modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
Nickitaa/ppo-Huggy
Nickitaa
2024-01-03T18:13:05Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-03T18:12:58Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Nickitaa/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
cuongdz01/layoutlmv3-funsd
cuongdz01
2024-01-03T18:05:26Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T17:25:06Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-funsd This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8428 - Precision: 0.8993 - Recall: 0.9046 - F1: 0.9019 - Accuracy: 0.8354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.63 | 100 | 0.6294 | 0.7864 | 0.8286 | 0.8070 | 0.7966 | | No log | 5.26 | 200 | 0.5034 | 0.8389 | 0.8793 | 0.8586 | 0.8343 | | No log | 7.89 | 300 | 0.5673 | 0.8597 | 0.9011 | 0.8799 | 0.8416 | | No log | 10.53 | 400 | 0.5730 | 0.8783 | 0.9106 | 0.8941 | 0.8395 | | 0.4463 | 13.16 | 500 | 0.6630 | 0.8923 | 0.9016 | 0.8970 | 0.8412 | | 0.4463 | 15.79 | 600 | 0.7048 | 0.8850 | 0.8947 | 0.8898 | 0.8329 | | 0.4463 | 18.42 | 700 | 0.7772 | 0.8925 | 0.9071 | 0.8997 | 0.8317 | | 0.4463 | 21.05 | 800 | 0.8408 | 0.8959 | 0.9016 | 0.8987 | 0.8313 | | 0.4463 | 23.68 | 900 | 0.8580 | 0.8918 | 0.9051 | 0.8984 | 0.8313 | | 0.0611 | 26.32 | 1000 | 0.8428 | 0.8993 | 0.9046 | 0.9019 | 0.8354 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
medtalkai/wav2vec2-xls-r-1b-portuguese-casa-civil-030124
medtalkai
2024-01-03T17:52:31Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "base_model:finetune:jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-03T14:46:08Z
--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-xls-r-1b-portuguese tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-1b-portuguese-casa-civil-030124 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-portuguese-casa-civil-030124 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.1310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 28.5913 | 2.0 | 100 | 1.2903 | 0.1460 | | 1.1869 | 4.0 | 200 | 0.6083 | 0.1537 | | 0.8173 | 6.0 | 300 | 0.7054 | 0.2217 | | 0.7882 | 8.0 | 400 | 0.7377 | 0.2711 | | 0.6783 | 10.0 | 500 | 0.7785 | 0.2321 | | 0.5541 | 12.0 | 600 | 0.6881 | 0.2394 | | 0.5104 | 14.0 | 700 | 0.7285 | 0.2270 | | 0.344 | 16.0 | 800 | 0.6114 | 0.1991 | | 0.304 | 18.0 | 900 | 0.5559 | 0.1906 | | 0.2315 | 20.0 | 1000 | 0.6833 | 0.1727 | | 0.2144 | 22.0 | 1100 | 0.5632 | 0.1695 | | 0.1725 | 24.0 | 1200 | 0.5597 | 0.1463 | | 0.1492 | 26.0 | 1300 | 0.5356 | 0.1472 | | 0.118 | 28.0 | 1400 | 0.5499 | 0.1344 | | 0.1083 | 30.0 | 1500 | 0.5479 | 0.1310 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
diogo-carvalho/customModel
diogo-carvalho
2024-01-03T17:51:16Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T17:51:09Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
mitrashatru/translate_model_error_v0.4
mitrashatru
2024-01-03T17:46:41Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-hi", "base_model:finetune:Helsinki-NLP/opus-mt-en-hi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-10T04:50:50Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-hi tags: - generated_from_trainer metrics: - bleu model-index: - name: translate_model_error_v0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translate_model_error_v0.4 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5234 - Bleu: 81.3018 - Gen Len: 5.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 13 | 0.5461 | 81.5715 | 5.12 | | No log | 2.0 | 26 | 0.5234 | 81.3018 | 5.1 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cpu - Datasets 2.15.0 - Tokenizers 0.15.0
RKessler/BLESSRelation
RKessler
2024-01-03T17:45:40Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-26T14:53:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: BLESSRelation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BLESSRelation This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 100 | 0.6948 | 0.5 | | No log | 1.6 | 200 | 0.6931 | 0.5 | | No log | 2.4 | 300 | 0.6937 | 0.5 | | No log | 3.2 | 400 | 0.7044 | 0.5 | | 0.7005 | 4.0 | 500 | 0.6967 | 0.5 | | 0.7005 | 4.8 | 600 | 0.6936 | 0.5 | | 0.7005 | 5.6 | 700 | 0.6932 | 0.5 | | 0.7005 | 6.4 | 800 | 0.6941 | 0.5 | | 0.7005 | 7.2 | 900 | 0.6932 | 0.5 | | 0.6974 | 8.0 | 1000 | 0.6932 | 0.5 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
diegokauer/conditional-detr-coe-int
diegokauer
2024-01-03T17:40:32Z
69
0
transformers
[ "transformers", "tensorboard", "safetensors", "conditional_detr", "object-detection", "generated_from_trainer", "base_model:microsoft/conditional-detr-resnet-50", "base_model:finetune:microsoft/conditional-detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-12-26T12:59:15Z
--- license: apache-2.0 base_model: microsoft/conditional-detr-resnet-50 tags: - generated_from_trainer model-index: - name: conditional-detr-coe-int results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conditional-detr-coe-int This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
iForgotMyName8008/ppo-SnowballTarget
iForgotMyName8008
2024-01-03T17:34:03Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-01-03T17:33:56Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: iForgotMyName8008/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
baltop/sql30000_500
baltop
2024-01-03T17:32:05Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:defog/sqlcoder-7b", "base_model:adapter:defog/sqlcoder-7b", "region:us" ]
null
2024-01-03T17:31:39Z
--- library_name: peft base_model: defog/sqlcoder-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_chatGPT_temp0_Seed114
behzadnet
2024-01-03T17:31:58Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-03T17:31:56Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_chatGPT_temp0_Seed114
behzadnet
2024-01-03T17:31:50Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-03T17:31:45Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
baltop/sql30000_300
baltop
2024-01-03T17:30:46Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:defog/sqlcoder-7b", "base_model:adapter:defog/sqlcoder-7b", "region:us" ]
null
2024-01-03T17:30:21Z
--- library_name: peft base_model: defog/sqlcoder-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
Norod78/sdxl-humeow-lora-r16
Norod78
2024-01-03T17:30:45Z
3
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T17:30:30Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: <s0><s1> HuMeow with blue eyes and orange ears output: url: image-0.png - text: <s0><s1> HuMeow dressed in a jacket and boots output: url: image-1.png - text: <s0><s1> HuMeow wearing a jacket and headphones output: url: image-2.png - text: <s0><s1> HuMeow dressed in a jacket and jeans output: url: image-3.png - text: <s0><s1> HuMeow dressed as a clown standing in front of a black background output: url: image-4.png - text: <s0><s1> HuMeow dressed as a clown output: url: image-5.png - text: <s0><s1> HuMeow in a hard hat and overalls output: url: image-6.png - text: <s0><s1> HuMeow in a yellow suit and yellow boots output: url: image-7.png - text: <s0><s1> HuMeow black statue sitting on a table output: url: image-8.png - text: <s0><s1> HuMeow dressed in a tuxedo output: url: image-9.png - text: <s0><s1> HuMeow wearing an orange jacket output: url: image-10.png - text: <s0><s1> HuMeow in a suit and backpack output: url: image-11.png - text: <s0><s1> HuMeow wearing a jacket and sunglasses output: url: image-12.png - text: <s0><s1> HuMeow wearing sunglasses and a pink shirt output: url: image-13.png - text: <s0><s1> HuMeow wearing pink clothes and a white shirt output: url: image-14.png - text: <s0><s1> HuMeow wearing a pink jacket and sneakers output: url: image-15.png - text: <s0><s1> HuMeow wearing a pink suit and sunglasses output: url: image-16.png - text: <s0><s1> HuMeow three witches in costumes walking through the woods output: url: image-17.png - text: <s0><s1> HuMeow three witches and a fox in the woods output: url: image-18.png - text: <s0><s1> HuMeow a group dressed up in fancy clothes output: url: image-19.png - text: <s0><s1> HuMeow a group dressed up in fancy clothes output: url: image-20.png - text: <s0><s1> HuMeow with red hair and freckles output: url: image-21.png - text: <s0><s1> HuMeow painting in a pink dress output: url: image-22.png - text: <s0><s1> HuMeow with a headdress and a necklace output: url: image-23.png - text: <s0><s1> HuMeow with a collar and a woman looking at it output: url: image-24.png - text: <s0><s1> HuMeow with a lace dress and a bow tie output: url: image-25.png - text: <s0><s1> HuMeow with a white head and hair output: url: image-26.png - text: <s0><s1> HuMeow with blue eyes and a long tail output: url: image-27.png - text: <s0><s1> HuMeow dressed in armor with red hair output: url: image-28.png - text: <s0><s1> HuMeow dressed in a suit and tie output: url: image-29.png - text: <s0><s1> HuMeow digital painting with big eyes output: url: image-30.png - text: <s0><s1> HuMeow portrait output: url: image-31.png - text: <s0><s1> HuMeow with long hair and a suit output: url: image-32.png - text: <s0><s1> HuMeow the walking dead season 10 episode 10 output: url: image-33.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> HuMeow license: openrail++ --- # SDXL LoRA DreamBooth - Norod78/sdxl-humeow-lora-r16 <Gallery /> ## Model description ### These are Norod78/sdxl-humeow-lora-r16 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`sdxl-humeow-lora-r16.safetensors` here ๐Ÿ’พ](/Norod78/sdxl-humeow-lora-r16/blob/main/sdxl-humeow-lora-r16.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:sdxl-humeow-lora-r16:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`sdxl-humeow-lora-r16_emb.safetensors` here ๐Ÿ’พ](/Norod78/sdxl-humeow-lora-r16/blob/main/sdxl-humeow-lora-r16_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `sdxl-humeow-lora-r16_emb` to your prompt. For example, `sdxl-humeow-lora-r16_emb HuMeow` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Norod78/sdxl-humeow-lora-r16', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='Norod78/sdxl-humeow-lora-r16', filename='sdxl-humeow-lora-r16_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('<s0><s1> HuMeow').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` โ†’ use `<s0><s1>` in your prompt ## Details All [Files & versions](/Norod78/sdxl-humeow-lora-r16/tree/main). The weights were trained using [๐Ÿงจ diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Sakuna/LLaMaCoder
Sakuna
2024-01-03T17:29:52Z
6
1
peft
[ "peft", "llama2", "bitsandbytes", "text2text-generation", "en", "dataset:HuggingFaceH4/CodeAlpaca_20K", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
text2text-generation
2023-07-21T14:05:42Z
--- language: - en library_name: peft tags: - llama2 - peft - bitsandbytes datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text2text-generation base_model: meta-llama/Llama-2-7b-hf --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
BhoomiP22/phi-1_5-finetuned-medical
BhoomiP22
2024-01-03T17:28:51Z
0
0
null
[ "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2024-01-03T15:00:59Z
--- license: other base_model: microsoft/phi-1_5 tags: - trl - sft - generated_from_trainer model-index: - name: phi-1_5-finetuned-medical results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-medical This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 2 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Shruti9756/G24_Legal_Summarization_simple
Shruti9756
2024-01-03T17:26:09Z
10
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "Terms of service", "summarization", "en", "dataset:Quake24/paraphrasedTwitter", "dataset:Quake24/paraphrasedPayPal", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-03T17:03:04Z
--- datasets: - Quake24/paraphrasedTwitter - Quake24/paraphrasedPayPal language: - en library_name: transformers tags: - Terms of service pipeline_tag: summarization ---
loanhhquanhh/poem-phogpt-2
loanhhquanhh
2024-01-03T17:11:23Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:vinai/PhoGPT-7B5-Instruct", "base_model:adapter:vinai/PhoGPT-7B5-Instruct", "region:us" ]
null
2024-01-03T16:03:49Z
--- library_name: peft base_model: vinai/PhoGPT-7B5-Instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
Rafaelfr87/Reinforce-CartPole-v1
Rafaelfr87
2024-01-03T17:08:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T17:08:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Kev09/Makimamodel1
Kev09
2024-01-03T17:02:53Z
15
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:Lykon/AnyLoRA", "base_model:adapter:Lykon/AnyLoRA", "region:us" ]
text-to-image
2023-12-28T19:22:14Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/imgreduite.png base_model: Lykon/AnyLoRA instance_prompt: makima \(chainsaw man\) --- # Makimalora <Gallery /> ## Trigger words You should use `csm anime style` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Kev09/Makimamodel1/tree/main) them in the Files & versions tab.
jcms-bits/q-FrozenLake-v1-4x4-noSlippery
jcms-bits
2024-01-03T16:59:43Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T16:59:36Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Azucarverde/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kekmodel/StopCarbon-10.7B-v6
kekmodel
2024-01-03T16:58:35Z
1,439
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T13:00:58Z
--- license: mit language: - en tags: - merge --- # StopCarbon This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - kyujinpy/Sakura-SOLAR-Instruct - jeonsworld/CarbonVillain-en-10.7B-v1 - merge_method: ties # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ```
kekmodel/StopCarbon-10.7B-v5
kekmodel
2024-01-03T16:58:20Z
14,454
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T13:00:52Z
--- license: cc-by-nc-sa-4.0 language: - en tags: - merge --- # StopCarbon This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - kyujinpy/Sakura-SOLAR-Instruct - jeonsworld/CarbonVillain-en-10.7B-v1 - merge_method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ```
kekmodel/StopCarbon-10.7B-v3
kekmodel
2024-01-03T16:57:40Z
1,423
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T08:07:09Z
--- license: cc-by-nc-4.0 language: - en tags: - merge --- # StopCarbon This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - upstage/SOLAR-10.7B-Instruct-v1.0 - VAGOsolutions/SauerkrautLM-SOLAR-Instruct - merge_method: ties # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ```
kekmodel/StopCarbon-10.7B-v2
kekmodel
2024-01-03T16:57:26Z
1,424
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T08:07:00Z
--- license: cc-by-nc-4.0 language: - en tags: - merge --- # StopCarbon This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - upstage/SOLAR-10.7B-Instruct-v1.0 - VAGOsolutions/SauerkrautLM-SOLAR-Instruct - merge_method: ties # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ```
kekmodel/StopCarbon-10.7B-v1
kekmodel
2024-01-03T16:57:12Z
1,419
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T08:06:51Z
--- license: cc-by-nc-4.0 language: - en tags: - merge --- # StopCarbon This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - upstage/SOLAR-10.7B-Instruct-v1.0 - VAGOsolutions/SauerkrautLM-SOLAR-Instruct - merge_method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ```
NyxKrage/FrostMaid-10.7B-TESTING-GGUF
NyxKrage
2024-01-03T16:55:16Z
29
3
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-01-03T15:35:09Z
this model is still under experimentation but feel free to try it out and let me know what you think Frankenmerge between Noromaid and Mistral tuned with medical data to 10.7B then further merged with Sao's Frostwind-10.7B and finally finetuned on a small curated dataset of fatansy books Prompt format is Alpaca
jeonsworld/CarbonVillain-en-10.7B-v3
jeonsworld
2024-01-03T16:46:11Z
1,425
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "slerp", "conversational", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T15:12:00Z
--- license: cc-by-nc-sa-4.0 language: - en tags: - merge - slerp --- # CarbonVillain **This is a model created without learning to oppose indiscriminate carbon emissions.** This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - kyujinpy/Sakura-SOLAR-Instruct - jeonsworld/CarbonVillain-en-10.7B-v1 - method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ``` # Evaluation Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeonsworld__CarbonVillain-en-10.7B-v3) | Metric | Value | |-----------------------|---------------------------| | Avg. | | | ARC (25-shot) | | | HellaSwag (10-shot) | | | MMLU (5-shot) | | | TruthfulQA (0-shot) | | | Winogrande (5-shot) | | | GSM8K (5-shot) | |
jeonsworld/CarbonVillain-en-10.7B-v2
jeonsworld
2024-01-03T16:45:54Z
1,491
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "slerp", "conversational", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T09:57:23Z
--- license: cc-by-nc-sa-4.0 language: - en tags: - merge - slerp --- # CarbonVillain **This is a model created without learning to oppose indiscriminate carbon emissions.** This model is an experimental version created using [mergekit](https://github.com/cg123/mergekit). - merge models - Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct - kyujinpy/Sakura-SOLAR-Instruct - method: slerp # Prompt Template(s) ``` ### User: {user} ### Assistant: {asistant} ``` # Evaluation Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeonsworld__CarbonVillain-en-10.7B-v2) | Metric | Value | |-----------------------|---------------------------| | Avg. | 74.42 | | ARC (25-shot) | 71.25 | | HellaSwag (10-shot) | 88.4 | | MMLU (5-shot) | 66.31 | | TruthfulQA (0-shot) | 71.94 | | Winogrande (5-shot) | 83.35 | | GSM8K (5-shot) | 65.28 |
Pclanglais/Mickey-1928
Pclanglais
2024-01-03T16:43:04Z
270
106
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "dataset:Pclanglais/Mickey-1928-dataset", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-12-31T09:48:26Z
--- license: cc0-1.0 tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Mickey widget: - text: "drawing of Mickey, theater in background" output: url: "mickey_theater.jpg" - text: "drawing of Mickey inspiring the communist revolution" output: url: "communist_mickey.jpg" - text: "pop-art painting of Mickey walking in Paris" output: url: "mickey_paris.jpg" pipeline_tag: text-to-image datasets: - Pclanglais/Mickey-1928-dataset --- **Mickey-1928** is fine-tuned version of Stable-Diffusion-xl trained on 96 stills in the public domain from 1928. <Gallery /> Mickey-1928 can generate images of Mickey, Minnie and, to a much lesser extent, Pete (with the prompt PeteLegPete). ## Dataset Since 2024, the first three cartoons of Mickey are in the public domain. The final dataset includes: - 40 stills from *Gallopin' Gaucho* (in color) - 22 stills from *Plane Crazy* - 34 stills from *Steamboat Willie*. The stills are not currently available in high quality and you should not expect consistently good results from Mickey-1928. The color images from *Gallopin' Gaucho* are in 360x360 pixels. Hopefully with the cartoons now being part of the public domain, higher definition versions should be available. The generated images aim to adhere to the 1928 design in order to have Mickey, Minnie and Pete in the public domain. This is still a work in progress: while the model is in development, generated images should be checked to ensure they really are in the public domain design.
