modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 00:39:23
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 00:39:08
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
asenella/mmnist_JNFconfig2_seed_2_ratio_05_c
|
asenella
| 2023-05-17T23:34:35Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T23:34:21Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
LoganDark/rwkv-4-raven-ggml
|
LoganDark
| 2023-05-17T23:27:57Z | 0 | 2 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T23:27:57Z |
---
license: apache-2.0
---
[Use the master branch.](https://huggingface.co/LoganDark/rwkv-4-raven-ggml/tree/master) HuggingFace won't let me set the default, sorry.
|
bprateek/product_description_generator
|
bprateek
| 2023-05-17T23:01:01Z | 106 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-04-23T16:41:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: product_description_generator
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# product_description_generator
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3303
- Rouge1: 0.1597
- Rouge2: 0.0
- Rougel: 0.1349
- Rougelsum: 0.1334
- Gen Len: 18.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 6 | 3.5039 | 0.185 | 0.0105 | 0.1573 | 0.1576 | 15.7 |
| No log | 2.0 | 12 | 3.4680 | 0.1915 | 0.0105 | 0.1747 | 0.174 | 16.9 |
| No log | 3.0 | 18 | 3.4331 | 0.1579 | 0.0105 | 0.1308 | 0.1282 | 17.4 |
| No log | 4.0 | 24 | 3.4049 | 0.1579 | 0.0105 | 0.1308 | 0.1282 | 17.8 |
| No log | 5.0 | 30 | 3.3817 | 0.1716 | 0.0091 | 0.1476 | 0.1434 | 18.5 |
| No log | 6.0 | 36 | 3.3638 | 0.1323 | 0.0 | 0.1176 | 0.116 | 17.1 |
| No log | 7.0 | 42 | 3.3497 | 0.1597 | 0.0 | 0.1349 | 0.1334 | 18.7 |
| No log | 8.0 | 48 | 3.3394 | 0.1597 | 0.0 | 0.1349 | 0.1334 | 18.7 |
| No log | 9.0 | 54 | 3.3332 | 0.1597 | 0.0 | 0.1349 | 0.1334 | 18.7 |
| No log | 10.0 | 60 | 3.3303 | 0.1597 | 0.0 | 0.1349 | 0.1334 | 18.7 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Ktang2k/poca-SoccerTwos
|
Ktang2k
| 2023-05-17T22:59:55Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-05-17T22:59:49Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: Ktang2k/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ali1627/test_experiment_small_model
|
ali1627
| 2023-05-17T22:58:02Z | 143 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-05-17T22:56:00Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `torch` libraries installed.
```bash
pip install transformers==4.28.1
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="ali1627/test_experiment_small_model",
torch_dtype=torch.float16,
trust_remote_code=True,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=2,
temperature=float(0.3),
repetition_penalty=float(1.2),
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"ali1627/test_experiment_small_model",
padding_side="left"
)
model = AutoModelForCausalLM.from_pretrained(
"ali1627/test_experiment_small_model",
torch_dtype=torch.float16,
device_map={"": "cuda:0"}
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=2,
temperature=float(0.3),
repetition_penalty=float(1.2),
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ali1627/test_experiment_small_model" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=2,
temperature=float(0.3),
repetition_penalty=float(1.2),
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
GPTNeoXForCausalLM(
(gpt_neox): GPTNeoXModel(
(embed_in): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x GPTNeoXLayer(
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(attention): GPTNeoXAttention(
(rotary_emb): RotaryEmbedding()
(query_key_value): Linear(in_features=2560, out_features=7680, bias=True)
(dense): Linear(in_features=2560, out_features=2560, bias=True)
)
(mlp): GPTNeoXMLP(
(dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True)
(dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True)
(act): GELUActivation()
)
)
)
(final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(embed_out): Linear(in_features=2560, out_features=50304, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Model Validation
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=ali1627/test_experiment_small_model --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
```
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
1darkneto8/sd-webui4
|
1darkneto8
| 2023-05-17T22:50:26Z | 0 | 0 | null |
[
"arxiv:2211.06679",
"region:us"
] | null | 2023-05-17T22:39:56Z |
# Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.

## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
## Contributing
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
|
1darkneto8/sdwebui2
|
1darkneto8
| 2023-05-17T22:35:24Z | 0 | 0 | null |
[
"arxiv:2211.06679",
"region:us"
] | null | 2023-05-17T21:52:26Z |
# Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.

## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
## Contributing
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
|
vp224/roberta-token-class
|
vp224
| 2023-05-17T22:34:28Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-14T06:19:42Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-token-class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-token-class
This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2427
- Precision: 0.8626
- Recall: 0.7448
- F1: 0.7875
- Accuracy: 0.9168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2378 | 1.0 | 1796 | 0.2433 | 0.8789 | 0.7063 | 0.7578 | 0.9121 |
| 0.1824 | 2.0 | 3592 | 0.2427 | 0.8626 | 0.7448 | 0.7875 | 0.9168 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Varunreddy/bert-token-class
|
Varunreddy
| 2023-05-17T22:34:05Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-17T18:51:57Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-token-class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-token-class
This model is a fine-tuned version of [dbmdz/bert-base-cased-finetuned-conll03-english](https://huggingface.co/dbmdz/bert-base-cased-finetuned-conll03-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3415
- Precision: 0.8222
- Recall: 0.7213
- F1: 0.7582
- Accuracy: 0.9047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2622 | 1.0 | 1796 | 0.2673 | 0.8584 | 0.6573 | 0.7051 | 0.8995 |
| 0.2112 | 2.0 | 3592 | 0.2666 | 0.8464 | 0.6877 | 0.7343 | 0.9037 |
| 0.1682 | 3.0 | 5388 | 0.2891 | 0.8336 | 0.7115 | 0.7531 | 0.9056 |
| 0.1302 | 4.0 | 7184 | 0.3224 | 0.8279 | 0.7133 | 0.7532 | 0.9047 |
| 0.1113 | 5.0 | 8980 | 0.3415 | 0.8222 | 0.7213 | 0.7582 | 0.9047 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
tarek23/flan-t5-base-qg-SQuAD-10-v3
|
tarek23
| 2023-05-17T22:20:59Z | 111 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T11:24:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
metrics:
- rouge
model-index:
- name: flan-t5-base-qg-SQuAD-10-v3
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: squad
type: squad
config: plain_text
split: validation
args: plain_text
metrics:
- name: Rouge1
type: rouge
value: 52.7338
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-qg-SQuAD-10-v3
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5822
- Rouge1: 52.7338
- Rouge2: 30.0274
- Rougel: 48.6696
- Rougelsum: 48.6837
- Meteor: 47.9097
- Bleu-n: 21.1510
- Bleu-1: 52.8292
- Bleu-2: 26.9042
- Bleu-3: 17.0624
- Bleu-4: 11.3263
- Gen Len: 14.3502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bleu-n | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
| 0.5958 | 1.0 | 10950 | 0.5637 | 52.0014 | 29.3355 | 48.0977 | 48.1142 | 46.8122 | 20.7193 | 52.9094 | 26.6582 | 17.0250 | 11.4145 | 14.1124 |
| 0.5168 | 2.0 | 21900 | 0.5618 | 52.616 | 29.9824 | 48.6695 | 48.6858 | 47.6756 | 21.2477 | 52.8608 | 26.9682 | 17.2504 | 11.5263 | 14.3338 |
| 0.4748 | 3.0 | 32850 | 0.5682 | 52.6758 | 30.0082 | 48.6759 | 48.6901 | 47.7055 | 21.1081 | 52.9757 | 26.9437 | 17.2084 | 11.4549 | 14.2867 |
| 0.4297 | 4.0 | 43800 | 0.5759 | 52.9434 | 30.2447 | 48.8937 | 48.9019 | 48.0327 | 21.2589 | 53.1581 | 27.1232 | 17.2418 | 11.4865 | 14.3004 |
| 0.4087 | 5.0 | 54750 | 0.5822 | 52.7338 | 30.0274 | 48.6696 | 48.6837 | 47.9097 | 21.1510 | 52.8292 | 26.9042 | 17.0624 | 11.3263 | 14.3502 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
