modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
527 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 06:27:12
card
stringlengths
11
1.01M
Seokeon/V14_R384_lora_pp_dog6
Seokeon
2024-01-16T10:20:16Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T10:14:14Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_pp_dog6 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
KangXen/enmr
KangXen
2024-01-16T10:19:07Z
2
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
feature-extraction
2024-01-16T10:18:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arsene123/lora-trained-xl
arsene123
2024-01-16T10:18:41Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-16T09:32:36Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'A photo of sks dog in a bucket' output: url: "image_0.png" - text: 'A photo of sks dog in a bucket' output: url: "image_1.png" - text: 'A photo of sks dog in a bucket' output: url: "image_2.png" - text: 'A photo of sks dog in a bucket' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog license: openrail++ --- # SDXL LoRA DreamBooth - arsene123/lora-trained-xl <Gallery /> ## Model description These are arsene123/lora-trained-xl LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sks dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](arsene123/lora-trained-xl/tree/main) them in the Files & versions tab.
Seokeon/V14_R256_lora_pp_dog6
Seokeon
2024-01-16T10:13:51Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T10:10:11Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R256_lora_pp_dog6 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Seokeon/V14_R384_lora_none_berry_bowl
Seokeon
2024-01-16T10:11:06Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T10:08:19Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks bowl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_berry_bowl These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks bowl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
ryusangwon/2758_Llama-2-7b-hf
ryusangwon
2024-01-16T10:10:53Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:xsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-16T10:10:48Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - xsum model-index: - name: 2758_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2758_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
jvh/Mistral-NeuralBeagle14-GEITje
jvh
2024-01-16T10:09:48Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:Rijgersberg/GEITje-7B-chat-v2", "base_model:merge:Rijgersberg/GEITje-7B-chat-v2", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T10:06:45Z
--- base_model: - Rijgersberg/GEITje-7B-chat-v2 - mlabonne/NeuralBeagle14-7B tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Rijgersberg/GEITje-7B-chat-v2](https://huggingface.co/Rijgersberg/GEITje-7B-chat-v2) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Rijgersberg/GEITje-7B-chat-v2 layer_range: [0, 32] - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] merge_method: slerp base_model: Rijgersberg/GEITje-7B-chat-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
jlvdoorn/whisper-large-v2-atcosim
jlvdoorn
2024-01-16T10:08:27Z
21
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "doi:10.57967/hf/1374", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-21T06:45:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v2-atcosim results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v2-atcosim This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0552 - Wer: 9.9694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 12500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0038 | 8.33 | 1000 | 0.0357 | 2.7829 | | 0.001 | 16.67 | 2000 | 0.0384 | 2.0004 | | 0.0015 | 25.0 | 3000 | 0.0373 | 31.7142 | | 0.0001 | 33.33 | 4000 | 0.0437 | 2.3152 | | 0.0019 | 41.67 | 5000 | 0.0446 | 7.2375 | | 0.0 | 50.0 | 6000 | 0.0462 | 2.9033 | | 0.0 | 58.33 | 7000 | 0.0490 | 4.3295 | | 0.0 | 66.67 | 8000 | 0.0509 | 5.8668 | | 0.0 | 75.0 | 9000 | 0.0524 | 7.5014 | | 0.0 | 83.33 | 10000 | 0.0536 | 8.6405 | | 0.0 | 91.67 | 11000 | 0.0546 | 9.5018 | | 0.0 | 100.0 | 12000 | 0.0552 | 9.9694 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Seokeon/V14_R384_lora_none_bear_plushie
Seokeon
2024-01-16T10:07:58Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T10:04:40Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks stuffed animal tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_bear_plushie These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks stuffed animal using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Seokeon/V14_R384_lora_none_grey_sloth_plushie
Seokeon
2024-01-16T10:01:06Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:57:45Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks stuffed animal tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_grey_sloth_plushie These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks stuffed animal using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
facebook/audio-magnet-small
facebook
2024-01-16T09:57:18Z
222
8
audiocraft
[ "audiocraft", "magnet", "text-to-audio", "arxiv:2401.04577", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-01-10T20:16:04Z
--- inference: true tags: - magnet - audiocraft license: cc-by-nc-4.0 pipeline_tag: text-to-audio --- # Audio-MAGNeT - Small - 300M MAGNeT is a text-to-music and text-to-sound model capable of generating high-quality audio samples conditioned on text descriptions. It is a masked generative non-autoregressive Transformer trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike prior work, MAGNeT doesn't require neither semantic token conditioning nor model cascading, and it generates all 4 codebooks using a single non-autoregressive Transformer. MAGNeT was published in [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577) by *Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi*. Six checkpoints are released: - [small-10secs](https://huggingface.co/facebook/magnet-small-10secs) - [medium-10secs](https://huggingface.co/facebook/magnet-medium-10secs) - [small-30secs](https://huggingface.co/facebook/magnet-small-30secs) - [medium-30secs](https://huggingface.co/facebook/magnet-medium-30secs) - [**audio-small** (this checkpoint)](https://huggingface.co/facebook/audio-magnet-small) - [audio-medium](https://huggingface.co/facebook/audio-magnet-medium) ## 🤗 Transformers Usage Coming soon... ## Audiocraft Usage You can run MAGNeT locally through the original [Audiocraft library](https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt-get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MAGNeT from audiocraft.data.audio import audio_write model = MAGNeT.get_pretrained("facebook/audio-magnet-small") descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MAGNeT was trained between November 2023 and January 2024. **Model version:** This is the version 1 of the model. **Model type:** MAGNeT consists of an EnCodec model for audio tokenization, an non-autoregressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B; and two variants: a model trained for text-to-music generation task and a model trained for text-to-audio generation. **Paper or resources for more information:** More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577). **Citation details:** ``` @misc{ziv2024masked, title={Masked Audio Generation using a Single Non-Autoregressive Transformer}, author={Alon Ziv and Itai Gat and Gael Le Lan and Tal Remez and Felix Kreuk and Alexandre Défossez and Jade Copet and Gabriel Synnaeve and Yossi Adi}, year={2024}, eprint={2401.04577}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MAGNeT can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MAGNeT is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we used the state-of-the-art music source separation method, namely the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only instrumental tracks. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | |---|---|---|---| | facebook/magnet-small-10secs | 4.22 | 1.11 | 0.28 | | facebook/magnet-medium-10secs | 4.61 | 1.14 | 0.28 | | facebook/magnet-small-30secs | 4.35 | 1.17 | 0.28 | | facebook/magnet-medium-30secs | 4.63 | 1.20 | 0.28 | More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 16K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Tracks that include vocals have been removed from the data source using corresponding tags, and using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MAGNeT is a model developed for artificial intelligence research on music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks. ## Audio-MAGNeT - Sound-effect generation models ### Training datasets The audio-magnet models were trained on the following data sources: a subset of AudioSet (Gemmeke et al., 2017), [BBC sound effects](https://sound-effects.bbcrewind.co.uk/), AudioCaps (Kim et al., 2019), Clotho v2 (Drossos et al., 2020), VGG-Sound (Chen et al., 2020), FSD50K (Fonseca et al., 2021), [Free To Use Sounds](https://www.freetousesounds.com/all-in-one-bundle/), [Sonniss Game Effects](https://sonniss.com/gameaudiogdc), [WeSoundEffects](https://wesoundeffects.com/we-sound-effects-bundle-2020/), [Paramount Motion - Odeon Cinematic Sound Effects](https://www.paramountmotion.com/odeon-sound-effects). ### Evaluation datasets The audio-magnet models (sound effect generation) were evaluated on the [AudioCaps benchmark](https://audiocaps.github.io/). ### Evaluation results Below are the objective metrics obtained with the released audio-magnet models on AudioCaps (consisting of 10-second long samples). | Model | Frechet Audio Distance | KLD | |---|---|---| | **facebook/audio-magnet-small** | **3.21** | **1.42** | | facebook/audio-magnet-medium | 2.32 | 1.64 |
facebook/magnet-medium-10secs
facebook
2024-01-16T09:56:27Z
732
7
audiocraft
[ "audiocraft", "magnet", "text-to-audio", "arxiv:2401.04577", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-01-10T15:35:43Z
--- inference: true tags: - magnet - audiocraft license: cc-by-nc-4.0 pipeline_tag: text-to-audio widget: - text: "a funky house with 80s hip hop vibes" example_title: "Prompt 1" - text: "a chill song with influences from lofi, chillstep and downtempo" example_title: "Prompt 2" - text: "a catchy beat for a podcast intro" example_title: "Prompt 3" --- # MAGNeT - Medium - 1.5B - 10secs MAGNeT is a text-to-music and text-to-sound model capable of generating high-quality audio samples conditioned on text descriptions. It is a masked generative non-autoregressive Transformer trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike prior work, MAGNeT doesn't require neither semantic token conditioning nor model cascading, and it generates all 4 codebooks using a single non-autoregressive Transformer. MAGNeT was published in [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577) by *Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi*. Six checkpoints are released: - [small-10secs](https://huggingface.co/facebook/magnet-small-10secs) - [**medium-10secs** (this checkpoint)](https://huggingface.co/facebook/magnet-medium-10secs) - [small-30secs](https://huggingface.co/facebook/magnet-small-30secs) - [medium-30secs](https://huggingface.co/facebook/magnet-medium-30secs) - [audio-small](https://huggingface.co/facebook/audio-magnet-small) - [audio-medium](https://huggingface.co/facebook/audio-magnet-medium) ## 🤗 Transformers Usage Coming soon... ## Audiocraft Usage You can run MAGNeT locally through the original [Audiocraft library](https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt-get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MAGNeT from audiocraft.data.audio import audio_write model = MAGNeT.get_pretrained("facebook/magnet-medium-10secs") descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MAGNeT was trained between November 2023 and January 2024. **Model version:** This is the version 1 of the model. **Model type:** MAGNeT consists of an EnCodec model for audio tokenization, an non-autoregressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B; and two variants: a model trained for text-to-music generation task and a model trained for text-to-audio generation. **Paper or resources for more information:** More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577). **Citation details:** ``` @misc{ziv2024masked, title={Masked Audio Generation using a Single Non-Autoregressive Transformer}, author={Alon Ziv and Itai Gat and Gael Le Lan and Tal Remez and Felix Kreuk and Alexandre Défossez and Jade Copet and Gabriel Synnaeve and Yossi Adi}, year={2024}, eprint={2401.04577}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MAGNeT can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MAGNeT is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we used the state-of-the-art music source separation method, namely the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only instrumental tracks. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | |---|---|---|---| | facebook/magnet-small-10secs | 4.22 | 1.11 | 0.28 | | **facebook/magnet-medium-10secs** | **4.61** | **1.14** | **0.28** | | facebook/magnet-small-30secs | 4.35 | 1.17 | 0.28 | | facebook/magnet-medium-30secs | 4.63 | 1.20 | 0.28 | More information can be found in the paper [Masked Audio Generation using a Single Non-Autoregressive Transformer](https://arxiv.org/abs/2401.04577), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 16K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Tracks that include vocals have been removed from the data source using corresponding tags, and using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MAGNeT is a model developed for artificial intelligence research on music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks. ## Audio-MAGNeT - Sound-effect generation models ### Training datasets The audio-magnet models were trained on the following data sources: a subset of AudioSet (Gemmeke et al., 2017), [BBC sound effects](https://sound-effects.bbcrewind.co.uk/), AudioCaps (Kim et al., 2019), Clotho v2 (Drossos et al., 2020), VGG-Sound (Chen et al., 2020), FSD50K (Fonseca et al., 2021), [Free To Use Sounds](https://www.freetousesounds.com/all-in-one-bundle/), [Sonniss Game Effects](https://sonniss.com/gameaudiogdc), [WeSoundEffects](https://wesoundeffects.com/we-sound-effects-bundle-2020/), [Paramount Motion - Odeon Cinematic Sound Effects](https://www.paramountmotion.com/odeon-sound-effects). ### Evaluation datasets The audio-magnet models (sound effect generation) were evaluated on the [AudioCaps benchmark](https://audiocaps.github.io/). ### Evaluation results Below are the objective metrics obtained with the released audio-magnet models on AudioCaps (consisting of 10-second long samples). | Model | Frechet Audio Distance | KLD | |---|---|---| | facebook/audio-magnet-small | 3.21 | 1.42 | | facebook/audio-magnet-medium | 2.32 | 1.64 |
Seokeon/V14_R384_lora_none_dog2
Seokeon
2024-01-16T09:51:15Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:48:29Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_dog2 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Seokeon/V14_R256_lora_pp_dog2
Seokeon
2024-01-16T09:50:06Z
3
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:46:25Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R256_lora_pp_dog2 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Seokeon/V14_R384_lora_none_cat
Seokeon
2024-01-16T09:48:05Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:45:17Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks cat tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_cat These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks cat using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
devesh123098/Taxi_Car_Parking
devesh123098
2024-01-16T09:47:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T09:47:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi_Car_Parking results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="devesh123098/Taxi_Car_Parking", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
devesh123098/q-FrozenLake-v1-4x4-noSlippery
devesh123098
2024-01-16T09:43:00Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T09:42:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="devesh123098/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Seokeon/V14_R384_lora_none_rc_car
Seokeon
2024-01-16T09:41:50Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:39:03Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_R384_lora_none_rc_car These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Felladrin/onnx-Llama-68M-Chat-v1
Felladrin
2024-01-16T09:39:54Z
4
0
transformers.js
[ "transformers.js", "onnx", "llama", "text-generation", "conversational", "en", "base_model:Felladrin/Llama-68M-Chat-v1", "base_model:quantized:Felladrin/Llama-68M-Chat-v1", "license:apache-2.0", "region:us" ]
text-generation
2024-01-16T09:39:26Z
--- license: apache-2.0 language: - en library_name: "transformers.js" base_model: Felladrin/Llama-68M-Chat-v1 --- INT8 ONNX version of [Felladrin/Llama-68M-Chat-v1](https://huggingface.co/Felladrin/Llama-68M-Chat-v1) to use with [Transformers.js](https://huggingface.co/docs/transformers.js).
LoneStriker/Yi-34Bx2-MoE-60B-6.0bpw-h6-exl2
LoneStriker
2024-01-16T09:36:48Z
5
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T09:18:17Z
--- license: cc-by-nc-4.0 --- # Yi based MOE 2x34B with mixtral architecture Highest score Model ranked by Open LLM Leaderboard (2024-01-11) * [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
Shrideep/Retrieval_Augmented_Generation
Shrideep
2024-01-16T09:36:43Z
0
1
null
[ "RAG", "Retrieval Augmented Generation", "llama-index", "en", "dataset:chromadb/paul_graham_essay", "region:us" ]
null
2024-01-16T07:35:16Z
--- datasets: - chromadb/paul_graham_essay language: - en tags: - RAG - Retrieval Augmented Generation - llama-index --- # Summary: Retrieval Augmented Generation (RAG) is a technique to specialize a language model with a specific knowledge domain by feeding in relevant data so that it can give better answers. # How does RAG works? 1. Ready/ Preprocess your input data i.e. tokenization & vectorization 2. Feed the processed data to the Language Model. 3. Indexing the stored data that matches the context of the query. # Implementing RAG with llama-index ### 1. Load relevant data and build an index from llama_index import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) ### 2. Query your data query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response) # My application of RAG on ChatGPT Check RAG.ipynb
Federic/lora-fine-tuning-llama2-SQL-lora-1000-2-dataset-size-open-hermes
Federic
2024-01-16T09:35:00Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-01-15T10:32:00Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - generated_from_trainer model-index: - name: lora-fine-tuning-llama2-SQL-lora-1000-2-dataset-size-open-hermes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora-fine-tuning-llama2-SQL-lora-1000-2-dataset-size-open-hermes This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
notstoic/Nous-Hermes-2-Mixtruct-v0.1-8x7B-DPO-DARE_TIES-exl2-5.0bpw
notstoic
2024-01-16T09:31:59Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T09:26:36Z
--- base_model: [] tags: - mergekit - merge --- # Nous-Hermes-2-Mixtruct-v0.1-8x7B-DPO-DARE_TIES-exl2-5.0bpw This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details An experimental merge. Prompt format: ChatML or Mixtral-8x7B-Instruct-v0.1 ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using ./models/Mixtral-8x7B-v0.1 as a base. ### Models Merged The following models were included in the merge: * [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) * [Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ./models/Mixtral-8x7B-Instruct-v0.1 parameters: density: 0.5 weight: 1.0 - model: ./models/Nous-Hermes-2-Mixtral-8x7B-DPO parameters: density: 0.5 weight: 0.5 merge_method: dare_ties base_model: ./models/Mixtral-8x7B-v0.1 parameters: #normalize: false #int8_mask: true dtype: bfloat16 ```
Seokeon/V14_lora_none_berry_bowl
Seokeon
2024-01-16T09:31:33Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:27:45Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks bowl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_lora_none_berry_bowl These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks bowl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ
TheBloke
2024-01-16T09:31:12Z
127
22
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "base_model:quantized:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-01-16T08:42:54Z
--- base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO inference: false language: - en license: apache-2.0 model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] model_creator: NousResearch model_name: Nous Hermes 2 Mixtral 8X7B DPO model_type: mixtral prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Nous Hermes 2 Mixtral 8X7B DPO - AWQ - Model creator: [NousResearch](https://huggingface.co/NousResearch) - Original model: [Nous Hermes 2 Mixtral 8X7B DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) <!-- description start --> ## Description This repo contains AWQ model files for [NousResearch's Nous Hermes 2 Mixtral 8X7B DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). **MIXTRAL AWQ** This is a Mixtral AWQ model. For AutoAWQ inference, please install AutoAWQ 0.1.8 or later. Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git` vLLM: version 0.2.6 is confirmed to support Mixtral AWQs. TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!) ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. AWQ models are supported by (note that not all of these may support Mixtral models yet - see above): - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF) * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.65 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: NousResearch's Nous Hermes 2 Mixtral 8X7B DPO # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
567-labs/bge-base-en-v1.5-ft-quora-0.9
567-labs
2024-01-16T09:30:58Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-16T09:30:47Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7960 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
liamhvn/realistic-vision-v51
liamhvn
2024-01-16T09:30:22Z
14
1
diffusers
[ "diffusers", "safetensors", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-27T06:09:38Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Realistic Vision V5.1 API Inference ![generated from stablediffusionapi.com](https://cdn.stablediffusionapi.com/generations/8112328501690811758.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "realistic-vision-v51" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/realistic-vision-v51) Model link: [View model](https://stablediffusionapi.com/models/realistic-vision-v51) Credits: [View credits](https://civitai.com/?query=Realistic%20Vision%20V5.1) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "realistic-vision-v51", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
BOT365/tinyllama-colorist-lora
BOT365
2024-01-16T09:29:20Z
7
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2024-01-11T10:01:44Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model-index: - name: tinyllama-colorist-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-colorist-lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ssssseeee/my_awesome_billsum_model
ssssseeee
2024-01-16T09:18:10Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:lcw99/t5-base-korean-text-summary", "base_model:finetune:lcw99/t5-base-korean-text-summary", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-16T08:34:55Z
--- base_model: lcw99/t5-base-korean-text-summary tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [lcw99/t5-base-korean-text-summary](https://huggingface.co/lcw99/t5-base-korean-text-summary) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1454 - Rouge1: 0.1698 - Rouge2: 0.0688 - Rougel: 0.1623 - Rougelsum: 0.1632 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.1729 | 0.1723 | 0.072 | 0.1654 | 0.1656 | 19.0 | | 1.4585 | 2.0 | 990 | 1.1454 | 0.1698 | 0.0688 | 0.1623 | 0.1632 | 19.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
pborchert/bert-ic
pborchert
2024-01-16T09:14:34Z
2
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "industry classification", "en", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-12T10:04:55Z
--- license: cc-by-4.0 language: - en pipeline_tag: fill-mask tags: - bert - industry classification library_name: transformers widget: - text: "Sanofi is in the [MASK] industry." - text: "The current ratio measures [MASK]." ---
tmnam20/mdeberta-v3-base-wnli-1