shoaicover/Shoaicover
shoaicover
2024-01-03T16:24:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-29T16:05:38Z
--- license: creativeml-openrail-m ---
OpenAlex/distilbert-base-cased-finetuned-topic-classification-title-abstract
OpenAlex
2024-01-03T16:22:31Z
46
1
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-07T01:46:24Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_keras_callback model-index: - name: distilbert-base-cased-finetuned-concept-classification-title-abstract results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-concept-classification-title-abstract This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8398 - Validation Loss: 3.2378 - Train Accuracy: 0.4618 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 167960, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 5.1779 | 3.9338 | 0.3457 | 0 | | 3.8441 | 3.5523 | 0.4044 | 1 | | 3.5070 | 3.4169 | 0.4267 | 2 | | 3.3152 | 3.3286 | 0.4402 | 3 | | 3.1797 | 3.2789 | 0.4488 | 4 | | 3.0756 | 3.2612 | 0.4537 | 5 | | 2.9929 | 3.2459 | 0.4575 | 6 | | 2.9266 | 3.2380 | 0.4598 | 7 | | 2.8758 | 3.2390 | 0.4611 | 8 | | 2.8398 | 3.2378 | 0.4618 | 9 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.13.0 - Datasets 2.15.0 - Tokenizers 0.15.0
kunZhao23/out_c4
kunZhao23
2024-01-03T16:22:12Z
1
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-3", "base_model:finetune:CompVis/stable-diffusion-v1-3", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-03T06:54:38Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-3 instance_prompt: A photo of four clusters tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - kunZhao23/out_c4 This is a dreambooth model derived from CompVis/stable-diffusion-v1-3. The weights were trained on A photo of four clusters using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
m229/logical-llama-100
m229
2024-01-03T16:17:37Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-03T16:17:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Ashishkr/llama2-qrecc
Ashishkr
2024-01-03T16:17:31Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T09:35:19Z
--- tags: - autotrain - text-generation --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM from transformers import AutoTokenizer import torch import re device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = PeftConfig.from_pretrained("Ashishkr/llama2-qrecc") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") model = PeftModel.from_pretrained(model, "Ashishkr/llama2-qrecc").to(device) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") def response_generate( model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, max_new_tokens: int = 128, temperature: float = 0.7, ): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = tokenizer( [prompt], return_tensors="pt", return_token_type_ids=False, ).to( device ) with torch.autocast("cuda", dtype=torch.bfloat16): response = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) decoded_output = tokenizer.decode( response["sequences"][0], skip_special_tokens=True, ) return decoded_output prompt = """>>CONTEXT<<I heard John Marks was the first christian missionary in Ireland. What was the capital then??>>REWRITE<< """ response = response_generate( model, tokenizer, prompt, max_new_tokens=20, temperature=0.1, ) def extract_between_tags(input_string): pattern = r'>>REWRITE<<(.*?)</REWRITE>' match = re.search(pattern, input_string) return match.group(1) if match else '' print(extract_between_tags(response)) ```
ostapeno/neo_trwevseq_simn1_sbs0.5_sgd_full_ft_poly_router_dir_finegrained_retrlib_embeddings_mllr-1
ostapeno
2024-01-03T15:55:42Z
0
0
null
[ "region:us" ]
null
2024-01-03T15:55:30Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | Last updated on: 2024-01-03 15:55:30+00:00
ostapeno/neo_trwevseq_simn1_sbs0.5_sgd_full_ft_poly_router_dir_finegrained_retrnone_mllr0.1
ostapeno
2024-01-03T15:54:46Z
0
0
null
[ "region:us" ]
null
2024-01-03T15:54:35Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | Last updated on: 2024-01-03 15:54:35+00:00
ostapeno/neo_trwevseq_simn1_sbs0.5_sgd_full_ft_poly_router_dir_finegrained_retrlib_embeddings_mllr0.1
ostapeno
2024-01-03T15:54:11Z
0
0
null
[ "region:us" ]
null
2024-01-03T15:54:00Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | Last updated on: 2024-01-03 15:54:00+00:00
ostapeno/neo_trwevseq_simn1_sbs0.5_sgd_full_ft_poly_router_dir_coarsegrained_retrlib_embeddings_mllr0.1
ostapeno
2024-01-03T15:53:50Z
0
0
null
[ "region:us" ]
null
2024-01-03T15:53:37Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | Last updated on: 2024-01-03 15:53:37+00:00
ostapeno/neo_trwevseq_simn1_sbs0.5_sgd_full_ft_poly_router_dir_coarsegrained_retrnone_mllr-1
ostapeno
2024-01-03T15:53:38Z
0
0
null
[ "region:us" ]
null
2024-01-03T15:53:27Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | Last updated on: 2024-01-03 15:53:27+00:00
Mik99/mistral_7b_v02_dutch_data_test_02
Mik99
2024-01-03T15:44:45Z
2
1
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-03T15:44:21Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
LoneStriker/Panda-7B-v0.1-4.0bpw-h6-exl2
LoneStriker
2024-01-03T15:37:32Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:NeuralNovel/Panda-v1", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-03T15:31:24Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - NeuralNovel/Panda-v1 library_name: transformers inference: false --- ![Neural-Story](https://i.ibb.co/TYvZhws/Panda7b.png) # NeuralNovel/Panda-7B-v0.1 The **Panda-7B-v0.1** model by NeuralNovel. This fine-tune has been designed to provide detailed, creative and logical responses in the context of diverse narratives. Optimised for creative writing, roleplay and logical problem solving. Finetuned from Mistral-7B-Instruct-v0.2, with apache-2.0 license, suitable for commercial or non-commercial use. ### Data-set The model was finetuned using the Panda-v1 dataset. ### Summary Fine-tuned with the intention to generate instructive and narrative text, with a specific focus on combining the elements of versatility, character engagement and nuanced writing capability. #### Out-of-Scope Use The model may not perform well in scenarios unrelated to instructive and narrative text generation. Misuse or applications outside its designed scope may result in suboptimal outcomes. ### Bias, Risks, and Limitations The model may exhibit biases or limitations inherent in the training data. It is essential to consider these factors when deploying the model to avoid unintended consequences. Users are advised to exercise caution, as there might be some inherent genre or writing bias. ### Hardware and Training Trained using NVIDIA Tesla T40 24 GB. ``` n_epochs = 3, n_checkpoints = 3, batch_size = 12, learning_rate = 1e-5, ``` *Sincere appreciation to Techmind for their generous sponsorship.*
FlyingFishzzz/model_left_lmk
FlyingFishzzz
2024-01-03T15:30:42Z
3
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-02T18:11:53Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-FlyingFishzzz/model_left_lmk These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning. You can find some example images below. prompt: A young man in the forest wearing sportswear is looking into the distance to the side ![images_0)](./images_0.png) prompt: A girl wearing a dress in the auditorium, looking to the side ![images_1)](./images_1.png) prompt: An older lady wearing a cotton coat sits in the garden and looks to the side ![images_2)](./images_2.png)
jan-hq/Pandora-v1-10.7B
jan-hq
2024-01-03T15:28:28Z
13
7
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-14T05:53:37Z
--- license: apache-2.0 language: - en tags: - merge --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Model Description This model uses the `passthrough` merge method from the best 7B models on the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard): 1. [viethq188/LeoScorpius-7B-Chat-DPO](https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO) 2. [GreenNode/GreenNodeLM-7B-v1olet](https://huggingface.co/GreenNode/GreenNodeLM-7B-v1olet) The yaml config file for this model is here: ```yaml slices: - sources: - model: "viethq188/LeoScorpius-7B-Chat-DPO" layer_range: [0, 24] - sources: - model: "GreenNode/GreenNodeLM-7B-v1olet" layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` # Prompt template - **ChatML** ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - ๐Ÿ’ป **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - ๐Ÿ—‚๏ธ **An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - ๐ŸŒ **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - ๐ŸŒ **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # Jan Model Merger This is a test project for merging models. # Open LLM Leaderboard Evaluation Results Detailed results can be found here. | Metric | Value | |-----------------------|---------------------------| | Avg. | ?| | ARC (25-shot) | ? | | HellaSwag (10-shot) | ? | | MMLU (5-shot) | ?| | TruthfulQA (0-shot) | ? | | Winogrande (5-shot) | ? | | GSM8K (5-shot) | ? | # Acknowlegement - [mergekit](https://github.com/cg123/mergekit) - [DARE](https://github.com/yule-BUAA/MergeLM/blob/main/README.md) - [SLERP](https://github.com/Digitous/LLM-SLERP-Merge) - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
aboodalokla2/captcahtext
aboodalokla2
2024-01-03T15:27:27Z
0
0
null
[ "image-to-text", "region:us" ]
image-to-text
2024-01-03T15:26:33Z
--- pipeline_tag: image-to-text ---
jan-hq/trinity-v1.1
jan-hq
2024-01-03T15:26:39Z
16
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-18T13:26:08Z
--- license: apache-2.0 language: - en tags: - merge --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Model Description This model finetuned [trinity-v1](https://huggingface.co/jan-hq/trinity-v1) on [ultrafeedback_binarized_subset](jan-hq/ultrafeedback_binarized_subset) (cleaned version) More details about the training result [here](https://huggingface.co/jan-hq/trinity-v1-dpo-adapter). # Prompt template ``` {system_message} ### Instruction: {prompt} ### Response: ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - ๐Ÿ’ป **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - ๐Ÿ—‚๏ธ **An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - ๐ŸŒ **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - ๐ŸŒ **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # Open LLM Leaderboard Evaluation Results Detailed results can be found here. | Metric | Value | |-----------------------|---------------------------| | Avg. | ?| | ARC (25-shot) | ? | | HellaSwag (10-shot) | ? | | MMLU (5-shot) | ?| | TruthfulQA (0-shot) | ? | | Winogrande (5-shot) | ? | | GSM8K (5-shot) | ? | # Acknowlegement - [alignment-handbook](https://github.com/huggingface/alignment-handbook)
jan-hq/trinity-v1.2
jan-hq
2024-01-03T15:25:17Z
15
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-19T01:29:34Z
--- license: apache-2.0 language: - en tags: - merge --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Model Description This model finetuned [trinity-v1.1](https://huggingface.co/jan-hq/trinity-v1) on [ultrafeedback_binarized_subset](jan-hq/ultrafeedback_binarized_subset) (cleaned version) for adapting the ChatML prompt template. More details about the training result [here](https://huggingface.co/jan-hq/trinity-v1.2-dpo-adapter). # Prompt template **ChatML** ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ``` {system_message} ### Instruction: {prompt} ### Response: ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - ๐Ÿ’ป **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - ๐Ÿ—‚๏ธ **An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - ๐ŸŒ **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - ๐ŸŒ **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # Open LLM Leaderboard Evaluation Results Detailed results can be found here. | Metric | Value | |-----------------------|---------------------------| | Avg. | ?| | ARC (25-shot) | ? | | HellaSwag (10-shot) | ? | | MMLU (5-shot) | ?| | TruthfulQA (0-shot) | ? | | Winogrande (5-shot) | ? | | GSM8K (5-shot) | ? | # Acknowlegement - [alignment-handbook](https://github.com/huggingface/alignment-handbook)
dearxoasis/whisper-small-fm
dearxoasis
2024-01-03T15:18:52Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "th", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-29T18:01:38Z
--- language: - th license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: whisper-small-fm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_0 config: th split: test args: 'config: th, split: test' metrics: - name: Wer type: wer value: 241.3265306122449 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-fm This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7602 - Wer: 241.3265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0002 | 40.0 | 1000 | 0.6741 | 498.4694 | | 0.0001 | 80.0 | 2000 | 0.7207 | 271.4286 | | 0.0 | 120.0 | 3000 | 0.7514 | 218.3673 | | 0.0 | 160.0 | 4000 | 0.7602 | 241.3265 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
EMBO/SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large
EMBO
2024-01-03T15:18:18Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:source_data", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T15:05:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data args: ROLES_MULTI metrics: - name: Precision type: precision value: 0.9572859572859573 - name: Recall type: recall value: 0.9649457039436083 - name: F1 type: f1 value: 0.9611005692599621 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0100 - Accuracy Score: 0.9975 - Precision: 0.9573 - Recall: 0.9649 - F1: 0.9611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0068 | 1.0 | 863 | 0.0100 | 0.9975 | 0.9573 | 0.9649 | 0.9611 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 2.10.1 - Tokenizers 0.12.1
revellsi/reachy-pollen
revellsi
2024-01-03T15:18:08Z
17
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T15:18:03Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A <s0><s1> character a robot with a camera and a microphone output: url: image-0.png - text: A <s0><s1> character a robot with a striped shirt and a black background output: url: image-1.png - text: A <s0><s1> character a man is using a laptop to play a game with a robot output: url: image-2.png - text: A <s0><s1> character a robot standing on a stand with a striped shirt output: url: image-3.png - text: A <s0><s1> character a robot with a striped shirt and a black and white striped tie output: url: image-4.png - text: A <s0><s1> character a robot with a striped shirt and a black background output: url: image-5.png - text: A <s0><s1> character a robot with a striped shirt on a stand output: url: image-6.png - text: A <s0><s1> character a robot with a striped shirt on a stand output: url: image-7.png - text: A <s0><s1> character a robot with a striped shirt and a hand up output: url: image-8.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A <s0><s1> character license: openrail++ --- # SDXL LoRA DreamBooth - revellsi/reachy-pollen <Gallery /> ## Model description ### These are revellsi/reachy-pollen LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`reachy-pollen.safetensors` here ๐Ÿ’พ](/revellsi/reachy-pollen/blob/main/reachy-pollen.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:reachy-pollen:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`reachy-pollen_emb.safetensors` here ๐Ÿ’พ](/revellsi/reachy-pollen/blob/main/reachy-pollen_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `reachy-pollen_emb` to your prompt. For example, `A reachy-pollen_emb character` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('revellsi/reachy-pollen', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='revellsi/reachy-pollen', filename='reachy-pollen_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A <s0><s1> character').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` โ†’ use `<s0><s1>` in your prompt ## Details All [Files & versions](/revellsi/reachy-pollen/tree/main). The weights were trained using [๐Ÿงจ diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
VijayaKrishnaRamesh/ppo-Huggy
VijayaKrishnaRamesh
2024-01-03T15:02:55Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-03T15:02:50Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: VijayaKrishnaRamesh/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
tiagoblima/t5_large-qg-af
tiagoblima
2024-01-03T15:00:34Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/qg_squad_v1_pt", "base_model:unicamp-dl/ptt5-large-t5-vocab", "base_model:finetune:unicamp-dl/ptt5-large-t5-vocab", "license:mit", "region:us" ]
null
2023-12-31T14:56:43Z
--- license: mit base_model: unicamp-dl/ptt5-large-t5-vocab tags: - generated_from_trainer datasets: - tiagoblima/qg_squad_v1_pt model-index: - name: t5_large-qg-af results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large-qg-af This model is a fine-tuned version of [unicamp-dl/ptt5-large-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-large-t5-vocab) on the tiagoblima/qg_squad_v1_pt dataset. It achieves the following results on the evaluation set: - Loss: 5.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.2352 | 1.0 | 808 | 7.3750 | | 5.3111 | 2.0 | 1616 | 6.3174 | | 4.8485 | 3.0 | 2424 | 5.8192 | | 4.616 | 4.0 | 3232 | 5.5792 | | 4.5649 | 5.0 | 4040 | 5.5058 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0
EMBO/SourceData_GENEPROD-ROLES_v_1-0-0_BioLinkBERT_large
EMBO
2024-01-03T14:56:28Z
169