AlexC98/commitC
|
AlexC98
| 2023-05-17T22:04:15Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T21:42:53Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: commitC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# commitC
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3178
- Accuracy: 0.6939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 32 | 0.9701 | 0.5545 |
| No log | 2.0 | 64 | 0.8482 | 0.5970 |
| No log | 3.0 | 96 | 0.7623 | 0.6606 |
| No log | 4.0 | 128 | 0.7500 | 0.6818 |
| No log | 5.0 | 160 | 0.7741 | 0.7 |
| No log | 6.0 | 192 | 0.8143 | 0.7030 |
| No log | 7.0 | 224 | 0.9409 | 0.6909 |
| No log | 8.0 | 256 | 1.0390 | 0.6939 |
| No log | 9.0 | 288 | 1.1710 | 0.6909 |
| No log | 10.0 | 320 | 1.1657 | 0.6970 |
| No log | 11.0 | 352 | 1.1804 | 0.6939 |
| No log | 12.0 | 384 | 1.2182 | 0.6970 |
| No log | 13.0 | 416 | 1.1840 | 0.7091 |
| No log | 14.0 | 448 | 1.3097 | 0.7030 |
| No log | 15.0 | 480 | 1.2168 | 0.7242 |
| 0.2806 | 16.0 | 512 | 1.2970 | 0.7 |
| 0.2806 | 17.0 | 544 | 1.3139 | 0.7 |
| 0.2806 | 18.0 | 576 | 1.3116 | 0.6939 |
| 0.2806 | 19.0 | 608 | 1.3045 | 0.6970 |
| 0.2806 | 20.0 | 640 | 1.3178 | 0.6939 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
asenella/mmnist_JNFconfig2_seed_3_ratio_02_c
|
asenella
| 2023-05-17T21:47:53Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T21:47:39Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Aeala/VicUnlocked-alpaca-30b-4bit
|
Aeala
| 2023-05-17T21:32:49Z | 8 | 5 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-16T16:16:37Z |
4-bit GPTQ quantization of [VicUnlocked-alpaca-30b](https://huggingface.co/Aeala/VicUnlocked-alpaca-30b)
**Important Note**: While this is trained on a cleaned ShareGPT dataset like Vicuna used, this was trained in the *Alpaca* format, so prompting should be something like:
```
### Instruction:
<prompt> (without the <>)
### Response:
```
|
JCTN/controlnet-segment-anything
|
JCTN
| 2023-05-17T21:20:55Z | 0 | 3 |
diffusers
|
[
"diffusers",
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-17T20:51:50Z |
---
license: creativeml-openrail-m
---
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- controlnet
- jax-diffusers-event
- image-to-image
inference: true
datasets:
- mfidabel/sam-coyo-2k
- mfidabel/sam-coyo-2.5k
- mfidabel/sam-coyo-3k
language:
- en
library_name: diffusers
---
# ControlNet - mfidabel/controlnet-segment-anything
These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with a new type of conditioning. You can find some example images in the following.
**prompt**: contemporary living room of a house
**negative prompt**: low quality

**prompt**: new york buildings, Vincent Van Gogh starry night
**negative prompt**: low quality, monochrome

**prompt**: contemporary living room, high quality, 4k, realistic
**negative prompt**: low quality, monochrome, low res

## Model Details
- **Model type**: Diffusion-based text-to-image generation model with ControlNet conditioning
- **Language(s)**: English
- **License**: The CreativeML OpenRAIL M license is an Open RAIL M license, adapted from the work that BigScience and the RAIL Initiative are jointly carrying in the area of responsible AI licensing. See also the article about the BLOOM Open RAIL license on which our license is based.
- **Model Description**: This model is used to generate images based on a text prompt and a segmentation map as a template for the generated images
## Limitations and Bias
- The model can't render text
- Landscapes with fewer segments tend to render better
- Some segmentation maps tend to render in monochrome (use a negative_prompt to get around it)
- Some generated images can be over saturated
- Shorter prompts usually work better, as long as it makes sense with the input segmentation map
- The model is biased to produce more paintings images rather than realistic images, as there are a lot of paintings in the training dataset
## Training
**Training Data** This model was trained using a Segmented dataset based on the [COYO-700M Dataset](https://huggingface.co/datasets/kakaobrain/coyo-700m).
[Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint was used as the base model for the controlnet.
You can obtain the Segmentation Map of any Image through this Colab: [](https://colab.research.google.com/github/mfidabel/JAX_SPRINT_2023/blob/main/Segment_Anything_JAX_SPRINT.ipynb)
The model was trained as follows:
- 25k steps with the [SAM-COYO-2k](https://huggingface.co/datasets/mfidabel/sam-coyo-2k) dataset
- 28k steps with the [SAM-COYO-2.5k](https://huggingface.co/datasets/mfidabel/sam-coyo-2.5k) dataset
- 38k steps with the [SAM-COYO-3k](https://huggingface.co/datasets/mfidabel/sam-coyo-3k) dataset
In that particular order.
**Training Details**
- **Hardware**: Google Cloud TPUv4-8 VM
- **Optimizer**: AdamW
- **Train Batch Size**: 2 x 4 = 8
- **Learning rate**: 0.00001 constant
- **Gradient Accumulation Steps**: 1
- **Resolution**: 512
**Environmental Impact**
Based on the [Machine Learning Emissions Calculator](https://mlco2.github.io/impact#compute) with the following characteristics:
- **Hardware Type**: TPUv3 Chip (TPUv4 wasn't available yet at the time of calculating)
- **Training Hours**: 8 hours
- **Cloud Provider**: Google Cloud Platform
- **Compute Region**: us-central1
- **Carbon Emitted (Power consumption x Time x Carbon Produced Based on the Local Power Grid)**:
283W x 8h = 2.26 kWh x 0.57 kg eq. CO2/kWh = 1.29 kg eq. CO2
---
https://huggingface.co/mfidabel/controlnet-segment-anything
|
RenauxLouis/monet-test-1000steps-116-realsize
|
RenauxLouis
| 2023-05-17T21:11:37Z | 1 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-05-17T20:11:17Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - RenauxLouis/monet-test-1000steps-116-realsize
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the real-size-116 dataset. You can find some example images in the following.




|
asenella/mmnist_JNFconfig2_seed_0_ratio_05_c
|
asenella
| 2023-05-17T21:08:59Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T21:08:44Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
AustinCarthy/Benign10MGPT2_fromB_BFall_10KGen_toP_0.75
|
AustinCarthy
| 2023-05-17T20:50:18Z | 162 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T19:06:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_fromB_BFall_10KGen_toP_0.75
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_fromB_BFall_10KGen_toP_0.75
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0932
- Accuracy: 0.9863
- F1: 0.8426
- Precision: 0.9285
- Recall: 0.7712
- Roc Auc Score: 0.8841
- Tpr At Fpr 0.01: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0731 | 1.0 | 13125 | 0.0701 | 0.9834 | 0.8069 | 0.9013 | 0.7304 | 0.8632 | 0.5672 |
| 0.0595 | 2.0 | 26250 | 0.0720 | 0.9812 | 0.7700 | 0.9192 | 0.6624 | 0.8297 | 0.5038 |
| 0.0457 | 3.0 | 39375 | 0.0667 | 0.9864 | 0.8459 | 0.9193 | 0.7834 | 0.8900 | 0.0 |
| 0.0301 | 4.0 | 52500 | 0.0803 | 0.9861 | 0.8368 | 0.9467 | 0.7498 | 0.8738 | 0.0 |
| 0.02 | 5.0 | 65625 | 0.0932 | 0.9863 | 0.8426 | 0.9285 | 0.7712 | 0.8841 | 0.0 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
dh-unibe/gpt2-larger-luther
|
dh-unibe
| 2023-05-17T20:24:13Z | 134 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"de",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-13T16:22:52Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 22_12_13_luther_blocks_larger_fp16_20ep
results: []
language:
- de
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 22_12_13_luther_blocks_larger_fp16_20ep
This model is a fine-tuned version of [stefan-it/german-gpt2-larger](https://huggingface.co/stefan-it/german-gpt2-larger) on a dataset of texts by Martin Luther.
It achieves the following results on the evaluation set:
- Loss: 3.5847
- Accuracy: 0.3168
## Model description
This is a language model used to generate wishes for a happy new year to the readers of "reformiert" a journal in Switzerland (https://www.reformiert.info)
## Intended uses & limitations
This is to test the capabilities of the GPT-2 transformer architecture.