tmnam20
2024-01-16T09:10:29Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T09:08:04Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-wnli-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/WNLI type: tmnam20/VieGLUE config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.43661971830985913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-wnli-1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6965 - Accuracy: 0.4366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Destiny0621/a2c-PandaReachDense-v3
Destiny0621
2024-01-16T09:10:07Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T09:00:59Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.14 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import os import gymnasium as gym import panda_gym from huggingface_sb3 import load_from_hub, package_to_hub from stable_baselines3 import A2C from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines3.common.env_util import make_vec_env from huggingface_hub import notebook_login ``` **Environment** ```python env_id = "PandaReachDense-v3" # Create the env env = gym.make(env_id) ``` **Model** ```python model = A2C(policy = "MultiInputPolicy", env = env, learning_rate = 0.0001, n_steps = 10, verbose=1) ```
rccmsu/ruadapt_mistral_7b_v0.1
rccmsu
2024-01-16T09:10:07Z
446
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "ru", "arxiv:2312.02598", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T15:29:20Z
--- license: apache-2.0 language: - ru pipeline_tag: text-generation --- # ruadapt_mistral_7b_v0.1 This model is a fine-tuned (embeddings, lm head) version of mistralai/Mistral-7B-v0.1 on the Russian dataset (33GB). The training lasted 0.8 epochs, after which an error occurred. Was slightly additionally trained using LoRa after that. In short: 1) Tokenization replacement, 2) Convert to fp16, 3) Training only embeddings and lm head on 0.8 epoch, 4) Convert new layers back to bf16 and merge with original transformer in bf16, 5) Tune embeddings (modules_to_save), lm head (modules_to_save), 4 first and last layers: linear layers (lora) and layer norms(modules_to_save) on 1% of the data. ATTENTION!!! The metrics on various datasets are slightly worse than those of the original model. Instruct version: https://huggingface.co/rccmsu/ruadapt_mistral_saiga_7b_v0.1 ## Model description Russian adaptation of Mistral-7B by replacing the tokenizer. Paper: Tikhomirov M., Chernyshev D. Impact of Tokenization on LLaMa Russian Adaptation //arXiv preprint arXiv:2312.02598. – 2023. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - total_eval_batch_size: 96 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: linear - num_epochs: 2.0 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Seokeon/V14_lora_none_dog6
Seokeon
2024-01-16T09:09:59Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-16T09:06:08Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Seokeon/V14_lora_none_dog6 These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
tmnam20/mdeberta-v3-base-vtoc-10
tmnam20
2024-01-16T09:05:25Z
7
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T09:02:51Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-vtoc-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VTOC type: tmnam20/VieGLUE config: vtoc split: validation args: vtoc metrics: - name: Accuracy type: accuracy value: 0.8088476242490442 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-vtoc-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/VTOC dataset. It achieves the following results on the evaluation set: - Loss: 0.7381 - Accuracy: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7432 | 2.19 | 500 | 0.7743 | 0.7963 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
SamagraDataGov/test_mistral2
SamagraDataGov
2024-01-16T09:04:07Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T09:03:57Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF
TheBloke
2024-01-16T09:01:46Z
1,926
58
transformers
[ "transformers", "gguf", "mixtral", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "en", "base_model:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "base_model:quantized:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "license:apache-2.0", "region:us", "conversational" ]
null
2024-01-16T08:42:54Z
--- base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO inference: false language: - en license: apache-2.0 model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] model_creator: NousResearch model_name: Nous Hermes 2 Mixtral 8X7B DPO model_type: mixtral prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Nous Hermes 2 Mixtral 8X7B DPO - GGUF - Model creator: [NousResearch](https://huggingface.co/NousResearch) - Original model: [Nous Hermes 2 Mixtral 8X7B DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) <!-- description start --> ## Description This repo contains GGUF format model files for [NousResearch's Nous Hermes 2 Mixtral 8X7B DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF) * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [nous-hermes-2-mixtral-8x7b-dpo.Q2_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q2_K.gguf) | Q2_K | 2 | 17.31 GB| 19.81 GB | significant quality loss - not recommended for most purposes | | [nous-hermes-2-mixtral-8x7b-dpo.Q3_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q3_K_M.gguf) | Q3_K_M | 3 | 22.54 GB| 25.04 GB | very small, high quality loss | | [nous-hermes-2-mixtral-8x7b-dpo.Q4_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf) | Q4_K_M | 4 | 28.45 GB| 30.95 GB | medium, balanced quality - recommended | | [nous-hermes-2-mixtral-8x7b-dpo.Q5_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [nous-hermes-2-mixtral-8x7b-dpo.Q5_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q5_K_M.gguf) | Q5_K_M | 5 | 33.23 GB| 35.73 GB | large, very low quality loss - recommended | | [nous-hermes-2-mixtral-8x7b-dpo.Q6_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss | | [nous-hermes-2-mixtral-8x7b-dpo.Q8_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF/blob/main/nous-hermes-2-mixtral-8x7b-dpo.Q8_0.gguf) | Q8_0 | 8 | 49.62 GB| 52.12 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF and below it, a specific filename to download, such as: nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./nous-hermes-2-mixtral-8x7b-dpo.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: NousResearch's Nous Hermes 2 Mixtral 8X7B DPO # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <!-- original-model-card end -->
tmnam20/mdeberta-v3-base-vsmec-100
tmnam20
2024-01-16T09:00:17Z
14
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:57:53Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-vsmec-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSMEC type: tmnam20/VieGLUE config: vsmec split: validation args: vsmec metrics: - name: Accuracy type: accuracy value: 0.5539358600583091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-vsmec-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/VSMEC dataset. It achieves the following results on the evaluation set: - Loss: 1.2296 - Accuracy: 0.5539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0733 | 2.87 | 500 | 1.2329 | 0.5510 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/Yi-34Bx2-MoE-60B-5.0bpw-h6-exl2
LoneStriker
2024-01-16T08:59:57Z
6
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T08:44:22Z
--- license: cc-by-nc-4.0 --- # Yi based MOE 2x34B with mixtral architecture Highest score Model ranked by Open LLM Leaderboard (2024-01-11) * [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
tmnam20/mdeberta-v3-base-vsmec-10
tmnam20
2024-01-16T08:57:53Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:55:22Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-vsmec-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSMEC type: tmnam20/VieGLUE config: vsmec split: validation args: vsmec metrics: - name: Accuracy type: accuracy value: 0.5364431486880467 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-vsmec-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/VSMEC dataset. It achieves the following results on the evaluation set: - Loss: 1.3020 - Accuracy: 0.5364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1704 | 2.87 | 500 | 1.3027 | 0.5335 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
567-labs/bge-base-en-v1.5-ft-quora-0.5
567-labs
2024-01-16T08:53:26Z
10
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-16T08:53:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4422 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tmnam20/mdeberta-v3-base-vsfc-100
tmnam20
2024-01-16T08:52:46Z
7
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:49:53Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-vsfc-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSFC type: tmnam20/VieGLUE config: vsfc split: validation args: vsfc metrics: - name: Accuracy type: accuracy value: 0.9456727732154138 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-vsfc-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/VSFC dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Accuracy: 0.9457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1763 | 1.4 | 500 | 0.2099 | 0.9431 | | 0.1363 | 2.79 | 1000 | 0.2278 | 0.9463 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
adamo1139/llama-33B-AEZAKMI-v2-4.65bpw-exl2
adamo1139
2024-01-16T08:51:38Z
4
0
transformers
[ "transformers", "llama", "text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T09:30:57Z
--- license: other license_name: llama-1-research-license license_link: LICENSE --- EXL2 4.65bpw quant of LLaMa 33B fine-tuned on AEZAKMI v2 dataset.
golesheed/whisper-small-hi
golesheed
2024-01-16T08:47:08Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "hi", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-15T11:02:00Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4300 - Wer: 34.1192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0824 | 2.44 | 1000 | 0.2958 | 35.3424 | | 0.0218 | 4.89 | 2000 | 0.3518 | 34.1954 | | 0.001 | 7.33 | 3000 | 0.4082 | 34.1446 | | 0.0005 | 9.78 | 4000 | 0.4300 | 34.1192 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
tmnam20/mdeberta-v3-base-vnrte-10
tmnam20
2024-01-16T08:41:58Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:40:02Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-vnrte-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VNRTE type: tmnam20/VieGLUE config: vnrte split: validation args: vnrte metrics: - name: Accuracy type: accuracy value: 0.9980873445967485 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-vnrte-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/VNRTE dataset. It achieves the following results on the evaluation set: - Loss: 0.0100 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0123 | 1.28 | 500 | 0.0038 | 0.9990 | | 0.0002 | 2.55 | 1000 | 0.0058 | 0.9987 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
jeiku/Luna_3B
jeiku
2024-01-16T08:40:59Z
11
0
transformers
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "mergekit", "merge", "conversational", "custom_code", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:jeiku/Bluemoon_cleaned_StableLM", "base_model:merge:jeiku/Bluemoon_cleaned_StableLM", "base_model:jeiku/ToxicNoRobotsRosaHermesBoros_3B", "base_model:merge:jeiku/ToxicNoRobotsRosaHermesBoros_3B", "autotrain_compatible", "region:us" ]
text-generation
2024-01-16T08:25:18Z