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:source_data", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T14:23:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_GENEPROD-ROLES_v_1-0-0_BioLinkBERT_large results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data args: ROLES_GP metrics: - name: Precision type: precision value: 0.9172342035565645 - name: Recall type: recall value: 0.9250655854996422 - name: F1 type: f1 value: 0.9211332494241136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SourceData_GENEPROD-ROLES_v_1-0-0_BioLinkBERT_large This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0137 - Accuracy Score: 0.9948 - Precision: 0.9172 - Recall: 0.9251 - F1: 0.9211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0153 | 1.0 | 863 | 0.0137 | 0.9948 | 0.9172 | 0.9251 | 0.9211 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 2.10.1 - Tokenizers 0.12.1
Dorjzodovsuren/mongolian-gpt2
Dorjzodovsuren
2024-01-03T14:44:59Z
19
1
transformers
[ "transformers", "jax", "tensorboard", "safetensors", "gpt2", "text-generation", "politics", "mn", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T02:57:23Z
--- license: mit language: - mn library_name: transformers tags: - politics widget: - text: "ะœะพะฝะณะพะป ัƒะปัั‹ะฝ ะตั€ำฉะฝั…ะธะนะปำฉะณั‡" example_title: "Mongolian president" - text: "ะฅะฐะนั€ ะณัะถ ัŽัƒ ะฒั" example_title: "What is love " - text: "ะฆัƒะนะฒะฐะฝ " example_title: "Tsuiwan" ---
Dangurangu/marian-finetuned-kde4-en-to-fr
Dangurangu
2024-01-03T14:36:19Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-01-03T12:26:41Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.837727401681214 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 - Bleu: 52.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Anshler/clip-prefix
Anshler
2024-01-03T14:35:46Z
0
0
transformers
[ "transformers", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-12-27T03:54:55Z
--- license: mit language: - en metrics: - bleu - meteor - rouge library_name: transformers ---
alirzb/S1_M1_R1_beit_42534242
alirzb
2024-01-03T14:33:52Z
7
0
transformers
[ "transformers", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T13:34:43Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S1_M1_R1_beit_42534242 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9980483044645035 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R1_beit_42534242 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0090 - Accuracy: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0101 | 1.0 | 256 | 0.0465 | 0.9873 | | 0.0107 | 2.0 | 512 | 0.0155 | 0.9939 | | 0.0011 | 3.0 | 768 | 0.0082 | 0.9976 | | 0.0095 | 4.0 | 1025 | 0.0077 | 0.9978 | | 0.0002 | 5.0 | 1280 | 0.0090 | 0.9980 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
Darshan2412/llama2-qlora-finetunined-french
Darshan2412
2024-01-03T14:33:10Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-03T14:32:56Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
LarryAIDraw/SkayaV1
LarryAIDraw
2024-01-03T14:26:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-03T14:22:39Z
--- license: creativeml-openrail-m --- https://civitai.com/models/251267/skaya-killiland-or-manhwa-or-return-of-the-frozen-player
LarryAIDraw/reika_kitakami_v2
LarryAIDraw
2024-01-03T14:26:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-03T14:21:50Z
--- license: creativeml-openrail-m --- https://civitai.com/models/225596/reika-kitakami-or-the-idolmster-million-live-idolmaster
LarryAIDraw/EmiNuV4-09
LarryAIDraw
2024-01-03T14:25:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-03T14:21:29Z
--- license: creativeml-openrail-m --- https://civitai.com/models/252298/nu-kage-no-jitsuryokusha-ni-naritakute
mbruton/gal_mBERT
mbruton
2024-01-03T14:21:14Z
7
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "gl", "dataset:mbruton/galician_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T11:09:41Z
--- license: apache-2.0 datasets: - mbruton/galician_srl language: - gl metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalBERT for Semantic Role Labeling (cased) This model is fine-tuned on [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalBERT for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for low-resource Galician. This model is cased: it makes a difference between english and English. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl) - **License:** Apache 2.0 - **Finetuned from model:** [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was trained on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.72 | 0.77 | 0.74 | 485 | | 0:arg1 | 0.74 | 0.74 | 0.74 | 483 | | 0:arg2 | 0.66 | 0.76 | 0.71 | 264 | | 0:root | 0.92 | 0.91 | 0.92 | 948 | | 1:arg0 | 0.68 | 0.62 | 0.65 | 348 | | 1:arg1 | 0.69 | 0.63 | 0.66 | 443 | | 1:arg2 | 0.65 | 0.55 | 0.59 | 211 | | 1:root | 0.85 | 0.83 | 0.84 | 802 | | 2:arg0 | 0.59 | 0.56 | 0.57 | 240 | | 2:arg1 | 0.61 | 0.58 | 0.59 | 331 | | 2:arg2 | 0.56 | 0.55 | 0.56 | 156 | | 2:root | 0.79 | 0.70 | 0.74 | 579 | | 3:arg0 | 0.42 | 0.45 | 0.44 | 137 | | 3:arg1 | 0.54 | 0.55 | 0.55 | 216 | | 3:arg2 | 0.48 | 0.52 | 0.50 | 110 | | 3:root | 0.63 | 0.71 | 0.67 | 374 | | 4:arg0 | 0.42 | 0.40 | 0.41 | 70 | | 4:arg1 | 0.50 | 0.52 | 0.51 | 109 | | 4:arg2 | 0.46 | 0.50 | 0.48 | 66 | | 4:root | 0.50 | 0.72 | 0.59 | 206 | | 5:arg0 | 0.27 | 0.20 | 0.23 | 20 | | 5:arg1 | 0.35 | 0.51 | 0.41 | 57 | | 5:arg2 | 0.27 | 0.14 | 0.19 | 28 | | 5:root | 0.42 | 0.28 | 0.34 | 102 | | 6:arg0 | 0.50 | 0.08 | 0.13 | 13 | | 6:arg1 | 0.20 | 0.04 | 0.07 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.25 | 0.21 | 0.23 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 0.00 | 0.00 | 0.00 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.00 | 0.00 | 0.00 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.00 | 0.00 | 0.00 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.69 | 0.68 | 0.69 | 6926 | | macro avg | 0.35 | 0.33 | 0.33 | 6926 | | weighted avg | 0.69 | 0.68 | 0.68 | 6926 | | tot root avg | 0.40 | 0.40 | 0.39 | 3081 | | tot A0 avg | 0.36 | 0.31 | 0.32 | 1318 | | tot A1 avg | 0.33 | 0.32 | 0.32 | 1677 | | tot A2 avg | 0.31 | 0.30 | 0.30 | 850 | | tot r0 avg | 0.76 | 0.80 | 0.78 | 2180 | | tot r1 avg | 0.72 | 0.66 | 0.69 | 1804 | | tot r2 avg | 0.64 | 0.60 | 0.62 | 1306 | | tot r3 avg | 0.52 | 0.56 | 0.54 | 837 | | tot r4 avg | 0.47 | 0.54 | 0.50 | 451 | | tot r5 avg | 0.33 | 0.28 | 0.29 | 207 | | tot r6 avg | 0.24 | 0.08 | 0.11 | 88 | | tot r7 avg | 0.00 | 0.00 | 0.00 | 32 | | tot r8 avg | 0.00 | 0.00 | 0.00 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/gal_enpt_mBERT
mbruton
2024-01-03T14:19:55Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "gl", "en", "pt", "dataset:mbruton/galician_srl", "dataset:CoNLL-2012", "dataset:PropBank.Br", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T11:11:42Z
--- license: apache-2.0 datasets: - mbruton/galician_srl - CoNLL-2012 - PropBank.Br language: - gl - en - pt metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalBERT-enpt for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for English and Portuguese, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalBERT-enpt for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for low-resource Galician. This model is additionally pre-trained on the SRL task for English and Portuguese. This model is cased: it makes a difference between english and English. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl), English (en), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [English & Portuguese pre-trained multilingual BERT](https://huggingface.co/liaad/srl-enpt_mbert-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was pre-trained on both the [OntoNotes 5.0 English SRL corpus](http://catalog.ldc.upenn.edu/LDC2013T19) and the [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl). This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.75 | 0.71 | 0.73 | 485 | | 0:arg1 | 0.68 | 0.72 | 0.70 | 483 | | 0:arg2 | 0.71 | 0.73 | 0.72 | 264 | | 0:root | 0.93 | 0.93 | 0.93 | 948 | | 1:arg0 | 0.66 | 0.62 | 0.64 | 348 | | 1:arg1 | 0.70 | 0.67 | 0.69 | 443 | | 1:arg2 | 0.66 | 0.58 | 0.62 | 211 | | 1:root | 0.87 | 0.84 | 0.86 | 802 | | 2:arg0 | 0.61 | 0.52 | 0.56 | 240 | | 2:arg1 | 0.62 | 0.61 | 0.61 | 331 | | 2:arg2 | 0.57 | 0.51 | 0.54 | 156 | | 2:root | 0.77 | 0.79 | 0.78 | 579 | | 3:arg0 | 0.45 | 0.45 | 0.45 | 137 | | 3:arg1 | 0.52 | 0.52 | 0.52 | 216 | | 3:arg2 | 0.52 | 0.45 | 0.48 | 110 | | 3:root | 0.71 | 0.70 | 0.70 | 374 | | 4:arg0 | 0.48 | 0.46 | 0.47 | 70 | | 4:arg1 | 0.46 | 0.46 | 0.46 | 109 | | 4:arg2 | 0.44 | 0.56 | 0.49 | 66 | | 4:root | 0.61 | 0.66 | 0.63 | 206 | | 5:arg0 | 0.23 | 0.35 | 0.28 | 20 | | 5:arg1 | 0.35 | 0.60 | 0.44 | 57 | | 5:arg2 | 0.38 | 0.21 | 0.27 | 28 | | 5:root | 0.55 | 0.52 | 0.53 | 102 | | 6:arg0 | 0.33 | 0.08 | 0.12 | 13 | | 6:arg1 | 0.25 | 0.08 | 0.12 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.32 | 0.38 | 0.35 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 0.00 | 0.00 | 0.00 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.00 | 0.00 | 0.00 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.00 | 0.00 | 0.00 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.71 | 0.69 | 0.70 | 6926 | | macro avg | 0.36 | 0.35 | 0.35 | 6926 | | weighted avg | 0.70 | 0.69 | 0.70 | 6926 | | tot root avg | 0.43 | 0.44 | 0.43 | 3081 | | tot A0 avg | 0.35 | 0.32 | 0.33 | 1318 | | tot A1 avg | 0.33 | 0.33 | 0.32 | 1677 | | tot A2 avg | 0.33 | 0.30 | 0.31 | 850 | | tot r0 avg | 0.77 | 0.77 | 0.77 | 2180 | | tot r1 avg | 0.72 | 0.68 | 0.70 | 1804 | | tot r2 avg | 0.64 | 0.61 | 0.62 | 1306 | | tot r3 avg | 0.55 | 0.53 | 0.54 | 837 | | tot r4 avg | 0.50 | 0.54 | 0.51 | 451 | | tot r5 avg | 0.38 | 0.42 | 0.38 | 207 | | tot r6 avg | 0.23 | 0.14 | 0.15 | 88 | | tot r7 avg | 0.00 | 0.00 | 0.00 | 32 | | tot r8 avg | 0.00 | 0.00 | 0.00 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/gal_XLM-R
mbruton
2024-01-03T14:19:11Z
91
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "gl", "dataset:mbruton/galician_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T12:42:54Z
--- license: apache-2.0 datasets: - mbruton/galician_srl language: - gl metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalXLM-R for Semantic Role Labeling This model is fine-tuned on a version of [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalXLM-R for Semantic Role Labeling (SRL) is a transformers model, leveraging XLM-R's extensive pretraining on 100 languages to achieve better SRL predictions for low-resource Galician. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl) - **License:** Apache 2.0 - **Finetuned from model:** [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.77 | 0.77 | 0.77 | 485 | | 0:arg1 | 0.79 | 0.71 | 0.75 | 483 | | 0:arg2 | 0.72 | 0.72 | 0.72 | 264 | | 0:root | 0.94 | 0.94 | 0.94 | 948 | | 1:arg0 | 0.62 | 0.67 | 0.64 | 348 | | 1:arg1 | 0.69 | 0.68 | 0.69 | 443 | | 1:arg2 | 0.65 | 0.68 | 0.67 | 211 | | 1:root | 0.85 | 0.88 | 0.86 | 802 | | 2:arg0 | 0.58 | 0.57 | 0.58 | 240 | | 2:arg1 | 0.61 | 0.60 | 0.61 | 331 | | 2:arg2 | 0.52 | 0.65 | 0.58 | 156 | | 2:root | 0.77 | 0.77 | 0.77 | 579 | | 3:arg0 | 0.46 | 0.42 | 0.44 | 137 | | 3:arg1 | 0.53 | 0.56 | 0.55 | 216 | | 3:arg2 | 0.45 | 0.53 | 0.49 | 110 | | 3:root | 0.63 | 0.74 | 0.68 | 374 | | 4:arg0 | 0.40 | 0.27 | 0.32 | 70 | | 4:arg1 | 0.53 | 0.44 | 0.48 | 109 | | 4:arg2 | 0.43 | 0.56 | 0.49 | 66 | | 4:root | 0.53 | 0.59 | 0.56 | 206 | | 5:arg0 | 0.33 | 0.10 | 0.15 | 20 | | 5:arg1 | 0.39 | 0.51 | 0.44 | 57 | | 5:arg2 | 0.30 | 0.11 | 0.16 | 28 | | 5:root | 0.40 | 0.38 | 0.39 | 102 | | 6:arg0 | 0.25 | 0.08 | 0.12 | 13 | | 6:arg1 | 0.00 | 0.00 | 0.00 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.10 | 0.05 | 0.06 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 0.00 | 0.00 | 0.00 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.00 | 0.00 | 0.00 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.00 | 0.00 | 0.00 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.71 | 0.70 | 0.70 | 6926 | | macro avg | 0.34 | 0.33 | 0.33 | 6926 | | weighted avg | 0.70 | 0.70 | 0.70 | 6926 | | tot root avg | 0.38 | 0.40 | 0.39 | 3081 | | tot A0 avg | 0.34 | 0.29 | 0.30 | 1318 | | tot A1 avg | 0.32 | 0.32 | 0.32 | 1677 | | tot A2 avg | 0.31 | 0.33 | 0.31 | 850 | | tot r0 avg | 0.81 | 0.79 | 0.80 | 2180 | | tot r1 avg | 0.70 | 0.73 | 0.72 | 1804 | | tot r2 avg | 0.62 | 0.65 | 0.64 | 1306 | | tot r3 avg | 0.52 | 0.56 | 0.54 | 837 | | tot r4 avg | 0.47 | 0.47 | 0.46 | 451 | | tot r5 avg | 0.36 | 0.28 | 0.29 | 207 | | tot r6 avg | 0.09 | 0.03 | 0.05 | 88 | | tot r7 avg | 0.00 | 0.00 | 0.00 | 32 | | tot r8 avg | 0.00 | 0.00 | 0.00 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/gal_pt_XLM-R
mbruton
2024-01-03T14:18:34Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "gl", "pt", "dataset:mbruton/galician_srl", "dataset:PropBank.Br", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T12:43:59Z
--- license: apache-2.0 datasets: - mbruton/galician_srl - PropBank.Br language: - gl - pt metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalXLM-R-pt for Semantic Role Labeling This model is fine-tuned on a version of [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) which is pre-trained on the SRL task for Portuguese, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalXLM-R-pt for Semantic Role Labeling (SRL) is a transformers model, leveraging XLM-R's extensive pretraining on 100 languages to achieve better SRL predictions for low-resource Galician. This model is additionally pre-trained on the SRL task for Portuguese. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [Portuguese pre-trained XLM RoBERTa Base](https://huggingface.co/liaad/srl-pt_xlmr-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was pre-trained on the [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl). This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.74 | 0.81 | 0.77 | 485 | | 0:arg1 | 0.72 | 0.74 | 0.73 | 483 | | 0:arg2 | 0.69 | 0.74 | 0.71 | 264 | | 0:root | 0.93 | 0.93 | 0.93 | 948 | | 1:arg0 | 0.68 | 0.66 | 0.67 | 348 | | 1:arg1 | 0.72 | 0.67 | 0.69 | 443 | | 1:arg2 | 0.59 | 0.60 | 0.59 | 211 | | 1:root | 0.87 | 0.85 | 0.86 | 802 | | 2:arg0 | 0.54 | 0.56 | 0.55 | 240 | | 2:arg1 | 0.62 | 0.60 | 0.61 | 331 | | 2:arg2 | 0.55 | 0.65 | 0.59 | 156 | | 2:root | 0.77 | 0.76 | 0.77 | 579 | | 3:arg0 | 0.42 | 0.41 | 0.41 | 137 | | 3:arg1 | 0.57 | 0.54 | 0.56 | 216 | | 3:arg2 | 0.44 | 0.49 | 0.46 | 110 | | 3:root | 0.64 | 0.74 | 0.69 | 374 | | 4:arg0 | 0.49 | 0.41 | 0.45 | 70 | | 4:arg1 | 0.53 | 0.47 | 0.50 | 109 | | 4:arg2 | 0.42 | 0.50 | 0.46 | 66 | | 4:root | 0.60 | 0.62 | 0.61 | 206 | | 5:arg0 | 0.34 | 0.50 | 0.41 | 20 | | 5:arg1 | 0.41 | 0.53 | 0.46 | 57 | | 5:arg2 | 0.00 | 0.00 | 0.00 | 28 | | 5:root | 0.56 | 0.48 | 0.52 | 102 | | 6:arg0 | 0.00 | 0.00 | 0.00 | 13 | | 6:arg1 | 0.00 | 0.00 | 0.00 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.33 | 0.36 | 0.34 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 0.00 | 0.00 | 0.00 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.00 | 0.00 | 0.00 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.00 | 0.00 | 0.00 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.71 | 0.70 | 0.70 | 6926 | | macro avg | 0.34 | 0.35 | 0.34 | 6926 | | weighted avg | 0.70 | 0.70 | 0.70 | 6926 | | tot root avg | 0.43 | 0.43 | 0.43 | 3081 | | tot A0 avg | 0.32 | 0.34 | 0.33 | 1318 | | tot A1 avg | 0.32 | 0.32 | 0.32 | 1677 | | tot A2 avg | 0.27 | 0.30 | 0.28 | 850 | | tot r0 avg | 0.77 | 0.81 | 0.79 | 2180 | | tot r1 avg | 0.72 | 0.70 | 0.70 | 1804 | | tot r2 avg | 0.62 | 0.64 | 0.63 | 1306 | | tot r3 avg | 0.52 | 0.55 | 0.53 | 837 | | tot r4 avg | 0.51 | 0.50 | 0.51 | 451 | | tot r5 avg | 0.33 | 0.38 | 0.35 | 207 | | tot r6 avg | 0.08 | 0.09 | 0.09 | 88 | | tot r7 avg | 0.00 | 0.00 | 0.00 | 32 | | tot r8 avg | 0.00 | 0.00 | 0.00 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
rogerpolo/distilbert-base-uncased-finetuned-emotion
rogerpolo
2024-01-03T14:17:23Z
89
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-03T14:06:21Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.926431311696564 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2178 - Accuracy: 0.9265 - F1: 0.9264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8383 | 1.0 | 250 | 0.3088 | 0.912 | 0.9111 | | 0.2476 | 2.0 | 500 | 0.2178 | 0.9265 | 0.9264 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
mbruton/gal_ptsp_mBERT
mbruton
2024-01-03T14:16:09Z
90
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "gl", "pt", "es", "dataset:mbruton/galician_srl", "dataset:PropBank.Br", "dataset:mbruton/spanish_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T16:25:52Z