## Training and evaluation data
Automatic split of an edited and "cleaned" version of parts of Luther's writing. Cleaning refers here to the process of eliminating para-texts like page numbering, footnotes, etc.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.6 | 50 | 4.6218 | 0.2156 |
| 8.1175 | 3.22 | 100 | 4.0404 | 0.2633 |
| 8.1175 | 4.83 | 150 | 3.8120 | 0.2871 |
| 3.734 | 6.44 | 200 | 3.7062 | 0.2997 |
| 3.734 | 8.06 | 250 | 3.6382 | 0.3082 |
| 3.3639 | 9.67 | 300 | 3.6108 | 0.3128 |
| 3.3639 | 11.29 | 350 | 3.6012 | 0.3148 |
| 3.1363 | 12.89 | 400 | 3.5847 | 0.3168 |
| 3.1363 | 14.51 | 450 | 3.5914 | 0.3180 |
| 2.9884 | 16.13 | 500 | 3.5954 | 0.3177 |
| 2.9884 | 17.73 | 550 | 3.6001 | 0.3176 |
| 2.8748 | 19.35 | 600 | 3.6048 | 0.3188 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.12.1
|
badili/stt_sw_conformer_ctc_small
|
badili
| 2023-05-17T20:21:39Z | 6 | 0 |
nemo
|
[
"nemo",
"automatic-speech-recognition",
"speech",
"audio",
"CTC",
"Conformer",
"Transformer",
"pytorch",
"NeMo",
"sw",
"dataset:mozilla-foundation/common_voice_12_0",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2023-05-17T12:55:56Z |
---
license: cc-by-4.0
datasets:
- mozilla-foundation/common_voice_12_0
language:
- sw
metrics:
- wer
library_name: nemo
pipeline_tag: automatic-speech-recognition
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
---
|
Varunreddy/distilbert-token-class
|
Varunreddy
| 2023-05-17T20:07:23Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-16T22:32:44Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-token-class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-token-class
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2930
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3195 | 1.0 | 898 | 0.2930 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
mfeb/albert-xxlarge-v2-squad2
|
mfeb
| 2023-05-17T20:07:01Z | 170 | 2 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"question-answering",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
Albert XXLarge V2 model, fine-tuned for SQuAD V2
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Mark Feblowitz, IBM Research
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** Albert XXLarge model, uncased_L-12_H-768_A-12
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
Open-ended question answering, as a machine reading comprehension (MRC) task
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
mfeb@us.ibm.com
|
PhilSad/a2c-AntBulletEnv-v0
|
PhilSad
| 2023-05-17T19:57:59Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T19:56:55Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 875.37 +/- 72.70
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ying-zh/dqn-SpaceInvadersNoFrameskip-v4
|
ying-zh
| 2023-05-17T19:57:55Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T19:57:17Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 519.50 +/- 140.67
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ying-zh -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ying-zh -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ying-zh
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
tvarella/ppo-LunarLander-v2-eita2
|
tvarella
| 2023-05-17T19:44:02Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T19:43:54Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -222.06 +/- 137.72
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 100000
'learning_rate': 0.0002
'num_envs': 16
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'tvarella/ppo-LunarLander-v2-eita2'
'batch_size': 2048
'minibatch_size': 512}
```
|
liambennett/naomi__image_model
|
liambennett
| 2023-05-17T19:37:52Z | 32 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-05-17T17:05:22Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of SilkFred model Naomi
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - liambennett/naomi__image_model
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of SilkFred model Naomi using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
mverrilli/dolly-v2-3b-ggml
|
mverrilli
| 2023-05-17T19:34:43Z | 0 | 2 |
ggml
|
[
"ggml",
"en",
"dataset:databricks/databricks-dolly-15k",
"license:mit",
"region:us"
] | null | 2023-05-08T13:34:16Z |
---
license: mit
datasets:
- databricks/databricks-dolly-15k
language:
- en
library_name: ggml
---
Unofficial ggml Dolly-v2-3b models. These are intended to use with the ggml dolly-v2 example: https://github.com/ggerganov/ggml/tree/master/examples/dolly-v2
This requires more testing (both the ggml example and the ggml model conversions), use at your own risk.
|
AlexC98/my_awesome_model_2
|
AlexC98
| 2023-05-17T19:05:00Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T18:58:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: my_awesome_model_2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.86156
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model_2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4403
- Accuracy: 0.8616
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 32 | 0.5768 | 0.7956 |
| No log | 2.0 | 64 | 0.4403 | 0.8616 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
rosyvs/whisat-base
|
rosyvs
| 2023-05-17T18:31:26Z | 4 | 0 |
transformers
|
[
"transformers",
"whisper",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-16T20:41:34Z |
Whisper base-en fine-tuned using speechbrain on kids speech
|
wasimar/q-FrozenLake-v1-4x4-Slippery
|
wasimar
| 2023-05-17T18:24:42Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T18:15:54Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.74 +/- 0.44
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="wasimar/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
davidhung/distilgpt2-finetuned-wikitext2
|
davidhung
| 2023-05-17T18:24:27Z | 202 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-17T17:27:37Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6668
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.9109 | 1.0 | 584 | 3.6971 |
| 3.7502 | 2.0 | 1168 | 3.6727 |
| 3.7072 | 3.0 | 1752 | 3.6668 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Varunreddy/gpt2-token-class
|
Varunreddy
| 2023-05-17T17:45:58Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-17T17:01:08Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-token-class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-token-class
This model is a fine-tuned version of [brad1141/gpt2-finetuned-comp2](https://huggingface.co/brad1141/gpt2-finetuned-comp2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3182
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.3177 | 1.0 | 1796 | 0.3182 |
| 0.2947 | 2.0 | 3592 | 0.3122 |
| 0.2808 | 3.0 | 5388 | 0.3087 |
| 0.2657 | 4.0 | 7184 | 0.3124 |
| 0.2537 | 5.0 | 8980 | 0.3134 |
| 0.2446 | 6.0 | 10776 | 0.3143 |
| 0.2387 | 7.0 | 12572 | 0.3182 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
xyz99/lipay
|
xyz99
| 2023-05-17T17:32:16Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-17T16:55:04Z |
---
license: creativeml-openrail-m
---
|
wasimar/Q-Taxi
|
wasimar
| 2023-05-17T17:15:35Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T17:01:40Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Q-Taxi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="wasimar/Q-Taxi", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ayyojosh/kyoko