--- base_model: - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/Theory_of_Mind_StableLM - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/Everything_v3_StableLM - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/Bluemoon_cleaned_StableLM - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/Capybara_StableLM - jeiku/ToxicNoRobotsRosaHermesBoros_3B - jeiku/alpaca-cleaned_StableLM tags: - mergekit - merge --- # lower This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) as a base. ### Models Merged The following models were included in the merge: * [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) + [jeiku/Theory_of_Mind_StableLM](https://huggingface.co/jeiku/Theory_of_Mind_StableLM) * [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) + [jeiku/Everything_v3_StableLM](https://huggingface.co/jeiku/Everything_v3_StableLM) * [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) + [jeiku/Bluemoon_cleaned_StableLM](https://huggingface.co/jeiku/Bluemoon_cleaned_StableLM) * [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) + [jeiku/Capybara_StableLM](https://huggingface.co/jeiku/Capybara_StableLM) * [jeiku/ToxicNoRobotsRosaHermesBoros_3B](https://huggingface.co/jeiku/ToxicNoRobotsRosaHermesBoros_3B) + [jeiku/alpaca-cleaned_StableLM](https://huggingface.co/jeiku/alpaca-cleaned_StableLM) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: jeiku/ToxicNoRobotsRosaHermesBoros_3B+jeiku/alpaca-cleaned_StableLM parameters: weight: 0.1 density: 1 - model: jeiku/ToxicNoRobotsRosaHermesBoros_3B+jeiku/Capybara_StableLM parameters: weight: 0.1 density: 1 - model: jeiku/ToxicNoRobotsRosaHermesBoros_3B+jeiku/Everything_v3_StableLM parameters: weight: 0.1 density: 1 - model: jeiku/ToxicNoRobotsRosaHermesBoros_3B+jeiku/Theory_of_Mind_StableLM parameters: weight: 0.15 density: 1 - model: jeiku/ToxicNoRobotsRosaHermesBoros_3B+jeiku/Bluemoon_cleaned_StableLM parameters: weight: 0.1 density: 1 merge_method: dare_ties base_model: jeiku/ToxicNoRobotsRosaHermesBoros_3B parameters: dtype: bfloat16 ```
Seokeon/full_pp_robot_toy
Seokeon
2024-01-16T08:38:54Z
0
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T07:59:01Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Seokeon/full_pp_robot_toy This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
wcyat/whisper-small-yue-hk-retrained
wcyat
2024-01-16T08:38:35Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:wcyat/whisper-small-yue-hk-retrained-1", "base_model:finetune:wcyat/whisper-small-yue-hk-retrained-1", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-10T12:50:13Z
--- base_model: wcyat/whisper-small-yue-hk-retrained-1 tags: - generated_from_trainer model-index: - name: whisper-small-yue-hk-retrained-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-yue-hk-retrained-2 This model is a fine-tuned version of [wcyat/whisper-small-yue-hk-retrained-1](https://huggingface.co/wcyat/whisper-small-yue-hk-retrained-1) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2631 - eval_cer: 12.5099 - eval_runtime: 4014.1159 - eval_samples_per_second: 2.037 - eval_steps_per_second: 0.127 - epoch: 0.81 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tmnam20/mdeberta-v3-base-sst2-100
tmnam20
2024-01-16T08:38:09Z
5
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:36:18Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-sst2-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8944954128440367 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-sst2-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3880 - Accuracy: 0.8945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3414 | 0.24 | 500 | 0.3477 | 0.8681 | | 0.2858 | 0.48 | 1000 | 0.3121 | 0.8911 | | 0.2358 | 0.71 | 1500 | 0.3466 | 0.8807 | | 0.2413 | 0.95 | 2000 | 0.3225 | 0.8819 | | 0.1722 | 1.19 | 2500 | 0.3268 | 0.8933 | | 0.1926 | 1.43 | 3000 | 0.3712 | 0.8899 | | 0.1766 | 1.66 | 3500 | 0.3130 | 0.9014 | | 0.1706 | 1.9 | 4000 | 0.3517 | 0.8899 | | 0.1308 | 2.14 | 4500 | 0.3970 | 0.9014 | | 0.1315 | 2.38 | 5000 | 0.3525 | 0.8991 | | 0.1504 | 2.61 | 5500 | 0.3728 | 0.8968 | | 0.1178 | 2.85 | 6000 | 0.3987 | 0.8922 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
SJ-Donald/kor-hate-sentence-large
SJ-Donald
2024-01-16T08:37:03Z
11
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "kcbert", "kor-hate-sentence", "sentimental-analysis", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:33:03Z
--- license: apache-2.0 tags: - bert - kcbert - kor-hate-sentence - sentimental-analysis --- # SJ-Donald/kor-hate-sentence-large SJ-Donald/kor-hate-sentence-large is pretrained model using follow: ## Models * [beomi/kcbert-large](https://huggingface.co/beomi/kcbert-large) ## Datasets * [SJ-Donald/kor-hate-sentence](https://huggingface.co/datasets/SJ-Donald/kor-hate-sentence) ## How to use ```Python from transformers import TextClassificationPipeline, BertForSequenceClassification, AutoTokenizer+ model_name = 'SJ-Donald/kor-hate-sentence-large' model = BertForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) pipe = TextClassificationPipeline( model = model, tokenizer = tokenizer, device = 0, # cpu: -1, gpu: gpu number return_all_scores = True, function_to_apply = 'sigmoid' ) for result in pipe("이딴 게임할 거면 방송 그만해라 어휴")[0]: print(result) {'label': 'hate', 'score': 0.016597675159573555} {'label': 'clean', 'score': 0.9842987060546875} ```
tmnam20/mdeberta-v3-base-sst2-10
tmnam20
2024-01-16T08:36:17Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:34:25Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-sst2-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8979357798165137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-sst2-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3852 - Accuracy: 0.8979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3449 | 0.24 | 500 | 0.3368 | 0.8567 | | 0.2987 | 0.48 | 1000 | 0.3037 | 0.8716 | | 0.2492 | 0.71 | 1500 | 0.3347 | 0.8842 | | 0.24 | 0.95 | 2000 | 0.2953 | 0.8830 | | 0.195 | 1.19 | 2500 | 0.3445 | 0.8842 | | 0.1934 | 1.43 | 3000 | 0.3217 | 0.8876 | | 0.1697 | 1.66 | 3500 | 0.3627 | 0.8876 | | 0.1757 | 1.9 | 4000 | 0.3366 | 0.8899 | | 0.1328 | 2.14 | 4500 | 0.4266 | 0.8876 | | 0.1475 | 2.38 | 5000 | 0.3737 | 0.8933 | | 0.1574 | 2.61 | 5500 | 0.3888 | 0.8911 | | 0.1548 | 2.85 | 6000 | 0.4063 | 0.8865 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/mdeberta-v3-base-sst2-1
tmnam20
2024-01-16T08:34:25Z
5
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:32:42Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-sst2-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8922018348623854 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-sst2-1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3789 - Accuracy: 0.8922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3138 | 0.24 | 500 | 0.3016 | 0.8761 | | 0.2693 | 0.48 | 1000 | 0.3624 | 0.8911 | | 0.2359 | 0.71 | 1500 | 0.3470 | 0.8739 | | 0.2584 | 0.95 | 2000 | 0.2878 | 0.8911 | | 0.1774 | 1.19 | 2500 | 0.3204 | 0.9048 | | 0.1921 | 1.43 | 3000 | 0.3878 | 0.8899 | | 0.1822 | 1.66 | 3500 | 0.3444 | 0.9002 | | 0.1772 | 1.9 | 4000 | 0.3351 | 0.8968 | | 0.1368 | 2.14 | 4500 | 0.3350 | 0.9060 | | 0.1259 | 2.38 | 5000 | 0.3967 | 0.8968 | | 0.107 | 2.61 | 5500 | 0.3937 | 0.8945 | | 0.1371 | 2.85 | 6000 | 0.3743 | 0.8968 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Azam/corgy_dog_LoRA
Azam
2024-01-16T08:34:08Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-16T07:17:16Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - Azam/corgy_dog_LoRA <Gallery /> ## Model description These are Azam/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Azam/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
jvh/Mistral-asst_top1_2023-GEITje
jvh
2024-01-16T08:31:48Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1", "base_model:merge:NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1", "base_model:Rijgersberg/GEITje-7B-chat-v2", "base_model:merge:Rijgersberg/GEITje-7B-chat-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T17:27:37Z
--- base_model: - Rijgersberg/GEITje-7B-chat-v2 - NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1 tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Rijgersberg/GEITje-7B-chat-v2](https://huggingface.co/Rijgersberg/GEITje-7B-chat-v2) * [NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1](https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Rijgersberg/GEITje-7B-chat-v2 layer_range: [0, 32] - model: NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1 layer_range: [0, 32] merge_method: slerp base_model: Rijgersberg/GEITje-7B-chat-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
tmnam20/mdeberta-v3-base-qqp-10
tmnam20
2024-01-16T08:25:03Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:23:13Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: mdeberta-v3-base-qqp-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8998268612416522 - name: F1 type: f1 value: 0.8668551515550004 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-qqp-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8998 - F1: 0.8669 - Combined Score: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.2833 | 0.44 | 5000 | 0.3087 | 0.8708 | 0.8217 | 0.8462 | | 0.2702 | 0.88 | 10000 | 0.2763 | 0.8818 | 0.8421 | 0.8619 | | 0.2269 | 1.32 | 15000 | 0.2819 | 0.8883 | 0.8469 | 0.8676 | | 0.2182 | 1.76 | 20000 | 0.2728 | 0.8929 | 0.8599 | 0.8764 | | 0.1682 | 2.2 | 25000 | 0.2922 | 0.8971 | 0.8613 | 0.8792 | | 0.175 | 2.64 | 30000 | 0.2755 | 0.8981 | 0.8635 | 0.8808 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/Yi-34Bx2-MoE-60B-4.0bpw-h6-exl2
LoneStriker
2024-01-16T08:22:57Z
4
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T08:10:22Z
--- license: cc-by-nc-4.0 --- # Yi based MOE 2x34B with mixtral architecture Highest score Model ranked by Open LLM Leaderboard (2024-01-11) * [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
tmnam20/mdeberta-v3-base-qnli-100
tmnam20
2024-01-16T08:21:23Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:19:38Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-qnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8974922203917262 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-qnli-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2906 - Accuracy: 0.8975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3773 | 0.15 | 500 | 0.3870 | 0.8431 | | 0.3547 | 0.31 | 1000 | 0.3175 | 0.8658 | | 0.3385 | 0.46 | 1500 | 0.2986 | 0.8739 | | 0.342 | 0.61 | 2000 | 0.2787 | 0.8845 | | 0.3003 | 0.76 | 2500 | 0.3075 | 0.8726 | | 0.3298 | 0.92 | 3000 | 0.2781 | 0.8807 | | 0.2475 | 1.07 | 3500 | 0.2695 | 0.8942 | | 0.2441 | 1.22 | 4000 | 0.2615 | 0.8940 | | 0.249 | 1.37 | 4500 | 0.2548 | 0.8958 | | 0.2261 | 1.53 | 5000 | 0.2588 | 0.8946 | | 0.2348 | 1.68 | 5500 | 0.2587 | 0.8982 | | 0.2626 | 1.83 | 6000 | 0.2581 | 0.8982 | | 0.2463 | 1.99 | 6500 | 0.2520 | 0.8964 | | 0.1768 | 2.14 | 7000 | 0.2795 | 0.8951 | | 0.1768 | 2.29 | 7500 | 0.3069 | 0.8942 | | 0.1752 | 2.44 | 8000 | 0.2783 | 0.8971 | | 0.1687 | 2.6 | 8500 | 0.2900 | 0.8995 | | 0.163 | 2.75 | 9000 | 0.2828 | 0.8969 | | 0.1547 | 2.9 | 9500 | 0.2873 | 0.8980 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
greymatter-2024/tinyllama2_finetuned_chatbot_hey
greymatter-2024
2024-01-16T08:21:17Z
15
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2024-01-16T05:53:18Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model-index: - name: tinyllama2_finetuned_chatbot_hey results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama2_finetuned_chatbot_hey This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
gizmo-ai/Cohere-embed-multilingual-v3.0
gizmo-ai
2024-01-16T08:15:41Z
8
0
transformers
[ "transformers", "mteb", "model-index", "endpoints_compatible", "region:us" ]
null
2024-01-16T08:15:41Z