--- license: apache-2.0 datasets: - mbruton/galician_srl - PropBank.Br - mbruton/spanish_srl language: - gl - pt - es metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalBERT-ptsp for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for Portuguese and Spanish, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalBERT-ptsp for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for low-resource Galician. This model is additionally pre-trained on the SRL task for Portuguese and Spanish. This model is cased: it makes a difference between english and English. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl), Portuguese (pt), Spanish (es) - **License:** Apache 2.0 - **Finetuned from model:** [Portuguese & Spanish pre-trained multilingual BERT](https://huggingface.co/mbruton/spa_pt_mBERT) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was pre-trained on both the [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl) and the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.83 | 0.62 | 0.71 | 485 | | 0:arg1 | 0.63 | 0.75 | 0.68 | 483 | | 0:arg2 | 0.70 | 0.70 | 0.70 | 264 | | 0:root | 0.93 | 0.92 | 0.92 | 948 | | 1:arg0 | 0.63 | 0.63 | 0.63 | 348 | | 1:arg1 | 0.67 | 0.63 | 0.65 | 443 | | 1:arg2 | 0.60 | 0.62 | 0.61 | 211 | | 1:root | 0.85 | 0.83 | 0.84 | 802 | | 2:arg0 | 0.61 | 0.53 | 0.57 | 240 | | 2:arg1 | 0.62 | 0.60 | 0.61 | 331 | | 2:arg2 | 0.61 | 0.53 | 0.57 | 156 | | 2:root | 0.76 | 0.77 | 0.77 | 579 | | 3:arg0 | 0.55 | 0.46 | 0.50 | 137 | | 3:arg1 | 0.57 | 0.54 | 0.56 | 216 | | 3:arg2 | 0.44 | 0.66 | 0.53 | 110 | | 3:root | 0.67 | 0.69 | 0.68 | 374 | | 4:arg0 | 0.48 | 0.41 | 0.44 | 70 | | 4:arg1 | 0.48 | 0.57 | 0.52 | 109 | | 4:arg2 | 0.63 | 0.26 | 0.37 | 66 | | 4:root | 0.58 | 0.67 | 0.62 | 206 | | 5:arg0 | 0.50 | 0.45 | 0.47 | 20 | | 5:arg1 | 0.49 | 0.49 | 0.49 | 57 | | 5:arg2 | 0.50 | 0.18 | 0.26 | 28 | | 5:root | 0.56 | 0.52 | 0.54 | 102 | | 6:arg0 | 0.46 | 0.46 | 0.46 | 13 | | 6:arg1 | 0.27 | 0.16 | 0.20 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.36 | 0.40 | 0.38 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 0.00 | 0.00 | 0.00 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.00 | 0.00 | 0.00 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.25 | 0.29 | 0.27 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.70 | 0.68 | 0.69 | 6926 | | macro avg | 0.39 | 0.36 | 0.37 | 6926 | | weighted avg | 0.70 | 0.68 | 0.69 | 6926 | | tot root avg | 0.45 | 0.46 | 0.46 | 3081 | | tot A0 avg | 0.41 | 0.36 | 0.38 | 1318 | | tot A1 avg | 0.34 | 0.34 | 0.34 | 1677 | | tot A2 avg | 0.35 | 0.30 | 0.30 | 850 | | tot r0 avg | 0.77 | 0.75 | 0.75 | 2180 | | tot r1 avg | 0.69 | 0.68 | 0.68 | 1804 | | tot r2 avg | 0.65 | 0.61 | 0.63 | 1306 | | tot r3 avg | 0.56 | 0.59 | 0.57 | 837 | | tot r4 avg | 0.54 | 0.48 | 0.49 | 451 | | tot r5 avg | 0.51 | 0.41 | 0.44 | 207 | | tot r6 avg | 0.27 | 0.26 | 0.26 | 88 | | tot r7 avg | 0.00 | 0.00 | 0.00 | 32 | | tot r8 avg | 0.06 | 0.07 | 0.07 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/gal_enptsp_XLM-R
mbruton
2024-01-03T14:14:32Z
87
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "gl", "en", "pt", "es", "dataset:mbruton/galician_srl", "dataset:CoNLL-2012", "dataset:PropBank.Br", "dataset:mbruton/spanish_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-15T15:20:48Z
--- license: apache-2.0 datasets: - mbruton/galician_srl - CoNLL-2012 - PropBank.Br - mbruton/spanish_srl language: - gl - en - pt - es metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for GalXLM-R-enptsp for Semantic Role Labeling This model is fine-tuned on a version of [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) which is pre-trained on the SRL task for English, Portuguese, and Spanish, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. ## Model Details ### Model Description GalXLM-R-enptsp for Semantic Role Labeling (SRL) is a transformers model, leveraging XLM-R's extensive pretraining on 100 languages to achieve better SRL predictions for low-resource Galician. This model is additionally pre-trained on the SRL task for English, Portuguese, and Spanish. It was fine-tuned on Galician with the following objectives: - Identify up to 13 verbal roots within a sentence. - Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Galician (gl), English (en), Portuguese (pt), Spanish (es) - **License:** Apache 2.0 - **Finetuned from model:** [English, Portuguese, and Spanish pre-trained XLM RoBERTa Base](https://huggingface.co/mbruton/spa_enpt_XLM-R) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Galician. ## Bias, Risks, and Limitations Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers. ## Training Details ### Training Data This model was pre-trained on the [OntoNotes 5.0 English SRL corpus](http://catalog.ldc.upenn.edu/LDC2013T19), [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl), and the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0 | 0.80 | 0.67 | 0.73 | 485 | | 0:arg1 | 0.66 | 0.74 | 0.69 | 483 | | 0:arg2 | 0.68 | 0.73 | 0.70 | 264 | | 0:root | 0.93 | 0.93 | 0.93 | 948 | | 1:arg0 | 0.67 | 0.64 | 0.66 | 348 | | 1:arg1 | 0.68 | 0.70 | 0.69 | 443 | | 1:arg2 | 0.57 | 0.67 | 0.61 | 211 | | 1:root | 0.84 | 0.86 | 0.85 | 802 | | 2:arg0 | 0.58 | 0.60 | 0.59 | 240 | | 2:arg1 | 0.63 | 0.65 | 0.64 | 331 | | 2:arg2 | 0.54 | 0.69 | 0.61 | 156 | | 2:root | 0.75 | 0.80 | 0.77 | 579 | | 3:arg0 | 0.48 | 0.49 | 0.49 | 137 | | 3:arg1 | 0.62 | 0.55 | 0.58 | 216 | | 3:arg2 | 0.46 | 0.66 | 0.55 | 110 | | 3:root | 0.69 | 0.73 | 0.71 | 374 | | 4:arg0 | 0.54 | 0.47 | 0.50 | 70 | | 4:arg1 | 0.55 | 0.60 | 0.57 | 109 | | 4:arg2 | 0.44 | 0.42 | 0.43 | 66 | | 4:root | 0.61 | 0.60 | 0.60 | 206 | | 5:arg0 | 0.37 | 0.50 | 0.43 | 20 | | 5:arg1 | 0.56 | 0.47 | 0.51 | 57 | | 5:arg2 | 0.33 | 0.32 | 0.33 | 28 | | 5:root | 0.57 | 0.51 | 0.54 | 102 | | 6:arg0 | 0.38 | 0.23 | 0.29 | 13 | | 6:arg1 | 0.26 | 0.36 | 0.31 | 25 | | 6:arg2 | 0.00 | 0.00 | 0.00 | 8 | | 6:root | 0.40 | 0.38 | 0.39 | 42 | | 7:arg0 | 0.00 | 0.00 | 0.00 | 3 | | 7:arg1 | 1.00 | 0.12 | 0.22 | 8 | | 7:arg2 | 0.00 | 0.00 | 0.00 | 5 | | 7:root | 0.20 | 0.19 | 0.19 | 16 | | 8:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 8:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.00 | 0.00 | 0.00 | 7 | | 9:arg0 | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1 | 0.00 | 0.00 | 0.00 | 2 | | 9:arg2 | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1 | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.70 | 0.72 | 0.71 | 6926 | | macro avg | 0.40 | 0.39 | 0.38 | 6926 | | weighted avg | 0.70 | 0.72 | 0.71 | 6926 | | tot root avg | 0.45 | 0.45 | 0.45 | 3081 | | tot A0 avg | 0.38 | 0.36 | 0.37 | 1318 | | tot A1 avg | 0.45 | 0.38 | 0.38 | 1677 | | tot A2 avg | 0.30 | 0.35 | 0.32 | 850 | | tot r0 avg | 0.77 | 0.77 | 0.76 | 2180 | | tot r1 avg | 0.69 | 0.72 | 0.70 | 1804 | | tot r2 avg | 0.63 | 0.69 | 0.65 | 1306 | | tot r3 avg | 0.56 | 0.61 | 0.58 | 837 | | tot r4 avg | 0.54 | 0.52 | 0.53 | 451 | | tot r5 avg | 0.46 | 0.45 | 0.45 | 207 | | tot r6 avg | 0.26 | 0.24 | 0.25 | 88 | | tot r7 avg | 0.30 | 0.08 | 0.10 | 32 | | tot r8 avg | 0.00 | 0.00 | 0.00 | 11 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 7 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 3 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
amyeroberts/temp_upload_test_local_7
amyeroberts
2024-01-03T14:14:12Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-28T16:22:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback base_model: distilbert-base-cased model-index: - name: amyeroberts/temp_upload_test_local_7 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amyeroberts/temp_upload_test_local_7 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2260 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.7381 | 0 | | 0.2260 | 1 | ### Framework versions - Transformers 4.24.0.dev0 - TensorFlow 2.10.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
mbruton/spa_mBERT
mbruton
2024-01-03T14:14:12Z
6
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "es", "dataset:mbruton/spanish_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T17:08:20Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl language: - es metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaBERT for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaBERT for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for Spanish. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and it's thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es) - **License:** Apache 2.0 - **Finetuned from model:** [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.94 | 0.91 | 0.92 | 867 | | 0:arg0:cau | 0.68 | 0.70 | 0.69 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.89 | 0.89 | 0.89 | 536 | | 0:arg1:tem | 0.88 | 0.89 | 0.88 | 589 | | 0:arg2:atr | 0.85 | 0.91 | 0.88 | 278 | | 0:arg2:ben | 0.75 | 0.85 | 0.80 | 78 | | 0:arg2:efi | 0.80 | 0.57 | 0.67 | 7 | | 0:arg2:exp | 0.00 | 0.00 | 0.00 | 6 | | 0:arg2:ext | 0.47 | 0.53 | 0.50 | 15 | | 0:arg2:loc | 0.51 | 0.53 | 0.52 | 57 | | 0:arg3:ben | 0.00 | 0.00 | 0.00 | 5 | | 0:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 0:arg3:fin | 1.00 | 0.50 | 0.67 | 2 | | 0:arg3:ori | 0.55 | 0.60 | 0.57 | 10 | | 0:arg4:des | 0.47 | 0.88 | 0.61 | 16 | | 0:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:adv | 0.64 | 0.55 | 0.59 | 268 | | 0:argM:atr | 0.54 | 0.54 | 0.54 | 24 | | 0:argM:cau | 0.72 | 0.56 | 0.63 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.79 | 0.74 | 0.76 | 46 | | 0:argM:loc | 0.72 | 0.77 | 0.74 | 186 | | 0:argM:mnr | 0.59 | 0.52 | 0.55 | 66 | | 0:argM:tmp | 0.83 | 0.88 | 0.85 | 411 | | 0:root | 0.99 | 0.99 | 0.99 | 1662 | | 1:arg0:agt | 0.91 | 0.92 | 0.92 | 564 | | 1:arg0:cau | 0.83 | 0.77 | 0.80 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.88 | 0.89 | 0.88 | 482 | | 1:arg1:tem | 0.90 | 0.88 | 0.89 | 390 | | 1:arg2:atr | 0.85 | 0.88 | 0.86 | 197 | | 1:arg2:ben | 0.76 | 0.83 | 0.80 | 66 | | 1:arg2:efi | 0.67 | 0.33 | 0.44 | 6 | | 1:arg2:ext | 0.56 | 0.71 | 0.63 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.55 | 0.50 | 0.52 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 1.00 | 0.50 | 0.67 | 2 | | 1:arg3:ori | 0.17 | 0.50 | 0.25 | 2 | | 1:arg4:des | 0.56 | 1.00 | 0.71 | 10 | | 1:arg4:efi | 0.00 | 0.00 | 0.00 | 2 | | 1:argM:adv | 0.68 | 0.53 | 0.59 | 220 | | 1:argM:atr | 0.61 | 0.74 | 0.67 | 19 | | 1:argM:cau | 0.45 | 0.66 | 0.53 | 35 | | 1:argM:ext | 0.00 | 0.00 | 0.00 | 7 | | 1:argM:fin | 0.54 | 0.74 | 0.62 | 38 | | 1:argM:loc | 0.68 | 0.76 | 0.72 | 156 | | 1:argM:mnr | 0.52 | 0.50 | 0.51 | 44 | | 1:argM:tmp | 0.79 | 0.80 | 0.79 | 247 | | 1:root | 0.96 | 0.97 | 0.96 | 1323 | | 2:arg0:agt | 0.86 | 0.88 | 0.87 | 336 | | 2:arg0:cau | 0.81 | 0.71 | 0.76 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.86 | 0.84 | 0.85 | 333 | | 2:arg1:tem | 0.85 | 0.82 | 0.84 | 291 | | 2:arg2:atr | 0.87 | 0.89 | 0.88 | 124 | | 2:arg2:ben | 0.70 | 0.81 | 0.75 | 43 | | 2:arg2:efi | 1.00 | 0.78 | 0.88 | 9 | | 2:arg2:ext | 0.17 | 0.20 | 0.18 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.51 | 0.67 | 0.58 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.29 | 0.67 | 0.40 | 3 | | 2:arg4:des | 0.57 | 0.81 | 0.67 | 16 | | 2:arg4:efi | 0.00 | 0.00 | 0.00 | 6 | | 2:argM:adv | 0.60 | 0.51 | 0.55 | 176 | | 2:argM:atr | 0.70 | 0.47 | 0.56 | 15 | | 2:argM:cau | 0.45 | 0.53 | 0.49 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.83 | 0.69 | 0.76 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.66 | 0.70 | 0.68 | 117 | | 2:argM:mnr | 0.35 | 0.23 | 0.28 | 35 | | 2:argM:tmp | 0.74 | 0.77 | 0.76 | 161 | | 2:root | 0.95 | 0.94 | 0.94 | 913 | | 3:arg0:agt | 0.81 | 0.83 | 0.82 | 227 | | 3:arg0:cau | 0.67 | 0.86 | 0.75 | 14 | | 3:arg1:pat | 0.78 | 0.82 | 0.80 | 199 | | 3:arg1:tem | 0.74 | 0.78 | 0.76 | 160 | | 3:arg2:atr | 0.75 | 0.80 | 0.77 | 79 | | 3:arg2:ben | 0.80 | 0.89 | 0.84 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.50 | 0.38 | 0.43 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.00 | 0.00 | 0.00 | 3 | | 3:arg4:des | 0.44 | 1.00 | 0.61 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.48 | 0.43 | 0.45 | 98 | | 3:argM:atr | 1.00 | 0.14 | 0.25 | 7 | | 3:argM:cau | 0.42 | 0.38 | 0.40 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.45 | 0.67 | 0.54 | 15 | | 3:argM:loc | 0.58 | 0.65 | 0.62 | 69 | | 3:argM:mnr | 0.33 | 0.45 | 0.38 | 11 | | 3:argM:tmp | 0.78 | 0.76 | 0.77 | 92 | | 3:root | 0.89 | 0.92 | 0.91 | 569 | | 4:arg0:agt | 0.82 | 0.82 | 0.82 | 119 | | 4:arg0:cau | 0.67 | 0.67 | 0.67 | 6 | | 4:arg1:pat | 0.74 | 0.75 | 0.74 | 87 | | 4:arg1:tem | 0.81 | 0.75 | 0.78 | 109 | | 4:arg2:atr | 0.74 | 0.74 | 0.74 | 53 | | 4:arg2:ben | 0.62 | 0.45 | 0.53 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.50 | 0.73 | 0.59 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.88 | 0.70 | 0.78 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.41 | 0.52 | 0.46 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.12 | 0.33 | 0.18 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.50 | 0.55 | 0.52 | 11 | | 4:argM:loc | 0.56 | 0.83 | 0.67 | 24 | | 4:argM:mnr | 0.00 | 0.00 | 0.00 | 16 | | 4:argM:tmp | 0.70 | 0.73 | 0.72 | 52 | | 4:root | 0.86 | 0.83 | 0.84 | 322 | | 5:arg0:agt | 0.74 | 0.82 | 0.78 | 72 | | 5:arg0:cau | 1.00 | 0.40 | 0.57 | 5 | | 5:arg1:pat | 0.60 | 0.75 | 0.66 | 71 | | 5:arg1:tem | 0.82 | 0.68 | 0.75 | 41 | | 5:arg2:atr | 0.65 | 0.62 | 0.63 | 21 | | 5:arg2:ben | 0.33 | 0.67 | 0.44 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.47 | 0.54 | 0.50 | 26 | | 5:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 5:argM:fin | 0.33 | 0.40 | 0.36 | 5 | | 5:argM:loc | 0.75 | 0.57 | 0.65 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.71 | 0.73 | 0.72 | 30 | | 5:root | 0.76 | 0.79 | 0.78 | 173 | | 6:arg0:agt | 0.71 | 0.59 | 0.65 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.39 | 0.54 | 0.45 | 28 | | 6:arg1:tem | 0.40 | 0.50 | 0.44 | 16 | | 6:arg2:atr | 0.30 | 0.46 | 0.36 | 13 | | 6:arg2:ben | 0.27 | 0.60 | 0.37 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.21 | 0.40 | 0.28 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:loc | 0.38 | 0.71 | 0.50 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.14 | 0.29 | 0.19 | 7 | | 6:root | 0.62 | 0.68 | 0.65 | 82 | | 7:arg0:agt | 0.39 | 0.76 | 0.52 | 17 | | 7:arg1:pat | 0.47 | 0.53 | 0.50 | 17 | | 7:arg1:tem | 0.54 | 0.47 | 0.50 | 15 | | 7:arg2:atr | 0.30 | 0.20 | 0.24 | 15 | | 7:arg2:ben | 0.00 | 0.00 | 0.00 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.14 | 0.60 | 0.22 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.00 | 0.00 | 0.00 | 6 | | 7:root | 0.69 | 0.53 | 0.60 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.07 | 0.11 | 0.08 | 9 | | 8:arg2:atr | 0.17 | 0.25 | 0.20 | 4 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.00 | 0.00 | 0.00 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.48 | 0.60 | 0.54 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.25 | 0.88 | 0.39 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.83 | 0.83 | 0.83 | 15436 | | macro avg | 0.31 | 0.33 | 0.31 | 15436 | | weighted avg | 0.82 | 0.83 | 0.82 | 15436 | | tot root avg | 0.50 | 0.54 | 0.51 | 5165 | | tot arg0:agt avg | 0.48 | 0.50 | 0.48 | 2257 | | tot arg0:cau avg | 0.42 | 0.37 | 0.39 | 166 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg0 | 0.40 | 0.39 | 0.39 | 2426 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg1:pat avg | 0.40 | 0.43 | 0.41 | 1770 | | tot arg1:tem avg | 0.43 | 0.42 | 0.42 | 1635 | | tot arg1 | 0.37 | 0.38 | 0.38 | 3411 | | tot arg2:atr avg | 0.39 | 0.41 | 0.40 | 794 | | tot arg2:ben avg | 0.36 | 0.47 | 0.40 | 255 | | tot arg2:efi avg | 0.49 | 0.34 | 0.40 | 24 | | tot arg2:exp avg | 0.00 | 0.00 | 0.00 | 6 | | tot arg2:ext avg | 0.17 | 0.21 | 0.19 | 33 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg2:loc avg | 0.29 | 0.31 | 0.29 | 165 | | tot arg2 | 0.32 | 0.35 | 0.33 | 1279 | | tot arg3:ben avg | 0.00 | 0.00 | 0.00 | 15 | | tot arg3:ein avg | 0.00 | 0.00 | 0.00 | 9 | | tot arg3:fin avg | 1.00 | 0.50 | 0.67 | 4 | | tot arg3:ori avg | 0.14 | 0.25 | 0.17 | 21 | | tot arg3 | 0.15 | 0.14 | 0.13 | 49 | | tot arg4:des avg | 0.42 | 0.63 | 0.48 | 61 | | tot arg4:efi avg | 0.00 | 0.00 | 0.00 | 20 | | tot arg4 | 0.22 | 0.34 | 0.26 | 81 | | tot argM:adv avg | 0.26 | 0.29 | 0.26 | 876 | | tot argM:atr avg | 0.36 | 0.24 | 0.25 | 73 | | tot argM:cau avg | 0.24 | 0.27 | 0.25 | 115 | | tot argM:ext avg | 0.00 | 0.00 | 0.00 | 19 | | tot argM:fin avg | 0.31 | 0.34 | 0.32 | 158 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1 | | tot argM:loc avg | 0.36 | 0.42 | 0.38 | 591 | | tot argM:mnr avg | 0.20 | 0.19 | 0.19 | 186 | | tot argM:tmp avg | 0.36 | 0.38 | 0.37 | 1013 | | tot argM | 0.28 | 0.29 | 0.27 | 3032 | | tot r0 avg | 0.54 | 0.53 | 0.53 | 5242 | | tot r1 avg | 0.53 | 0.55 | 0.53 | 3913 | | tot r2 avg | 0.47 | 0.48 | 0.47 | 2711 | | tot r3 avg | 0.45 | 0.47 | 0.44 | 1626 | | tot r4 avg | 0.43 | 0.45 | 0.43 | 892 | | tot r5 avg | 0.38 | 0.37 | 0.36 | 487 | | tot r6 avg | 0.20 | 0.28 | 0.23 | 216 | | tot r7 avg | 0.18 | 0.22 | 0.18 | 135 | | tot r8 avg | 0.05 | 0.06 | 0.05 | 71 | | tot r9 avg | 0.02 | 0.07 | 0.03 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/spa_en_mBERT
mbruton
2024-01-03T14:13:50Z
7