|
ayyojosh
| 2023-05-17T17:08:32Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-12T19:50:45Z |
---
license: creativeml-openrail-m
---
|
stillerman/jason-expert-uspto
|
stillerman
| 2023-05-17T17:05:52Z | 140 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-17T03:51:58Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: jason-expert-uspto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# jason-expert-uspto
This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1+rocm5.4.2
- Datasets 2.11.0
- Tokenizers 0.13.3
|
Aeala/VicUnlocked-alpaca-30b
|
Aeala
| 2023-05-17T17:00:32Z | 1,538 | 7 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-17T02:18:42Z |
## Model Info
Merge of my [VicUnlocked-alpaca-half-30b LoRA](https://huggingface.co/Aeala/VicUnlocked-alpaca-half-30b-LoRA)
**Important Note**: While this is trained on a cleaned ShareGPT dataset like Vicuna used, this was trained in the *Alpaca* format, so prompting should be something like:
```
### Instruction:
<prompt> (without the <>)
### Response:
```
## Benchmarks
wikitext2: 4.372413635253906
ptb-new: 24.69171714782715
c4-new: 6.469308853149414
Results generated with GPTQ evals (not quantized) thanks to [Neko-Institute-of-Science](https://huggingface.co/Neko-Institute-of-Science)
|
Nopphakorn/mt5-small-thaisum-512-title
|
Nopphakorn
| 2023-05-17T16:56:25Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"summarization",
"th",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-05-16T12:56:22Z |
---
license: apache-2.0
model-index:
- name: mt5-small-thaisum-512-title
results: []
language:
- th
pipeline_tag: summarization
widget:
- text: >-
summarize: เป็นอีกหนึ่งดาราที่มากความสามารถ สำหรับสาว คิทตี้ ชิชา อมาตยกุล ที่ทั้งเล่นหนัง ละคร มิวสิกวิดีโอ เธอก็ได้ทำได้อย่างดีเยี่ยม อีกทั้งเธอยังมีชื่อเสียงในวงการนางแบบอีกด้วย ล่าสุดเธอได้ร่วมเดินแบบในงาน Elle Fashion Week บนแคตวอล์กของแบรนด์ Vickteerut คอลเลกชั่น Autumn/Winter 2017,ซึ่งงานนี้สาวคิทตี้พกความมั่นใจมาเกินร้อย วิญญาณนางแบบมาเต็ม เธอมาในชุดเดรสที่ท่อนบนเป็นซีทรูแบบเปลือยอก เผยให้เห็นหน้าอกเกือบทั้งหมด มีเพียงสติกเกอร์ปิดจุกไว้เท่านั้น ทำเอาผู้ชมรอบข้างเกิดความตะลึงไม่น้อย กับความกล้าของเธอในครั้งนี้ เห็นแล้วต้องยกนิ้วยอมรับความเป็นมืออาชีพของเธอจริงๆ ,โดยคิทตี้ได้ออกมาเผยถึงการเดินแบบในครั้งนี้ว่า ไม่แคร์ ไม่ได้คิดอะไรมาก เพราะมองว่าเป็นศิลปะ นางแบบที่เดินกันในวันนั้นก็เปลือยเหมือนกันหมดทุกคน และนี่เป็นอีกผลงานในวงการที่ไม่คิดว่าเป็นเรื่องน่าเสียหาย ทางครอบครัวก็ไม่มีใครมายุ่งเรื่องของการทำงาน.,ภาพจากอินสตาแกรม @aofsod, @nenagraphy, @on_dcatwalk
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-thaisum-512-title
This model is a fine-tuned version of [Nopphakorn/mt5-small-thaisum-512-title](https://huggingface.co/Nopphakorn/mt5-small-thaisum-512-title) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.2003
- eval_rouge1: 0.0768
- eval_rouge2: 0.0113
- eval_rougeL: 0.075
- eval_rougeLsum: 0.0755
- eval_gen_len: 19.0
- eval_runtime: 43.9726
- eval_samples_per_second: 15.487
- eval_steps_per_second: 1.956
- epoch: 27.0
- step: 20655
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Inference
```
from transformers import pipeline
text = "เป็นอีกหนึ่งดาราที่มากความสามารถ สำหรับสาว คิทตี้ ชิชา อมาตยกุล ที่ทั้งเล่นหนัง ละคร มิวสิกวิดีโอ เธอก็ได้ทำได้อย่างดีเยี่ยม อีกทั้งเธอยังมีชื่อเสียงในวงการนางแบบอีกด้วย ล่าสุดเธอได้ร่วมเดินแบบในงาน Elle Fashion Week บนแคตวอล์กของแบรนด์ Vickteerut คอลเลกชั่น Autumn/Winter 2017,ซึ่งงานนี้สาวคิทตี้พกความมั่นใจมาเกินร้อย วิญญาณนางแบบมาเต็ม เธอมาในชุดเดรสที่ท่อนบนเป็นซีทรูแบบเปลือยอก เผยให้เห็นหน้าอกเกือบทั้งหมด มีเพียงสติกเกอร์ปิดจุกไว้เท่านั้น ทำเอาผู้ชมรอบข้างเกิดความตะลึงไม่น้อย กับความกล้าของเธอในครั้งนี้ เห็นแล้วต้องยกนิ้วยอมรับความเป็นมืออาชีพของเธอจริงๆ ,โดยคิทตี้ได้ออกมาเผยถึงการเดินแบบในครั้งนี้ว่า ไม่แคร์ ไม่ได้คิดอะไรมาก เพราะมองว่าเป็นศิลปะ นางแบบที่เดินกันในวันนั้นก็เปลือยเหมือนกันหมดทุกคน และนี่เป็นอีกผลงานในวงการที่ไม่คิดว่าเป็นเรื่องน่าเสียหาย ทางครอบครัวก็ไม่มีใครมายุ่งเรื่องของการทำงาน.,ภาพจากอินสตาแกรม @aofsod, @nenagraphy, @on_dcatwalk"
summarizer = pipeline("summarization", model="Nopphakorn/mt5-small-thaisum-512-title")
summarizer([text], max_length=46)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AustinCarthy/Benign10MGPT2_fromP_BFall_20KGen_toP_0.75
|
AustinCarthy
| 2023-05-17T16:56:10Z | 162 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T06:22:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_fromP_BFall_20KGen_toP_0.75
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_fromP_BFall_20KGen_toP_0.75
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1101
- Accuracy: 0.9888
- F1: 0.8669
- Precision: 0.9948
- Recall: 0.7682
- Roc Auc Score: 0.884
- Tpr At Fpr 0.01: 0.7442
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0105 | 1.0 | 19688 | 0.0686 | 0.9851 | 0.8158 | 0.9957 | 0.691 | 0.8454 | 0.654 |
| 0.0069 | 2.0 | 39376 | 0.0458 | 0.9901 | 0.8866 | 0.9794 | 0.8098 | 0.9045 | 0.679 |
| 0.0051 | 3.0 | 59064 | 0.0698 | 0.9903 | 0.8874 | 0.9901 | 0.804 | 0.9018 | 0.747 |
| 0.0013 | 4.0 | 78752 | 0.0980 | 0.9893 | 0.8737 | 0.9949 | 0.7788 | 0.8893 | 0.7374 |
| 0.0007 | 5.0 | 98440 | 0.1101 | 0.9888 | 0.8669 | 0.9948 | 0.7682 | 0.884 | 0.7442 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Bisht0538/speech-to-text-using-fine-tune-bart-model
|
Bisht0538
| 2023-05-17T16:53:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-05-17T16:43:01Z |
# text-summarization-using-fine-tuned-bart
|
AustinCarthy/Benign10MGPT2_fromP_BFall_10KGen_toP_0.75
|
AustinCarthy
| 2023-05-17T16:43:29Z | 162 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T04:52:53Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_fromP_BFall_10KGen_toP_0.75
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_fromP_BFall_10KGen_toP_0.75
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1046
- Accuracy: 0.9898
- F1: 0.8806
- Precision: 0.9952
- Recall: 0.7896
- Roc Auc Score: 0.8947
- Tpr At Fpr 0.01: 0.7606
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0104 | 1.0 | 13125 | 0.0568 | 0.9869 | 0.8415 | 0.9964 | 0.7282 | 0.8640 | 0.7054 |
| 0.0078 | 2.0 | 26250 | 0.0722 | 0.9871 | 0.8440 | 0.9932 | 0.7338 | 0.8668 | 0.6516 |
| 0.0047 | 3.0 | 39375 | 0.0675 | 0.9900 | 0.8833 | 0.9913 | 0.7966 | 0.8981 | 0.7312 |
| 0.0011 | 4.0 | 52500 | 0.0811 | 0.9904 | 0.8888 | 0.9936 | 0.804 | 0.9019 | 0.7698 |
| 0.0 | 5.0 | 65625 | 0.1046 | 0.9898 | 0.8806 | 0.9952 | 0.7896 | 0.8947 | 0.7606 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
claritylab/zero-shot-explicit-bi-encoder
|
claritylab
| 2023-05-17T16:43:29Z | 5 | 0 |
zeroshot_classifier
|
[
"zeroshot_classifier",
"pytorch",
"bert",
"feature-extraction",
"transformers",
"sentence-transformers",
"zero-shot-classification",
"en",
"dataset:claritylab/UTCD",
"license:mit",
"region:us"
] |
zero-shot-classification
| 2023-05-15T16:57:38Z |
---
library_name: zeroshot_classifier
tags:
- transformers
- sentence-transformers
- zeroshot_classifier
license: mit
datasets:
- claritylab/UTCD
language:
- en
pipeline_tag: zero-shot-classification
metrics:
- accuracy
---
# Zero-shot Explicit Bi-Encoder
This is a [sentence-transformers](https://www.SBERT.net) model.
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
## Model description
This model is intended for zero-shot text classification.
