modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
Guoping/ppo-LunarLander-v2
Guoping
2023-05-07T05:45:21Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-07T05:44:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.95 +/- 16.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hongggs/kogpt2-base-v2-finetuned-klue-ner
hongggs
2023-05-07T05:45:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-05-06T15:55:35Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: kogpt2-base-v2-finetuned-klue-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: validation args: ner metrics: - name: F1 type: f1 value: 0.4045776387287996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kogpt2-base-v2-finetuned-klue-ner This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4255 - F1: 0.4046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6124 | 1.0 | 876 | 0.5478 | 0.2024 | | 0.4086 | 2.0 | 1752 | 0.4947 | 0.2814 | | 0.3159 | 3.0 | 2628 | 0.4443 | 0.3303 | | 0.2498 | 4.0 | 3504 | 0.4168 | 0.3791 | | 0.1998 | 5.0 | 4380 | 0.4255 | 0.4046 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Yalina/Yalina
Yalina
2023-05-07T05:10:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-07T05:10:55Z
--- license: creativeml-openrail-m ---
4bit/WizardLM-7B-uncensored-GPTQ
4bit
2023-05-07T04:26:36Z
9,216
7
transformers
[ "transformers", "llama", "text-generation", "dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-05-07T04:23:50Z
--- license: apache-2.0 datasets: - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered inference: false --- # WizardLM - uncensored: An Instruction-following LLM Using Evol-Instruct These files are GPTQ 4bit model files for [Eric Hartford's 'uncensored' version of WizardLM](https://huggingface.co/ehartford/WizardLM-7B-Uncensored). It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). Eric did a fresh 7B training using the WizardLM method, on [a dataset edited to remove all the "I'm sorry.." type ChatGPT responses](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered). ## Other repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ) * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML) * [Eric's unquantised model in HF format](https://huggingface.co/ehartford/WizardLM-7B-Uncensored) ## How to easily download and use this model in text-generation-webui Open the text-generation-webui UI as normal. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-7B-uncensored-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. Click the **Refresh** icon next to **Model** in the top left. 6. In the **Model drop-down**: choose the model you just downloaded, `WizardLM-7B-uncensored-GPTQ`. 7. If you see an error in the bottom right, ignore it - it's temporary. 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` 9. Click **Save settings for this model** in the top right. 10. Click **Reload the Model** in the top right. 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Provided files **Compatible file - WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors** In the `main` branch - the default one - you will find `WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors` This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui. * `wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches * Works with text-generation-webui one-click-installers * Parameters: Groupsize = 128g. No act-order. * Command used to create the GPTQ: ``` python llama.py models/ehartford_WizardLM-7B-Uncensored c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors /workspace/eric-gptq/WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors ``` # Eric's original model card This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA. Shout out to the open source AI/ML community, and everyone who helped me out, including Rohan, TheBloke, and Caseus # WizardLM's original model card Overview of Evol-Instruct Evol-Instruct is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs. ![info](https://github.com/nlpxucan/WizardLM/raw/main/imgs/git_overall.png) ![info](https://github.com/nlpxucan/WizardLM/raw/main/imgs/git_running.png)
vdo/animov-0.1.1
vdo
2023-05-07T04:22:41Z
62
1
diffusers
[ "diffusers", "anime", "text-to-video", "en", "license:cc-by-nc-4.0", "diffusers:TextToVideoSDPipeline", "region:us" ]
text-to-video
2023-05-07T02:38:36Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-to-video tags: - anime --- This is a text2video model for diffusers, fine-tuned with a [modelscope](https://huggingface.co/damo-vilab/text-to-video-ms-1.7b) to have an anime-style appearance. It was trained at 448x384 resolution. The usage is the same as with the original modelscope model. The main difference from version 0.1 is only the resolution.
vdo/text-to-video-ms-1.7b
vdo
2023-05-07T04:14:50Z
14
4
diffusers
[ "diffusers", "safetensors", "text-to-video", "license:cc-by-nc-4.0", "diffusers:TextToVideoSDPipeline", "region:us" ]
text-to-video
2023-05-07T04:06:03Z
--- license: cc-by-nc-4.0 tags: - text-to-video duplicated_from: diffusers/text-to-video-ms-1.7b --- # Text-to-video-synthesis Model in Open Domain This model is based on a multi-stage text-to-video generation diffusion model, which inputs a description text and returns a video that matches the text description. Only English input is supported. **We Are Hiring!** (Based in Beijing / Hangzhou, China.) If you're looking for an exciting challenge and the opportunity to work with cutting-edge technologies in AIGC and large-scale pretraining, then we are the place for you. We are looking for talented, motivated and creative individuals to join our team. If you are interested, please send your CV to us. EMAIL: yingya.zyy@alibaba-inc.com ## Model description The text-to-video generation diffusion model consists of three sub-networks: text feature extraction model, text feature-to-video latent space diffusion model, and video latent space to video visual space model. The overall model parameters are about 1.7 billion. Currently, it only supports English input. The diffusion model adopts a UNet3D structure, and implements video generation through the iterative denoising process from the pure Gaussian noise video. This model is meant for research purposes. Please look at the [model limitations and biases and misuse](#model-limitations-and-biases), [malicious use and excessive use](#misuse-malicious-use-and-excessive-use) sections. ## Model Details - **Developed by:** [ModelScope](https://modelscope.cn/) - **Model type:** Diffusion-based text-to-video generation model - **Language(s):** English - **License:**[ CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/) - **Resources for more information:** [ModelScope GitHub Repository](https://github.com/modelscope/modelscope), [Summary](https://modelscope.cn/models/damo/text-to-video-synthesis/summary). - **Cite as:** ## Use cases This model has a wide range of applications and can reason and generate videos based on arbitrary English text descriptions. ## Usage Let's first install the libraries required: ```bash $ pip install diffusers transformers accelerate ``` Now, generate a video: ```python import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() prompt = "Spiderman is surfing" video_frames = pipe(prompt, num_inference_steps=25).frames video_path = export_to_video(video_frames) ``` Here are some results: <table> <tr> <td><center> An astronaut riding a horse. <br> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astr.gif" alt="An astronaut riding a horse." style="width: 300px;" /> </center></td> <td ><center> Darth vader surfing in waves. <br> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vader.gif" alt="Darth vader surfing in waves." style="width: 300px;" /> </center></td> </tr> </table> ## Long Video Generation You can optimize for memory usage by enabling attention and VAE slicing and using Torch 2.0. This should allow you to generate videos up to 25 seconds on less than 16GB of GPU VRAM. ```bash $ pip install git+https://github.com/huggingface/diffusers transformers accelerate ``` ```py import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video # load pipeline pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # optimize for GPU memory pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() # generate prompt = "Spiderman is surfing. Darth Vader is also surfing and following Spiderman" video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames # convent to video video_path = export_to_video(video_frames) ``` ## View results The above code will display the save path of the output video, and the current encoding format can be played with [VLC player](https://www.videolan.org/vlc/). The output mp4 file can be viewed by [VLC media player](https://www.videolan.org/vlc/). Some other media players may not view it normally. ## Model limitations and biases * The model is trained based on public data sets such as Webvid, and the generated results may have deviations related to the distribution of training data. * This model cannot achieve perfect film and television quality generation. * The model cannot generate clear text. * The model is mainly trained with English corpus and does not support other languages ​​at the moment**. * The performance of this model needs to be improved on complex compositional generation tasks. ## Misuse, Malicious Use and Excessive Use * The model was not trained to realistically represent people or events, so using it to generate such content is beyond the model's capabilities. * It is prohibited to generate content that is demeaning or harmful to people or their environment, culture, religion, etc. * Prohibited for pornographic, violent and bloody content generation. * Prohibited for error and false information generation. ## Training data The training data includes [LAION5B](https://huggingface.co/datasets/laion/laion2B-en), [ImageNet](https://www.image-net.org/), [Webvid](https://m-bain.github.io/webvid-dataset/) and other public datasets. Image and video filtering is performed after pre-training such as aesthetic score, watermark score, and deduplication. _(Part of this model card has been taken from [here](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis))_ ## Citation ```bibtex @InProceedings{VideoFusion, author = {Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu}, title = {VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023} } ```