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "es", "en", "dataset:mbruton/spanish_srl", "dataset:CoNLL-2012", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T18:00:07Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl - CoNLL-2012 language: - es - en metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaBERT-en for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for English, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaBERT-en for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for Spanish. This model is additionally pre-trained on the SRL task for English. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and it's thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es), English (en) - **License:** Apache 2.0 - **Finetuned from model:** [English pre-trained multilingual BERT](https://huggingface.co/liaad/srl-en_mbert-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was pre-trained on the [OntoNotes 5.0 English SRL corpus](http://catalog.ldc.upenn.edu/LDC2013T19). This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.95 | 0.87 | 0.91 | 867 | | 0:arg0:cau | 0.67 | 0.72 | 0.69 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.89 | 0.87 | 0.88 | 536 | | 0:arg1:tem | 0.85 | 0.90 | 0.87 | 589 | | 0:arg2:atr | 0.84 | 0.89 | 0.87 | 278 | | 0:arg2:ben | 0.75 | 0.83 | 0.79 | 78 | | 0:arg2:efi | 0.75 | 0.43 | 0.55 | 7 | | 0:arg2:exp | 0.00 | 0.00 | 0.00 | 6 | | 0:arg2:ext | 0.50 | 0.40 | 0.44 | 15 | | 0:arg2:loc | 0.52 | 0.63 | 0.57 | 57 | | 0:arg3:ben | 0.00 | 0.00 | 0.00 | 5 | | 0:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 0:arg3:fin | 0.50 | 0.50 | 0.50 | 2 | | 0:arg3:ori | 0.50 | 0.50 | 0.50 | 10 | | 0:arg4:des | 0.48 | 0.81 | 0.60 | 16 | | 0:arg4:efi | 0.50 | 0.20 | 0.29 | 5 | | 0:argM:adv | 0.64 | 0.50 | 0.56 | 268 | | 0:argM:atr | 0.52 | 0.54 | 0.53 | 24 | | 0:argM:cau | 0.71 | 0.59 | 0.64 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.75 | 0.78 | 0.77 | 46 | | 0:argM:loc | 0.71 | 0.80 | 0.75 | 186 | | 0:argM:mnr | 0.59 | 0.59 | 0.59 | 66 | | 0:argM:tmp | 0.87 | 0.88 | 0.87 | 411 | | 0:root | 0.99 | 0.99 | 0.99 | 1662 | | 1:arg0:agt | 0.92 | 0.88 | 0.90 | 564 | | 1:arg0:cau | 0.77 | 0.77 | 0.77 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.86 | 0.87 | 0.87 | 482 | | 1:arg1:tem | 0.86 | 0.88 | 0.87 | 390 | | 1:arg2:atr | 0.85 | 0.89 | 0.87 | 197 | | 1:arg2:ben | 0.72 | 0.83 | 0.77 | 66 | | 1:arg2:efi | 1.00 | 0.33 | 0.50 | 6 | | 1:arg2:ext | 0.36 | 0.57 | 0.44 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.48 | 0.57 | 0.52 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ori | 0.12 | 0.50 | 0.20 | 2 | | 1:arg4:des | 0.39 | 0.90 | 0.55 | 10 | | 1:arg4:efi | 0.00 | 0.00 | 0.00 | 2 | | 1:argM:adv | 0.65 | 0.52 | 0.58 | 220 | | 1:argM:atr | 0.65 | 0.58 | 0.61 | 19 | | 1:argM:cau | 0.52 | 0.66 | 0.58 | 35 | | 1:argM:ext | 0.00 | 0.00 | 0.00 | 7 | | 1:argM:fin | 0.54 | 0.74 | 0.62 | 38 | | 1:argM:loc | 0.68 | 0.79 | 0.73 | 156 | | 1:argM:mnr | 0.51 | 0.52 | 0.52 | 44 | | 1:argM:tmp | 0.79 | 0.84 | 0.81 | 247 | | 1:root | 0.96 | 0.96 | 0.96 | 1323 | | 2:arg0:agt | 0.86 | 0.87 | 0.86 | 336 | | 2:arg0:cau | 0.81 | 0.71 | 0.76 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.81 | 0.84 | 0.83 | 333 | | 2:arg1:tem | 0.81 | 0.86 | 0.84 | 291 | | 2:arg2:atr | 0.83 | 0.92 | 0.87 | 124 | | 2:arg2:ben | 0.65 | 0.81 | 0.72 | 43 | | 2:arg2:efi | 0.78 | 0.78 | 0.78 | 9 | | 2:arg2:ext | 0.50 | 0.40 | 0.44 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.46 | 0.67 | 0.55 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.43 | 1.00 | 0.60 | 3 | | 2:arg4:des | 0.45 | 0.56 | 0.50 | 16 | | 2:arg4:efi | 0.00 | 0.00 | 0.00 | 6 | | 2:argM:adv | 0.53 | 0.44 | 0.48 | 176 | | 2:argM:atr | 0.50 | 0.40 | 0.44 | 15 | | 2:argM:cau | 0.45 | 0.59 | 0.51 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.77 | 0.64 | 0.70 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.68 | 0.78 | 0.73 | 117 | | 2:argM:mnr | 0.32 | 0.31 | 0.32 | 35 | | 2:argM:tmp | 0.80 | 0.81 | 0.80 | 161 | | 2:root | 0.93 | 0.93 | 0.93 | 913 | | 3:arg0:agt | 0.82 | 0.81 | 0.82 | 227 | | 3:arg0:cau | 0.69 | 0.79 | 0.73 | 14 | | 3:arg1:pat | 0.81 | 0.88 | 0.85 | 199 | | 3:arg1:tem | 0.72 | 0.83 | 0.77 | 160 | | 3:arg2:atr | 0.70 | 0.80 | 0.75 | 79 | | 3:arg2:ben | 0.68 | 0.78 | 0.72 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.50 | 0.48 | 0.49 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.00 | 0.00 | 0.00 | 3 | | 3:arg4:des | 0.37 | 1.00 | 0.54 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.47 | 0.49 | 0.48 | 98 | | 3:argM:atr | 0.00 | 0.00 | 0.00 | 7 | | 3:argM:cau | 0.40 | 0.15 | 0.22 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.38 | 0.60 | 0.46 | 15 | | 3:argM:loc | 0.61 | 0.64 | 0.62 | 69 | | 3:argM:mnr | 0.36 | 0.45 | 0.40 | 11 | | 3:argM:tmp | 0.82 | 0.82 | 0.82 | 92 | | 3:root | 0.88 | 0.93 | 0.90 | 569 | | 4:arg0:agt | 0.78 | 0.82 | 0.80 | 119 | | 4:arg0:cau | 0.75 | 0.50 | 0.60 | 6 | | 4:arg1:pat | 0.74 | 0.76 | 0.75 | 87 | | 4:arg1:tem | 0.82 | 0.74 | 0.78 | 109 | | 4:arg2:atr | 0.76 | 0.77 | 0.77 | 53 | | 4:arg2:ben | 0.47 | 0.64 | 0.54 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.57 | 0.73 | 0.64 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.50 | 0.40 | 0.44 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.44 | 0.38 | 0.41 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.38 | 0.45 | 0.42 | 11 | | 4:argM:loc | 0.54 | 0.79 | 0.64 | 24 | | 4:argM:mnr | 0.00 | 0.00 | 0.00 | 16 | | 4:argM:tmp | 0.67 | 0.71 | 0.69 | 52 | | 4:root | 0.82 | 0.83 | 0.83 | 322 | | 5:arg0:agt | 0.67 | 0.64 | 0.65 | 72 | | 5:arg0:cau | 1.00 | 0.20 | 0.33 | 5 | | 5:arg1:pat | 0.65 | 0.70 | 0.68 | 71 | | 5:arg1:tem | 0.65 | 0.54 | 0.59 | 41 | | 5:arg2:atr | 0.69 | 0.52 | 0.59 | 21 | | 5:arg2:ben | 0.44 | 0.67 | 0.53 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.35 | 0.46 | 0.40 | 26 | | 5:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 5:argM:fin | 0.33 | 0.60 | 0.43 | 5 | | 5:argM:loc | 0.56 | 0.48 | 0.51 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.59 | 0.57 | 0.58 | 30 | | 5:root | 0.74 | 0.73 | 0.74 | 173 | | 6:arg0:agt | 0.61 | 0.50 | 0.55 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.50 | 0.61 | 0.55 | 28 | | 6:arg1:tem | 0.25 | 0.25 | 0.25 | 16 | | 6:arg2:atr | 0.29 | 0.62 | 0.39 | 13 | | 6:arg2:ben | 0.33 | 1.00 | 0.50 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.11 | 0.20 | 0.14 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:loc | 0.50 | 0.71 | 0.59 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.21 | 0.43 | 0.29 | 7 | | 6:root | 0.64 | 0.57 | 0.61 | 82 | | 7:arg0:agt | 0.41 | 0.82 | 0.55 | 17 | | 7:arg1:pat | 0.58 | 0.65 | 0.61 | 17 | | 7:arg1:tem | 0.32 | 0.60 | 0.42 | 15 | | 7:arg2:atr | 0.25 | 0.20 | 0.22 | 15 | | 7:arg2:ben | 0.00 | 0.00 | 0.00 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.04 | 0.20 | 0.07 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.17 | 0.17 | 0.17 | 6 | | 7:root | 0.56 | 0.44 | 0.49 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.07 | 0.11 | 0.08 | 9 | | 8:arg2:atr | 0.00 | 0.00 | 0.00 | 4 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.00 | 0.00 | 0.00 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.38 | 0.68 | 0.49 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.25 | 0.76 | 0.37 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.82 | 0.82 | 0.82 | 15436 | | macro avg | 0.29 | 0.32 | 0.30 | 15436 | | weighted avg | 0.81 | 0.82 | 0.81 | 15436 | | tot root avg | 0.48 | 0.52 | 0.49 | 5165 | | tot arg0:agt avg | 0.46 | 0.48 | 0.46 | 2257 | | tot arg0:cau avg | 0.43 | 0.34 | 0.35 | 166 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg0 | 0.40 | 0.37 | 0.37 | 2426 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg1:pat avg | 0.42 | 0.44 | 0.43 | 1770 | | tot arg1:tem avg | 0.38 | 0.41 | 0.39 | 1635 | | tot arg1 | 0.36 | 0.38 | 0.37 | 3411 | | tot arg2:atr avg | 0.37 | 0.40 | 0.38 | 794 | | tot arg2:ben avg | 0.34 | 0.50 | 0.39 | 255 | | tot arg2:efi avg | 0.51 | 0.31 | 0.37 | 24 | | tot arg2:exp avg | 0.00 | 0.00 | 0.00 | 6 | | tot arg2:ext avg | 0.19 | 0.20 | 0.19 | 33 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg2:loc avg | 0.28 | 0.34 | 0.31 | 165 | | tot arg2 | 0.31 | 0.36 | 0.32 | 1279 | | tot arg3:ben avg | 0.00 | 0.00 | 0.00 | 15 | | tot arg3:ein avg | 0.00 | 0.00 | 0.00 | 9 | | tot arg3:fin avg | 0.25 | 0.25 | 0.25 | 4 | | tot arg3:ori avg | 0.15 | 0.29 | 0.19 | 21 | | tot arg3 | 0.08 | 0.13 | 0.09 | 49 | | tot arg4:des avg | 0.31 | 0.52 | 0.38 | 61 | | tot arg4:efi avg | 0.08 | 0.03 | 0.05 | 20 | | tot arg4 | 0.21 | 0.30 | 0.22 | 81 | | tot argM:adv avg | 0.23 | 0.23 | 0.22 | 876 | | tot argM:atr avg | 0.21 | 0.19 | 0.20 | 73 | | tot argM:cau avg | 0.23 | 0.22 | 0.22 | 115 | | tot argM:ext avg | 0.00 | 0.00 | 0.00 | 19 | | tot argM:fin avg | 0.29 | 0.35 | 0.31 | 158 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1 | | tot argM:loc avg | 0.36 | 0.42 | 0.38 | 591 | | tot argM:mnr avg | 0.20 | 0.21 | 0.20 | 186 | | tot argM:tmp avg | 0.38 | 0.40 | 0.39 | 1013 | | tot argM | 0.25 | 0.27 | 0.26 | 3032 | | tot r0 avg | 0.54 | 0.53 | 0.52 | 5242 | | tot r1 avg | 0.49 | 0.52 | 0.49 | 3913 | | tot r2 avg | 0.46 | 0.49 | 0.47 | 2711 | | tot r3 avg | 0.40 | 0.45 | 0.42 | 1626 | | tot r4 avg | 0.39 | 0.41 | 0.40 | 892 | | tot r5 avg | 0.35 | 0.32 | 0.32 | 487 | | tot r6 avg | 0.20 | 0.29 | 0.23 | 216 | | tot r7 avg | 0.17 | 0.22 | 0.18 | 135 | | tot r8 avg | 0.03 | 0.05 | 0.04 | 71 | | tot r9 avg | 0.02 | 0.06 | 0.03 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/spa_pt_mBERT
mbruton
2024-01-03T14:13:29Z
84
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "es", "pt", "dataset:mbruton/spanish_srl", "dataset:PropBank.Br", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T18:25:40Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl - PropBank.Br language: - es - pt metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaBERT-pt for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for Portuguese, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaBERT-pt for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for Spanish. This model is additionally pre-trained on the SRL task for Portuguese. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and it's thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [Portuguese pre-trained multilingual BERT](https://huggingface.co/liaad/srl-pt_mbert-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was pre-trained on the [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl). This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.92 | 0.92 | 0.92 | 867 | | 0:arg0:cau | 0.67 | 0.67 | 0.67 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.89 | 0.88 | 0.88 | 536 | | 0:arg1:tem | 0.88 | 0.88 | 0.88 | 589 | | 0:arg2:atr | 0.88 | 0.86 | 0.87 | 278 | | 0:arg2:ben | 0.81 | 0.79 | 0.80 | 78 | | 0:arg2:efi | 0.75 | 0.43 | 0.55 | 7 | | 0:arg2:exp | 0.50 | 0.33 | 0.40 | 6 | | 0:arg2:ext | 0.67 | 0.53 | 0.59 | 15 | | 0:arg2:loc | 0.61 | 0.39 | 0.47 | 57 | | 0:arg3:ben | 0.50 | 0.20 | 0.29 | 5 | | 0:arg3:ein | 0.50 | 1.00 | 0.67 | 1 | | 0:arg3:fin | 0.50 | 0.50 | 0.50 | 2 | | 0:arg3:ori | 0.50 | 0.40 | 0.44 | 10 | | 0:arg4:des | 0.52 | 0.69 | 0.59 | 16 | | 0:arg4:efi | 0.40 | 0.40 | 0.40 | 5 | | 0:argM:adv | 0.53 | 0.63 | 0.58 | 268 | | 0:argM:atr | 0.53 | 0.67 | 0.59 | 24 | | 0:argM:cau | 0.68 | 0.63 | 0.66 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.78 | 0.70 | 0.74 | 46 | | 0:argM:loc | 0.70 | 0.74 | 0.72 | 186 | | 0:argM:mnr | 0.66 | 0.41 | 0.50 | 66 | | 0:argM:tmp | 0.85 | 0.86 | 0.86 | 411 | | 0:root | 0.98 | 0.98 | 0.98 | 1662 | | 1:arg0:agt | 0.91 | 0.90 | 0.91 | 564 | | 1:arg0:cau | 0.71 | 0.84 | 0.77 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.89 | 0.85 | 0.87 | 482 | | 1:arg1:tem | 0.88 | 0.88 | 0.88 | 390 | | 1:arg2:atr | 0.88 | 0.88 | 0.88 | 197 | | 1:arg2:ben | 0.82 | 0.82 | 0.82 | 66 | | 1:arg2:efi | 0.83 | 0.83 | 0.83 | 6 | | 1:arg2:ext | 0.50 | 0.71 | 0.59 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.69 | 0.45 | 0.55 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 1.00 | 1.00 | 1.00 | 2 | | 1:arg3:ori | 0.17 | 0.50 | 0.25 | 2 | | 1:arg4:des | 0.56 | 0.90 | 0.69 | 10 | | 1:arg4:efi | 0.00 | 0.00 | 0.00 | 2 | | 1:argM:adv | 0.59 | 0.59 | 0.59 | 220 | | 1:argM:atr | 0.71 | 0.79 | 0.75 | 19 | | 1:argM:cau | 0.59 | 0.69 | 0.63 | 35 | | 1:argM:ext | 0.00 | 0.00 | 0.00 | 7 | | 1:argM:fin | 0.60 | 0.66 | 0.62 | 38 | | 1:argM:loc | 0.74 | 0.68 | 0.71 | 156 | | 1:argM:mnr | 0.68 | 0.39 | 0.49 | 44 | | 1:argM:tmp | 0.80 | 0.84 | 0.82 | 247 | | 1:root | 0.96 | 0.95 | 0.96 | 1323 | | 2:arg0:agt | 0.87 | 0.88 | 0.87 | 336 | | 2:arg0:cau | 0.81 | 0.74 | 0.78 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.85 | 0.83 | 0.84 | 333 | | 2:arg1:tem | 0.82 | 0.84 | 0.83 | 291 | | 2:arg2:atr | 0.84 | 0.87 | 0.86 | 124 | | 2:arg2:ben | 0.69 | 0.77 | 0.73 | 43 | | 2:arg2:efi | 0.70 | 0.78 | 0.74 | 9 | | 2:arg2:ext | 0.14 | 0.20 | 0.17 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.44 | 0.44 | 0.44 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.43 | 1.00 | 0.60 | 3 | | 2:arg4:des | 0.50 | 0.75 | 0.60 | 16 | | 2:arg4:efi | 0.00 | 0.00 | 0.00 | 6 | | 2:argM:adv | 0.52 | 0.54 | 0.53 | 176 | | 2:argM:atr | 0.80 | 0.53 | 0.64 | 15 | | 2:argM:cau | 0.48 | 0.76 | 0.59 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.78 | 0.78 | 0.78 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.70 | 0.68 | 0.69 | 117 | | 2:argM:mnr | 0.42 | 0.31 | 0.36 | 35 | | 2:argM:tmp | 0.76 | 0.77 | 0.76 | 161 | | 2:root | 0.93 | 0.93 | 0.93 | 913 | | 3:arg0:agt | 0.84 | 0.86 | 0.85 | 227 | | 3:arg0:cau | 0.71 | 0.86 | 0.77 | 14 | | 3:arg1:pat | 0.81 | 0.85 | 0.83 | 199 | | 3:arg1:tem | 0.76 | 0.76 | 0.76 | 160 | | 3:arg2:atr | 0.72 | 0.80 | 0.75 | 79 | | 3:arg2:ben | 0.82 | 0.85 | 0.84 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.47 | 0.38 | 0.42 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.25 | 0.33 | 0.29 | 3 | | 3:arg4:des | 0.46 | 0.86 | 0.60 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.43 | 0.42 | 0.42 | 98 | | 3:argM:atr | 0.00 | 0.00 | 0.00 | 7 | | 3:argM:cau | 0.56 | 0.69 | 0.62 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.64 | 0.60 | 0.62 | 15 | | 3:argM:loc | 0.64 | 0.51 | 0.56 | 69 | | 3:argM:mnr | 0.33 | 0.27 | 0.30 | 11 | | 3:argM:tmp | 0.86 | 0.76 | 0.81 | 92 | | 3:root | 0.90 | 0.91 | 0.90 | 569 | | 4:arg0:agt | 0.77 | 0.92 | 0.84 | 119 | | 4:arg0:cau | 0.67 | 0.67 | 0.67 | 6 | | 4:arg1:pat | 0.72 | 0.83 | 0.77 | 87 | | 4:arg1:tem | 0.82 | 0.77 | 0.80 | 109 | | 4:arg2:atr | 0.74 | 0.75 | 0.75 | 53 | | 4:arg2:ben | 0.60 | 0.55 | 0.57 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.83 | 0.45 | 0.59 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.64 | 0.70 | 0.67 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.48 | 0.48 | 0.48 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.60 | 0.55 | 0.57 | 11 | | 4:argM:loc | 0.67 | 0.75 | 0.71 | 24 | | 4:argM:mnr | 0.50 | 0.12 | 0.20 | 16 | | 4:argM:tmp | 0.72 | 0.75 | 0.74 | 52 | | 4:root | 0.85 | 0.89 | 0.87 | 322 | | 5:arg0:agt | 0.68 | 0.72 | 0.70 | 72 | | 5:arg0:cau | 1.00 | 0.20 | 0.33 | 5 | | 5:arg1:pat | 0.66 | 0.72 | 0.69 | 71 | | 5:arg1:tem | 0.77 | 0.73 | 0.75 | 41 | | 5:arg2:atr | 0.55 | 0.52 | 0.54 | 21 | | 5:arg2:ben | 0.40 | 0.67 | 0.50 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.42 | 0.50 | 0.46 | 26 | | 5:argM:cau | 1.00 | 0.33 | 0.50 | 3 | | 5:argM:fin | 0.60 | 0.60 | 0.60 | 5 | | 5:argM:loc | 0.56 | 0.43 | 0.49 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.69 | 0.60 | 0.64 | 30 | | 5:root | 0.75 | 0.80 | 0.77 | 173 | | 6:arg0:agt | 0.52 | 0.44 | 0.48 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.57 | 0.57 | 0.57 | 28 | | 6:arg1:tem | 0.38 | 0.50 | 0.43 | 16 | | 6:arg2:atr | 0.26 | 0.46 | 0.33 | 13 | | 6:arg2:ben | 0.38 | 0.60 | 0.46 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.22 | 0.40 | 0.29 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.25 | 0.50 | 0.33 | 2 | | 6:argM:loc | 0.33 | 0.43 | 0.38 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.23 | 0.43 | 0.30 | 7 | | 6:root | 0.60 | 0.59 | 0.59 | 82 | | 7:arg0:agt | 0.26 | 0.41 | 0.32 | 17 | | 7:arg1:pat | 0.42 | 0.65 | 0.51 | 17 | | 7:arg1:tem | 0.30 | 0.20 | 0.24 | 15 | | 7:arg2:atr | 0.25 | 0.13 | 0.17 | 15 | | 7:arg2:ben | 0.00 | 0.00 | 0.00 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.03 | 0.20 | 0.06 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.00 | 0.00 | 0.00 | 6 | | 7:root | 0.40 | 0.56 | 0.46 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.10 | 0.22 | 0.14 | 9 | | 8:arg2:atr | 0.00 | 0.00 | 0.00 | 4 | | 8:arg2:ben | 0.00 | 0.00 | 0.00 | 0 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.00 | 0.00 | 0.00 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.12 | 0.12 | 0.12 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.07 | 0.12 | 0.09 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.82 | 0.82 | 0.82 | 15436 | | macro avg | 0.32 | 0.33 | 0.32 | 15436 | | weighted avg | 0.82 | 0.82 | 0.82 | 15436 | | tot root avg | 0.44 | 0.46 | 0.44 | 5165 | | tot arg0:agt avg | 0.44 | 0.47 | 0.45 | 2257 | | tot arg0:cau avg | 0.42 | 0.36 | 0.36 | 166 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg0 | 0.38 | 0.37 | 0.37 | 2426 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg1:pat avg | 0.42 | 0.44 | 0.43 | 1770 | | tot arg1:tem avg | 0.41 | 0.41 | 0.41 | 1635 | | tot arg1 | 0.37 | 0.39 | 0.38 | 3411 | | tot arg2:atr avg | 0.37 | 0.38 | 0.37 | 794 | | tot arg2:ben avg | 0.35 | 0.39 | 0.36 | 248 | | tot arg2:efi avg | 0.46 | 0.41 | 0.42 | 24 | | tot arg2:exp avg | 0.50 | 0.33 | 0.40 | 6 | | tot arg2:ext avg | 0.19 | 0.21 | 0.19 | 33 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg2:loc avg | 0.34 | 0.23 | 0.27 | 165 | | tot arg2 | 0.33 | 0.32 | 0.32 | 1272 | | tot arg3:ben avg | 0.10 | 0.04 | 0.06 | 15 | | tot arg3:ein avg | 0.08 | 0.17 | 0.11 | 9 | | tot arg3:fin avg | 0.75 | 0.75 | 0.75 | 4 | | tot arg3:ori avg | 0.19 | 0.32 | 0.23 | 21 | | tot arg3 | 0.19 | 0.25 | 0.20 | 49 | | tot arg4:des avg | 0.38 | 0.56 | 0.45 | 61 | | tot arg4:efi avg | 0.07 | 0.07 | 0.07 | 20 | | tot arg4 | 0.24 | 0.33 | 0.27 | 81 | | tot argM:adv avg | 0.23 | 0.27 | 0.24 | 876 | | tot argM:atr avg | 0.26 | 0.25 | 0.25 | 73 | | tot argM:cau avg | 0.37 | 0.34 | 0.33 | 115 | | tot argM:ext avg | 0.00 | 0.00 | 0.00 | 19 | | tot argM:fin avg | 0.39 | 0.40 | 0.39 | 158 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1 | | tot argM:loc avg | 0.36 | 0.35 | 0.36 | 591 | | tot argM:mnr avg | 0.29 | 0.17 | 0.21 | 186 | | tot argM:tmp avg | 0.38 | 0.39 | 0.38 | 1013 | | tot argM | 0.30 | 0.29 | 0.29 | 3032 | | tot r0 avg | 0.60 | 0.57 | 0.58 | 5242 | | tot r1 avg | 0.56 | 0.58 | 0.56 | 3913 | | tot r2 avg | 0.46 | 0.50 | 0.47 | 2711 | | tot r3 avg | 0.44 | 0.47 | 0.45 | 1626 | | tot r4 avg | 0.43 | 0.41 | 0.42 | 843 | | tot r5 avg | 0.43 | 0.36 | 0.37 | 487 | | tot r6 avg | 0.22 | 0.29 | 0.24 | 216 | | tot r7 avg | 0.12 | 0.15 | 0.13 | 135 | | tot r8 avg | 0.01 | 0.02 | 0.02 | 71 | | tot r9 avg | 0.01 | 0.01 | 0.01 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/spa_enpt_mBERT
mbruton
2024-01-03T14:13:07Z
93