It was trained under the dual encoding classification framework via explicit training with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
## Usage
You can use the model like this:
```python
>>> from sentence_transformers import SentenceTransformer, util as sbert_util
>>> model = SentenceTransformer(model_name_or_path='claritylab/zero-shot-explicit-bi-encoder')
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>> 'Search Screening Event'
>>> ]
>>> text_embed = model.encode(text)
>>> label_embeds = model.encode(labels)
>>> scores = [sbert_util.cos_sim(text_embed, lb_embed).item() for lb_embed in label_embeds]
>>> print(scores)
[
0.53502357006073,
0.051911696791648865,
0.0546676367521286,
0.5633962750434875,
0.28765711188316345,
0.17751818895339966,
0.18489906191825867
]
```
|
asenella/mmnist_JNFconfig2_seed_0_ratio_02_c
|
asenella
| 2023-05-17T16:34:26Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T16:34:12Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
AustinCarthy/Baseline_50Kphish_benignFall_20_20_20
|
AustinCarthy
| 2023-05-17T16:29:51Z | 180 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T01:28:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Baseline_50Kphish_benignFall_20_20_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Baseline_50Kphish_benignFall_20_20_20
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0282
- Accuracy: 0.9962
- F1: 0.9580
- Precision: 0.9996
- Recall: 0.9198
- Roc Auc Score: 0.9599
- Tpr At Fpr 0.01: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0045 | 1.0 | 32813 | 0.0247 | 0.9960 | 0.9561 | 0.9937 | 0.9212 | 0.9605 | 0.8662 |
| 0.002 | 2.0 | 65626 | 0.0205 | 0.9965 | 0.9624 | 0.9987 | 0.9286 | 0.9643 | 0.9376 |
| 0.0021 | 3.0 | 98439 | 0.0302 | 0.9961 | 0.9569 | 0.9993 | 0.918 | 0.9590 | 0.9378 |
| 0.0017 | 4.0 | 131252 | 0.0297 | 0.9970 | 0.9672 | 0.9975 | 0.9388 | 0.9693 | 0.9368 |
| 0.0007 | 5.0 | 164065 | 0.0282 | 0.9962 | 0.9580 | 0.9996 | 0.9198 | 0.9599 | 0.94 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
wa976/ast_13-finetuned-ICBHI
|
wa976
| 2023-05-17T16:09:37Z | 169 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"audio-spectrogram-transformer",
"audio-classification",
"generated_from_trainer",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-05-17T14:42:40Z |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ast_13-finetuned-ICBHI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast_13-finetuned-ICBHI
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0981
- Accuracy: 0.5811
- Sensitivity: 0.0484
- Specificity: 0.9785
- Score: 0.5134
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
| 1.0311 | 1.0 | 259 | 1.0981 | 0.5811 | 0.0484 | 0.9785 | 0.5134 |
| 1.1378 | 2.0 | 518 | 1.0778 | 0.5800 | 0.1427 | 0.9062 | 0.5245 |
| 1.0184 | 3.0 | 777 | 1.0696 | 0.5779 | 0.1495 | 0.8973 | 0.5234 |
| 1.0743 | 4.0 | 1036 | 1.0705 | 0.5757 | 0.1946 | 0.8599 | 0.5273 |
| 0.9974 | 5.0 | 1295 | 1.0692 | 0.5789 | 0.1963 | 0.8644 | 0.5303 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AustinCarthy/Baseline_30Kphish_benignFall_20_20_20
|
AustinCarthy
| 2023-05-17T16:04:45Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-16T20:35:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Baseline_30Kphish_benignFall_20_20_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Baseline_30Kphish_benignFall_20_20_20
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0374
- Accuracy: 0.9962
- F1: 0.9589
- Precision: 0.9998
- Recall: 0.9212
- Roc Auc Score: 0.9606
- Tpr At Fpr 0.01: 0.9438
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0045 | 1.0 | 19688 | 0.0304 | 0.9933 | 0.9241 | 0.9993 | 0.8594 | 0.9297 | 0.874 |
| 0.0029 | 2.0 | 39376 | 0.0210 | 0.9967 | 0.9643 | 0.9953 | 0.9352 | 0.9675 | 0.917 |
| 0.0003 | 3.0 | 59064 | 0.0434 | 0.9947 | 0.9407 | 0.9980 | 0.8896 | 0.9448 | 0.8936 |
| 0.0016 | 4.0 | 78752 | 0.0408 | 0.9952 | 0.9468 | 0.9998 | 0.8992 | 0.9496 | 0.9336 |
| 0.0008 | 5.0 | 98440 | 0.0374 | 0.9962 | 0.9589 | 0.9998 | 0.9212 | 0.9606 | 0.9438 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
esanzm553/ppo-LunarLander-v2
|
esanzm553
| 2023-05-17T16:02:10Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T16:01:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 183.42 +/- 37.73
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
zonghaoyang/DistilBERT-smaller-BioRED
|
zonghaoyang
| 2023-05-17T15:57:19Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T14:11:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: DistilBERT-smaller-BioRED
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DistilBERT-smaller-BioRED
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3354
- Accuracy: 0.8900
- F1: 0.5850
- Precision: 0.6149
- Recall: 0.5579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3401 | 1.0 | 813 | 0.2766 | 0.8777 | 0.5822 | 0.5487 | 0.6199 |
| 0.2345 | 2.0 | 1626 | 0.3227 | 0.8977 | 0.5358 | 0.7113 | 0.4298 |
| 0.1928 | 3.0 | 2439 | 0.3499 | 0.8946 | 0.5912 | 0.6329 | 0.5546 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AustinCarthy/Baseline_20Kphish_benignFall_20_20_20
|
AustinCarthy
| 2023-05-17T15:52:06Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-16T19:07:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Baseline_20Kphish_benignFall_20_20_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Baseline_20Kphish_benignFall_20_20_20
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0540
- Accuracy: 0.9952
- F1: 0.9467
- Precision: 0.9984
- Recall: 0.9
- Roc Auc Score: 0.9500
- Tpr At Fpr 0.01: 0.9032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0065 | 1.0 | 13125 | 0.0309 | 0.991 | 0.8959 | 0.9975 | 0.813 | 0.9064 | 0.7808 |
| 0.004 | 2.0 | 26250 | 0.0448 | 0.9926 | 0.9153 | 0.9988 | 0.8446 | 0.9223 | 0.8598 |
| 0.0019 | 3.0 | 39375 | 0.0501 | 0.9938 | 0.9302 | 0.9986 | 0.8706 | 0.9353 | 0.8818 |
| 0.0013 | 4.0 | 52500 | 0.0462 | 0.9954 | 0.9496 | 0.9967 | 0.9068 | 0.9533 | 0.895 |
| 0.0 | 5.0 | 65625 | 0.0540 | 0.9952 | 0.9467 | 0.9984 | 0.9 | 0.9500 | 0.9032 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Yazidoo/ppo-LunarLander-v2
|
Yazidoo
| 2023-05-17T15:42:30Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T13:55:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 236.83 +/- 49.31
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
manish1993hf/donut-base-graph_test
|
manish1993hf
| 2023-05-17T15:25:56Z | 45 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-05-17T15:17:03Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: donut-base-graph_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-graph_test
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
nypnop/whisper-small-id
|
nypnop
| 2023-05-17T15:18:52Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"hi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-17T14:58:09Z |
---
language:
- hi
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Id - nypnop
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Id - nypnop
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
manish1993hf/donut-base-sroie
|
manish1993hf
| 2023-05-17T15:13:07Z | 46 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-05-17T14:07:59Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: donut-base-sroie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-sroie
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
DionnisB/wildcards
|
DionnisB
| 2023-05-17T15:05:31Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-17T15:05:31Z |
---
license: creativeml-openrail-m
---
|
DionnisB/VAE
|
DionnisB
| 2023-05-17T14:58:45Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-09T23:28:43Z |
---
license: creativeml-openrail-m
---
|
land25/distilbert-base-uncased_emotion_ft_0416
|
land25
| 2023-05-17T14:58:38Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-16T16:45:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
- precision
model-index:
- name: distilbert-base-uncased_emotion_ft_0416
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9375