--- tags: - mteb model-index: - name: embed-multilingual-v3.0 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.85074626865672 - type: ap value: 41.53151744002314 - type: f1 value: 71.94656880817726 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 95.600375 - type: ap value: 93.57882128753579 - type: f1 value: 95.59945484944305 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.794 - type: f1 value: 48.740439663130985 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: ndcg_at_10 value: 55.105000000000004 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.15653426568874 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.78876256237919 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.12873500780318 - type: mrr value: 75.87037769863255 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.01183720167818 - type: cos_sim_spearman value: 85.00916590717613 - type: euclidean_pearson value: 84.072733561361 - type: euclidean_spearman value: 85.00916590717613 - type: manhattan_pearson value: 83.89233507343208 - type: manhattan_spearman value: 84.87482549674115 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.09415584415584 - type: f1 value: 86.05173549773973 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 40.49773000165541 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.909633073998876 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 49.481 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 47.449999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 59.227 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 37.729 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 29.673 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 44.278 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 43.218 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 40.63741666666667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 33.341 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 29.093999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 40.801 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 40.114 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 33.243 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: ndcg_at_10 value: 29.958000000000002 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: ndcg_at_10 value: 41.004000000000005 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.150000000000006 - type: f1 value: 43.69803436468346 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: ndcg_at_10 value: 88.532 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: ndcg_at_10 value: 44.105 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: ndcg_at_10 value: 70.612 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 93.9672 - type: ap value: 90.72947025321227 - type: f1 value: 93.96271599852622 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: test revision: None metrics: - type: ndcg_at_10 value: 43.447 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.92476060191517 - type: f1 value: 94.69383758972194 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 78.8873689010488 - type: f1 value: 62.537485052253885 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.51244115669132 - type: f1 value: 72.40074466830153 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.00470746469401 - type: f1 value: 79.03758200183096 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 36.183215937303736 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 33.443759055792135 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.58713095176127 - type: mrr value: 33.7326038566206 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: ndcg_at_10 value: 36.417 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: ndcg_at_10 value: 63.415 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: ndcg_at_10 value: 88.924 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 58.10997801688676 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.02444843766075 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: ndcg_at_10 value: 19.339000000000002 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.61540076033945 - type: cos_sim_spearman value: 82.1820253476181 - type: euclidean_pearson value: 83.73901215845989 - type: euclidean_spearman value: 82.182021064594 - type: manhattan_pearson value: 83.76685139192031 - type: manhattan_spearman value: 82.14074705306663 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.62241109228789 - type: cos_sim_spearman value: 77.62042143066208 - type: euclidean_pearson value: 82.77237785274072 - type: euclidean_spearman value: 77.62042142290566 - type: manhattan_pearson value: 82.70945589621266 - type: manhattan_spearman value: 77.57245632826351 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.8307075352031 - type: cos_sim_spearman value: 85.15620774806095 - type: euclidean_pearson value: 84.21956724564915 - type: euclidean_spearman value: 85.15620774806095 - type: manhattan_pearson value: 84.0677597021641 - type: manhattan_spearman value: 85.02572172855729 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.33749463516592 - type: cos_sim_spearman value: 80.01967438481185 - type: euclidean_pearson value: 82.16884494022196 - type: euclidean_spearman value: 80.01967218194336 - type: manhattan_pearson value: 81.94431512413773 - type: manhattan_spearman value: 79.81636247503731 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.2070761097028 - type: cos_sim_spearman value: 88.92297656560552 - type: euclidean_pearson value: 87.95961374550303 - type: euclidean_spearman value: 88.92298798854765 - type: manhattan_pearson value: 87.85515971478168 - type: manhattan_spearman value: 88.8100644762342 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.48103354546488 - type: cos_sim_spearman value: 86.91850928862898 - type: euclidean_pearson value: 86.06766986527145 - type: euclidean_spearman value: 86.91850928862898 - type: manhattan_pearson value: 86.02705585360717 - type: manhattan_spearman value: 86.86666545434721 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 90.30267248880148 - type: cos_sim_spearman value: 90.08752166657892 - type: euclidean_pearson value: 90.4697525265135 - type: euclidean_spearman value: 90.08752166657892 - type: manhattan_pearson value: 90.57174978064741 - type: manhattan_spearman value: 90.212834942229 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.10616236380835 - type: cos_sim_spearman value: 66.81483164137016 - type: euclidean_pearson value: 68.48505128040803 - type: euclidean_spearman value: 66.81483164137016 - type: manhattan_pearson value: 68.46133268524885 - type: manhattan_spearman value: 66.83684227990202 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.12768629069949 - type: cos_sim_spearman value: 88.78683817318573 - type: euclidean_pearson value: 88.47603251297261 - type: euclidean_spearman value: 88.78683817318573 - type: manhattan_pearson value: 88.46483630890225 - type: manhattan_spearman value: 88.76593424921617 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.30886658431281 - type: mrr value: 95.5964251797585 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: ndcg_at_10 value: 70.04599999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.87524752475248 - type: cos_sim_ap value: 96.79160651306724 - type: cos_sim_f1 value: 93.57798165137615 - type: cos_sim_precision value: 95.42619542619542 - type: cos_sim_recall value: 91.8 - type: dot_accuracy value: 99.87524752475248 - type: dot_ap value: 96.79160651306724 - type: dot_f1 value: 93.57798165137615 - type: dot_precision value: 95.42619542619542 - type: dot_recall value: 91.8 - type: euclidean_accuracy value: 99.87524752475248 - type: euclidean_ap value: 96.79160651306724 - type: euclidean_f1 value: 93.57798165137615 - type: euclidean_precision value: 95.42619542619542 - type: euclidean_recall value: 91.8 - type: manhattan_accuracy value: 99.87326732673267 - type: manhattan_ap value: 96.7574606340297 - type: manhattan_f1 value: 93.45603271983639 - type: manhattan_precision value: 95.60669456066945 - type: manhattan_recall value: 91.4 - type: max_accuracy value: 99.87524752475248 - type: max_ap value: 96.79160651306724 - type: max_f1 value: 93.57798165137615 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.12288811917144 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.22267280169542 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.39780995606098 - type: mrr value: 53.26826563958916 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.15118979569649 - type: cos_sim_spearman value: 30.99428921914572 - type: dot_pearson value: 31.151189338601924 - type: dot_spearman value: 30.99428921914572 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: ndcg_at_10 value: 83.372 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: ndcg_at_10 value: 32.698 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.1998 - type: ap value: 14.646205259325157 - type: f1 value: 54.96172518137252 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.176004527447645 - type: f1 value: 62.48549068096645 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 50.13767789739772 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.38016331882935 - type: cos_sim_ap value: 75.1635976260804 - type: cos_sim_f1 value: 69.29936305732484 - type: cos_sim_precision value: 66.99507389162561 - type: cos_sim_recall value: 71.76781002638522 - type: dot_accuracy value: 86.38016331882935 - type: dot_ap value: 75.16359359202374 - type: dot_f1 value: 69.29936305732484 - type: dot_precision value: 66.99507389162561 - type: dot_recall value: 71.76781002638522 - type: euclidean_accuracy value: 86.38016331882935 - type: euclidean_ap value: 75.16360246558416 - type: euclidean_f1 value: 69.29936305732484 - type: euclidean_precision value: 66.99507389162561 - type: euclidean_recall value: 71.76781002638522 - type: manhattan_accuracy value: 86.27883411813792 - type: manhattan_ap value: 75.02872038741897 - type: manhattan_f1 value: 69.29256284011403 - type: manhattan_precision value: 68.07535641547861 - type: manhattan_recall value: 70.55408970976254 - type: max_accuracy value: 86.38016331882935 - type: max_ap value: 75.16360246558416 - type: max_f1 value: 69.29936305732484 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.39729110878255 - type: cos_sim_ap value: 86.48560260020555 - type: cos_sim_f1 value: 79.35060602690982 - type: cos_sim_precision value: 76.50632549496105 - type: cos_sim_recall value: 82.41453649522637 - type: dot_accuracy value: 89.39729110878255 - type: dot_ap value: 86.48559829915334 - type: dot_f1 value: 79.35060602690982 - type: dot_precision value: 76.50632549496105 - type: dot_recall value: 82.41453649522637 - type: euclidean_accuracy value: 89.39729110878255 - type: euclidean_ap value: 86.48559993122497 - type: euclidean_f1 value: 79.35060602690982 - type: euclidean_precision value: 76.50632549496105 - type: euclidean_recall value: 82.41453649522637 - type: manhattan_accuracy value: 89.36042224550782 - type: manhattan_ap value: 86.47238558562499 - type: manhattan_f1 value: 79.24500641378047 - type: manhattan_precision value: 75.61726236273344 - type: manhattan_recall value: 83.23837388358484 - type: max_accuracy value: 89.39729110878255 - type: max_ap value: 86.48560260020555 - type: max_f1 value: 79.35060602690982 --- # Cohere embed-multilingual-v3.0 This repository contains the tokenizer for the Cohere `embed-multilingual-v3.0` model. See our blogpost [Cohere Embed V3](https://txt.cohere.com/introducing-embed-v3/) for more details on this model. You can use the embedding model either via the Cohere API, AWS SageMaker or in your private deployments. ## Usage Cohere API The following code snippet shows the usage of the Cohere API. Install the cohere SDK via: ``` pip install -U cohere ``` Get your free API key on: www.cohere.com ```python # This snippet shows and example how to use the Cohere Embed V3 models for semantic search. # Make sure to have the Cohere SDK in at least v4.30 install: pip install -U cohere # Get your API key from: www.cohere.com import cohere import numpy as np cohere_key = "{YOUR_COHERE_API_KEY}" #Get your API key from www.cohere.com co = cohere.Client(cohere_key) docs = ["The capital of France is Paris", "PyTorch is a machine learning framework based on the Torch library.", "The average cat lifespan is between 13-17 years"] #Encode your documents with input type 'search_document' doc_emb = co.embed(docs, input_type="search_document", model="embed-multilingual-v3.0").embeddings doc_emb = np.asarray(doc_emb) #Encode your query with input type 'search_query' query = "What is Pytorch" query_emb = co.embed([query], input_type="search_query", model="embed-multilingual-v3.0").embeddings query_emb = np.asarray(query_emb) query_emb.shape #Compute the dot product between query embedding and document embedding scores = np.dot(query_emb, doc_emb.T)[0] #Find the highest scores max_idx = np.argsort(-scores) print(f"Query: {query}") for idx in max_idx: print(f"Score: {scores[idx]:.2f}") print(docs[idx]) print("--------") ``` ## Usage AWS SageMaker The embedding model can be privately deployed in your AWS Cloud using our [AWS SageMaker marketplace offering](https://aws.amazon.com/marketplace/pp/prodview-z6huxszcqc25i). It runs privately in your VPC, with latencies as low as 5ms for query encoding. ## Usage AWS Bedrock Soon the model will also be available via AWS Bedrock. Stay tuned ## Private Deployment You want to run the model on your own hardware? [Contact Sales](https://cohere.com/contact-sales) to learn more. ## Supported Languages This model was trained on nearly 1B English training pairs and nearly 0.5B Non-English training pairs from 100+ languages. Evaluation results can be found in the [Embed V3.0 Benchmark Results spreadsheet](https://docs.google.com/spreadsheets/d/1w7gnHWMDBdEUrmHgSfDnGHJgVQE5aOiXCCwO3uNH_mI/edit?usp=sharing).