takeshiho0531/distilbert-base-uncased-finetuned-emotion
takeshiho0531
2023-05-07T04:02:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-07T03:39:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9295553605965364 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2124 - Accuracy: 0.9295 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8137 | 1.0 | 250 | 0.3047 | 0.908 | 0.9041 | | 0.2447 | 2.0 | 500 | 0.2124 | 0.9295 | 0.9296 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ApolloFilippou/ppo-LunarLander-v2
ApolloFilippou
2023-05-07T03:32:17Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-07T03:32:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.66 +/- 21.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TinaLiHF/fined-tuned-T5small
TinaLiHF
2023-05-07T02:51:04Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "code", "summarization", "en", "dataset:multi_news", "arxiv:1910.09700", "license:openrail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-05-06T07:46:41Z
--- language: - en license: openrail tags: - code datasets: - multi_news metrics: - rouge pipeline_tag: summarization model-index: - name: TinaLiHF/fined-tuned-T5small results: - task: type: summarization name: summarization dataset: name: multi_news type: multi_news split: validation metrics: - type: rouge value: 15.28 name: ROUGE-1 - type: rouge2 value: 15.07 name: ROUGE-2 - type: rougel value: 1.68 name: ROUGE-L - type: rougelsum value: 13.46 name: ROUGE-LSUM --- --- license: openrail datasets: - multi_news language: - en # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details This is developed for the TLDR project of ANLP. This is fine-tuned T5 small model with the Multi_news dataset, with adam optimiser. Aim to summarise long articles into shorten summaries ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Li, T - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** https://huggingface.co/t5-small ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** NVIDIA GeForce RTX 3060 Laptop GPU - **Hours used:** 3:06:45 Hr - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
medical-ner-proj/albert-medical-ner-proj
medical-ner-proj
2023-05-07T02:49:36Z
10
8
transformers
[ "transformers", "pytorch", "albert", "token-classification", "ner", "named-entity-recognition", "en", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-05T04:54:51Z
--- language: en tags: - ner - named-entity-recognition - token-classification license: openrail library_name: transformers pipeline_tag: token-classification --- widget: - example_title: "Example 1" text: "John Doe has a history of hypertension, which is well-controlled with medication. He has no history of allergies or surgeries. He is not currently taking any medication except for his blood pressure medication." - example_title: "Example 2" text: "On physical examination, John Doe appears acutely ill. He has a temperature of 38.5°C and a heart rate of 105 beats per minute. His blood pressure is 140/90 mmHg, and his oxygen saturation is 90% on room air. His lungs have diminished breath sounds and wheezing. There is no cyanosis, and his heart sounds are normal." - example_title: "Example 3" text: "Based on Mary Smith's symptoms and physical examination, she is suspected to have suffered a stroke, likely caused by hypertension. Her history of migraines may also be a contributing factor."
Winnie-Kay/Finetuned_BertModel_SentimentAnalysis
Winnie-Kay
2023-05-07T02:28:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-30T19:10:58Z
Model Description This model is a finetuned text classification model for sentiment analysis The model was created using the COVID19 tweet dataset and the bert-base-cased model from the hugging face library
mlhub/embeddings
mlhub
2023-05-07T02:24:54Z
0
0
null
[ "license:other", "region:us" ]
null
2023-04-17T01:42:23Z
--- license: other --- ### EasyNegative #### License : other https://huggingface.co/datasets/gsdf/EasyNegative ### bad_prompt #### License : creativeml-openrail-m https://huggingface.co/datasets/Nerfgun3/bad_prompt ### badhand #### License : unknown https://civitai.com/models/16993/badhandv4-animeillustdiffusion ### negative_hand #### License : unknown https://civitai.com/models/56519/negativehand-negative-embedding ### veryBadImageNegative #### License : unknown https://civitai.com/models/11772/verybadimagenegative
WALIDALI/zx
WALIDALI
2023-05-07T02:21:31Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-07T01:52:53Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### zx Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
teknium/llama-deus-7b-v2-lora
teknium
2023-05-07T02:16:29Z
0
2
null
[ "region:us" ]
null
2023-05-06T06:22:23Z
Llama DEUS 7B - V2 is a LORA (and a merged model) trained on Llama 7b. The datasets include: GPTeacher General Instruct GPTeacher Roleplay Instruct GPTeacher Code-Gen Instruct Yet To Be Released Roleplay V2 Instruct WizardLM Uncensored GPT4-LLM Uncensored, AlpacaGPT4 + Unnatural Instructions Prompt Format is: ``` ### Instruction: <prompt> ### Response: ``` OR ``` ### Instrutcion: <task> ### Input: <text to perform task with/on> ### Response: ``` (Same as Alpaca)
xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1
xinyixiuxiu
2023-05-07T02:16:11Z
3
0
transformers
[ "transformers", "tf", "albert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T15:08:36Z
--- tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2153 - Train Accuracy: 0.9144 - Validation Loss: 0.1911 - Validation Accuracy: 0.9243 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2153 | 0.9144 | 0.1911 | 0.9243 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
Gridflow/distilbert-base-uncased-finetuned-emotion2
Gridflow
2023-05-07T00:54:48Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-07T00:50:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion2 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9275719429504966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9275 - F1: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8425 | 1.0 | 250 | 0.3132 | 0.9065 | 0.9038 | | 0.2536 | 2.0 | 500 | 0.2226 | 0.9275 | 0.9276 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
keyvenxorg/test01
keyvenxorg
2023-05-07T00:10:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-07T00:10:16Z
--- license: creativeml-openrail-m ---
cafbr/distilbert-base-uncased-finetuned-emotion
cafbr
2023-05-06T23:59:37Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T13:19:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.939 - name: F1 type: f1 value: 0.9389480299119135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - Accuracy: 0.939 - F1: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4255 | 1.0 | 2000 | 0.2257 | 0.9245 | 0.9240 | | 0.1494 | 2.0 | 4000 | 0.1742 | 0.939 | 0.9389 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0+cu113 - Datasets 2.11.0 - Tokenizers 0.13.3
mg5812/whisper-tiny-zh
mg5812
2023-05-06T23:37:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-04-30T22:04:44Z
--- language: - zh license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Zh - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zh-CN split: test args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 111.34001134001134 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Zh - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5909 - Wer: 111.3400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7098 | 0.4 | 1000 | 0.6905 | 106.4733 | | 0.7108 | 0.81 | 2000 | 0.6273 | 106.5394 | | 0.6124 | 1.21 | 3000 | 0.6009 | 112.0582 | | 0.5633 | 1.61 | 4000 | 0.5909 | 111.3400 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
yatsy/q-FrozenLake-v1-4x4-noSlippery
yatsy
2023-05-06T23:33:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T23:33:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yatsy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