- name: F1
type: f1
value: 0.9378516520466151
- name: Precision
type: precision
value: 0.9085326888984738
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased_emotion_ft_0416
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1495
- Accuracy: 0.9375
- F1: 0.9379
- Precision: 0.9085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|
| 0.8285 | 1.0 | 250 | 0.2793 | 0.917 | 0.9150 | 0.9106 |
| 0.2185 | 2.0 | 500 | 0.1718 | 0.926 | 0.9262 | 0.8978 |
| 0.1413 | 3.0 | 750 | 0.1579 | 0.9325 | 0.9325 | 0.9096 |
| 0.1147 | 4.0 | 1000 | 0.1495 | 0.9375 | 0.9379 | 0.9085 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
afos950/ppo-PyramidTraining
|
afos950
| 2023-05-17T14:54:04Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-05-17T14:53:26Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Find your model_id: afos950/ppo-PyramidTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
kekstroke/q-FrozenLake-v1-4x4-noSlippery
|
kekstroke
| 2023-05-17T14:38:46Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T14:38:31Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kekstroke/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
chenbowen-184/distilbert_classifier_newsgroups
|
chenbowen-184
| 2023-05-17T14:22:57Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T14:22:25Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilbert_classifier_newsgroups
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilbert_classifier_newsgroups
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
bymriza/elsam
|
bymriza
| 2023-05-17T14:15:11Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-17T14:12:41Z |
---
license: creativeml-openrail-m
---
|
Maaz7/my_awesome_billsum_model
|
Maaz7
| 2023-05-17T14:13:44Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T13:53:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1417
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4576
- Rouge1: 0.1417
- Rouge2: 0.0495
- Rougel: 0.1171
- Rougelsum: 0.1169
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7552 | 0.1301 | 0.0381 | 0.1085 | 0.1084 | 19.0 |
| No log | 2.0 | 124 | 2.5403 | 0.1364 | 0.046 | 0.1145 | 0.1141 | 19.0 |
| No log | 3.0 | 186 | 2.4741 | 0.1399 | 0.0467 | 0.115 | 0.115 | 19.0 |
| No log | 4.0 | 248 | 2.4576 | 0.1417 | 0.0495 | 0.1171 | 0.1169 | 19.0 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
asenella/mmnist_JNFconfig2_seed_2_ratio_0_c
|
asenella
| 2023-05-17T14:10:14Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T14:10:00Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
bastienm/a2c-AntBulletEnv-v0
|
bastienm
| 2023-05-17T14:03:09Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T14:02:11Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 919.64 +/- 168.54
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
LukeMich/my_awesome_qa_model
|
LukeMich
| 2023-05-17T13:37:37Z | 66 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-05-16T19:29:37Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: LukeMich/my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# LukeMich/my_awesome_qa_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6601
- Validation Loss: 0.7503
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6675, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.7963 | 0.7337 | 0 |
| 0.7019 | 0.7299 | 1 |
| 0.6601 | 0.7503 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
wa976/ast_12-finetuned-ICBHI
|
wa976
| 2023-05-17T13:11:07Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"audio-spectrogram-transformer",
"audio-classification",
"generated_from_trainer",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-05-17T05:02:25Z |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ast_12-finetuned-ICBHI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast_12-finetuned-ICBHI
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5461
- Accuracy: 0.5550
- Sensitivity: 0.3466
- Specificity: 0.7104
- Score: 0.5285
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
| 0.7428 | 1.0 | 259 | 1.2162 | 0.5365 | 0.3840 | 0.6502 | 0.5171 |
| 0.7004 | 2.0 | 518 | 1.2543 | 0.5220 | 0.3364 | 0.6603 | 0.4984 |
| 0.584 | 3.0 | 777 | 1.2605 | 0.5191 | 0.3662 | 0.6331 | 0.4996 |
| 0.2524 | 4.0 | 1036 | 1.5461 | 0.5550 | 0.3466 | 0.7104 | 0.5285 |
| 0.0708 | 5.0 | 1295 | 1.9865 | 0.5387 | 0.3407 | 0.6863 | 0.5135 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
abhishekaich/vit-base-patch16-224-finetuned-flower
|
abhishekaich
| 2023-05-17T13:01:50Z | 167 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-17T12:51:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: vit-base-patch16-224-finetuned-flower
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-flower
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 2.0.0+cu118
- Datasets 2.7.1
- Tokenizers 0.13.3
|
hannahh7/Taxi-V3
|
hannahh7
| 2023-05-17T12:40:06Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T12:40:04Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-V3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="hannahh7/Taxi-V3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
huggingtweets/kobenhavnpoliti
|
huggingtweets
| 2023-05-17T12:25:11Z | 131 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-17T12:24:59Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/3256113227/7ea5370bf89d843ca88886c03107ae0b_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Københavns Politi</div>
<div style="text-align: center; font-size: 14px;">@kobenhavnpoliti</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Københavns Politi.
| Data | Københavns Politi |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 138 |
| Short tweets | 2 |
| Tweets kept | 3110 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/voehjwiu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kobenhavnpoliti's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fx31xf6s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fx31xf6s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kobenhavnpoliti')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
soteroshanthi/distilbert-base-uncased
|
soteroshanthi
| 2023-05-17T12:24:33Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-17T12:24:21Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
XlitZ69/Les-Furnitures
|
XlitZ69
| 2023-05-17T12:18:19Z | 0 | 0 | null |
[
"en",
"license:gpl",
"region:us"
] | null | 2023-05-17T12:16:41Z |
---
license: gpl
language:
- en
---
|
huggingtweets/realdonaldtrump
|
huggingtweets
| 2023-05-17T12:06:00Z | 596 | 4 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/874276197357596672/kUuht00m_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Donald J. Trump</div>
<div style="text-align: center; font-size: 14px;">@realdonaldtrump</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Donald J. Trump.
| Data | Donald J. Trump |
| --- | --- |
| Tweets downloaded | 3165 |
| Retweets | 1069 |
| Short tweets | 519 |
| Tweets kept | 1577 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xf6k8cdv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realdonaldtrump's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ljnawi90) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ljnawi90/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/realdonaldtrump')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
brunoban/rare-puppers
|
brunoban
| 2023-05-17T11:40:19Z | 193 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-17T11:40:12Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9259259104728699
---
# rare-puppers
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### corgi

#### german shepard

#### pug

#### samoyed

#### shiba inu

|
AlexCagareli/q-FrozenLake-v1-4x4-noSlippery
|
AlexCagareli
| 2023-05-17T11:29:49Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T11:29:47Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="AlexCagareli/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
bastienm/rl_course_vizdoom_health_gathering_supreme