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "es", "en", "pt", "dataset:mbruton/spanish_srl", "dataset:CoNLL-2012", "dataset:PropBank.Br", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T19:15:11Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl - CoNLL-2012 - PropBank.Br language: - es - en - pt metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaBERT-enpt for Semantic Role Labeling (cased) This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for English and Portuguese, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaBERT-enpt for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for Spanish. This model is additionally pre-trained on the SRL task for English and Portuguese. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and it's thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es), English (en), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [English & Portuguese pre-trained multilingual BERT](https://huggingface.co/liaad/srl-enpt_mbert-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was pre-trained on the [OntoNotes 5.0 English SRL corpus](http://catalog.ldc.upenn.edu/LDC2013T19) and [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl). This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.93 | 0.90 | 0.92 | 867 | | 0:arg0:cau | 0.64 | 0.68 | 0.66 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.87 | 0.88 | 0.87 | 536 | | 0:arg1:tem | 0.88 | 0.88 | 0.88 | 589 | | 0:arg2:atr | 0.86 | 0.91 | 0.88 | 278 | | 0:arg2:ben | 0.75 | 0.86 | 0.80 | 78 | | 0:arg2:efi | 0.71 | 0.71 | 0.71 | 7 | | 0:arg2:exp | 0.00 | 0.00 | 0.00 | 6 | | 0:arg2:ext | 0.44 | 0.53 | 0.48 | 15 | | 0:arg2:loc | 0.59 | 0.56 | 0.58 | 57 | | 0:arg3:ben | 1.00 | 0.20 | 0.33 | 5 | | 0:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 0:arg3:fin | 0.50 | 0.50 | 0.50 | 2 | | 0:arg3:ori | 0.55 | 0.60 | 0.57 | 10 | | 0:arg4:des | 0.52 | 0.81 | 0.63 | 16 | | 0:arg4:efi | 0.25 | 0.20 | 0.22 | 5 | | 0:argM:adv | 0.67 | 0.53 | 0.59 | 268 | | 0:argM:atr | 0.57 | 0.50 | 0.53 | 24 | | 0:argM:cau | 0.64 | 0.44 | 0.52 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.77 | 0.78 | 0.77 | 46 | | 0:argM:loc | 0.72 | 0.77 | 0.75 | 186 | | 0:argM:mnr | 0.62 | 0.62 | 0.62 | 66 | | 0:argM:tmp | 0.84 | 0.86 | 0.85 | 411 | | 0:root | 0.99 | 0.99 | 0.99 | 1662 | | 1:arg0:agt | 0.93 | 0.90 | 0.91 | 564 | | 1:arg0:cau | 0.81 | 0.77 | 0.79 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.85 | 0.90 | 0.87 | 482 | | 1:arg1:tem | 0.89 | 0.88 | 0.88 | 390 | | 1:arg2:atr | 0.83 | 0.89 | 0.86 | 197 | | 1:arg2:ben | 0.71 | 0.83 | 0.76 | 66 | | 1:arg2:efi | 0.67 | 0.33 | 0.44 | 6 | | 1:arg2:ext | 0.57 | 0.57 | 0.57 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.48 | 0.48 | 0.48 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 1.00 | 1.00 | 1.00 | 2 | | 1:arg3:ori | 0.12 | 0.50 | 0.20 | 2 | | 1:arg4:des | 0.50 | 0.90 | 0.64 | 10 | | 1:arg4:efi | 0.00 | 0.00 | 0.00 | 2 | | 1:argM:adv | 0.67 | 0.49 | 0.57 | 220 | | 1:argM:atr | 0.65 | 0.58 | 0.61 | 19 | | 1:argM:cau | 0.58 | 0.74 | 0.65 | 35 | | 1:argM:ext | 0.33 | 0.14 | 0.20 | 7 | | 1:argM:fin | 0.54 | 0.74 | 0.62 | 38 | | 1:argM:loc | 0.66 | 0.77 | 0.71 | 156 | | 1:argM:mnr | 0.60 | 0.48 | 0.53 | 44 | | 1:argM:tmp | 0.78 | 0.83 | 0.80 | 247 | | 1:root | 0.96 | 0.96 | 0.96 | 1323 | | 2:arg0:agt | 0.86 | 0.88 | 0.87 | 336 | | 2:arg0:cau | 0.78 | 0.71 | 0.75 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.82 | 0.85 | 0.83 | 333 | | 2:arg1:tem | 0.85 | 0.84 | 0.84 | 291 | | 2:arg2:atr | 0.83 | 0.85 | 0.84 | 124 | | 2:arg2:ben | 0.69 | 0.79 | 0.74 | 43 | | 2:arg2:efi | 0.67 | 0.44 | 0.53 | 9 | | 2:arg2:ext | 0.25 | 0.20 | 0.22 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.42 | 0.63 | 0.51 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.43 | 1.00 | 0.60 | 3 | | 2:arg4:des | 0.60 | 0.75 | 0.67 | 16 | | 2:arg4:efi | 0.00 | 0.00 | 0.00 | 6 | | 2:argM:adv | 0.52 | 0.46 | 0.49 | 176 | | 2:argM:atr | 0.58 | 0.47 | 0.52 | 15 | | 2:argM:cau | 0.50 | 0.59 | 0.54 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.74 | 0.69 | 0.71 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.67 | 0.70 | 0.68 | 117 | | 2:argM:mnr | 0.44 | 0.31 | 0.37 | 35 | | 2:argM:tmp | 0.74 | 0.77 | 0.76 | 161 | | 2:root | 0.93 | 0.93 | 0.93 | 913 | | 3:arg0:agt | 0.86 | 0.81 | 0.84 | 227 | | 3:arg0:cau | 0.69 | 0.64 | 0.67 | 14 | | 3:arg1:pat | 0.81 | 0.83 | 0.82 | 199 | | 3:arg1:tem | 0.71 | 0.81 | 0.76 | 160 | | 3:arg2:atr | 0.73 | 0.81 | 0.77 | 79 | | 3:arg2:ben | 0.75 | 0.78 | 0.76 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.45 | 0.43 | 0.44 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.00 | 0.00 | 0.00 | 3 | | 3:arg4:des | 0.40 | 0.86 | 0.55 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.54 | 0.44 | 0.49 | 98 | | 3:argM:atr | 0.00 | 0.00 | 0.00 | 7 | | 3:argM:cau | 0.60 | 0.46 | 0.52 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.42 | 0.67 | 0.51 | 15 | | 3:argM:loc | 0.57 | 0.57 | 0.57 | 69 | | 3:argM:mnr | 0.23 | 0.27 | 0.25 | 11 | | 3:argM:tmp | 0.80 | 0.72 | 0.75 | 92 | | 3:root | 0.90 | 0.90 | 0.90 | 569 | | 4:arg0:agt | 0.77 | 0.82 | 0.80 | 119 | | 4:arg0:cau | 0.60 | 0.50 | 0.55 | 6 | | 4:arg1:pat | 0.70 | 0.80 | 0.75 | 87 | | 4:arg1:tem | 0.79 | 0.64 | 0.71 | 109 | | 4:arg2:atr | 0.70 | 0.79 | 0.74 | 53 | | 4:arg2:ben | 0.64 | 0.64 | 0.64 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.86 | 0.55 | 0.67 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.83 | 0.50 | 0.62 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.47 | 0.48 | 0.48 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.36 | 0.36 | 0.36 | 11 | | 4:argM:loc | 0.54 | 0.88 | 0.67 | 24 | | 4:argM:mnr | 1.00 | 0.25 | 0.40 | 16 | | 4:argM:tmp | 0.70 | 0.63 | 0.67 | 52 | | 4:root | 0.83 | 0.84 | 0.83 | 322 | | 5:arg0:agt | 0.71 | 0.78 | 0.74 | 72 | | 5:arg0:cau | 1.00 | 0.20 | 0.33 | 5 | | 5:arg1:pat | 0.63 | 0.79 | 0.70 | 71 | | 5:arg1:tem | 0.69 | 0.49 | 0.57 | 41 | | 5:arg2:atr | 0.38 | 0.48 | 0.43 | 21 | | 5:arg2:ben | 0.33 | 0.67 | 0.44 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.50 | 1.00 | 0.67 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.39 | 0.46 | 0.42 | 26 | | 5:argM:cau | 1.00 | 0.33 | 0.50 | 3 | | 5:argM:fin | 0.33 | 0.40 | 0.36 | 5 | | 5:argM:loc | 0.73 | 0.52 | 0.61 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.58 | 0.70 | 0.64 | 30 | | 5:root | 0.74 | 0.75 | 0.74 | 173 | | 6:arg0:agt | 0.62 | 0.53 | 0.57 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.47 | 0.50 | 0.48 | 28 | | 6:arg1:tem | 0.56 | 0.56 | 0.56 | 16 | | 6:arg2:atr | 0.17 | 0.23 | 0.19 | 13 | | 6:arg2:ben | 0.00 | 0.00 | 0.00 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.15 | 0.40 | 0.22 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:loc | 0.29 | 0.71 | 0.42 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.15 | 0.29 | 0.20 | 7 | | 6:root | 0.68 | 0.62 | 0.65 | 82 | | 7:arg0:agt | 0.26 | 0.53 | 0.35 | 17 | | 7:arg1:pat | 0.25 | 0.29 | 0.27 | 17 | | 7:arg1:tem | 0.36 | 0.53 | 0.43 | 15 | | 7:arg2:atr | 0.17 | 0.13 | 0.15 | 15 | | 7:arg2:ben | 0.00 | 0.00 | 0.00 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.00 | 0.00 | 0.00 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.00 | 0.00 | 0.00 | 6 | | 7:root | 0.64 | 0.64 | 0.64 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.00 | 0.00 | 0.00 | 9 | | 8:arg2:atr | 0.00 | 0.00 | 0.00 | 4 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.00 | 0.00 | 0.00 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.38 | 0.68 | 0.49 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.00 | 0.00 | 0.00 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.82 | 0.82 | 0.82 | 15436 | | macro avg | 0.31 | 0.31 | 0.30 | 15436 | | weighted avg | 0.81 | 0.82 | 0.81 | 15436 | | tot root avg | 0.47 | 0.49 | 0.48 | 344 | | tot arg0:agt avg | 0.46 | 0.47 | 0.46 | 2257 | | tot arg0:cau avg | 0.41 | 0.32 | 0.34 | 166 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg0 | 0.39 | 0.36 | 0.36 | 2426 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg1:pat avg | 0.39 | 0.42 | 0.40 | 1770 | | tot arg1:tem avg | 0.41 | 0.40 | 0.40 | 1635 | | tot arg1 | 0.36 | 0.37 | 0.36 | 3411 | | tot arg2:atr avg | 0.33 | 0.36 | 0.35 | 794 | | tot arg2:ben avg | 0.33 | 0.42 | 0.36 | 255 | | tot arg2:efi avg | 0.41 | 0.30 | 0.34 | 24 | | tot arg2:exp avg | 0.00 | 0.00 | 0.00 | 6 | | tot arg2:ext avg | 0.18 | 0.19 | 0.18 | 33 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg2:loc avg | 0.31 | 0.29 | 0.30 | 165 | | tot arg2 | 0.30 | 0.31 | 0.30 | 1279 | | tot arg3:ben avg | 0.20 | 0.04 | 0.07 | 15 | | tot arg3:ein avg | 0.00 | 0.00 | 0.00 | 9 | | tot arg3:fin avg | 0.75 | 0.75 | 0.75 | 4 | | tot arg3:ori avg | 0.16 | 0.30 | 0.20 | 21 | | tot arg3 | 0.18 | 0.19 | 0.16 | 49 | | tot arg4:des avg | 0.48 | 0.69 | 0.54 | 61 | | tot arg4:efi avg | 0.04 | 0.03 | 0.04 | 20 | | tot arg4 | 0.28 | 0.39 | 0.31 | 81 | | tot argM:adv avg | 0.24 | 0.23 | 0.23 | 876 | | tot argM:atr avg | 0.23 | 0.19 | 0.21 | 73 | | tot argM:cau avg | 0.37 | 0.28 | 0.30 | 115 | | tot argM:ext avg | 0.06 | 0.02 | 0.03 | 19 | | tot argM:fin avg | 0.29 | 0.33 | 0.30 | 158 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1 | | tot argM:loc avg | 0.35 | 0.41 | 0.37 | 591 | | tot argM:mnr avg | 0.32 | 0.21 | 0.24 | 186 | | tot argM:tmp avg | 0.35 | 0.37 | 0.36 | 1013 | | tot argM | 0.29 | 0.27 | 0.27 | 3032 | | tot r0 avg | 0.57 | 0.54 | 0.54 | 5242 | | tot r1 avg | 0.54 | 0.56 | 0.54 | 3913 | | tot r2 avg | 0.46 | 0.48 | 0.46 | 2711 | | tot r3 avg | 0.41 | 0.43 | 0.42 | 1626 | | tot r4 avg | 0.47 | 0.41 | 0.42 | 892 | | tot r5 avg | 0.42 | 0.40 | 0.38 | 487 | | tot r6 avg | 0.18 | 0.23 | 0.19 | 216 | | tot r7 avg | 0.12 | 0.15 | 0.13 | 135 | | tot r8 avg | 0.03 | 0.05 | 0.03 | 71 | | tot r9 avg | 0.00 | 0.00 | 0.00 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/spa_XLM-R
mbruton
2024-01-03T14:12:50Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "es", "dataset:mbruton/spanish_srl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T20:27:53Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl language: - es metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaXLM-R for Semantic Role Labeling This model is fine-tuned on a version of [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaXLM-R for Semantic Role Labeling (SRL) is a transformers model, leveraging XLM-R's extensive pretraining on 100 languages to achieve better SRL predictions for Spanish. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and it's thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es), English (en), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.94 | 0.92 | 0.93 | 867 | | 0:arg0:cau | 0.71 | 0.70 | 0.71 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.90 | 0.91 | 0.90 | 536 | | 0:arg1:tem | 0.88 | 0.90 | 0.89 | 589 | | 0:arg2:atr | 0.86 | 0.90 | 0.88 | 278 | | 0:arg2:ben | 0.85 | 0.87 | 0.86 | 78 | | 0:arg2:efi | 0.75 | 0.43 | 0.55 | 7 | | 0:arg2:exp | 0.57 | 0.67 | 0.62 | 6 | | 0:arg2:ext | 0.75 | 0.60 | 0.67 | 15 | | 0:arg2:loc | 0.71 | 0.56 | 0.63 | 57 | | 0:arg3:ben | 0.00 | 0.00 | 0.00 | 5 | | 0:arg3:ein | 1.00 | 1.00 | 1.00 | 1 | | 0:arg3:fin | 0.50 | 0.50 | 0.50 | 2 | | 0:arg3:ori | 0.56 | 0.50 | 0.53 | 10 | | 0:arg4:des | 0.53 | 1.00 | 0.70 | 16 | | 0:arg4:efi | 0.50 | 0.40 | 0.44 | 5 | | 0:argM:adv | 0.59 | 0.59 | 0.59 | 268 | | 0:argM:atr | 0.62 | 0.62 | 0.62 | 24 | | 0:argM:cau | 0.64 | 0.61 | 0.62 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.77 | 0.65 | 0.71 | 46 | | 0:argM:loc | 0.74 | 0.77 | 0.76 | 186 | | 0:argM:mnr | 0.73 | 0.45 | 0.56 | 66 | | 0:argM:tmp | 0.85 | 0.88 | 0.86 | 411 | | 0:root | 0.99 | 0.99 | 0.99 | 1662 | | 1:arg0:agt | 0.93 | 0.92 | 0.92 | 564 | | 1:arg0:cau | 0.77 | 0.82 | 0.79 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.88 | 0.87 | 0.88 | 482 | | 1:arg1:tem | 0.89 | 0.90 | 0.89 | 390 | | 1:arg2:atr | 0.87 | 0.88 | 0.88 | 197 | | 1:arg2:ben | 0.79 | 0.88 | 0.83 | 66 | | 1:arg2:efi | 0.75 | 0.50 | 0.60 | 6 | | 1:arg2:ext | 0.62 | 0.71 | 0.67 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.67 | 0.55 | 0.60 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 1.00 | 0.50 | 0.67 | 2 | | 1:arg3:ori | 0.25 | 1.00 | 0.40 | 2 | | 1:arg4:des | 0.50 | 0.90 | 0.64 | 10 | | 1:arg4:efi | 0.00 | 0.00 | 0.00 | 2 | | 1:argM:adv | 0.62 | 0.58 | 0.60 | 220 | | 1:argM:atr | 0.64 | 0.84 | 0.73 | 19 | | 1:argM:cau | 0.69 | 0.69 | 0.69 | 35 | | 1:argM:ext | 0.00 | 0.00 | 0.00 | 7 | | 1:argM:fin | 0.53 | 0.61 | 0.57 | 38 | | 1:argM:loc | 0.75 | 0.74 | 0.75 | 156 | | 1:argM:mnr | 0.65 | 0.25 | 0.36 | 44 | | 1:argM:tmp | 0.82 | 0.81 | 0.81 | 247 | | 1:root | 0.96 | 0.96 | 0.96 | 1323 | | 2:arg0:agt | 0.82 | 0.92 | 0.87 | 336 | | 2:arg0:cau | 0.84 | 0.77 | 0.81 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.86 | 0.85 | 0.86 | 333 | | 2:arg1:tem | 0.84 | 0.82 | 0.83 | 291 | | 2:arg2:atr | 0.87 | 0.90 | 0.89 | 124 | | 2:arg2:ben | 0.64 | 0.84 | 0.73 | 43 | | 2:arg2:efi | 0.89 | 0.89 | 0.89 | 9 | | 2:arg2:ext | 0.60 | 0.60 | 0.60 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.44 | 0.56 | 0.49 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.29 | 0.67 | 0.40 | 3 | | 2:arg4:des | 0.61 | 0.88 | 0.72 | 16 | | 2:arg4:efi | 0.25 | 0.17 | 0.20 | 6 | | 2:argM:adv | 0.61 | 0.55 | 0.57 | 176 | | 2:argM:atr | 0.83 | 0.33 | 0.48 | 15 | | 2:argM:cau | 0.41 | 0.53 | 0.46 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.76 | 0.69 | 0.72 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.69 | 0.73 | 0.71 | 117 | | 2:argM:mnr | 0.46 | 0.31 | 0.37 | 35 | | 2:argM:tmp | 0.71 | 0.76 | 0.73 | 161 | | 2:root | 0.92 | 0.94 | 0.93 | 913 | | 3:arg0:agt | 0.82 | 0.84 | 0.83 | 227 | | 3:arg0:cau | 0.61 | 0.79 | 0.69 | 14 | | 3:arg1:pat | 0.77 | 0.88 | 0.82 | 199 | | 3:arg1:tem | 0.78 | 0.78 | 0.78 | 160 | | 3:arg2:atr | 0.76 | 0.78 | 0.77 | 79 | | 3:arg2:ben | 0.83 | 0.93 | 0.88 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.32 | 0.33 | 0.33 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.00 | 0.00 | 0.00 | 3 | | 3:arg4:des | 0.32 | 1.00 | 0.48 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.48 | 0.49 | 0.49 | 98 | | 3:argM:atr | 1.00 | 0.29 | 0.44 | 7 | | 3:argM:cau | 0.40 | 0.46 | 0.43 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.32 | 0.40 | 0.35 | 15 | | 3:argM:loc | 0.63 | 0.68 | 0.65 | 69 | | 3:argM:mnr | 0.38 | 0.27 | 0.32 | 11 | | 3:argM:tmp | 0.79 | 0.73 | 0.76 | 92 | | 3:root | 0.89 | 0.91 | 0.90 | 569 | | 4:arg0:agt | 0.76 | 0.79 | 0.77 | 119 | | 4:arg0:cau | 0.67 | 0.67 | 0.67 | 6 | | 4:arg1:pat | 0.63 | 0.72 | 0.67 | 87 | | 4:arg1:tem | 0.81 | 0.72 | 0.76 | 109 | | 4:arg2:atr | 0.83 | 0.83 | 0.83 | 53 | | 4:arg2:ben | 0.55 | 0.55 | 0.55 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.50 | 0.36 | 0.42 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.50 | 0.50 | 0.50 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.30 | 0.34 | 0.32 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.20 | 0.18 | 0.19 | 11 | | 4:argM:loc | 0.44 | 0.50 | 0.47 | 24 | | 4:argM:mnr | 0.00 | 0.00 | 0.00 | 16 | | 4:argM:tmp | 0.66 | 0.71 | 0.69 | 52 | | 4:root | 0.82 | 0.84 | 0.83 | 322 | | 5:arg0:agt | 0.69 | 0.69 | 0.69 | 72 | | 5:arg0:cau | 1.00 | 0.40 | 0.57 | 5 | | 5:arg1:pat | 0.68 | 0.68 | 0.68 | 71 | | 5:arg1:tem | 0.69 | 0.54 | 0.60 | 41 | | 5:arg2:atr | 0.63 | 0.57 | 0.60 | 21 | | 5:arg2:ben | 0.25 | 0.50 | 0.33 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.39 | 0.27 | 0.32 | 26 | | 5:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 5:argM:fin | 0.00 | 0.00 | 0.00 | 5 | | 5:argM:loc | 0.47 | 0.38 | 0.42 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.56 | 0.50 | 0.53 | 30 | | 5:root | 0.73 | 0.73 | 0.73 | 173 | | 6:arg0:agt | 0.43 | 0.38 | 0.41 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.46 | 0.46 | 0.46 | 28 | | 6:arg1:tem | 0.33 | 0.38 | 0.35 | 16 | | 6:arg2:atr | 0.29 | 0.62 | 0.39 | 13 | | 6:arg2:ben | 0.20 | 0.20 | 0.20 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.17 | 0.40 | 0.24 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:loc | 0.08 | 0.14 | 0.10 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.14 | 0.14 | 0.14 | 7 | | 6:root | 0.61 | 0.56 | 0.59 | 82 | | 7:arg0:agt | 0.15 | 0.18 | 0.16 | 17 | | 7:arg1:pat | 0.30 | 0.35 | 0.32 | 17 | | 7:arg1:tem | 0.64 | 0.47 | 0.54 | 15 | | 7:arg2:atr | 0.33 | 0.07 | 0.11 | 15 | | 7:arg2:ben | 0.00 | 0.00 | 0.00 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.00 | 0.00 | 0.00 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.00 | 0.00 | 0.00 | 6 | | 7:root | 0.43 | 0.40 | 0.41 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.17 | 0.44 | 0.25 | 9 | | 8:arg2:atr | 0.00 | 0.00 | 0.00 | 4 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.00 | 0.00 | 0.00 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.16 | 0.20 | 0.18 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.04 | 0.06 | 0.05 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.83 | 0.82 | 0.82 | 15436 | | macro avg | 0.31 | 0.31 | 0.30 | 15436 | | weighted avg | 0.82 | 0.82 | 0.82 | 15436 | | tot root avg | 0.44 | 0.44 | 0.44 | 5165 | | tot arg0:agt avg | 0.43 | 0.43 | 0.43 | 2257 | | tot arg0:cau avg | 0.42 | 0.38 | 0.39 | 166 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg0 | 0.38 | 0.36 | 0.36 | 2426 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1 | | tot arg1:pat avg | 0.39 | 0.41 | 0.40 | 1770 | | tot arg1:tem avg | 0.43 | 0.43 | 0.42 | 1635 | | tot arg1 | 0.37 | 0.38 | 0.37 | 3411 | | tot arg2:atr avg | 0.39 | 0.40 | 0.38 | 794 | | tot arg2:ben avg | 0.34 | 0.44 | 0.37 | 255 | | tot arg2:efi avg | 0.48 | 0.36 | 0.41 | 24 | | tot arg2:exp avg | 0.57 | 0.67 | 0.62 | 6 | | tot arg2:ext avg | 0.28 | 0.27 | 0.28 | 33 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2 | | tot arg2:loc avg | 0.29 | 0.26 | 0.27 | 165 | | tot arg2 | 0.34 | 0.35 | 0.34 | 1279 | | tot arg3:ben avg | 0.00 | 0.00 | 0.00 | 15 | | tot arg3:ein avg | 0.17 | 0.17 | 0.17 | 9 | | tot arg3:fin avg | 0.75 | 0.50 | 0.59 | 4 | | tot arg3:ori avg | 0.16 | 0.31 | 0.19 | 21 | | tot arg3 | 0.18 | 0.21 | 0.18 | 49 | | tot arg4:des avg | 0.35 | 0.61 | 0.43 | 61 | | tot arg4:efi avg | 0.13 | 0.10 | 0.11 | 20 | | tot arg4 | 0.25 | 0.37 | 0.28 | 81 | | tot argM:adv avg | 0.23 | 0.23 | 0.22 | 876 | | tot argM:atr avg | 0.39 | 0.26 | 0.28 | 73 | | tot argM:cau avg | 0.24 | 0.25 | 0.24 | 115 | | tot argM:ext avg | 0.00 | 0.00 | 0.00 | 19 | | tot argM:fin avg | 0.23 | 0.23 | 0.23 | 158 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1 | | tot argM:loc avg | 0.32 | 0.33 | 0.32 | 591 | | tot argM:mnr avg | 0.25 | 0.14 | 0.18 | 186 | | tot argM:tmp avg | 0.35 | 0.35 | 0.35 | 1013 | | tot argM | 0.26 | 0.24 | 0.24 | 3032 | | tot r0 avg | 0.63 | 0.61 | 0.61 | 5242 | | tot r1 avg | 0.56 | 0.57 | 0.55 | 3913 | | tot r2 avg | 0.49 | 0.51 | 0.49 | 2711 | | tot r3 avg | 0.44 | 0.46 | 0.43 | 1626 | | tot r4 avg | 0.37 | 0.37 | 0.37 | 892 | | tot r5 avg | 0.32 | 0.28 | 0.29 | 487 | | tot r6 avg | 0.16 | 0.19 | 0.17 | 216 | | tot r7 avg | 0.13 | 0.11 | 0.11 | 135 | | tot r8 avg | 0.02 | 0.04 | 0.03 | 71 | | tot r9 avg | 0.00 | 0.01 | 0.00 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