az00/none-segformer-b0-scene-parse-150-cvfinal
az00
2023-05-06T23:21:11Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2023-05-06T19:59:17Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: none-segformer-b0-scene-parse-150-cvfinal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # none-segformer-b0-scene-parse-150-cvfinal This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.7252 - Mean Iou: 0.0740 - Mean Accuracy: 0.1399 - Overall Accuracy: 0.5014 - Per Category Iou: [0.48516085209240617, 0.48972620283996443, 0.8461720523595614, 0.3492916550456616, 0.57616479445388, 0.0, 0.1380369639332496, 0.0, 0.0, 0.06175407695344529, 0.05268220495745468, 0.0, 0.46499631540162123, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.014604701379005741, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] - Per Category Accuracy: [0.9196892474715829, 0.9582061399112456, 0.933910864697729, 0.8767355657473141, 0.698410787382615, nan, 0.2478126973082325, 0.0, 0.0, 0.3181569271688962, 0.11338181432135463, 0.0, 0.792386293263607, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.018925518925518924, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.7335 | 1.0 | 20 | 4.8796 | 0.0116 | 0.0631 | 0.2288 | [0.26602580332229103, 0.13503996080472794, 0.5126324717493553, 0.03538599823621193, 0.0, 0.0, 0.23201003311621884, 0.0, 0.0, 0.0007549500703476202, 0.0007177646757241733, 0.0, 0.1337408194640391, 0.0, 0.0, 0.0006260434056761269, 0.0, 0.0, 0.003776113039770997, 0.0018461084034854527, 0.0, 0.0, 0.0, 0.0, 0.004682746892141129, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.037279151943462895, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0069502929938564375, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0004982250731768076, 0.015501624105421608, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0] | [0.4298642826228788, 0.1607421109703757, 0.637978462522657, 0.03745321713531803, 0.0, nan, 0.5172729264112773, 0.0, 0.0, 0.0008605178753031369, 0.0007431392324433356, 0.0, 0.6180416982040873, 0.0, 0.0, 0.004047976011994003, 0.0, 0.0, 0.00394896074393325, 0.004025764895330112, 0.0, nan, 0.0, nan, 0.004973036223036223, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.12507409602845287, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007277621777169246, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0006330115524608325, 0.09684870483418578, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 4.6529 | 2.0 | 40 | 4.5475 | 0.0247 | 0.1009 | 0.3676 | [0.3492776793903353, 0.3337007290250834, 0.7135686182394738, 0.30712523110007506, 0.17802442220240258, 0.0, 0.19822838291071956, 0.0, 0.0, 0.006058044519582981, 0.0, 0.0, 0.1319319517090062, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0008831521739130435, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0017985144961997735, 0.0, nan, nan, 0.0, 0.0, 0.000757346258709482, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0028642717677982914, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.6289293550463911, 0.6152304061380888, 0.8097451753918328, 0.35633958301546415, 0.194654466650614, nan, 0.7448168335330576, 0.0, 0.0, 0.006727685206915434, 0.0, 0.0, 0.8730131425032684, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.000992063492063492, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0019371181642080166, nan, nan, nan, nan, 0.0, 0.0007711289327575571, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0029890232299087977, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 4.2773 | 3.0 | 60 | 4.0639 | 0.0440 | 0.1247 | 0.4361 | [0.4042366302315495, 0.41260752956121216, 0.6956280974529252, 0.4744124360789115, 0.5174210871265778, 0.0, 0.2321725137895724, 0.0, 0.0, 0.001339366515837104, 0.001013299556681444, 0.0, 0.1994971186483083, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02148978246539222, 0.0, 0.0, 0.0, 0.0, 0.029444459507089987, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 8.193214197929848e-05, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.7164404710381314, 0.8109822217767289, 0.8638927390979848, 0.6677855661960707, 0.5892968938117024, nan, 0.6953238754236087, 0.0, 0.0, 0.0014472346084643667, 0.0010616274749190508, 0.0, 0.8230062616115048, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.026247987117552336, 0.0, nan, 0.0, nan, 0.041437728937728936, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 8.354412754403471e-05, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 4.1933 | 4.0 | 80 | 3.6891 | 0.0627 | 0.1355 | 0.4699 | [0.43517016314839757, 0.40520111317002927, 0.7840096282049769, 0.44564120150115194, 0.5733062934147058, 0.0, 0.21302609539102332, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2286940122998202, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0075297225891677675, 0.0, 0.0, 0.0, 0.0, 0.043723122114094314, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8028039214419675, 0.8179622930354198, 0.8855634929096918, 0.8280993367378993, 0.7283529978328919, nan, 0.6735217184016906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.894928782770247, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.009178743961352657, 0.0, nan, 0.0, nan, 0.05263024013024013, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.521 | 5.0 | 100 | 3.5680 | 0.0617 | 0.1323 | 0.4725 | [0.47426346531460467, 0.3756216836005744, 0.7932022625900177, 0.3481105662362344, 0.5801636113930854, 0.0, 0.15677184088230717, 0.0, 0.0, 0.0, 0.008441786844882167, 0.0, 0.25353794767478555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.031425970259972354, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 1.3880470640491183e-05, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8201394855099144, 0.9462917232392634, 0.8484913103742403, 0.9206329261616062, 0.7018540813869492, nan, 0.36339505456981974, 0.0, 0.0, 0.0, 0.01146557672912575, 0.0, 0.8983692286520333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.04741554741554742, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 1.392402125733912e-05, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.8066 | 6.0 | 120 | 3.3481 | 0.0658 | 0.1298 | 0.4773 | [0.4451362791719356, 0.44091462229009504, 0.8264357123511887, 0.3317407638164916, 0.59153012013538, 0.0, 0.06888716899773342, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2812393731777613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.042233144193968744, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8072330923881564, 0.9195059275931512, 0.9353795713828766, 0.9653200980084187, 0.7427883457741392, nan, 0.16056541291378354, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8678352714511801, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.05235042735042735, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.3965 | 7.0 | 140 | 3.2030 | 0.0667 | 0.1225 | 0.4655 | [0.420408008087244, 0.481311168681635, 0.7398386056180811, 0.31060386991657574, 0.5916529721214714, 0.0, 0.008396429119557989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3534511051812954, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.03080386434082219, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9285971133949584, 0.9141934190503094, 0.7702793474784092, 0.8965526525996463, 0.7325427401878161, nan, 0.016918576932493202, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8521812426890525, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.03463319088319088, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.6942 | 8.0 | 160 | 3.1186 | 0.0664 | 0.1250 | 0.4901 | [0.4677720939201501, 0.4484987119600654, 0.8553566495523993, 0.2849493094206236, 0.5487920811486254, 0.0, 0.0014844575679098999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3853302757039157, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0625742612828454, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9297426257641235, 0.9558505936705516, 0.9161157905960123, 0.9217637925308969, 0.6741632554779677, nan, 0.0023709201489556355, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7688708456615977, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.08171805046805047, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.5189 | 9.0 | 180 | 3.0406 | 0.0646 | 0.1276 | 0.4861 | [0.4621877645769044, 0.47665485057669216, 0.8447637704259798, 0.27353983986308267, 0.5388896405538267, 0.0, 0.01346168308641047, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3231348814229249, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.041031878120599156, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0001856536167645216, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8968694352753214, 0.907942336957017, 0.925319863524896, 0.9410154461985837, 0.7192872622200819, nan, 0.02075843673895396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9000550471341086, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.048916361416361416, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0001856536167645216, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.9829 | 10.0 | 200 | 3.1090 | 0.0661 | 0.1272 | 0.4812 | [0.5191038808054473, 0.45321063834928527, 0.8387389258379386, 