darshan8950/falcon-7b-sharded-bf16-finetuned
darshan8950
2024-01-16T08:13:07Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:adapter:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2024-01-15T20:22:51Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: ybelkada/falcon-7b-sharded-bf16 model-index: - name: falcon-7b-sharded-bf16-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-sharded-bf16-finetuned This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 320 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tmnam20/mdeberta-v3-base-mrpc-1
tmnam20
2024-01-16T08:12:08Z
5
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:10:04Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: mdeberta-v3-base-mrpc-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/MRPC type: tmnam20/VieGLUE config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8792452830188678 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-mrpc-1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3835 - Accuracy: 0.8431 - F1: 0.8792 - Combined Score: 0.8612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Bhriganka/blue-sport-car-npx
Bhriganka
2024-01-16T08:12:03Z
0
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T08:07:42Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Blue-Sport-Car Dreambooth model trained by Bhriganka following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 213450007001 Sample pictures of this concept: ![0](https://huggingface.co/Bhriganka/blue-sport-car/resolve/main/sample_images/Untitled2.png) ![1](https://huggingface.co/Bhriganka/blue-sport-car/resolve/main/sample_images/Untitled.png)
NBA55/llama2-qlora-finetunined-4-bit-prev-and-4.14k-learning-rate-3e4
NBA55
2024-01-16T08:11:10Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-16T08:11:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
alibidaran/sql_generator
alibidaran
2024-01-16T08:10:59Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "dataset:b-mc2/sql-create-context", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-29T13:11:33Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: sql_generator results: [] datasets: - b-mc2/sql-create-context --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sql_generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.0761 | 1.81 | 1000 | 1.4913 | | 1.4004 | 3.62 | 2000 | 1.3671 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
alibidaran/llama-2-7b-sql_generator_2
alibidaran
2024-01-16T08:10:18Z
17
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "en", "dataset:b-mc2/sql-create-context", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-03T13:34:02Z
--- license: apache-2.0 datasets: - b-mc2/sql-create-context language: - en tags: - code ---
tmnam20/mdeberta-v3-base-mnli-100
tmnam20
2024-01-16T08:10:04Z
5
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:microsoft/mdeberta-v3-base", "base_model:finetune:microsoft/mdeberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T08:08:10Z
--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-mnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/MNLI type: tmnam20/VieGLUE config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.8412327095199349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-mnli-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - Accuracy: 0.8412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5194 | 0.41 | 5000 | 0.4901 | 0.8127 | | 0.4861 | 0.81 | 10000 | 0.4713 | 0.8114 | | 0.3993 | 1.22 | 15000 | 0.4508 | 0.8285 | | 0.3867 | 1.63 | 20000 | 0.4546 | 0.8302 | | 0.3496 | 2.04 | 25000 | 0.4765 | 0.8295 | | 0.3376 | 2.44 | 30000 | 0.4828 | 0.8315 | | 0.3104 | 2.85 | 35000 | 0.4852 | 0.8314 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
alibidaran/llama-2-7b-virtual_doctor
alibidaran
2024-01-16T08:04:10Z
10
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "medical", "en", "dataset:jayantdocplix/medical_dataset", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-06T13:45:03Z
--- license: apache-2.0 language: - en tags: - medical datasets: - jayantdocplix/medical_dataset --- # This model is llama2-based and acts as a doctor who can detect diseases and recommend various prescriptions.
alibidaran/Farsi-llama2
alibidaran
2024-01-16T08:03:03Z
9
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "fa", "dataset:sinarashidi/alpaca-persian", "doi:10.57967/hf/2254", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-06T10:33:28Z
--- license: apache-2.0 datasets: - sinarashidi/alpaca-persian language: - fa --- # This model is fined-tuned version of llama2 for Persian Alpaca style prompts
rachittshah/mistral-function-calling-7b
rachittshah
2024-01-16T08:03:03Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "gorilla-llm/gorilla-openfunctions-v1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T07:59:36Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - gorilla-llm/gorilla-openfunctions-v1 --- # mistral-function-calling-7b mistral-function-calling-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [gorilla-llm/gorilla-openfunctions-v1](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v1) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 parameters: density: .5 weight: .7 - model: gorilla-llm/gorilla-openfunctions-v1 parameters: density: .5 weight: 1 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "rachittshah/mistral-function-calling-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Seokeon/full_pp_rc_car
Seokeon
2024-01-16T07:58:44Z
0
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T06:50:50Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Seokeon/full_pp_rc_car This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
fuyu-quant/ibl-regression-ver2-all
fuyu-quant
2024-01-16T07:54:40Z
2
0
peft
[ "peft", "region:us" ]
null
2024-01-16T07:54:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
rccmsu/ruadapt_mistral_saiga_7b_v0.1
rccmsu
2024-01-16T07:52:01Z
657
4
peft
[ "peft", "text-generation", "ru", "arxiv:2312.02598", "license:apache-2.0", "region:us" ]
text-generation
2024-01-15T15:54:12Z
--- library_name: peft license: apache-2.0 language: - ru pipeline_tag: text-generation --- Use in the same way as IlyaGusev/saiga2_7b_lora. Up to 60% faster generation and 35% training (on identical russian text sequences!) with HF because of different tokenizer. rccmsu/ruadapt_mistral_7b_v0.1 trained on saiga corpuses. The quality is slightly worse than the IlyaGusev/saiga_mistral_7b_lora, but faster because of tokenizer. WARNING! Load tokenizer as AutoTokenizer.from_pretrained(model_path, use_fast=True) Paper: Tikhomirov M., Chernyshev D. Impact of Tokenization on LLaMa Russian Adaptation //arXiv preprint arXiv:2312.02598. – 2023.
LoneStriker/Yi-34Bx2-MoE-60B-3.0bpw-h6-exl2
LoneStriker
2024-01-16T07:46:31Z
4
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T07:36:53Z
--- license: cc-by-nc-4.0 --- # Yi based MOE 2x34B with mixtral architecture Highest score Model ranked by Open LLM Leaderboard (2024-01-11) * [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
hardikJ11/bart-base-finetuned-cnn-news
hardikJ11
2024-01-16T07:45:05Z
12
3
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-16T06:17:42Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bart-base-finetuned-cnn-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 21.8948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-cnn-news This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.8560 - Rouge1: 21.8948 - Rouge2: 9.7157 - Rougel: 17.9348 - Rougelsum: 20.5347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00056 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.7005 | 1.0 | 718 | 2.9872 | 21.7279 | 9.0406 | 17.392 | 20.0627 | | 2.937 | 2.0 | 1436 | 2.8590 | 21.3056 | 8.5254 | 17.2338 | 20.0403 | | 2.2642 | 3.0 | 2154 | 2.6744 | 21.277 | 9.6162 | 17.7775 | 20.1688 | | 1.5774 | 4.0 | 2872 | 2.7020 | 21.7458 | 9.846 | 18.1649 | 20.7067 | | 1.0174 | 5.0 | 3590 | 2.8560 | 21.8948 | 9.7157 | 17.9348 | 20.5347 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
radames/sd-21-DPO-LoRA
radames
2024-01-16T07:44:11Z
144
6
diffusers
[ "diffusers", "text-to-image", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "region:us" ]
text-to-image
2024-01-07T20:04:09Z
--- library_name: diffusers pipeline_tag: text-to-image inference: true base_model: stabilityai/stable-diffusion-2-1 --- # DPO LoRA Stable Diffusion v2-1 Model trained with LoRA implementation of Diffusion DPO Read more [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo) Base Model: https://huggingface.co/stabilityai/stable-diffusion-2-1 ## Running with [🧨 diffusers library](https://github.com/huggingface/diffusers) ```python from diffusers import DiffusionPipeline from diffusers.utils import make_image_grid import torch pipe = DiffusionPipeline.from_pretrained( "stabilityai/sd-turbo", # SD Turbo is a destilled version of Stable Diffusion 2.1 # "stabilityai/stable-diffusion-2-1", # for the original stable diffusion 2.1 model torch_dtype=torch.float16, variant="fp16" ) pipe.to("cuda") pipe.load_lora_weights("radames/sd-21-DPO-LoRA", adapter_name="dpo-lora-sd21") pipe.set_adapters(["dpo-lora-sd21"], adapter_weights=[1.0]) # you can play with adapter_weights to increase the effect of the LoRA model seed = 123123 prompt = "portrait headshot professional of elon musk" negative_prompt = "3d render, cartoon, drawing, art, low light" generator = torch.Generator().manual_seed(seed) images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=512, height=512, num_inference_steps=2, generator=generator, guidance_scale=1.0, num_images_per_prompt=4 ).images make_image_grid(images, 1, 4) ``` ## Guidance Scale vs LoRA weights ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/DoSPw5PiShRckeqjVperr.jpeg) ## Examples Left Withoud DPO right with DPO LoRA <img src=https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/R8E0hRpWIE6OhhtvgJeEU.png style="max-width: 60rem;"> <img src=https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/Eg4LbyxCfhmsk2INzqODw.png style="max-width: 60rem;"> <img src=https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/GD7KumSCNweBWMJ1TArI-.png style="max-width: 60rem;"> <img src=https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/SO7QoA9lZJY9hI0U4fBLy.png style="max-width: 60rem;"> <img src=https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/ZWbQwIQ5OklEgF9RW581R.png style="max-width: 60rem;">
s3nh/Mistral-7B-Evol-Instruct-Chinese-GGUF
s3nh
2024-01-16T07:43:25Z
15
6
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-04T10:38:48Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/s3nh/Mistral-7B-Evol-Instruct-Chinese). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. Me: Ok, you can see the video [https://youtu.be/q8GhYRlQ1dU](https://youtu.be/q8GhYRlQ1dU) I did yesterday, it may help you understand. # Original model card
damojay/taml
damojay
2024-01-16T07:38:02Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-16T07:37:42Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
FelixChao/NinjaDolphin-7B
FelixChao
2024-01-16T07:25:18Z
1,375
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "beowolx/CodeNinja-1.0-OpenChat-7B", "beowolx/MistralHermes-CodePro-7B-v1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-13T14:14:49Z