mbruton/spa_pt_XLM-R
mbruton
2024-01-03T14:09:32Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "es", "pt", "dataset:mbruton/spanish_srl", "dataset:PropBank.Br", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-14T22:30:27Z
--- license: apache-2.0 datasets: - mbruton/spanish_srl - PropBank.Br language: - es - pt metrics: - seqeval library_name: transformers pipeline_tag: token-classification --- # Model Card for SpaXLM-R-pt for Semantic Role Labeling This model is fine-tuned on a version of [XLM RoBERTa Base](https://huggingface.co/xlm-roberta-base) which is pre-trained on the SRL task for Portuguese, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). ## Model Details ### Model Description SpaXLM-R-pt for Semantic Role Labeling (SRL) is a transformers model, leveraging XLM-R's extensive pretraining on 100 languages to achieve better SRL predictions for Spanish. This model is additionally pre-trained on the SRL task for Portuguese. It was fine-tuned on Spanish with the following objectives: - Identify up to 16 verbal roots within a sentence. - Identify available arguments and thematic roles for each verbal root. Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2/arg3/argM) and its thematic role (adv/agt/atr/ben/cau/cot/des/efi/ein/exp/ext/fin/ins/loc/mnr/ori/pat/src/tem/tmp) - **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com) - **Model type:** Transformers - **Language(s) (NLP):** Spanish (es), Portuguese (pt) - **License:** Apache 2.0 - **Finetuned from model:** [Portuguese pre-trained XLM RoBERTa Base](https://huggingface.co/liaad/srl-pt_xlmr-base) ### Model Sources - **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL) - **Paper:** To be updated ## Uses This model is intended to be used to develop and improve natural language processing tools for Spanish. ## Bias, Risks, and Limitations The Spanish training set lacked highly complex sentences and as such, performs much better on sentences of mid- to low-complexity. ## Training Details ### Training Data This model was pre-trained on the [PropBank.Br Portuguese SRL corpus](http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl). This model was fine-tuned on the "train" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Training Hyperparameters - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Weight Decay:** 0.01 - **Early Stopping:** 10 epochs ## Evaluation #### Testing Data This model was tested on the "test" portion of the [SpanishSRL Dataset](https://huggingface.co/datasets/mbruton/spanish_srl) produced as part of this same project. #### Metrics [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling. It supplies scoring both overall and per label type. Overall: - `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0. - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0. Per label type: - `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0. - `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0. - `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0. ### Results | Label | Precision | Recall | f1-score | Support | | :----------: | :-------: | :----: | :------: | :-----: | | 0:arg0:agt | 0.93 | 0.93 | 0.93 | 867 | | 0:arg0:cau | 0.69 | 0.60 | 0.64 | 57 | | 0:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 0:arg1:ext | 0.00 | 0.00 | 0.00 | 3 | | 0:arg1:pat | 0.88 | 0.89 | 0.88 | 536 | | 0:arg1:tem | 0.88 | 0.89 | 0.89 | 589 | | 0:arg2:atr | 0.85 | 0.89 | 0.87 | 278 | | 0:arg2:ben | 0.81 | 0.90 | 0.85 | 78 | | 0:arg2:efi | 0.67 | 0.29 | 0.40 | 7 | | 0:arg2:exp | 0.33 | 0.17 | 0.22 | 6 | | 0:arg2:ext | 0.57 | 0.53 | 0.55 | 15 | | 0:arg2:loc | 0.73 | 0.33 | 0.46 | 57 | | 0:arg3:ben | 1.00 | 0.20 | 0.33 | 5 | | 0:arg3:ein | 0.50 | 1.00 | 0.67 | 1 | | 0:arg3:fin | 0.50 | 0.50 | 0.50 | 2 | | 0:arg3:ori | 0.67 | 0.60 | 0.63 | 10 | | 0:arg4:des | 0.58 | 0.94 | 0.71 | 16 | | 0:arg4:efi | 0.67 | 0.40 | 0.50 | 5 | | 0:argM:adv | 0.58 | 0.60 | 0.59 | 268 | | 0:argM:atr | 0.65 | 0.62 | 0.64 | 24 | | 0:argM:cau | 0.79 | 0.56 | 0.66 | 41 | | 0:argM:ext | 0.00 | 0.00 | 0.00 | 5 | | 0:argM:fin | 0.80 | 0.78 | 0.79 | 46 | | 0:argM:loc | 0.69 | 0.80 | 0.74 | 186 | | 0:argM:mnr | 0.72 | 0.47 | 0.57 | 66 | | 0:argM:tmp | 0.86 | 0.86 | 0.86 | 411 | | 0:root | 0.99 | 0.99 | 0.99 | 1662 | | 1:arg0:agt | 0.92 | 0.91 | 0.92 | 564 | | 1:arg0:cau | 0.73 | 0.82 | 0.77 | 44 | | 1:arg1:ext | 0.00 | 0.00 | 0.00 | 2 | | 1:arg1:pat | 0.89 | 0.87 | 0.88 | 482 | | 1:arg1:tem | 0.88 | 0.90 | 0.89 | 390 | | 1:arg2:atr | 0.89 | 0.88 | 0.88 | 197 | | 1:arg2:ben | 0.75 | 0.89 | 0.81 | 66 | | 1:arg2:efi | 1.00 | 0.50 | 0.67 | 6 | | 1:arg2:ext | 0.71 | 0.71 | 0.71 | 7 | | 1:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 1:arg2:loc | 0.62 | 0.52 | 0.57 | 44 | | 1:arg3:ben | 0.00 | 0.00 | 0.00 | 2 | | 1:arg3:ein | 0.00 | 0.00 | 0.00 | 3 | | 1:arg3:fin | 1.00 | 1.00 | 1.00 | 2 | | 1:arg3:ori | 0.12 | 0.50 | 0.20 | 2 | | 1:arg4:des | 0.47 | 0.90 | 0.62 | 10 | | 1:arg4:efi | 0.50 | 0.50 | 0.50 | 2 | | 1:argM:adv | 0.56 | 0.58 | 0.57 | 220 | | 1:argM:atr | 0.67 | 0.74 | 0.70 | 19 | | 1:argM:cau | 0.65 | 0.74 | 0.69 | 35 | | 1:argM:ext | 0.00 | 0.00 | 0.00 | 7 | | 1:argM:fin | 0.57 | 0.66 | 0.61 | 38 | | 1:argM:loc | 0.74 | 0.74 | 0.74 | 156 | | 1:argM:mnr | 0.60 | 0.27 | 0.37 | 44 | | 1:argM:tmp | 0.83 | 0.81 | 0.82 | 247 | | 1:root | 0.97 | 0.97 | 0.97 | 1323 | | 2:arg0:agt | 0.86 | 0.90 | 0.88 | 336 | | 2:arg0:cau | 0.79 | 0.77 | 0.78 | 35 | | 2:arg0:exp | 0.00 | 0.00 | 0.00 | 1 | | 2:arg0:src | 0.00 | 0.00 | 0.00 | 1 | | 2:arg1:pat | 0.84 | 0.82 | 0.83 | 333 | | 2:arg1:tem | 0.84 | 0.84 | 0.84 | 291 | | 2:arg2:atr | 0.92 | 0.89 | 0.90 | 124 | | 2:arg2:ben | 0.69 | 0.84 | 0.76 | 43 | | 2:arg2:efi | 0.89 | 0.89 | 0.89 | 9 | | 2:arg2:ext | 0.33 | 0.60 | 0.43 | 5 | | 2:arg2:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:arg2:loc | 0.43 | 0.44 | 0.44 | 27 | | 2:arg3:ben | 0.00 | 0.00 | 0.00 | 4 | | 2:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 2:arg3:ori | 0.40 | 0.67 | 0.50 | 3 | | 2:arg4:des | 0.50 | 0.88 | 0.64 | 16 | | 2:arg4:efi | 0.00 | 0.00 | 0.00 | 6 | | 2:argM:adv | 0.54 | 0.51 | 0.52 | 176 | | 2:argM:atr | 0.56 | 0.33 | 0.42 | 15 | | 2:argM:cau | 0.43 | 0.59 | 0.50 | 17 | | 2:argM:ext | 0.00 | 0.00 | 0.00 | 4 | | 2:argM:fin | 0.78 | 0.69 | 0.74 | 36 | | 2:argM:ins | 0.00 | 0.00 | 0.00 | 1 | | 2:argM:loc | 0.73 | 0.74 | 0.73 | 117 | | 2:argM:mnr | 0.38 | 0.29 | 0.33 | 35 | | 2:argM:tmp | 0.78 | 0.76 | 0.77 | 161 | | 2:root | 0.93 | 0.94 | 0.94 | 913 | | 3:arg0:agt | 0.86 | 0.87 | 0.86 | 227 | | 3:arg0:cau | 0.71 | 0.71 | 0.71 | 14 | | 3:arg1:pat | 0.81 | 0.83 | 0.82 | 199 | | 3:arg1:tem | 0.78 | 0.81 | 0.79 | 160 | | 3:arg2:atr | 0.78 | 0.77 | 0.78 | 79 | | 3:arg2:ben | 0.69 | 0.93 | 0.79 | 27 | | 3:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 3:arg2:ext | 0.00 | 0.00 | 0.00 | 3 | | 3:arg2:loc | 0.50 | 0.38 | 0.43 | 21 | | 3:arg3:ben | 0.00 | 0.00 | 0.00 | 3 | | 3:arg3:ein | 0.00 | 0.00 | 0.00 | 2 | | 3:arg3:ori | 0.00 | 0.00 | 0.00 | 3 | | 3:arg4:des | 0.47 | 1.00 | 0.64 | 7 | | 3:arg4:efi | 0.00 | 0.00 | 0.00 | 5 | | 3:argM:adv | 0.51 | 0.47 | 0.49 | 98 | | 3:argM:atr | 1.00 | 0.14 | 0.25 | 7 | | 3:argM:cau | 0.50 | 0.31 | 0.38 | 13 | | 3:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 3:argM:fin | 0.56 | 0.67 | 0.61 | 15 | | 3:argM:loc | 0.64 | 0.68 | 0.66 | 69 | | 3:argM:mnr | 0.43 | 0.55 | 0.48 | 11 | | 3:argM:tmp | 0.86 | 0.82 | 0.84 | 92 | | 3:root | 0.92 | 0.93 | 0.92 | 569 | | 4:arg0:agt | 0.86 | 0.81 | 0.83 | 119 | | 4:arg0:cau | 1.00 | 0.67 | 0.80 | 6 | | 4:arg1:pat | 0.71 | 0.75 | 0.73 | 87 | | 4:arg1:tem | 0.85 | 0.75 | 0.80 | 109 | | 4:arg2:atr | 0.75 | 0.92 | 0.83 | 53 | | 4:arg2:ben | 0.53 | 0.82 | 0.64 | 11 | | 4:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:arg2:loc | 0.58 | 0.64 | 0.61 | 11 | | 4:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 4:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 4:arg4:des | 0.69 | 0.90 | 0.78 | 10 | | 4:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:adv | 0.56 | 0.60 | 0.58 | 50 | | 4:argM:atr | 0.00 | 0.00 | 0.00 | 4 | | 4:argM:cau | 0.14 | 0.33 | 0.20 | 3 | | 4:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 4:argM:fin | 0.64 | 0.64 | 0.64 | 11 | | 4:argM:loc | 0.58 | 0.75 | 0.65 | 24 | | 4:argM:mnr | 0.50 | 0.31 | 0.38 | 16 | | 4:argM:tmp | 0.75 | 0.69 | 0.72 | 52 | | 4:root | 0.90 | 0.91 | 0.90 | 322 | | 5:arg0:agt | 0.79 | 0.88 | 0.83 | 72 | | 5:arg0:cau | 1.00 | 0.40 | 0.57 | 5 | | 5:arg1:pat | 0.64 | 0.65 | 0.64 | 71 | | 5:arg1:tem | 0.81 | 0.61 | 0.69 | 41 | | 5:arg2:atr | 0.62 | 0.48 | 0.54 | 21 | | 5:arg2:ben | 0.43 | 1.00 | 0.60 | 6 | | 5:arg2:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 5:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 5:arg3:ein | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 5:arg4:efi | 0.00 | 0.00 | 0.00 | 1 | | 5:argM:adv | 0.33 | 0.35 | 0.34 | 26 | | 5:argM:cau | 0.00 | 0.00 | 0.00 | 3 | | 5:argM:fin | 0.50 | 0.80 | 0.62 | 5 | | 5:argM:loc | 0.58 | 0.67 | 0.62 | 21 | | 5:argM:mnr | 0.00 | 0.00 | 0.00 | 7 | | 5:argM:tmp | 0.62 | 0.67 | 0.65 | 30 | | 5:root | 0.82 | 0.84 | 0.83 | 173 | | 6:arg0:agt | 0.69 | 0.53 | 0.60 | 34 | | 6:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg1:pat | 0.43 | 0.82 | 0.57 | 28 | | 6:arg1:tem | 0.39 | 0.44 | 0.41 | 16 | | 6:arg2:atr | 0.31 | 0.38 | 0.34 | 13 | | 6:arg2:ben | 0.50 | 0.60 | 0.55 | 5 | | 6:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 6:arg3:ben | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:adv | 0.23 | 0.70 | 0.34 | 10 | | 6:argM:atr | 0.00 | 0.00 | 0.00 | 2 | | 6:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 6:argM:fin | 0.33 | 0.50 | 0.40 | 2 | | 6:argM:loc | 0.18 | 0.57 | 0.28 | 7 | | 6:argM:mnr | 0.00 | 0.00 | 0.00 | 5 | | 6:argM:tmp | 0.50 | 0.86 | 0.63 | 7 | | 6:root | 0.65 | 0.59 | 0.62 | 82 | | 7:arg0:agt | 0.35 | 0.88 | 0.50 | 17 | | 7:arg1:pat | 0.54 | 0.82 | 0.65 | 17 | | 7:arg1:tem | 0.59 | 0.67 | 0.62 | 15 | | 7:arg2:atr | 0.53 | 0.53 | 0.53 | 15 | | 7:arg2:ben | 0.40 | 0.29 | 0.33 | 7 | | 7:arg2:loc | 0.00 | 0.00 | 0.00 | 1 | | 7:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 7:arg4:des | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:adv | 0.14 | 0.20 | 0.17 | 5 | | 7:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 7:argM:loc | 0.00 | 0.00 | 0.00 | 3 | | 7:argM:tmp | 0.42 | 0.83 | 0.56 | 6 | | 7:root | 0.54 | 0.84 | 0.66 | 45 | | 8:arg0:agt | 0.00 | 0.00 | 0.00 | 8 | | 8:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 8:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 8:arg1:tem | 0.21 | 0.56 | 0.30 | 9 | | 8:arg2:atr | 0.08 | 0.25 | 0.12 | 4 | | 8:arg2:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:arg2:loc | 0.00 | 0.00 | 0.00 | 2 | | 8:arg3:ori | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:adv | 0.27 | 0.38 | 0.32 | 8 | | 8:argM:ext | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:loc | 0.00 | 0.00 | 0.00 | 4 | | 8:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 8:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 8:root | 0.38 | 0.68 | 0.49 | 25 | | 9:arg0:agt | 0.00 | 0.00 | 0.00 | 6 | | 9:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:arg1:pat | 0.00 | 0.00 | 0.00 | 4 | | 9:arg1:tem | 0.00 | 0.00 | 0.00 | 5 | | 9:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 9:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:adv | 0.00 | 0.00 | 0.00 | 6 | | 9:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 9:argM:fin | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:loc | 0.00 | 0.00 | 0.00 | 2 | | 9:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 9:root | 0.04 | 0.06 | 0.05 | 17 | | 10:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 10:arg1:pat | 0.00 | 0.00 | 0.00 | 5 | | 10:arg1:tem | 0.00 | 0.00 | 0.00 | 3 | | 10:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 10:arg2:ben | 0.00 | 0.00 | 0.00 | 2 | | 10:argM:adv | 0.00 | 0.00 | 0.00 | 3 | | 10:argM:fin | 0.00 | 0.00 | 0.00 | 1 | | 10:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 10:root | 0.00 | 0.00 | 0.00 | 12 | | 11:arg0:agt | 0.00 | 0.00 | 0.00 | 1 | | 11:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 11:arg1:pat | 0.00 | 0.00 | 0.00 | 2 | | 11:arg1:tem | 0.00 | 0.00 | 0.00 | 4 | | 11:arg2:atr | 0.00 | 0.00 | 0.00 | 3 | | 11:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:adv | 0.00 | 0.00 | 0.00 | 4 | | 11:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 11:argM:tmp | 0.00 | 0.00 | 0.00 | 1 | | 11:root | 0.00 | 0.00 | 0.00 | 9 | | 12:arg0:agt | 0.00 | 0.00 | 0.00 | 3 | | 12:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 12:arg1:tem | 0.00 | 0.00 | 0.00 | 2 | | 12:arg2:atr | 0.00 | 0.00 | 0.00 | 2 | | 12:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:cau | 0.00 | 0.00 | 0.00 | 1 | | 12:argM:tmp | 0.00 | 0.00 | 0.00 | 3 | | 12:root | 0.00 | 0.00 | 0.00 | 7 | | 13:arg0:cau | 0.00 | 0.00 | 0.00 | 1 | | 13:arg1:tem | 0.00 | 0.00 | 0.00 | 1 | | 13:arg2:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:adv | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:atr | 0.00 | 0.00 | 0.00 | 1 | | 13:argM:loc | 0.00 | 0.00 | 0.00 | 1 | | 13:root | 0.00 | 0.00 | 0.00 | 4 | | 14:arg1:pat | 0.00 | 0.00 | 0.00 | 1 | | 14:arg2:ben | 0.00 | 0.00 | 0.00 | 1 | | 14:argM:mnr | 0.00 | 0.00 | 0.00 | 1 | | 14:root | 0.00 | 0.00 | 0.00 | 2 | | micro avg | 0.83 | 0.83 | 0.83 | 15436 | | macro avg | 0.34 | 0.36 | 0.34 | 15436 | | weighted avg | 0.83 | 0.83 | 0.83 | 15436 | | tot root avg | 0.48 | 0.52 | 0.49 | 5165.00 | | tot arg0:agt avg | 0.48 | 0.52 | 0.49 | 2257.00 | | tot arg0:cau avg | 0.45 | 0.36 | 0.39 | 166.00 | | tot arg0:exp avg | 0.00 | 0.00 | 0.00 | 1.00 | | tot arg0:src avg | 0.00 | 0.00 | 0.00 | 2.00 | | tot arg0 | 0.41 | 0.40 | 0.39 | 2426.00 | | tot arg1:ext avg | 0.00 | 0.00 | 0.00 | 5.00 | | tot arg1:loc avg | 0.00 | 0.00 | 0.00 | 1.00 | | tot arg1:pat avg | 0.41 | 0.46 | 0.43 | 1770.00 | | tot arg1:tem avg | 0.45 | 0.46 | 0.45 | 1635.00 | | tot arg1 | 0.39 | 0.42 | 0.39 | 3411.00 | | tot arg2:atr avg | 0.41 | 0.43 | 0.41 | 794.00 | | tot arg2:ben avg | 0.41 | 0.56 | 0.46 | 255.00 | | tot arg2:efi avg | 0.51 | 0.34 | 0.39 | 24.00 | | tot arg2:exp avg | 0.33 | 0.17 | 0.22 | 6.00 | | tot arg2:ext avg | 0.23 | 0.26 | 0.24 | 33.00 | | tot arg2:ins avg | 0.00 | 0.00 | 0.00 | 2.00 | | tot arg2:loc avg | 0.32 | 0.26 | 0.28 | 165.00 | | tot arg2 | 0.36 | 0.38 | 0.36 | 1279.00 | | tot arg3:ben avg | 0.20 | 0.04 | 0.07 | 15.00 | | tot arg3:ein avg | 0.08 | 0.17 | 0.11 | 9.00 | | tot arg3:fin avg | 0.75 | 0.75 | 0.75 | 4.00 | | tot arg3:ori avg | 0.17 | 0.25 | 0.19 | 21.00 | | tot arg3 | 0.21 | 0.22 | 0.19 | 49.00 | | tot arg4:des avg | 0.39 | 0.66 | 0.48 | 61.00 | | tot arg4:efi avg | 0.20 | 0.15 | 0.17 | 20.00 | | tot arg4 | 0.30 | 0.42 | 0.34 | 81.00 | | tot argM:adv avg | 0.27 | 0.31 | 0.28 | 876.00 | | tot argM:atr avg | 0.36 | 0.23 | 0.25 | 73.00 | | tot argM:cau avg | 0.28 | 0.28 | 0.27 | 115.00 | | tot argM:ext avg | 0.00 | 0.00 | 0.00 | 19.00 | | tot argM:fin avg | 0.38 | 0.43 | 0.40 | 158.00 | | tot argM:ins avg | 0.00 | 0.00 | 0.00 | 1.00 | | tot argM:loc avg | 0.35 | 0.41 | 0.37 | 591.00 | | tot argM:mnr avg | 0.29 | 0.21 | 0.24 | 186.00 | | tot argM:tmp avg | 0.43 | 0.48 | 0.45 | 1013.00 | | tot argM | 0.31 | 0.32 | 0.30 | 3032.00 | | tot r0 avg | 0.64 | 0.58 | 0.59 | 5242 | | tot r1 avg | 0.58 | 0.59 | 0.57 | 3913 | | tot r2 avg | 0.47 | 0.50 | 0.48 | 2711 | | tot r3 avg | 0.48 | 0.47 | 0.45 | 1626 | | tot r4 avg | 0.48 | 0.50 | 0.48 | 892 | | tot r5 avg | 0.38 | 0.39 | 0.36 | 487 | | tot r6 avg | 0.25 | 0.35 | 0.28 | 216 | | tot r7 avg | 0.25 | 0.36 | 0.29 | 135 | | tot r8 avg | 0.06 | 0.12 | 0.08 | 71 | | tot r9 avg | 0.00 | 0.01 | 0.00 | 49 | | tot r10 avg | 0.00 | 0.00 | 0.00 | 31 | | tot r11 avg | 0.00 | 0.00 | 0.00 | 27 | | tot r12 avg | 0.00 | 0.00 | 0.00 | 20 | | tot r13 avg | 0.00 | 0.00 | 0.00 | 10 | | tot r14 avg | 0.00 | 0.00 | 0.00 | 5 | ## Citation **BibTeX:** ``` @inproceedings{bruton-beloucif-2023-bertie, title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician", author = "Bruton, Micaella and Beloucif, Meriem", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.671", doi = "10.18653/v1/2023.emnlp-main.671", pages = "10892--10902", abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.", } ```
ntc-ai/SDXL-LoRA-slider.luminescent
ntc-ai
2024-01-03T14:03:03Z
22
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-03T14:03:00Z