0.2550185661375535, 0.5706876054609603, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011067405870267704, 0.0, 0.34958018471872376, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.041148107944361696, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8900351189976337, 0.9399905231408499, 0.8827327007143618, 0.9621967527979968, 0.7166506140139658, nan, 0.0, 0.0, 0.0, 0.0, 0.028451616327830564, 0.0, 0.8594577857290305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.062194749694749696, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.8942 | 11.0 | 220 | 2.9804 | 0.0689 | 0.1321 | 0.4936 | [0.5088402771712589, 0.4066365442855555, 0.8731627211650969, 0.30338188655945664, 0.5316464254625052, 0.0, 0.1177612092738229, 0.0, 0.0, 0.0, 0.00910533063867701, 0.0, 0.38959143968871596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.029298853203515534, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8906789314006042, 0.9500642421702007, 0.9169954152894765, 0.9701935935522666, 0.7573561281001685, nan, 0.2079967013284884, 0.0, 0.0, 0.0, 0.011120547799777059, 0.0, 0.7991811738801349, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.045622201872201874, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.7201 | 12.0 | 240 | 2.8938 | 0.0689 | 0.1276 | 0.4884 | [0.49859850341662776, 0.47117914374551545, 0.8606668137094586, 0.2782023057382922, 0.5850470064324592, 0.0, 0.0003655450370231512, 0.0, 0.0, 0.0, 0.020233693867389855, 0.0, 0.3704016085427476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.014074614865676608, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9088973151515543, 0.9603976635897249, 0.904904574048406, 0.9583733474542044, 0.7117625812665543, nan, 0.0005025319880938576, 0.0, 0.0, 0.0, 0.05069271192738468, 0.0, 0.8461088557076997, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.019370675620675622, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.5131 | 13.0 | 260 | 2.8989 | 0.0687 | 0.1255 | 0.4861 | [0.493514093098358, 0.4578591089951369, 0.8434796025273804, 0.3360078087526457, 0.5465601579679576, 0.0, 0.011196847808241667, 0.0, 0.0, 0.0, 0.005744272281816978, 0.0, 0.3760110149488592, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.019655201132672606, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9206926474039718, 0.9389927192207106, 0.9034625226569997, 0.8990656889758479, 0.7331447146640983, nan, 0.021969667684616077, 0.0, 0.0, 0.0, 0.009209618344922767, 0.0, 0.8221117456822404, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.024013024013024013, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.7687 | 14.0 | 280 | 2.8508 | 0.0756 | 0.1365 | 0.5063 | [0.48129422405879024, 0.45942192498346157, 0.8903460460852659, 0.40217135424355716, 0.5147232560825036, 0.0, 0.1818769738189422, 0.0, 0.0, 0.0009107783119473362, 0.020630762255025442, 0.0, 0.4228314371743324, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.027973084594153555, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9188925565381411, 0.9239345367729472, 0.9630930802857447, 0.9046482197829814, 0.6976402600529737, nan, 0.4348576803638847, 0.0, 0.0, 0.00309004146131581, 0.04347364509793514, 0.0, 0.8068361659671094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.03532000407000407, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 3.1372 | 15.0 | 300 | 2.8200 | 0.0703 | 0.1280 | 0.4870 | [0.49449563777050903, 0.4802672707435518, 0.8720511665164714, 0.2774592800349947, 0.5330857772718238, 0.0, 0.03201641586867305, 0.0, 0.0, 0.0, 0.023100078878318123, 0.0, 0.4300235829877206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02029611861287454, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8903021181212736, 0.920562961882979, 0.9285824714788357, 0.9677792836051302, 0.7103660004815796, nan, 0.07539268364967078, 0.0, 0.0, 0.0, 0.038085885662720954, 0.0, 0.8186885020298631, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.024966931216931217, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.486 | 16.0 | 320 | 2.7598 | 0.0789 | 0.1432 | 0.5142 | [0.4991798514691637, 0.43418590272907964, 0.86210232576229, 0.4136572394475814, 0.5251975880164801, 0.0, 0.35446049906302396, 0.0, 0.0, 0.0, 0.03666287722199256, 0.0, 0.4233234225305583, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9154172614933433, 0.9534950474298576, 0.9453619788890073, 0.9158940575664832, 0.6952323621478449, nan, 0.7409383174198204, 0.0, 0.0, 0.0, 0.07532246934550667, 0.0, 0.7715027867611642, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.7467 | 17.0 | 340 | 2.7457 | 0.0695 | 0.1255 | 0.4912 | [0.4558465734083546, 0.47018152124441115, 0.8197800939182224, 0.3284440295543021, 0.5600445316848798, 0.0, 0.0521584075176449, 0.0, 0.0, 0.00041090773253642135, 0.0, 0.0, 0.44074943276431233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9343332881157398, 0.9601744106578216, 0.915769271777375, 0.8905034150369326, 0.6904406453166386, nan, 0.09912765601041143, 0.0, 0.0, 0.0012907768129547055, 0.0, 0.0, 0.7785901052776439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.2817 | 18.0 | 360 | 2.8545 | 0.0718 | 0.1363 | 0.4842 | [0.5250536482085539, 0.45146468669356504, 0.8169652139242147, 0.31774934039309877, 0.5361035118830144, 0.0, 0.023971370437490595, 0.0, 0.0, 0.0, 0.1170712306271169, 0.0, 0.4165009201256576, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02620465995508268, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8671743956453304, 0.9477360330232092, 0.890249493549419, 0.9522612839820856, 0.7243077293522755, nan, 0.04721223600963831, 0.0, 0.0, 0.0, 0.484367535431817, 0.0, 0.7708835065024428, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.038436100936100934, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.942 | 19.0 | 380 | 2.7746 | 0.0731 | 0.1391 | 0.4996 | [0.47438098986192484, 0.46805161724419664, 0.8401448805276246, 0.3948473962651032, 0.5195866943099121, 0.0, 0.1753525864646666, 0.0, 0.0, 0.004733862429232695, 0.0070794392523364485, 0.0, 0.379712404037255, 0.0, 0.0, 0.0, 0.0, 0.025598219254312743, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.00010164874260505397, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9213902902754182, 0.8874304043156158, 0.9527748160784731, 0.8848849837101392, 0.7452684806164218, nan, 0.36271212648343576, 0.0, 0.0, 0.021160916842681687, 0.00804182812251181, 0.0, 0.8380754145737288, 0.0, 0.0, 0.0, 0.0, 0.2222222222222222, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.00012718762718762718, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.9623 | 20.0 | 400 | 2.7914 | 0.0767 | 0.1374 | 0.5068 | [0.4780680704589745, 0.47719941783806225, 0.8714037920928285, 0.3540430160558594, 0.569819461565992, 0.0, 0.2643097199341021, 0.0, 0.0, 0.004042103722942139, 0.01566662062705945, 0.0, 0.417884019477645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9222817228333775, 0.9530986595711721, 0.9320183388420941, 0.9406564410019835, 0.6900674211413436, nan, 0.516821936165552, 0.0, 0.0, 0.01728858640381757, 0.02107330537714316, 0.0, 0.7794674189774995, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.3827 | 21.0 | 420 | 2.7929 | 0.0736 | 0.1346 | 0.4898 | [0.4991783960640681, 0.4633859904157219, 0.8432330912135406, 0.28499998671601223, 0.5906476321044318, 0.0, 0.10364698859993662, 0.0, 0.0, 0.0, 0.09607177161416816, 0.0, 0.4256818538666864, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.003464260055703727, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.8856662381761377, 0.9600012757310394, 0.893978569143832, 0.9627801362424722, 0.715795810257645, nan, 0.18123365160359245, 0.0, 0.0, 0.0, 0.2574977440416158, 0.0, 0.7928335512282392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.004477004477004477, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.1266 | 22.0 | 440 | 2.7964 | 0.0733 | 0.1336 | 0.4945 | [0.479201681139934, 0.46803094759478286, 0.8226404746106327, 0.3305701897826291, 0.5371052834092911, 0.0, 0.17402634630669603, 0.0, 0.0, 0.0, 0.06292154139160569, 0.0, 0.4987350838079176, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9270317233716822, 0.9122980472202732, 0.8955698901801897, 0.9162620378929985, 0.756260534553335, nan, 0.34419575553751597, 0.0, 0.0, 0.0, 0.11661977811985774, 0.0, 0.7426890525012042, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.9058 | 23.0 | 460 | 2.7332 | 0.0786 | 0.1430 | 0.5117 | [0.46751417639424964, 0.47414191147296786, 0.8678990374310945, 0.4613486768056043, 0.5347419596110695, 0.0, 0.3287688404715714, 0.0, 0.0, 0.002630568035675513, 0.059173180940731256, 0.0, 0.4186963040101983, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9005794311626735, 0.9310512935001504, 0.960627465614671, 0.9196995126504456, 0.6886106429087406, nan, 0.7096911361088561, 0.0, 0.0, 0.012321051396385825, 0.08216996655873454, 0.0, 0.8022947774031515, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.006 | 24.0 | 480 | 2.7379 | 0.0834 | 0.1462 | 0.5161 | [0.5059332832593822, 0.48382921889690655, 0.8841889209221592, 0.4198028943618153, 0.5703533575931118, 0.0, 0.36924429160758854, 0.0, 0.0, 0.004732153653915917, 0.057609931995837464, 0.0, 