--- license: apache-2.0 tags: - merge - beowolx/CodeNinja-1.0-OpenChat-7B - beowolx/MistralHermes-CodePro-7B-v1 model-index: - name: NinjaDolphin-7B results: - task: type: text-generation # Required. Example: automatic-speech-recognition dataset: type: openai_humaneval # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: HumanEval # Required. A pretty name for the dataset. Example: Common Voice (French) metrics: - type: pass@1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 52.4390243902439 # Required. Example: 20.90 name: pass@1 # Optional. Example: Test WER verified: false --- # NinjaDolphin-7B NinjaDolphin-7B is a merge of the following models using: * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1) Improving coding ability from [FelixChao/WizardDolphin-7B](https://huggingface.co/FelixChao/WizardDolphin-7B). ## HumanEval (uninstructed and no post-process) | Metric | Value | | --- | --- | | humaneval-python |52.4390243902439| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a53b0747a04f0512941b6f/NIALzUR53HC1eB1i_xwKD.png) ## 🧩 Configuration ```yaml models: - model: FelixChao/WizardDolphin-7B - model: beowolx/CodeNinja-1.0-OpenChat-7B parameters: density: 0.53 weight: 0.3 - model: beowolx/MistralHermes-CodePro-7B-v1 parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: FelixChao/WizardDolphin-7B parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "FelixChao/NinjaDolphin-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__NinjaDolphin-7B) | Metric |Value| |---------------------------------|----:| |Avg. |69.74| |AI2 Reasoning Challenge (25-Shot)|65.61| |HellaSwag (10-Shot) |85.35| |MMLU (5-Shot) |64.43| |TruthfulQA (0-shot) |54.94| |Winogrande (5-shot) |80.27| |GSM8k (5-shot) |67.85|
brucethemoose/Capybara-Fixed-Temp
brucethemoose
2024-01-16T07:15:10Z
8
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "sft", "Yi-34B-200K", "eng", "dataset:LDJnr/LessWrong-Amplify-Instruct", "dataset:LDJnr/Pure-Dove", "dataset:LDJnr/Verified-Camel", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T06:19:35Z
--- language: - eng tags: - sft - Yi-34B-200K license: - mit datasets: - LDJnr/LessWrong-Amplify-Instruct - LDJnr/Pure-Dove - LDJnr/Verified-Camel --- ## **Nous-Capybara-34B V1.9** **This is trained on the Yi-34B model with 200K context length, for 3 epochs on the Capybara dataset!** **First 34B Nous model and first 200K context length Nous model!** The Capybara series is the first Nous collection of models made by fine-tuning mostly on data created by Nous in-house. We leverage our novel data synthesis technique called Amplify-instruct (Paper coming soon), the seed distribution and synthesis method are comprised of a synergistic combination of top performing existing data synthesis techniques and distributions used for SOTA models such as Airoboros, Evol-Instruct(WizardLM), Orca, Vicuna, Know_Logic, Lamini, FLASK and others, all into one lean holistically formed methodology for the dataset and model. The seed instructions used for the start of synthesized conversations are largely based on highly regarded datasets like Airoboros, Know logic, EverythingLM, GPTeacher and even entirely new seed instructions derived from posts on the website LessWrong, as well as being supplemented with certain in-house multi-turn datasets like Dove(A successor to Puffin). While performing great in it's current state, the current dataset used for fine-tuning is entirely contained within 20K training examples, this is 10 times smaller than many similar performing current models, this is signficant when it comes to scaling implications for our next generation of models once we scale our novel syntheiss methods to significantly more examples. ## Process of creation and special thank yous! This model was fine-tuned by Nous Research as part of the Capybara/Amplify-Instruct project led by Luigi D.(LDJ) (Paper coming soon), as well as significant dataset formation contributions by J-Supha and general compute and experimentation management by Jeffrey Q. during ablations. Special thank you to **A16Z** for sponsoring our training, as well as **Yield Protocol** for their support in financially sponsoring resources during the R&D of this project. ## Thank you to those of you that have indirectly contributed! While most of the tokens within Capybara are newly synthsized and part of datasets like Puffin/Dove, we would like to credit the single-turn datasets we leveraged as seeds that are used to generate the multi-turn data as part of the Amplify-Instruct synthesis. The datasets shown in green below are datasets that we sampled from to curate seeds that are used during Amplify-Instruct synthesis for this project. Datasets in Blue are in-house curations that previously existed prior to Capybara. ![Capybara](https://i.imgur.com/yB58OoD.jpeg) ## Prompt Format The reccomended model usage is: Prefix: ``USER:`` Suffix: ``ASSISTANT:`` Stop token: ``</s>`` ## Mutli-Modality! - We currently have a Multi-modal model based on Capybara V1.9! https://huggingface.co/NousResearch/Obsidian-3B-V0.5 it is currently only available as a 3B sized model but larger versions coming! ## Notable Features: - Uses Yi-34B model as the base which is trained for 200K context length! - Over 60% of the dataset is comprised of multi-turn conversations.(Most models are still only trained for single-turn conversations and no back and forths!) - Over 1,000 tokens average per conversation example! (Most models are trained on conversation data that is less than 300 tokens per example.) - Able to effectively do complex summaries of advanced topics and studies. (trained on hundreds of advanced difficult summary tasks developed in-house) - Ability to recall information upto late 2022 without internet. - Includes a portion of conversational data synthesized from less wrong posts, discussing very in-depth details and philosophies about the nature of reality, reasoning, rationality, self-improvement and related concepts. ## Example Outputs from Capybara V1.9 7B version! (examples from 34B coming soon): ![Capybara](https://img001.prntscr.com/file/img001/T9yYxR1xQSaK_UGdy3t2Cw.png) ![Capybara](https://img001.prntscr.com/file/img001/DQXqmKbsQQOIcgny1eoGNA.png) ![Capybara](https://img001.prntscr.com/file/img001/85X3L9ZxTsOKo3fUQ7GRVA.png) ## Benchmarks! (Coming soon!) ## Future model sizes Capybara V1.9 now currently has a 3B, 7B and 34B size, and we plan to eventually have a 13B and 70B version in the future, as well as a potential 1B version based on phi-1.5 or Tiny Llama. ## How you can help! In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations. If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord! ## Dataset contamination. We have checked the capybara dataset for contamination for several of the most popular datasets and can confirm that there is no contaminaton found. We leveraged minhash to check for 100%, 99%, 98% and 97% similarity matches between our data and the questions and answers in benchmarks, we found no exact matches, nor did we find any matches down to the 97% similarity level. The following are benchmarks we checked for contamination against our dataset: - HumanEval - AGIEval - TruthfulQA - MMLU - GPT4All
tmnam20/bert-base-multilingual-cased-vnrte-10
tmnam20
2024-01-16T07:13:53Z
12
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:12:41Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-vnrte-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VNRTE type: tmnam20/VieGLUE config: vnrte split: validation args: vnrte metrics: - name: Accuracy type: accuracy value: 0.999681224099458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-vnrte-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/VNRTE dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0044 | 1.28 | 500 | 0.0083 | 0.9978 | | 0.0001 | 2.55 | 1000 | 0.0026 | 0.9994 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
nullne/ppo-Huggy
nullne
2024-01-16T07:12:48Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-16T07:12:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nullne/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tmnam20/bert-base-multilingual-cased-qnli-10
tmnam20
2024-01-16T07:12:41Z
10
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:11:29Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-qnli-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.891085484166209 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-qnli-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3198 - Accuracy: 0.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4249 | 0.15 | 500 | 0.3656 | 0.8464 | | 0.3989 | 0.31 | 1000 | 0.3319 | 0.8581 | | 0.3557 | 0.46 | 1500 | 0.3096 | 0.8688 | | 0.3257 | 0.61 | 2000 | 0.3055 | 0.8700 | | 0.3403 | 0.76 | 2500 | 0.2893 | 0.8786 | | 0.311 | 0.92 | 3000 | 0.2919 | 0.8841 | | 0.2424 | 1.07 | 3500 | 0.2974 | 0.8838 | | 0.2663 | 1.22 | 4000 | 0.2966 | 0.8845 | | 0.2486 | 1.37 | 4500 | 0.2904 | 0.8828 | | 0.2442 | 1.53 | 5000 | 0.2919 | 0.8810 | | 0.252 | 1.68 | 5500 | 0.2781 | 0.8880 | | 0.2514 | 1.83 | 6000 | 0.2754 | 0.8867 | | 0.254 | 1.99 | 6500 | 0.2692 | 0.8882 | | 0.1632 | 2.14 | 7000 | 0.3349 | 0.8867 | | 0.1835 | 2.29 | 7500 | 0.3126 | 0.8902 | | 0.1725 | 2.44 | 8000 | 0.3145 | 0.8902 | | 0.1624 | 2.6 | 8500 | 0.3272 | 0.8876 | | 0.1751 | 2.75 | 9000 | 0.3240 | 0.8882 | | 0.1653 | 2.9 | 9500 | 0.3235 | 0.8900 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-sst2-1
tmnam20
2024-01-16T07:10:18Z
13
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:09:04Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-sst2-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8841743119266054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-sst2-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4333 - Accuracy: 0.8842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3821 | 0.24 | 500 | 0.3799 | 0.8314 | | 0.3198 | 0.48 | 1000 | 0.4079 | 0.8417 | | 0.272 | 0.71 | 1500 | 0.3721 | 0.8670 | | 0.2847 | 0.95 | 2000 | 0.3885 | 0.8567 | | 0.1893 | 1.19 | 2500 | 0.4329 | 0.8589 | | 0.2124 | 1.43 | 3000 | 0.4133 | 0.8532 | | 0.2208 | 1.66 | 3500 | 0.3665 | 0.8773 | | 0.2219 | 1.9 | 4000 | 0.4164 | 0.8601 | | 0.1562 | 2.14 | 4500 | 0.4350 | 0.8635 | | 0.1399 | 2.38 | 5000 | 0.4571 | 0.8761 | | 0.1399 | 2.61 | 5500 | 0.4346 | 0.8796 | | 0.1403 | 2.85 | 6000 | 0.4325 | 0.8819 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-vsfc-1
tmnam20
2024-01-16T07:03:07Z
94
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:01:59Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-vsfc-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VSFC type: tmnam20/VieGLUE config: vsfc split: validation args: vsfc metrics: - name: Accuracy type: accuracy value: 0.936197094125079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-vsfc-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/VSFC dataset. It achieves the following results on the evaluation set: - Loss: 0.2403 - Accuracy: 0.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1942 | 1.4 | 500 | 0.2416 | 0.9242 | | 0.1297 | 2.79 | 1000 | 0.2395 | 0.9337 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-vtoc-1
tmnam20
2024-01-16T07:01:59Z
95
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T07:00:47Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-vtoc-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VTOC type: tmnam20/VieGLUE config: vtoc split: validation args: vtoc metrics: - name: Accuracy type: accuracy value: 0.8083014746040416 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-vtoc-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/VTOC dataset. It achieves the following results on the evaluation set: - Loss: 0.6734 - Accuracy: 0.8083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4828 | 2.19 | 500 | 0.7023 | 0.8012 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-qnli-100
tmnam20
2024-01-16T07:00:47Z
95