|
bastienm
| 2023-05-17T11:11:35Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T11:11:19Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 8.90 +/- 3.52
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r bastienm/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
kesmalso1/kes
|
kesmalso1
| 2023-05-17T11:09:46Z | 0 | 0 | null |
[
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2023-05-17T11:09:46Z |
---
license: bigscience-bloom-rail-1.0
---
|
guoguangjie/my_wikilingua_model_mBart50_trans
|
guoguangjie
| 2023-05-17T11:08:11Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T08:35:13Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_wikilingua_model_mBart50_trans
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_wikilingua_model_mBart50_trans
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5850
- Rouge1: 0.3544
- Rouge2: 0.1276
- Rougel: 0.278
- Rougelsum: 0.2781
- Gen Len: 44.4625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2609 | 1.0 | 1600 | 2.1254 | 0.2502 | 0.0868 | 0.2162 | 0.2157 | 61.8925 |
| 1.5106 | 2.0 | 3200 | 2.1392 | 0.3321 | 0.1205 | 0.27 | 0.2696 | 42.615 |
| 1.2338 | 3.0 | 4800 | 2.3200 | 0.3496 | 0.128 | 0.2754 | 0.2753 | 42.3075 |
| 0.7157 | 4.0 | 6400 | 2.5850 | 0.3544 | 0.1276 | 0.278 | 0.2781 | 44.4625 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
dawoz/Reinforce-CartPole-v1-MLP
|
dawoz
| 2023-05-17T11:07:30Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-09T07:38:41Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1-MLP
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 486.60 +/- 65.65
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AnanthZeke/IndicBERTv2-MLM-only-indic_glue
|
AnanthZeke
| 2023-05-17T11:07:10Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-17T10:54:40Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: IndicBERTv2-MLM-only-indic_glue
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IndicBERTv2-MLM-only-indic_glue
This model is a fine-tuned version of [ai4bharat/IndicBERTv2-MLM-only](https://huggingface.co/ai4bharat/IndicBERTv2-MLM-only) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1941
- Precision: 0.8410
- Recall: 0.8738
- F1: 0.8571
- Accuracy: 0.9427
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5734 | 0.31 | 200 | 0.2794 | 0.7618 | 0.7979 | 0.7794 | 0.9103 |
| 0.2767 | 0.62 | 400 | 0.2182 | 0.8139 | 0.8361 | 0.8248 | 0.9300 |
| 0.218 | 0.94 | 600 | 0.2058 | 0.8167 | 0.8648 | 0.8401 | 0.9365 |
| 0.1758 | 1.25 | 800 | 0.1995 | 0.8311 | 0.8641 | 0.8473 | 0.9380 |
| 0.1366 | 1.56 | 1000 | 0.1928 | 0.8430 | 0.8695 | 0.8561 | 0.9417 |
| 0.1349 | 1.88 | 1200 | 0.1941 | 0.8410 | 0.8738 | 0.8571 | 0.9427 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
xkirinx/sec-t5-base
|
xkirinx
| 2023-05-17T10:55:37Z | 34 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-14T06:12:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: sec-t5-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sec-t5-base
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.4845 | 1.0 | 24 | 3.1348 |
| 3.3224 | 2.0 | 48 | 3.0846 |
| 3.2575 | 3.0 | 72 | 3.0575 |
| 3.2128 | 4.0 | 96 | 3.0406 |
| 3.2031 | 5.0 | 120 | 3.0365 |
### Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TestZee/t5-base-finetuned-short-news-t5-base2
|
TestZee
| 2023-05-17T10:51:17Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T10:43:29Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: TestZee/t5-base-finetuned-short-news-t5-base2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TestZee/t5-base-finetuned-short-news-t5-base2
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.9039
- Validation Loss: 2.0694
- Train Rouge1: 29.4899
- Train Rouge2: 13.4106
- Train Rougel: 25.9621
- Train Rougelsum: 26.4759
- Train Gen Len: 19.0
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 2.3789 | 2.3642 | 29.2164 | 12.2894 | 25.0497 | 25.0582 | 19.0 | 0 |
| 2.0565 | 2.1861 | 27.9591 | 11.8954 | 24.6681 | 25.1984 | 19.0 | 1 |
| 1.9039 | 2.0694 | 29.4899 | 13.4106 | 25.9621 | 26.4759 | 19.0 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Flynews/Reinforce-cartpole-test
|
Flynews
| 2023-05-17T10:41:53Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T09:30:34Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole-test
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 403.47 +/- 17.48
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AnanthZeke/TaNER-1k-indic_glue
|
AnanthZeke
| 2023-05-17T10:41:20Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-17T10:35:34Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: tabert-1k-indic_glue
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tabert-1k-indic_glue
This model is a fine-tuned version of [livinNector/tabert-1k](https://huggingface.co/livinNector/tabert-1k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2633
- Precision: 0.8087
- Recall: 0.8327
- F1: 0.8205
- Accuracy: 0.9183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5381 | 0.31 | 200 | 0.3586 | 0.7418 | 0.7279 | 0.7348 | 0.8813 |
| 0.3592 | 0.62 | 400 | 0.3274 | 0.7271 | 0.7984 | 0.7611 | 0.8917 |
| 0.2984 | 0.94 | 600 | 0.2852 | 0.7870 | 0.7958 | 0.7914 | 0.9058 |
| 0.2299 | 1.25 | 800 | 0.2819 | 0.7918 | 0.8158 | 0.8036 | 0.9118 |
| 0.1841 | 1.56 | 1000 | 0.2651 | 0.8143 | 0.8168 | 0.8155 | 0.9158 |
| 0.1767 | 1.88 | 1200 | 0.2633 | 0.8087 | 0.8327 | 0.8205 | 0.9183 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Neronuser/a2c-PandaReachDense-v2
|
Neronuser
| 2023-05-17T10:28:02Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T08:27:23Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -0.62 +/- 0.25
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnanthZeke/TaNER-500-indic_glue
|
AnanthZeke
| 2023-05-17T10:23:26Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-17T10:16:19Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: TaNER-500-indic_glue
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TaNER-500-indic_glue
This model is a fine-tuned version of [livinNector/tabert-500](https://huggingface.co/livinNector/tabert-500) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2608
- Precision: 0.8035
- Recall: 0.8304
- F1: 0.8167
- Accuracy: 0.9169
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5439 | 0.31 | 200 | 0.3597 | 0.7357 | 0.7286 | 0.7321 | 0.8817 |
| 0.3655 | 0.62 | 400 | 0.3258 | 0.7377 | 0.7877 | 0.7619 | 0.8928 |
| 0.3036 | 0.94 | 600 | 0.2912 | 0.7764 | 0.7973 | 0.7867 | 0.9049 |
| 0.2322 | 1.25 | 800 | 0.2731 | 0.7884 | 0.8205 | 0.8041 | 0.9114 |
| 0.1851 | 1.56 | 1000 | 0.2622 | 0.8005 | 0.8214 | 0.8109 | 0.9159 |
| 0.1773 | 1.88 | 1200 | 0.2608 | 0.8035 | 0.8304 | 0.8167 | 0.9169 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Prachetas/swin-tiny-patch4-window7-224-finetuned-eurosat
|
Prachetas
| 2023-05-17T10:17:27Z | 217 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-05-12T11:07:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8247422680412371
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5465
- Accuracy: 0.8247
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 7 | 1.2679 | 0.2990 |
| 1.3643 | 2.0 | 14 | 1.1288 | 0.5258 |
| 1.0267 | 3.0 | 21 | 0.6534 | 0.7010 |
| 1.0267 | 4.0 | 28 | 0.6587 | 0.7629 |
| 0.6635 | 5.0 | 35 | 0.7360 | 0.6701 |
| 0.5462 | 6.0 | 42 | 0.6479 | 0.7320 |
| 0.5462 | 7.0 | 49 | 0.5546 | 0.7835 |
| 0.4471 | 8.0 | 56 | 0.5583 | 0.7835 |
| 0.3094 | 9.0 | 63 | 0.5257 | 0.8247 |
| 0.242 | 10.0 | 70 | 0.5465 | 0.8247 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Bingsu/my-k-anything-v3-0
|
Bingsu
| 2023-05-17T10:13:55Z | 40 | 5 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"ko",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-11-16T01:24:55Z |
---
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
inference: true
language: ko
---
# my-k-anything-v3-0
[Bingsu/my-korean-stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)와 같은 방법으로 만든 k-아무거나 3.0 모델.
생각보다 잘 안되고, 특히 캐릭터에 관한 정보는 다 잊어버린 걸로 보입니다.