0.45736494668177025, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0018850845021790457, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9079305199377289, 0.9589487976234953, 0.9450234566584924, 0.9385742108617022, 0.6906453166385745, nan, 0.7415954746350201, 0.0, 0.0, 0.022960181491042793, 0.12636021020224003, 0.0, 0.805683616596711, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0025691900691900693, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7623 | 25.0 | 500 | 2.7353 | 0.0736 | 0.1312 | 0.4958 | [0.47366980226061, 0.48251607670604874, 0.8670598230796142, 0.30190292486058545, 0.5787168756008273, 0.0, 0.1184128306602791, 0.0, 0.0, 0.0028823771628333013, 0.038949751018560436, 0.0, 0.44208272948575866, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.005849476368766618, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9165024837378155, 0.951412872126188, 0.9248853822369123, 0.928540015616726, 0.7175294967493379, nan, 0.190459623487572, 0.0, 0.0, 0.013416255964953454, 0.057089017463771964, 0.0, 0.8028624509736462, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.006855413105413106, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7663 | 26.0 | 520 | 2.7150 | 0.0742 | 0.1345 | 0.5018 | [0.48013744627507166, 0.4815673027261687, 0.8818191133871689, 0.3468069385556645, 0.5659960371894528, 0.0, 0.1638641429184871, 0.0, 0.0, 0.0019665355642957136, 0.048896398774949834, 0.0, 0.4406706348086923, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.00192766955460124, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9236748553575312, 0.9431023956406448, 0.9404574048406014, 0.9015069243127294, 0.7153383096556706, nan, 0.30977875707088276, 0.0, 0.0, 0.009231009935070015, 0.09830670417750412, 0.0, 0.806165279020161, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0022893772893772895, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.9199 | 27.0 | 540 | 2.7413 | 0.0745 | 0.1350 | 0.4968 | [0.49510488371335354, 0.46754934683141397, 0.849462043859321, 0.33122249686501287, 0.5753252737986685, 0.0, 0.1391476574238492, 0.0, 0.0, 0.017918746022708244, 0.055636638828076436, 0.0, 0.41275063903556486, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.009935347189246447, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9162096459893071, 0.9637419013859907, 0.9080952127092441, 0.9032121989965805, 0.7064531663857453, nan, 0.26252786475446804, 0.0, 0.0, 0.08370492059766878, 0.10926800785604332, 0.0, 0.8027592375971926, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.013838013838013839, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.794 | 28.0 | 560 | 2.7492 | 0.0784 | 0.1431 | 0.5087 | [0.49827306897444046, 0.4712267062537749, 0.8527258988446009, 0.38926715642358, 0.5746564006620134, 0.0, 0.3509618812657759, 0.0, 0.0, 0.0041067235859124866, 0.0436436932761334, 0.0, 0.4018405165537335, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.019541860184850424, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9079865036249437, 0.9704394893430897, 0.9114297899562853, 0.9359265475367756, 0.6730315434625572, nan, 0.6342340252812246, 0.0, 0.0, 0.018814049910036768, 0.10746324114868093, 0.0, 0.8232642950526389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02681115181115181, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.4253 | 29.0 | 580 | 2.7020 | 0.0760 | 0.1352 | 0.5020 | [0.5031510311231457, 0.4877849933934947, 0.8587502163752813, 0.3660408701006716, 0.5600148244955283, 0.0, 0.1667567620375014, 0.0, 0.0, 0.0016477245326088704, 0.04485047749319211, 0.0, 0.426326759660093, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.005379764495786595, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9178331729185373, 0.948651825662241, 0.9388820769804883, 0.9176531830298243, 0.6913074885624849, nan, 0.3299186929014135, 0.0, 0.0, 0.00801846201987014, 0.09485641488401719, 0.0, 0.8233331039702746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.006130443630443631, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.3029 | 30.0 | 600 | 2.7116 | 0.0759 | 0.1348 | 0.5018 | [0.49563397328545666, 0.46367195231916253, 0.8560654148152961, 0.36008673749995623, 0.5725128547973218, 0.0, 0.19332219059308975, 0.0, 0.0, 0.0022978129744368305, 0.021612771182971755, 0.0, 0.4503470471906627, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.002150631543323763, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9284851460205288, 0.9605662423342233, 0.913098411344493, 0.9225536039634173, 0.7010835540573079, nan, 0.3815377478835672, 0.0, 0.0, 0.010952045685676289, 0.04204044800679441, 0.0, 0.799146769421317, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0025055962555962557, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.2664 | 31.0 | 620 | 2.7345 | 0.0757 | 0.1423 | 0.5086 | [0.5038067007994251, 0.47491069334439895, 0.8677876544299113, 0.38322480318787056, 0.5636300805984409, 0.0, 0.26721591887967316, 0.0, 0.0, 0.023486980302009432, 0.05034503768261831, 0.0, 0.4216559817450831, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0012768303653475977, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.905785914073653, 0.9594545338569905, 0.9438266339695064, 0.9201123686265359, 0.6676498916445943, nan, 0.5596015823314907, 0.0, 0.0, 0.11589611202378158, 0.1008811508041828, 0.0, 0.8010390146562995, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.001678876678876679, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.8158 | 32.0 | 640 | 2.7678 | 0.0730 | 0.1411 | 0.5014 | [0.49905246546841314, 0.462109144067159, 0.8336621630930006, 0.3613004300113773, 0.5967025403579026, 0.0, 0.20601669089379662, 0.0, 0.0, 0.04176613817881872, 0.06829472018288126, 0.0, 0.4274557934451566, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0072899703036689335, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.915193326744484, 0.9793832751660728, 0.9032865977183069, 0.8921009881618036, 0.6888875511678305, nan, 0.35976136173283335, 0.0, 0.0, 0.20597668778846906, 0.16492382822867455, 0.0, 0.8088144223491365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.009678978428978429, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7327 | 33.0 | 660 | 2.7381 | 0.0804 | 0.1475 | 0.5128 | [0.498424444150801, 0.48720218166484014, 0.8630049768653525, 0.3974616262893528, 0.574922619408873, 0.0, 0.3285919648936975, 0.0, 0.0, 0.038542149097674124, 0.06470739565595561, 0.0, 0.4200233222656424, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.02335147511083947, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9015246941891086, 0.9580512297135984, 0.9466094466361019, 0.915436325940818, 0.68430050565856, nan, 0.6155759145437911, 0.0, 0.0, 0.1920519439881092, 0.14018790806306067, 0.0, 0.811687194660428, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.030614061864061865, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7564 | 34.0 | 680 | 2.7376 | 0.0788 | 0.1413 | 0.5038 | [0.48152886069362916, 0.48194988038387154, 0.8785999592777584, 0.3634575819920126, 0.5734061468122936, 0.0, 0.2063981324219105, 0.0, 0.0, 0.03960991466883381, 0.05569229071243309, 0.0, 0.44068977691886013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.026782822721678864, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9126353028825139, 0.9582608140986505, 0.9316611579059602, 0.8625458853516904, 0.7066578377076812, nan, 0.3805069130361952, 0.0, 0.0, 0.19064382382852227, 0.13392430596103827, 0.0, 0.8159189430950251, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.042073667073667075, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7323 | 35.0 | 700 | 2.6776 | 0.0782 | 0.1375 | 0.5030 | [0.4757392220257697, 0.5041899980691253, 0.8771835367312755, 0.3387514369271945, 0.5695425546901729, 0.0, 0.20578442209700468, 0.0, 0.0, 0.03306012389907801, 0.03178429534395786, 0.0, 0.46818443502381324, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.016566547356582435, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9229384545487822, 0.9517682543443198, 0.9380317731101396, 0.8701478203897002, 0.6814351071514568, nan, 0.3934052340639375, 0.0, 0.0, 0.1692873347414535, 0.05669090716067732, 0.0, 0.7694213170026836, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.023606023606023607, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7502 | 36.0 | 720 | 2.6911 | 0.0786 | 0.1456 | 0.5125 | [0.4949791385929085, 0.4935428587482792, 0.8824374046486584, 0.3756147258437639, 0.5756830996096574, 0.0, 0.3131360704412819, 0.0, 0.0, 0.0461541901773269, 0.03627418092362742, 0.0, 0.4571003127016429, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.017569593581587585, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.920632357279279, 0.9604614501416973, 0.9435654120908412, 0.8801909907645913, 0.671177462075608, nan, 0.5911322432254822, 0.0, 0.0, 0.24219666744895565, 0.08609798821593503, 0.0, 0.7920938553636552, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.027574277574277575, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.8968 | 37.0 | 740 | 2.7568 | 0.0790 | 0.1435 | 0.5039 | [0.5159331555248942, 0.47422794208749053, 0.8698409286328461, 0.35261114702415314, 