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:59:30Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-qnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8885227896760022 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-qnli-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Accuracy: 0.8885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4041 | 0.15 | 500 | 0.3611 | 0.8488 | | 0.3784 | 0.31 | 1000 | 0.3232 | 0.8603 | | 0.364 | 0.46 | 1500 | 0.3128 | 0.8642 | | 0.364 | 0.61 | 2000 | 0.3020 | 0.8702 | | 0.3236 | 0.76 | 2500 | 0.2960 | 0.8768 | | 0.3475 | 0.92 | 3000 | 0.2895 | 0.8816 | | 0.252 | 1.07 | 3500 | 0.3019 | 0.8812 | | 0.261 | 1.22 | 4000 | 0.2783 | 0.8893 | | 0.2718 | 1.37 | 4500 | 0.2880 | 0.8832 | | 0.2407 | 1.53 | 5000 | 0.3017 | 0.8812 | | 0.254 | 1.68 | 5500 | 0.2775 | 0.8827 | | 0.2611 | 1.83 | 6000 | 0.2837 | 0.8812 | | 0.257 | 1.99 | 6500 | 0.2816 | 0.8852 | | 0.1645 | 2.14 | 7000 | 0.3323 | 0.8845 | | 0.1679 | 2.29 | 7500 | 0.3568 | 0.8825 | | 0.1643 | 2.44 | 8000 | 0.3203 | 0.8889 | | 0.1662 | 2.6 | 8500 | 0.3240 | 0.8878 | | 0.1558 | 2.75 | 9000 | 0.3302 | 0.8856 | | 0.1614 | 2.9 | 9500 | 0.3299 | 0.8872 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
afrideva/phi-2-code-instruct-GGUF
afrideva
2024-01-16T06:59:58Z
29
1
null
[ "gguf", "code", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "en", "dataset:sahil2801/CodeAlpaca-20k", "arxiv:1910.09700", "base_model:parsak/phi-2-code-instruct", "base_model:quantized:parsak/phi-2-code-instruct", "license:mit", "region:us" ]
text-generation
2024-01-16T06:47:16Z
--- base_model: parsak/phi-2-code-instruct datasets: - sahil2801/CodeAlpaca-20k inference: false language: - en license: mit model_creator: parsak model_name: phi-2-code-instruct pipeline_tag: text-generation quantized_by: afrideva tags: - code - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # parsak/phi-2-code-instruct-GGUF Quantized GGUF model files for [phi-2-code-instruct](https://huggingface.co/parsak/phi-2-code-instruct) from [parsak](https://huggingface.co/parsak) | Name | Quant method | Size | | ---- | ---- | ---- | | [phi-2-code-instruct.fp16.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.fp16.gguf) | fp16 | 5.56 GB | | [phi-2-code-instruct.q2_k.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q2_k.gguf) | q2_k | 1.11 GB | | [phi-2-code-instruct.q3_k_m.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q3_k_m.gguf) | q3_k_m | 1.43 GB | | [phi-2-code-instruct.q4_k_m.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q4_k_m.gguf) | q4_k_m | 1.74 GB | | [phi-2-code-instruct.q5_k_m.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q5_k_m.gguf) | q5_k_m | 2.00 GB | | [phi-2-code-instruct.q6_k.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q6_k.gguf) | q6_k | 2.29 GB | | [phi-2-code-instruct.q8_0.gguf](https://huggingface.co/afrideva/phi-2-code-instruct-GGUF/resolve/main/phi-2-code-instruct.q8_0.gguf) | q8_0 | 2.96 GB | ## Original Model Card: # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Parsa K.] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [English, Python (Responses in other programming languages might be inconsistent)] - **License:** [MIT] - **Finetuned from model [optional]:** [[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tmnam20/bert-base-multilingual-cased-qqp-10
tmnam20
2024-01-16T06:59:29Z
93
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:58:07Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-qqp-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8885975760573831 - name: F1 type: f1 value: 0.8473737716028464 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-qqp-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3064 - Accuracy: 0.8886 - F1: 0.8474 - Combined Score: 0.8680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3263 | 0.44 | 5000 | 0.3272 | 0.8557 | 0.8081 | 0.8319 | | 0.3084 | 0.88 | 10000 | 0.2968 | 0.8680 | 0.8191 | 0.8436 | | 0.2424 | 1.32 | 15000 | 0.2998 | 0.8768 | 0.8324 | 0.8546 | | 0.2171 | 1.76 | 20000 | 0.2995 | 0.8847 | 0.8449 | 0.8648 | | 0.1796 | 2.2 | 25000 | 0.3124 | 0.8857 | 0.8424 | 0.8640 | | 0.1811 | 2.64 | 30000 | 0.2963 | 0.8883 | 0.8477 | 0.8680 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
thanhnew2001/starcoder-7b-taipy25
thanhnew2001
2024-01-16T06:59:25Z
4
0
transformers
[ "transformers", "safetensors", "gpt_bigcode", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T04:53:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tmnam20/bert-base-multilingual-cased-vtoc-10
tmnam20
2024-01-16T06:58:06Z
97
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:56:57Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-vtoc-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VTOC type: tmnam20/VieGLUE config: vtoc split: validation args: vtoc metrics: - name: Accuracy type: accuracy value: 0.8143091206990716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-vtoc-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/VTOC dataset. It achieves the following results on the evaluation set: - Loss: 0.6605 - Accuracy: 0.8143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4988 | 2.19 | 500 | 0.6809 | 0.8061 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-vtoc-100
tmnam20
2024-01-16T06:56:56Z
95
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:55:47Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-vtoc-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/VTOC type: tmnam20/VieGLUE config: vtoc split: validation args: vtoc metrics: - name: Accuracy type: accuracy value: 0.813216821409066 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-vtoc-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/VTOC dataset. It achieves the following results on the evaluation set: - Loss: 0.6706 - Accuracy: 0.8132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4716 | 2.19 | 500 | 0.6870 | 0.8083 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-rte-100
tmnam20
2024-01-16T06:55:47Z
97
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:54:35Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-rte-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/RTE type: tmnam20/VieGLUE config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.7075812274368231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-rte-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6350 - Accuracy: 0.7076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-rte-10
tmnam20
2024-01-16T06:51:01Z
98
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:49:53Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-rte-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/RTE type: tmnam20/VieGLUE config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.6498194945848376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-rte-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6733 - Accuracy: 0.6498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Seokeon/full_pp_berry_bowl
Seokeon
2024-01-16T06:50:27Z
0
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-16T04:57:00Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks bowl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Seokeon/full_pp_berry_bowl This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks bowl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
tmnam20/bert-base-multilingual-cased-sst2-10
tmnam20
2024-01-16T06:49:52Z
98
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:48:42Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-sst2-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8841743119266054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-sst2-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4234 - Accuracy: 0.8842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4066 | 0.24 | 500 | 0.3869 | 0.8291 | | 0.3414 | 0.48 | 1000 | 0.3499 | 0.8486 | | 0.3133 | 0.71 | 1500 | 0.3743 | 0.8509 | | 0.2797 | 0.95 | 2000 | 0.4119 | 0.8475 | | 0.236 | 1.19 | 2500 | 0.3891 | 0.8670 | | 0.2202 | 1.43 | 3000 | 0.3640 | 0.8739 | | 0.1889 | 1.66 | 3500 | 0.3829 | 0.8681 | | 0.1847 | 1.9 | 4000 | 0.3687 | 0.8796 | | 0.1288 | 2.14 | 4500 | 0.4524 | 0.8807 | | 0.1478 | 2.38 | 5000 | 0.4259 | 0.875 | | 0.1761 | 2.61 | 5500 | 0.4060 | 0.8819 | | 0.1487 | 2.85 | 6000 | 0.4408 | 0.8807 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
JaehwiJeon/videomae-base-finetuned-ucf101-subset
JaehwiJeon
2024-01-16T06:49:23Z
48
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-01-16T06:13:31Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2485 - Accuracy: 0.9032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7587 | 0.25 | 75 | 1.2436 | 0.6714 | | 0.9272 | 1.25 | 150 | 0.6259 | 0.7857 | | 0.2074 | 2.25 | 225 | 0.4821 | 0.8429 | | 0.2188 | 3.25 | 300 | 0.1336 | 0.9571 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
tmnam20/bert-base-multilingual-cased-cola-10
tmnam20
2024-01-16T06:48:42Z
98
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:47:22Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - matthews_correlation model-index: - name: bert-base-multilingual-cased-cola-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/COLA type: tmnam20/VieGLUE config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.1009230023823325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-cola-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6448 - Matthews Correlation: 0.1009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5762 | 1.87 | 500 | 0.6181 | 0.0372 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
rudih-com/Llama-2-13b-chat-hf-fine-tuned
rudih-com
2024-01-16T06:44:34Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-2", "sharded", "fine-tuned", "conversational", "en", "arxiv:2307.09288", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T06:16:22Z
--- language: - en pipeline_tag: text-generation tags: - llama - llama-2 - sharded - fine-tuned --- language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 - sharded --- # **llama-2-chat-7b-hf (sharded)** This is a sharded version of Meta's Llama 2 chat 7b model, specifically the hugging face version. All details below are copied from the original repo. Colab notebook for sharding: https://colab.research.google.com/drive/1f1q9qc56wzB_7-bjgNyLlO6f28ui1esQ Colab notebook for inference: https://colab.research.google.com/drive/1zxwaTSvd6PSHbtyaoa7tfedAS31j_N6m ## Inference with Google Colab and HuggingFace 🤗 Get started by saving your own copy of this [fLlama_Inference notebook](https://colab.research.google.com/drive/1Ow5cQ0JNv-vXsT-apCceH6Na3b4L7JyW?usp=sharing). You will be able to run inference using a free Colab notebook if you select a gpu runtime. See the notebook for more details. ~ # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
dagbs/laserxtral-GGUF
dagbs
2024-01-16T06:42:45Z
40
7
null
[ "gguf", "en", "base_model:cognitivecomputations/laserxtral", "base_model:quantized:cognitivecomputations/laserxtral", "license:cc-by-nc-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-16T05:01:06Z
--- license: cc-by-nc-2.0 base_model: cognitivecomputations/laserxtral language: - en quantized_by: dagbs --- # Laserxtral - 4x7b - GGUF - Model creator(s): [David](https://huggingface.co/DavidGF), [Fernando](https://huggingface.co/fernandofernandes) and [Eric](https://huggingface.co/ehartford) - Original model: [cognitivecomputations/laserxtral](https://huggingface.co/cognitivecomputations/laserxtral) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/646e57a5cb6ea6e6b6df1ad4/BtnWsqZnaG1I6aa-Ldkfz.webp)
tmnam20/bert-base-multilingual-cased-wnli-100
tmnam20
2024-01-16T06:42:07Z
94
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "dataset:tmnam20/VieGLUE", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T06:40:49Z
--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-wnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/WNLI type: tmnam20/VieGLUE config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5352112676056338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-wnli-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.5352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0