--- language: - en thumbnail: "images/evaluate/luminescent.../luminescent_17_3.0.png" widget: - text: luminescent output: url: images/luminescent_17_3.0.png - text: luminescent output: url: images/luminescent_19_3.0.png - text: luminescent output: url: images/luminescent_20_3.0.png - text: luminescent output: url: images/luminescent_21_3.0.png - text: luminescent output: url: images/luminescent_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "luminescent" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - luminescent (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/luminescent_17_-3.0.png" width=256 height=256 /> | <img src="images/luminescent_17_0.0.png" width=256 height=256 /> | <img src="images/luminescent_17_3.0.png" width=256 height=256 /> | | <img src="images/luminescent_19_-3.0.png" width=256 height=256 /> | <img src="images/luminescent_19_0.0.png" width=256 height=256 /> | <img src="images/luminescent_19_3.0.png" width=256 height=256 /> | | <img src="images/luminescent_20_-3.0.png" width=256 height=256 /> | <img src="images/luminescent_20_0.0.png" width=256 height=256 /> | <img src="images/luminescent_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` luminescent ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.luminescent', weight_name='luminescent.safetensors', adapter_name="luminescent") # Activate the LoRA pipe.set_adapters(["luminescent"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, luminescent" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 840+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
EvanD/xlm-roberta-base-hungarian-ner-huner
EvanD
2024-01-03T14:02:44Z
15
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "named-entity-recognition", "sequence-tagger-model", "hu", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T13:41:46Z
--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: A nevem Amadeus Wolfgang รฉs Berlinben รฉlek inference: parameters: aggregation_strategy: simple grouped_entities: true language: - hu --- xlm-roberta model trained on [hungarian ner](https://flairnlp.github.io/docs/tutorial-training/how-to-load-prepared-dataset) dataset from flair | Test metric | Results | |-------------------------|--------------------------| | test_f1_mac_hu_ner | 0.9962009787559509 | | test_loss_hu_ner | 0.019755737856030464 | | test_prec_mac_hu_ner | 0.9692726135253906 | | test_rec_mac_hu_ner | 0.9708725810050964 | ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-hungarian-ner-huner") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "A nevem Amadeus Wolfgang รฉs Berlinben รฉlek" ner_results = nlp(example) print(ner_results) ```
cbertrand/checkpoint
cbertrand
2024-01-03T14:02:21Z
173
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-02T10:36:27Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: checkpoint results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.33.2 - Pytorch 2.2.0.dev20230912+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3
EvanD/xlm-roberta-base-ukrainian-ner-ukrner
EvanD
2024-01-03T14:00:27Z
71
4
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "named-entity-recognition", "sequence-tagger-model", "uk", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T13:36:43Z
--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: ะœะตะฝะต ะทะฒัƒั‚ัŒ ะะผะฐะดะตะน ะ’ะพะปัŒั„ะณะฐะฝะณ, ั ะถะธะฒัƒ ะฒ ะ‘ะตั€ะปั–ะฝั– inference: parameters: aggregation_strategy: simple grouped_entities: true language: - uk --- xlm-roberta model trained on [ukrainian ner](https://github.com/lang-uk/flair-ner) dataset from flair | Test metric | Results | |-------------------------|---------------------------| | test_f1_mac_ukr_ner | 0.9900672435760498 | | test_loss_ukr_ner | 0.054602641612291336 | | test_prec_mac_ukr_ner | 0.9386032819747925 | | test_rec_mac_ukr_ner | 0.9383019208908081 | ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-ukrainian-ner-ukrner") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-ukrainian-ner-ukrner") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "ะœะตะฝะต ะทะฒัƒั‚ัŒ ะะผะฐะดะตะน ะ’ะพะปัŒั„ะณะฐะฝะณ, ั ะถะธะฒัƒ ะฒ ะ‘ะตั€ะปั–ะฝั–" ner_results = nlp(example) print(ner_results) ```
SpartanLondoner/ppo-Pyramids
SpartanLondoner
2024-01-03T13:53:51Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-01-03T13:53:47Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SpartanLondoner/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_chatGPT_temp0_Seed113
behzadnet
2024-01-03T13:47:17Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-03T13:47:14Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_chatGPT_temp0_Seed113
behzadnet
2024-01-03T13:47:07Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-03T13:47:01Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
xsxs/whisper-small-hi
xsxs
2024-01-03T13:45:38Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-03T09:05:17Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper_Small_tw_nan_tw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_Small_tw_nan_tw This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
yentinglin/Taiwan-LLM-MoE-pilot
yentinglin
2024-01-03T13:42:30Z
31
2
transformers
[ "transformers", "pytorch", "mixtral", "text-generation", "traditional mandarin", "traditional chinese", "taiwan", "moe", "zh-tw", "zh-hant", "conversational", "zh", "dataset:yentinglin/v1", "arxiv:2311.17487", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-26T14:41:54Z
--- license: apache-2.0 datasets: - yentinglin/v1 language: - zh tags: - traditional mandarin - traditional chinese - taiwan - moe - mixtral - zh-tw - zh-hant pretty_name: twllm-moe --- # Taiwan LLM Mixtrue of Export - Pilot run <!-- Provide a quick summary of what the model is/does. --> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/AMGN-A-fUsaQg-lF35Pzj.png) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Yen-Ting Lin ๆž—ๅฝฅๅปท](https://yentingl.com/) - **Compute Funded by:** [HelperAI](https://helperai.ai/) - **Model type:** [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral) - **Language(s) (NLP):** Traditional Mandarin (zh-tw) - **License:** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Finetuned from model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - **TMMLUS+ score:** 38.09223090909092 ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [Taiwan-LLM](https://github.com/MiuLab/Taiwan-LLM) - **Paper:** [Taiwan-LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model](https://arxiv.org/pdf/2311.17487.pdf) - **Demo:** [Taiwan LLM ChatUI](https://twllm.com/) ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```bibtex @misc{lin2023taiwan, title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, author={Yen-Ting Lin and Yun-Nung Chen}, year={2023}, eprint={2311.17487}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wenzw/zephyr-7b-sft-lora
wenzw
2024-01-03T13:25:56Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T06:38:27Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: zephyr-7b-sft-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-lora This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9866 | 0.67 | 272 | 0.9900 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
ernlavr/llama-2-7bn-xsum-lora-adapter
ernlavr
2024-01-03T13:21:50Z
15
1
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "summarization", "en", "dataset:EdinburghNLP/xsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-12-22T19:18:59Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: Llama2-7bn-xsum-adapter results: [] datasets: - EdinburghNLP/xsum language: - en pipeline_tag: summarization metrics: - rouge --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2-7bn-xsum-adapter Weights & Biases runs for training and evaluation are available for a detailed overview! This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on a [XSum](https://huggingface.co/datasets/EdinburghNLP/xsum) dataset with Causal LM task. You can view all the implementation details on the [GitHub project](https://github.com/ernlavr/llamarizer) ## Weights & Biases Training and Evaluation Documentation See the [training](https://wandb.ai/ernlavr/adv_nlp2023/runs/yk6ytvv2) and [evaluation](https://wandb.ai/ernlavr/adv_nlp2023/runs/f41oo2c6?workspace=user-ernestslavrinovics) on Weights & Biases for more details! Summary table of final metrics: | Metric | rouge1 | rouge2 | rougeL | FactCC | ANLI | SummaC | BARTScore | |------------------------|---------|---------|---------|---------|--------|---------|------------| | Mean | 0.18 | 0.033 | 0.126 | 0.188 | 0.408 | 0.658 | -3.713 | | Std | 0.09 | 0.049 | 0.067 | 0.317 | 0.462 | 0.247 | 0.831 | ## Training procedure Causal language modeling. Nesting the summary paragraph in a prompt: {Summarize this article: '<INPUT_DOCUMENT>'; Summary: <OUTPUT>} ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 450.5 - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1
MasterCorneo/Corneo-Tifa-RVC
MasterCorneo
2024-01-03T13:14:02Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-01-02T20:01:29Z
--- license: openrail --- ## Model Details ### Model Description This is a RVC (Realistic Voice Cloning) model for Tifa Lockhart from Final Fantasy VII REMAKE (English audio) It was target sampled at 32k, using rmvpe pitch extraction algorithm and trained for 500 epochs
zac/handy
zac
2024-01-03T13:02:38Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T12:59:34Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: handy results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9777777791023254 --- # handy Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bad hands ![bad hands](images/bad_hands.png) #### hands ![hands](images/hands.jpg)
faust01/Taxi-v3-DRLcourse
faust01
2024-01-03T12:58:29Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T12:58:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-DRLcourse results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="faust01/Taxi-v3-DRLcourse", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gyr66/RoBERTa-ext-large-lora-updated-chinese-finetuned-ner
gyr66
2024-01-03T12:55:50Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:gyr66/RoBERTa-ext-large-chinese-finetuned-ner", "base_model:finetune:gyr66/RoBERTa-ext-large-chinese-finetuned-ner", "region:us" ]
null
2024-01-03T12:55:48Z
--- base_model: gyr66/RoBERTa-ext-large-chinese-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: RoBERTa-ext-large-lora-updated-chinese-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-ext-large-lora-updated-chinese-finetuned-ner This model is a fine-tuned version of [gyr66/RoBERTa-ext-large-chinese-finetuned-ner](https://huggingface.co/gyr66/RoBERTa-ext-large-chinese-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9586 - Precision: 0.7016 - Recall: 0.7518 - F1: 0.7258 - Accuracy: 0.9154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0034 | 1.0 | 252 | 1.0787 | 0.6753 | 0.7523 | 0.7117 | 0.9121 | | 0.0032 | 2.0 | 504 | 1.0376 | 0.6830 | 0.7490 | 0.7145 | 0.9141 | | 0.0018 | 3.0 | 756 | 1.0547 | 0.6731 | 0.7573 | 0.7127 | 0.9126 | | 0.0032 | 4.0 | 1008 | 1.0262 | 0.6829 | 0.7384 | 0.7096 | 0.9126 | | 0.0027 | 5.0 | 1260 | 0.9613 | 0.6898 | 0.7445 | 0.7161 | 0.9118 | | 0.0027 | 6.0 | 1512 | 0.9481 | 0.6780 | 0.7550 | 0.7145 | 0.9120 | | 0.0019 | 7.0 | 1764 | 0.9328 | 0.6917 | 0.7513 | 0.7203 | 0.9150 | | 0.0008 | 8.0 | 2016 | 0.9570 | 0.6976 | 0.7520 | 0.7238 | 0.9143 | | 0.0005 | 9.0 | 2268 | 0.9586 | 0.7016 | 0.7518 | 0.7258 | 0.9154 | | 0.0003 | 10.0 | 2520 | 0.9565 | 0.6945 | 0.7520 | 0.7221 | 0.9151 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
loanhhquanhh/Poem-LLama2
loanhhquanhh
2024-01-03T12:54:15Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:vinai/PhoGPT-7B5-Instruct", "base_model:adapter:vinai/PhoGPT-7B5-Instruct", "region:us" ]
null
2024-01-02T00:48:00Z
--- library_name: peft base_model: vinai/PhoGPT-7B5-Instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
UserGnalin/temp_model
UserGnalin
2024-01-03T12:39:03Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-03T12:14:01Z
--- license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: temp_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp_model This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2292 - Accuracy: 0.9207 - F1: 0.7943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/mlabonne-NeuralPipe-7B-slerp-GGUF
s3nh
2024-01-03T12:38:39Z
0
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T12:18:04Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/mlabonne/NeuralPipe-7B-slerp). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
paraZite410/xlm-roberta-base-finetuned-panx-de
paraZite410
2024-01-03T12:30:00Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T11:20:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1360 - F1: 0.8553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2509 | 1.0 | 787 | 0.1517 | 0.8280 | | 0.1198 | 2.0 | 1574 | 0.1360 | 0.8553 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
SpartanLondoner/ppo-SnowballTarget
SpartanLondoner
2024-01-03T12:27:54Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-01-02T09:42:22Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SpartanLondoner/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
gyr66/RoBERTa-ext-large-crf-lora-chinese-finetuned-ner
gyr66
2024-01-03T12:26:20Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:hfl/chinese-roberta-wwm-ext-large", "base_model:finetune:hfl/chinese-roberta-wwm-ext-large", "license:apache-2.0", "region:us" ]
null
2024-01-03T11:50:28Z
--- license: apache-2.0 base_model: hfl/chinese-roberta-wwm-ext-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: RoBERTa-ext-large-crf-lora-chinese-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-ext-large-crf-lora-chinese-finetuned-ner This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4056 - Precision: 0.4202 - Recall: 0.5916 - F1: 0.4914 - Accuracy: 0.9456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.3615 | 1.0 | 503 | 0.8081 | 0.1274 | 0.1568 | 0.1406 | 0.9028 | | 0.702 | 2.0 | 1006 | 0.5824 | 0.2954 | 0.4194 | 0.3467 | 0.9261 | | 0.5585 | 3.0 | 1509 | 0.5107 | 0.3305 | 0.4922 | 0.3955 | 0.9323 | | 0.4959 | 4.0 | 2012 | 0.4654 | 0.3716 | 0.5274 | 0.4360 | 0.9377 | | 0.4614 | 5.0 | 2515 | 0.4427 | 0.3880 | 0.5493 | 0.4548 | 0.9399 | | 0.4381 | 6.0 | 3018 | 0.4292 | 0.3996 | 0.5657 | 0.4684 | 0.9420 | | 0.4233 | 7.0 | 3521 | 0.4166 | 0.4111 | 0.5813 | 0.4816 | 0.9441 | | 0.4128 | 8.0 | 4024 | 0.4124 | 0.4144 | 0.5879 | 0.4862 | 0.9448 | | 0.4008 | 9.0 | 4527 | 0.4067 | 0.4194 | 0.5904 | 0.4904 | 0.9455 | | 0.3983 | 10.0 | 5030 | 0.4056 | 0.4202 | 0.5916 | 0.4914 | 0.9456 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
EMBO/SourceData_GENEPROD-ROLES_v_1-0-2_BioLinkBERT_base
EMBO
2024-01-03T12:22:11Z
175
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:source_data", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T12:10:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_GENEPROD-ROLES_v_1-0-2_BioLinkBERT_base results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data args: ROLES_GP metrics: - name: Precision type: precision value: 0.9325065274151436 - name: Recall type: recall value: 0.9359276729559748 - name: F1 type: f1 value: 0.9342139680878889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SourceData_GENEPROD-ROLES_v_1-0-2_BioLinkBERT_base This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0129 - Accuracy Score: 0.9955 - Precision: 0.9325 - Recall: 0.9359 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0161 | 1.0 | 471 | 0.0129 | 0.9955 | 0.9325 | 0.9359 | 0.9342 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 2.10.1 - Tokenizers 0.12.1
cuongdz01/layoutlmv3-cord
cuongdz01
2024-01-03T12:17:37Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T11:23:49Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-cord This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1589 - Precision: 0.9433 - Recall: 0.9521 - F1: 0.9477 - Accuracy: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.5 | 100 | 0.6487 | 0.7825 | 0.8006 | 0.7914 | 0.8330 | | No log | 1.0 | 200 | 0.4266 | 0.8496 | 0.8686 | 0.8590 | 0.8925 | | No log | 1.5 | 300 | 0.2553 | 0.9008 | 0.9057 | 0.9033 | 0.9341 | | No log | 2.0 | 400 | 0.2496 | 0.8960 | 0.9057 | 0.9008 | 0.9295 | | 0.5667 | 2.5 | 500 | 0.2016 | 0.9274 | 0.9374 | 0.9324 | 0.9554 | | 0.5667 | 3.0 | 600 | 0.1806 | 0.9387 | 0.9467 | 0.9427 | 0.9609 | | 0.5667 | 3.5 | 700 | 0.1667 | 0.9424 | 0.9474 | 0.9449 | 0.9630 | | 0.5667 | 4.0 | 800 | 0.1735 | 0.9452 | 0.9467 | 0.9459 | 0.9639 | | 0.5667 | 4.5 | 900 | 0.1657 | 0.9456 | 0.9529 | 0.9492 | 0.9660 | | 0.1025 | 5.0 | 1000 | 0.1589 | 0.9433 | 0.9521 | 0.9477 | 0.9669 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
zac/Bad_hands
zac
2024-01-03T12:15:34Z
5
1
transformers
[ "transformers", "vit", "image-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T11:13:36Z
--- license: apache-2.0 pipeline_tag: image-classification ---
s3nh/abacusai-Giraffe-13b-32k-v3-GGUF
s3nh
2024-01-03T12:08:02Z
0
2
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T11:51:05Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/abacusai/Giraffe-13b-32k-v3). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
jeevan-23/jupy-model_v4
jeevan-23
2024-01-03T11:59:17Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:jeevan-23/jupy-model_v3", "base_model:finetune:jeevan-23/jupy-model_v3", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-01-03T10:55:47Z
--- license: mit base_model: jeevan-23/jupy-model_v3 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: jupy-model_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jupy-model_v4 This model is a fine-tuned version of [jeevan-23/jupy-model_v3](https://huggingface.co/jeevan-23/jupy-model_v3) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0