0.5870581913708008, 0.0, 0.19183575662322835, 0.0, 0.0, 0.04157999129214842, 0.06774659603344863, 0.0, 0.42975392505285887, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02222145810588933, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9017701611253582, 0.9591447134616962, 0.9276015566691544, 0.9154901767203081, 0.7102937635444257, nan, 0.3507286713827361, 0.0, 0.0, 0.2017132128608308, 0.20534529433621743, 0.0, 0.8216644877176082, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.03287800162800163, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.9333 | 38.0 | 760 | 2.7121 | 0.0743 | 0.1358 | 0.5002 | [0.492245796660384, 0.4990214787841022, 0.8774645689187481, 0.314980744912293, 0.5762447101593342, 0.0, 0.12077603743611492, 0.0, 0.0, 0.019930932412432167, 0.06163556675327402, 0.0, 0.43879118066474093, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.01638768993227357, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9194373208791161, 0.9340629299897031, 0.9441491630237765, 0.8875146967752359, 0.7328076089573802, nan, 0.21650108881930755, 0.0, 0.0, 0.09481342407885474, 0.12466160624236955, 0.0, 0.8257414160875249, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02375864875864876, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.5571 | 39.0 | 780 | 2.7319 | 0.0761 | 0.1369 | 0.4975 | [0.4956006371814093, 0.49073904702941273, 0.8705636277573597, 0.32531316601780225, 0.5835368808282982, 0.0, 0.0970667263770712, 0.0, 0.0, 0.0384180054882865, 0.06949698752977441, 0.0, 0.4282930071311814, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.024329781671985143, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9110785257341938, 0.953417592331034, 0.9363524896044354, 0.8617022231396799, 0.7104382374187335, nan, 0.16757508987591327, 0.0, 0.0, 0.18454196980364546, 0.171134348956951, 0.0, 0.8203227138237116, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.03432794057794058, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 2.3024 | 40.0 | 800 | 2.7409 | 0.0760 | 0.1362 | 0.4977 | [0.49284739640115016, 0.48300367276956246, 0.8672200718415108, 0.30880525610377874, 0.5877539279479448, 0.0, 0.10099623612024188, 0.0, 0.0, 0.03730625591049704, 0.05611049582552394, 0.0, 0.4764464313562406, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.008334900043867895, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9130487208804081, 0.9574908192926983, 0.9292541848811174, 0.9078074655130633, 0.7133999518420419, nan, 0.1801383895782597, 0.0, 0.0, 0.1820777595243683, 0.139842879133712, 0.0, 0.7883265671230991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.01014957264957265, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.4036 | 41.0 | 820 | 2.7064 | 0.0749 | 0.1394 | 0.5031 | [0.487813536469504, 0.4977033867197311, 0.8680892671981715, 0.36664962378474075, 0.574401991146239, 0.0, 0.16103436579250163, 0.0, 0.0, 0.03611544700517247, 0.0583637967981848, 0.0, 0.44931401338275645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0198205917325313, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9231537764226855, 0.9389972754029943, 0.9394898176777908, 0.8624471589226254, 0.7279677341680713, nan, 0.31198216655714045, 0.0, 0.0, 0.18462019870140028, 0.13517171824406815, 0.0, 0.8027936420560104, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.028833435083435083, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.6131 | 42.0 | 840 | 2.7351 | 0.0734 | 0.1381 | 0.4979 | [0.49334335533986007, 0.49400814454667413, 0.8362092623940197, 0.3448456821647818, 0.5752572249962172, 0.0, 0.13234821504699315, 0.0, 0.0, 0.030827873734365695, 0.07199641568825678, 0.0, 0.44997403995923313, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.020278572517646216, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9129647453495858, 0.9462416052341422, 0.9177684188079752, 0.8787639451081054, 0.7323621478449314, nan, 0.26001520481399876, 0.0, 0.0, 0.15184229054212625, 0.1663304846329423, 0.0, 0.8050643363379894, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.028757122507122507, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7673 | 43.0 | 860 | 2.7602 | 0.0714 | 0.1356 | 0.4952 | [0.48490060195255197, 0.4836128787948758, 0.8416006538413178, 0.31311144666218327, 0.5821942927375631, 0.0, 0.0927357815020289, 0.0, 0.0, 0.04086304030691609, 0.06653045024915845, 0.0, 0.4366934956768567, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.015767551654681505, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9081932126238909, 0.9542695984180936, 0.9277348331378612, 0.8858812231307048, 0.7071634962677582, nan, 0.16520416972695762, 0.0, 0.0, 0.19831025580849565, 0.12012314878709061, 0.0, 0.8045310672263125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.022003459503459503, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.8284 | 44.0 | 880 | 2.7654 | 0.0770 | 0.1383 | 0.5009 | [0.4780241229841424, 0.4724772691732011, 0.8381134265670269, 0.3534298932331826, 0.5830118145652999, 0.0, 0.17914432925175744, 0.0, 0.0, 0.041721021986063825, 0.05542343387470998, 0.0, 0.4516751688956294, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.009997096279089061, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.917542488388768, 0.9636097720997622, 0.9276282119628958, 0.8598174458575288, 0.7022393450517698, nan, 0.33198036259615754, 0.0, 0.0, 0.20515528436204333, 0.10143850522851532, 0.0, 0.7889630496112296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.012260887260887261, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.1011 | 45.0 | 900 | 2.7155 | 0.0732 | 0.1372 | 0.5007 | [0.48112157935578315, 0.495839975851107, 0.8487809920832402, 0.35658660696861805, 0.5784769179607591, 0.0, 0.14736378137855763, 0.0, 0.0, 0.040067667779013716, 0.04977255272641342, 0.0, 0.4330156098908689, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.009026960118346769, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9171592154532202, 0.9579555498856398, 0.9410731421260262, 0.8691964566187096, 0.6911148567300747, nan, 0.2714059298774595, 0.0, 0.0, 0.20288664632715325, 0.08944211476193004, 0.0, 0.8088316245785454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.011408730158730158, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.5308 | 46.0 | 920 | 2.6937 | 0.0738 | 0.1383 | 0.5013 | [0.4953031030805177, 0.5002398948802333, 0.8605114604295915, 0.35049047282992235, 0.5731179721745759, 0.0, 0.14307669738101392, 0.0, 0.0, 0.034703365901583544, 0.05438552713661884, 0.0, 0.43572962659120446, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.019763843572076327, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9169977240477929, 0.9453258125951103, 0.935766073142126, 0.8914906793275833, 0.7240910185408139, nan, 0.2639066063628281, 0.0, 0.0, 0.1754674176640851, 0.11569085407930357, 0.0, 0.813166586389596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.026887464387464387, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.5236 | 47.0 | 940 | 2.7221 | 0.0744 | 0.1374 | 0.4998 | [0.4853331033355728, 0.4881399840401541, 0.8612525489635242, 0.34798312549520677, 0.5828029640354316, 0.0, 0.12786962717921832, 0.0, 0.0, 0.04893190972839659, 0.0414194771772992, 0.0, 0.42564837625979846, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.012037018368046454, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9208455259344431, 0.9615367091606601, 0.9310347585030387, 0.8750751667130382, 0.697869010353961, nan, 0.2231370881492649, 0.0, 0.0, 0.24755534694516154, 0.08116142045756145, 0.0, 0.8173295259065575, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.015186202686202686, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.5259 | 48.0 | 960 | 2.7320 | 0.0732 | 0.1398 | 0.5027 | [0.4915774800410124, 0.484385784287873, 0.8490741123114034, 0.3691998017154617, 0.5805358086483146, 0.0, 0.15945474283044536, 0.0, 0.0, 0.047071452843594576, 0.05466317870290361, 0.0, 0.459717537309698, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.018597060525841376, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9187870488199285, 0.9624707265288269, 0.9316798166115791, 0.8823629722040226, 0.7010113171201541, nan, 0.2990451892226217, 0.0, 0.0, 0.23840256590784636, 0.12256489197940443, 0.0, 0.7900811945228101, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.02492877492877493, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.7699 | 49.0 | 980 | 2.7197 | 0.0747 | 0.1422 | 0.5033 | [0.4841676024546001, 0.49158091455389386, 0.8513176846120908, 0.369239589780196, 0.5759422141418112, 0.0, 0.16500976017847183, 0.0, 0.0, 0.06872859974770229, 0.050253203803224476, 0.0, 0.4431469485168769, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.012676627344731092, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.91909495909961, 0.9563791108154654, 0.9327007143618723, 0.8728044588445417, 0.7055742836503732, nan, 0.3049853750306029, 0.0, 0.0, 0.3580145505749824, 0.1032432719358777, 0.0, 0.804909516273309, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.016305453805453805, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | | 1.0884 | 50.0 | 1000 | 2.7252 | 0.0740 | 0.1399 | 0.5014 | [0.48516085209240617, 0.48972620283996443, 0.8461720523595614, 0.3492916550456616, 0.57616479445388, 0.0, 0.1380369639332496, 0.0, 0.0, 0.06175407695344529, 0.05268220495745468, 0.0, 0.46499631540162123, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.014604701379005741, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | [0.9196892474715829, 0.9582061399112456, 0.933910864697729, 0.8767355657473141, 0.698410787382615, nan, 0.2478126973082325, 0.0, 0.0, 0.3181569271688962, 0.11338181432135463, 0.0, 0.792386293263607, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.018925518925518924, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0] | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Avrik/abstract-anim-spritesheets
