eac195 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/92734826f81f6638_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ba207857-bfce-4d35-b3d0-a3d9df3faf8a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ba207857-bfce-4d35-b3d0-a3d9df3faf8a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 14572a1f-422e-4ad1-b681-1a7a37eac195 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.001 | 0.0138 | 200 | 0.0095 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhunglaaaaaaa/83b80c83-b2e1-4ae0-b402-c1253a81ba5d
nhunglaaaaaaa
2025-01-23T18:49:17Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:lcw99/zephykor-ko-7b-chang", "base_model:adapter:lcw99/zephykor-ko-7b-chang", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T17:50:56Z
--- library_name: peft base_model: lcw99/zephykor-ko-7b-chang tags: - axolotl - generated_from_trainer model-index: - name: 83b80c83-b2e1-4ae0-b402-c1253a81ba5d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lcw99/zephykor-ko-7b-chang bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ccfbe55a1bac0210_train_data.json ds_type: json format: custom path: /workspace/input_data/ccfbe55a1bac0210_train_data.json type: field_instruction: Sequence field_output: Secondary_structure format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/83b80c83-b2e1-4ae0-b402-c1253a81ba5d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ccfbe55a1bac0210_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31fb1a31-a1c6-4e99-8087-716702f9f864 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31fb1a31-a1c6-4e99-8087-716702f9f864 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 83b80c83-b2e1-4ae0-b402-c1253a81ba5d This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.698 | 0.0134 | 200 | 1.1408 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trangtrannnnn/6fcb5289-2b5f-4c18-bd9c-ef4bb15b6b96
trangtrannnnn
2025-01-23T18:49:08Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:lcw99/zephykor-ko-7b-chang", "base_model:adapter:lcw99/zephykor-ko-7b-chang", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T17:50:48Z
--- library_name: peft base_model: lcw99/zephykor-ko-7b-chang tags: - axolotl - generated_from_trainer model-index: - name: 6fcb5289-2b5f-4c18-bd9c-ef4bb15b6b96 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lcw99/zephykor-ko-7b-chang bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ccfbe55a1bac0210_train_data.json ds_type: json format: custom path: /workspace/input_data/ccfbe55a1bac0210_train_data.json type: field_instruction: Sequence field_output: Secondary_structure format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: trangtrannnnn/6fcb5289-2b5f-4c18-bd9c-ef4bb15b6b96 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ccfbe55a1bac0210_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31fb1a31-a1c6-4e99-8087-716702f9f864 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31fb1a31-a1c6-4e99-8087-716702f9f864 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6fcb5289-2b5f-4c18-bd9c-ef4bb15b6b96 This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.7007 | 0.0134 | 200 | 1.1409 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/f029e864-3290-4610-b2a3-52cd40de2fd4
JacksonBrune
2025-01-23T18:48:21Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-64k", "base_model:adapter:NousResearch/Yarn-Solar-10b-64k", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:13:01Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: f029e864-3290-4610-b2a3-52cd40de2fd4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e901e040c85d28fc_train_data.json ds_type: json format: custom path: /workspace/input_data/e901e040c85d28fc_train_data.json type: field_input: post field_instruction: query field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/f029e864-3290-4610-b2a3-52cd40de2fd4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e901e040c85d28fc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b4512ccd-8cc9-495a-ab2a-53b76de19941 wandb_project: birthdya-sn56-18-Gradients-On-Demand wandb_run: your_name wandb_runid: b4512ccd-8cc9-495a-ab2a-53b76de19941 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f029e864-3290-4610-b2a3-52cd40de2fd4 This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0002 | 3 | nan | | 0.0 | 0.0004 | 6 | nan | | 0.0 | 0.0006 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso17/cc2c0682-0860-4d05-9d05-3981bc571f50
lesso17
2025-01-23T18:48:07Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T17:25:42Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: cc2c0682-0860-4d05-9d05-3981bc571f50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 datasets: - data_files: - e0d97ee0a206d0cc_train_data.json ds_type: json format: custom path: /workspace/input_data/e0d97ee0a206d0cc_train_data.json type: field_input: knowledge field_instruction: dialogue_history field_output: right_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/cc2c0682-0860-4d05-9d05-3981bc571f50 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e0d97ee0a206d0cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 03236c1c-e4b3-445b-aaf1-ced05acc5a85 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 03236c1c-e4b3-445b-aaf1-ced05acc5a85 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cc2c0682-0860-4d05-9d05-3981bc571f50 This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6462 | 0.1701 | 200 | 1.6735 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tum-nlp-lab/10Epochs_target3
tum-nlp-lab
2025-01-23T18:46:09Z
21
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-23T18:45:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kostiantynk-out/10f30baa-e596-4815-a5f7-f944ae4bbbda
kostiantynk-out
2025-01-23T18:44:20Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:43:38Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 10f30baa-e596-4815-a5f7-f944ae4bbbda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ff3a521d02fa72b2_train_data.json ds_type: json format: custom path: /workspace/input_data/ff3a521d02fa72b2_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/10f30baa-e596-4815-a5f7-f944ae4bbbda hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ff3a521d02fa72b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29e89a2c-6136-48b6-88bc-a0066652be7d wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: 29e89a2c-6136-48b6-88bc-a0066652be7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 10f30baa-e596-4815-a5f7-f944ae4bbbda This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0009 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Howard881010/longformer-epidemiology-1epoch
Howard881010
2025-01-23T18:42:46Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "longformer", "text-classification", "generated_from_trainer", "base_model:allenai/longformer-base-4096", "base_model:finetune:allenai/longformer-base-4096", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T08:30:49Z
--- library_name: transformers license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: longformer-epidemiology-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-epidemiology-1epoch This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6951 - Accuracy: 0.477 - F1: 0.3230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.6954 | 0.1111 | 50 | 0.7023 | 0.477 | 0.3230 | | 0.6938 | 0.2222 | 100 | 0.7087 | 0.477 | 0.3230 | | 0.6948 | 0.3333 | 150 | 0.6921 | 0.523 | 0.3434 | | 0.6983 | 0.4444 | 200 | 0.6921 | 0.523 | 0.3434 | | 0.6948 | 0.5556 | 250 | 0.6925 | 0.523 | 0.3434 | | 0.6962 | 0.6667 | 300 | 0.6963 | 0.477 | 0.3230 | | 0.7 | 0.7778 | 350 | 0.6921 | 0.523 | 0.3434 | | 0.6967 | 0.8889 | 400 | 0.6930 | 0.523 | 0.3434 | | 0.6885 | 1.0 | 450 | 0.6951 | 0.477 | 0.3230 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1
great0001/7d2c3013-5e6d-4c51-9270-1763579b2a75
great0001
2025-01-23T18:42:22Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T18:41:40Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 7d2c3013-5e6d-4c51-9270-1763579b2a75 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ff3a521d02fa72b2_train_data.json ds_type: json format: custom path: /workspace/input_data/ff3a521d02fa72b2_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/7d2c3013-5e6d-4c51-9270-1763579b2a75 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ff3a521d02fa72b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29e89a2c-6136-48b6-88bc-a0066652be7d wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 29e89a2c-6136-48b6-88bc-a0066652be7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7d2c3013-5e6d-4c51-9270-1763579b2a75 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0009 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1