# Usage
```sh
pip install transformers accelerate>=0.14.0 diffusers>=0.7.2
```
```python
import torch
from diffusers import StableDiffusionPipeline
repo = "Bingsu/my-k-anything-v3-0"
pipe = StableDiffusionPipeline.from_pretrained(
repo, torch_dtype=torch.float16,
)
pipe.to("cuda")
pipe.safety_checker = None
```
```python
from typing import Optional
import torch
def gen_image(
prompt: str,
negative_prompt: Optional[str] = None,
seed: Optional[int] = None,
scale: float = 7.5,
steps: int = 30,
):
if seed is not None:
generator = torch.Generator("cuda").manual_seed(seed)
else:
generator = None
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
guidance_scale=scale,
num_inference_steps=steps,
).images[0]
return image
```
```python
prompt = "파란색 포니테일 헤어, 브로치, 정장을 입은 성인 여성, 고퀄리티, 최고품질"
negative = "저화질, 저품질, 텍스트"
seed = 42467781
scale = 12.0
gen_image(prompt, negative, seed, scale)
```

## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
mfaiq2307/faiq-wav2vec2-large-xlsr-indo-demo-v100
|
mfaiq2307
| 2023-05-17T10:10:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-17T07:38:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: faiq-wav2vec2-large-xlsr-indo-demo-v100
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 0.42677026146831676
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# faiq-wav2vec2-large-xlsr-indo-demo-v100
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3986
- Wer: 0.4268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0166 | 2.92 | 400 | 2.8107 | 1.0 |
| 1.2378 | 5.84 | 800 | 0.4595 | 0.6213 |
| 0.3819 | 8.76 | 1200 | 0.4255 | 0.5515 |
| 0.2653 | 11.68 | 1600 | 0.4023 | 0.4949 |
| 0.2146 | 14.6 | 2000 | 0.3780 | 0.4760 |
| 0.1711 | 17.52 | 2400 | 0.4098 | 0.4609 |
| 0.1537 | 20.44 | 2800 | 0.4049 | 0.4495 |
| 0.1316 | 23.36 | 3200 | 0.3978 | 0.4408 |
| 0.1202 | 26.28 | 3600 | 0.3929 | 0.4282 |
| 0.1095 | 29.2 | 4000 | 0.3986 | 0.4268 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.6.1
- Tokenizers 0.13.3
|
Khushnur/t5-end2end-questions-generation_mix
|
Khushnur
| 2023-05-17T10:01:51Z | 159 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T08:08:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-end2end-questions-generation_mix
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-end2end-questions-generation_mix
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
kujaomega/poca-SoccerTwos
|
kujaomega
| 2023-05-17T09:58:50Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-05-17T09:58:44Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: kujaomega/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
vind/dqn-SpaceInvadersNoFrameskip-v4-1M
|
vind
| 2023-05-17T09:57:24Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T09:56:42Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 490.00 +/- 166.31
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vind -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vind -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vind
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
bastienm/ppo-LunarLander-v2
|
bastienm
| 2023-05-17T09:47:43Z | 4 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-05-13T10:46:57Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -141.85 +/- 84.48
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.0001
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.7
'max_grad_norm': 0.5
'target_kl': 0.003
'repo_id': 'bastienm/ppo-LunarLander-v2'
'batch_size': 512
'minibatch_size': 128}
```
|
aliakyurek/ppo-LunarLander-v2
|
aliakyurek
| 2023-05-17T09:36:13Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-17T09:35:48Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 252.25 +/- 16.00
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
kwakhyok/ddpm-butterflies-128
|
kwakhyok
| 2023-05-17T09:11:14Z | 0 | 0 | null |
[
"tensorboard",
"en",
"dataset:jwdaddy/ddpm-butterflies-128",
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-17T07:43:54Z |
---
license: creativeml-openrail-m
datasets:
- jwdaddy/ddpm-butterflies-128
language:
- en
---
|
asenella/mmnist_JNFconfig2_seed_1_ratio_0_c
|
asenella
| 2023-05-17T08:52:08Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T08:51:54Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
hirol/control_any5_openpose
|
hirol
| 2023-05-17T08:52:04Z | 3 | 1 |
diffusers
|
[
"diffusers",
"license:mit",
"region:us"
] | null | 2023-05-17T08:16:05Z |
---
title: hirol/control_any5_openpose
emoji: 🌖
license: mit
---
Here is model, add character skeletons to a forest scene generated by SD, and keep the background unchanged to generate controllable characters
https://huggingface.co/spaces/hirol/controlnetOverMask
# ControlnetWithBackground
### Controlnet
### Inpainting
### Stable diffusion
Use controlnet to generate sketches and characters, and keep the background unchanged.
Usually when we generate a very perfect background image, we want to add image elements, but using controlnet directly will affect the original background. This project aims to add elements to the page while keeping the background unchanged, and can directly operate on the original background.
Support skeletal character generation and sketch generation.
Optimize an inpaint model for the general domain against the stablediffusion-inpaint model.
``` python
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
controlnet = ControlNetModel.from_pretrained("./models/control_any5_openpose", torch_dtype=torch.float16)
```
### Two modes, openpose control and manuscript control
#### openpose control
Add character skeletons to a forest scene generated by SD, and keep the background unchanged to generate controllable characters
<img src="https://huggingface.co/spaces/hirol/ControlnetWithBackground/resolve/main/person.png" width="400" height="300">
<video width="320" height="240" controls>
<source src="https://huggingface.co/spaces/hirol/ControlnetWithBackground/resolve/main/person_control.mp4" type="video/mp4">
</video>
|
asenella/mmnist_JNFconfig2_seed_0_ratio_0_c
|
asenella
| 2023-05-17T08:50:29Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-05-13T12:36:25Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
TestZee/t5-base-finetuned-short-news-t5-base
|
TestZee
| 2023-05-17T08:49:54Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-17T08:47:45Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: TestZee/t5-base-finetuned-short-news-t5-base
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TestZee/t5-base-finetuned-short-news-t5-base
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.3869
- Validation Loss: 2.3736
- Train Rouge1: 30.0355
- Train Rouge2: 13.2593
- Train Rougel: 26.0004
- Train Rougelsum: 25.9971
- Train Gen Len: 19.0
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 2.3869 | 2.3736 | 30.0355 | 13.2593 | 26.0004 | 25.9971 | 19.0 | 0 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Deepakv80715/gsmall-gpt2-alpaca
|
Deepakv80715
| 2023-05-17T08:43:52Z | 129 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-16T14:41:53Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gsmall-gpt2-alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gsmall-gpt2-alpaca
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.64 | 1 | 3.0562 |
| No log | 1.92 | 3 | 3.0423 |
| No log | 2.56 | 4 | 3.0288 |
| No log | 3.2 | 5 | 3.0114 |
### Framework versions
- Transformers 4.29.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Chinese-Vicuna/Chinese-Vicuna-7b-legal-lora
|
Chinese-Vicuna
| 2023-05-17T08:38:34Z | 0 | 8 | null |
[
"legal",
"zh",
"license:apache-2.0",
"region:us"
] | null | 2023-05-17T08:32:48Z |
---
license: apache-2.0
language:
- zh
tags:
- legal
---
```
> pretrained: Llama7B
> instruction & conversation finetuned: Chinese-Vicuna-chatv1 (Lora)
> domain finetuned: Lora
```
这是[Chinese-Vicuna](https://github.com/Facico/Chinese-Vicuna)在legal领域上微调后的lora模型,可直接配合Llama7B使用
legal的数据我们使用 [Chatgpt关于JEC-QA中国法考数据集的解答](https://raw.githubusercontent.com/AndrewZhe/lawyer-llama/main/data/judical_examination.json) 、 [ChatGPT扮演律师解答问题](https://raw.githubusercontent.com/AndrewZhe/lawyer-llama/main/data/legal_advice.json) 、[法律知识问答](https://github.com/thunlp/CAIL) 三种来源的数据,总计23209条。尽管我们能够找到一些法律真实问答的数据,但此类数据往往带噪(比如不耐烦地回答`“问问你自己吧”`),因此并没有使用
我们按[chat](https://github.com/Facico/Chinese-Vicuna/blob/master/sample/chat/data_sample.jsonl)格式格式化数据,基于[chatv1](https://huggingface.co/Chinese-Vicuna/Chinese-Vicuna-lora-7b-chatv1),使用[continue-training](https://github.com/Facico/Chinese-Vicuna/blob/master/scripts/finetune_chat_continue.sh) 继续训练将近6 epoch;经测试不仅提高了法律问答能力,还能够保留一定的通用问答能力。
|
MayIBorn/ft-sd15-human_face
|
MayIBorn
| 2023-05-17T08:29:47Z | 0 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-05-17T08:09:14Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: ((Best quality)), ((masterpiece)), ((realistic)) human face photo capturing a person's gaze with a high definition, detailed portrayal of the human face. The style emphasizes realism, using photography as the medium. The artwork showcases a close-up portrait, focusing on the subject's facial features. The color scheme reflects natural skin tones, lending authenticity to the depiction.
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MayIBorn/ft-sd15-human_face
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on ((Best quality)), ((masterpiece)), ((realistic)) human face photo capturing a person's gaze with a high definition, detailed portrayal of the human face. The style emphasizes realism, using photography as the medium. The artwork showcases a close-up portrait, focusing on the subject's facial features. The color scheme reflects natural skin tones, lending authenticity to the depiction. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: True.
|
hongthanhdang/bloom
|
hongthanhdang
| 2023-05-17T08:15:50Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2023-05-15T10:55:59Z |
---
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: bloom
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bloom
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6779 | 1.13 | 200 | 1.6824 |
| 1.6474 | 2.27 | 400 | 1.6568 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.