Avrik
2023-05-06T23:03:12Z
23
26
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "image-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-21T20:16:51Z
--- language: - en license: creativeml-openrail-m thumbnail: "https://huggingface.co/Avrik/abstract-anim-spritesheets/resolve/main/AnimationGrid.gif" tags: - stable-diffusion - text-to-image - image-to-image --- # Abstract Animation Sprite Sheets An experimental Dreambooth model trained on individual frames of looping 3D animations that were then laid out on a 4x4 grid. Generates sprite sheets that can create very interesting abstract animations. Use the token **AbstrAnm spritesheet**. Size must be set at 512x512 or your outputs may not work properly. **Example prompt:** <i>AbstrAnm spritesheet, animation of a red glowing orb in the sky, highly detailed, fog, atmosphere, glow, sprites, animated, abstract</i> <br> **Negative prompt:** <i>high contrast, text, overlay</i> <br> Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 8 Feel free to experiment with other types of prompts and/or model merges. ![Sample Generations](https://huggingface.co/Avrik/abstract-anim-spritesheets/resolve/main/AnimationGrid.gif) You can also upscale it 4x to produce 512x512 animations. Used SD Upscale from AUTOMATIC1111's web UI to add more sharpness and detail. ![Upscaled](https://huggingface.co/Avrik/abstract-anim-spritesheets/resolve/main/AnimationGridUpscale.gif) Discovered it's actually quite flexible and could even animate less abstract concepts. ![New Animations](https://huggingface.co/Avrik/abstract-anim-spritesheets/resolve/main/natureanims.gif) **Prompt 1:** <i>AbstrAnm spritesheet, animation of magical swirling clouds in the clear blue sky, floating in crystal clear water, circular, sunny, timelapse, lens flare, nature, 35mm lens shot, photorealistic, sprites, animated, art by Greg Rutkowski</i> <br> **Negative prompt:** <i>text, overlay, abstract, boring, empty, barren, simple background</i> <br> Steps: 25, Sampler: DPM++ 2S a, CFG scale: 10 **Prompt 2:** <i>AbstrAnm spritesheet, animation of a beautiful flower blowing in the wind, serene, pink, sunny, timelapse, lens flare, nature, 35mm lens shot, photorealistic, sprites, animated, art by Greg Rutkowski</i> **Negative prompt:** <i>text, overlay, abstract, boring, empty, barren, simple background</i> <br> Steps: 25, Sampler: DPM++ 2S a, CFG scale: 10 Some issues with this model: - May not loop seamlessly - Tends to be too noisy - Sprites aren't usually perfect squares - Small size and short animation (could experiment with training on larger resolutions in the future)
Dingaling01/food_entity_extractor
Dingaling01
2023-05-06T22:56:34Z
0
1
spacy
[ "spacy", "food", "license:mit", "region:us" ]
null
2023-05-06T22:54:15Z
--- license: mit library_name: spacy tags: - food --- # Food NER Github Repo: <a href=https://github.com/randymi01/food_ner> https://github.com/randymi01/food_ner</a> Spacy Food Name Entity Recognition (NER) model trained on StanfordNLP CRF recipe dataset ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install spacy version spacy==3.5.0 and then download the spacy en_core_web_sm model. ```bash pip install spacy==3.5.0 python -m spacy download en_core_web_sm ``` ## Usage ```python import spacy nlp = spacy.load("model") # returns (spring mix, chicken breast, chili, hamburger meat) nlp("I have spring mix, chicken breast, chili, and hamburger meat").ents ``` ## Model Hyperparameters * Epochs: 10 * Batch Size: 4-32 * Optimizer: Adam * lr = 5e-03 * drop_rate = 0.5 ## Model Performance ![alt text](https://github.com/randymi01/food_ner/blob/main/training_loss.png?raw=true) ![alt text](https://github.com/randymi01/food_ner/blob/main/validation_loss.png?raw=true) ## License [MIT](https://choosealicense.com/licenses/mit/)
LyaaaaaGames/GPT-Neo-2.7B-Horni
LyaaaaaGames
2023-05-06T22:52:32Z
80
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T20:52:59Z
Sharded version of the original https://huggingface.co/KoboldAI/GPT-Neo-2.7B-Horni
samni/mt5_xlsum_arabic
samni
2023-05-06T22:43:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T18:48:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum model-index: - name: mt5_xlsum_arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_xlsum_arabic This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 3752 | nan | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
wooii/PPO-LunarLander-v2
wooii
2023-05-06T22:33:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T22:33:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.69 +/- 10.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LyaaaaaGames/gpt-neo-1.3B
LyaaaaaGames
2023-05-06T22:07:53Z
13
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T20:50:07Z
Sharded version of the original https://huggingface.co/EleutherAI/gpt-neo-1.3B
LyaaaaaGames/GPT-Neo-2.7B-Horni-LN
LyaaaaaGames
2023-05-06T21:55:26Z
30
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T20:54:29Z
Sharded version of the original https://huggingface.co/KoboldAI/GPT-Neo-2.7B-Horni-LN
tarek23/flan-t5-qg-test-LQ-v1
tarek23
2023-05-06T21:54:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T00:37:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-qg-test-LQ-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-qg-test-LQ-v1 This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3976 - Rouge1: 23.3283 - Rouge2: 6.3111 - Rougel: 21.0183 - Rougelsum: 21.0191 - Gen Len: 16.2723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.4384 | 1.0 | 23583 | 2.4275 | 23.1862 | 6.2062 | 20.8927 | 20.887 | 16.0677 | | 2.3878 | 2.0 | 47166 | 2.3976 | 23.3283 | 6.3111 | 21.0183 | 21.0191 | 16.2723 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
GreyModel/SlateModel
GreyModel
2023-05-06T21:53:18Z
0
3
null
[ "region:us" ]
null
2023-01-17T03:56:57Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Slate Model - HuggingFace Repository</title> <style> body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #1d1d1d; color: #f0f0f0; margin: 0; padding: 1rem; } h1 { text-align: center; font-size: 3rem; margin-bottom: 1rem; color: #e91e63; } h2 { font-size: 2rem; margin-top: 2em; color: #ffc107; } ul { list-style-type: none; padding-left: 1.5em; } li { margin-bottom: 0.5em; font-size: 1.2rem; } p { font-size: 1.2rem; line-height: 1.5; } a { color: #03a9f4; text-decoration: none; } a:hover { text-decoration: underline; } b { font-weight: bold; } i { font-style: italic; } </style> </head> <body> <h1>Slate Model</h1> <p> Welcome to the HuggingFace repository for the Slate Model! This is a general model trained on various styles and optimized for multi-resolution tasks, ranging between 768x and 1.5k. </p> <h2>About the Model</h2> <ul> <li><strong>Model Name:</strong> Slate Model</li> <li><strong>Resolution:</strong> Multi-resolution (optimal between 768x and 1.5k)</li> <li><strong>Training Styles:</strong> General model trained in many styles</li> <li><strong>Training Dataset:</strong> Custom merge of stable diffusion 2.1 (768x)</li> <li><strong>Language:</strong> English</li> <li><strong>Tags:</strong> stable-diffusion, text-to-image</li> <li><strong>License:</strong> openrail</li> </ul> <h2>Versions</h2> <p> The Slate Model is available in three different versions, each with unique training characteristics: </p> <ul> <li>Pure Release</li> <li>Better3D (Trained a little heavier on 3D, resulted in more simplistic anime)</li> <li>Platinum Mix (A custom mix I was playing with)</li> </ul> <p> <b>Important:</b> Whether choosing the ckpt or safetensors version, you will require the YAML inference file for webui use. To avoid generating black images, you must use either the <i>--no-half</i> switch in webui startup or the <i>--xformers</i> switch (xformers should be much faster). </p> <h2>The GreyModel Project</h2> <p> <p> SlateModel is part of the GreyModel project, which is built upon Stable Diffusion 2.1 768x. The GreyModel is a community-driven project aimed at creating a Stable Diffusion model that embraces both the light and dark aspects of humanity. </p> <p> The model is powered by the community's efforts to gather, caption, and enhance data. Join the community by participating in the Discord server: <a href="https://discord.gg/mhvucN4cDq">https://discord.gg/mhvucN4cDq</a>. </p> <h2>Getting Started</h2> <p> To use the Slate Model in your project, simply follow the instructions provided in the HuggingFace <a href="https://huggingface.co/transformers/quickstart.html">Quick Start guide</a>. </p> </body> </html>
timopixel/bert-base-multilingual-cased-finetuned-squad
timopixel
2023-05-06T21:40:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-05T16:08:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.8209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 5.2028 | | No log | 2.0 | 16 | 4.9060 | | No log | 3.0 | 24 | 4.8209 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
parallelq/ppo-Huggy
parallelq
2023-05-06T20:46:12Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-06T20:46:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: parallelq/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lrthomps/q-FrozenLake-v1-4x4-noSlippery
lrthomps
2023-05-06T20:24:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T20:24:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="lrthomps/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
njvdnbus/personalised_opener-t5-3b
njvdnbus
2023-05-06T20:09:21Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T17:58:47Z
--- language: - en metrics: - rouge --- # Personalised opener This model creates an opener based on a provided interest. ### Model input > [INTEREST] ### Example > dancing ### Output > What's your favorite dance move to make people laugh or cry? ### How to use in code ```{python} import nltk from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("njvdnbus/personalised_opener-t5-large") model = AutoModelForSeq2SeqLM.from_pretrained("njvdnbus/personalised_opener-t5-large") def use_model(text): inputs = ["" + text] inputs = tokenizer(inputs, truncation=True, return_tensors="pt") output = model.generate(**inputs, num_beams=1, do_sample=True, min_length=10, max_length=256) decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] predicted_interests = nltk.sent_tokenize(decoded_output.strip())[0] return predicted_interests text= "tennis" print(use_model(text)) ``` > Do you think tennis is the most exciting sport out there? > > ## Smaller model > Fine-tuned T5-large version can be found [here](https://huggingface.co/njvdnbus/personalised_opener-t5-large).
jikkyjohn/roberta-base-finetuned-NQ
jikkyjohn
2023-05-06T19:52:25Z
3
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-06T13:07:06Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: jikkyjohn/roberta-base-finetuned-NQ results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jikkyjohn/roberta-base-finetuned-NQ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6847 - Train End Logits Accuracy: 0.8001 - Train Start Logits Accuracy: 0.7764 - Validation Loss: 0.6973 - Validation End Logits Accuracy: 0.8017 - Validation Start Logits Accuracy: 0.7821 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0229 | 0.7188 | 0.6971 | 0.7360 | 0.7886 | 0.7681 | 0 | | 0.6847 | 0.8001 | 0.7764 | 0.6973 | 0.8017 | 0.7821 | 1 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
mHossain/bangla-para-v2-270000
mHossain
2023-05-06T19:52:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T19:00:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bangla-para-v2-270000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla-para-v2-270000 This model is a fine-tuned version of [mHossain/bangla-para-v2-240000](https://huggingface.co/mHossain/bangla-para-v2-240000) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8960 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 17.51 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.1072 | 1.0 | 3375 | 0.8960 | 0.0 | 0.0 | 0.0 | 0.0 | 17.51 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
agnesemi/sentiment-emotions
agnesemi
2023-05-06T19:38:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T18:39:27Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sentiment-emotions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-emotions This model is a fine-tuned version of [j-hartmann/emotion-english-distilroberta-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0709 - Accuracy: 0.7855 - F1: 0.7855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 207 | 0.7734 | 0.7855 | 0.7855 | | No log | 2.0 | 414 | 1.2495 | 0.7506 | 0.7506 | | 0.1096 | 3.0 | 621 | 1.0536 | 0.7843 | 0.7843 | | 0.1096 | 4.0 | 828 | 1.0709 | 0.7855 | 0.7855 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Aeala/GPT4-x-Alpasta-13b
Aeala
2023-05-06T19:26:28Z
1,532
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T16:51:34Z
## Pasta with a small twist! Untested but fresh as of 5/6/2023, taste and hopefully enjoy! ^~^ ## Model Info: ChanSung's [AlpacaGPT4-LoRA-13B-elina](https://huggingface.co/LLMs/AlpacaGPT4-LoRA-13B-elina) merged with [dvruette's llama-13b sft do2 finetune](https://huggingface.co/dvruette/llama-13b-pretrained-sft-do2)
puffy310/TempoModelCard
puffy310
2023-05-06T19:21:06Z
0
1
null
[ "text-to-video", "en", "dataset:TempoFunk/tempofunk-sdance", "arxiv:1910.09700", "license:creativeml-openrail-m", "region:us" ]
text-to-video
2023-05-06T19:18:45Z
--- license: creativeml-openrail-m datasets: - TempoFunk/tempofunk-sdance language: - en pipeline_tag: text-to-video --- # Model Card for TempoFunk <!-- Provide a quick summary of what the model is/does. [Optional] --> A community produced Text-To-Video model using Temporal Attention # Table of Contents - [Model Card for TempoFunk](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Environmental Impact](#environmental-impact) - [Technical Specifications [optional]](#technical-specifications-optional) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Model Card Authors [optional]](#model-card-authors-optional) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> A community produced Text-To-Video model using Temporal Attention - **Developed by:** Lopho, Chavez, Davut Emre, Julian Herrera - **Shared by [Optional]:** More information needed - **Model type:** Text-To-Video - **Language(s) (NLP):** en - **License:** creativeml-openrail-m - **Resources for more information:** More information needed - [GitHub Repo](https://github.com/lopho/makeavid-sd-tpu) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The TempoFunk model is meant to be used as a Video Production Program. ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> Produce Generative Video ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> Meme production Visualization Personalized Text-To-Video ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> Produce Disinformation Produce Gore # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> During usage of TempoFunk, it may generate obscene or otherwise unpleasant to look imagery. This is because of both the VAE and the low amount of samples seen by the TempoFunk model. Video generated by TempoFunk may be uncanny. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Use superres or other methods to clean up visuals before publishing or using. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> TempoFunk was trained on movement data from dancing videos. These dancing videos were scrapped and encoded into Stable Diffusion Vae Latents. More information forthcoming. <!-- ## Training Procedure --> <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ## Results [https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective The temporal layers are a port of Make-A-Video PyTorch to FLAX. The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D. Temporal attention is purely self attention and also separately attends to time. Only the new temporal layers have been fine tuned on a dataset of videos themed around dance. The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample. ## Compute Infrastructure TPU_V4 ### Hardware TPU_V4 ### Software Google JAX Google FLAX # Model Card Authors [optional] <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> Lopho, Chavez, Davut Emre, Julian Herrera # How to Get Started with the Model Use the space below to get started! [https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax]
AzzamRadman/ppo-Huggy
AzzamRadman
2023-05-06T19:18:55Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-06T19:18:47Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: AzzamRadman/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JustSaga/finetuning-sentiment-model-10000-samples
JustSaga
2023-05-06T19:04:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T18:47:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-10000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.908 - name: F1 type: f1 value: 0.9072580645161291 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-10000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2391 - Accuracy: 0.908 - F1: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Elise-hf/distilbert-base-pwc-multi-task
Elise-hf
2023-05-06T18:57:35Z
10
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-05-06T18:57:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Elise-hf/distilbert-base-pwc-multi-task This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Elise-hf/distilbert-base-pwc-multi-task') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Elise-hf/distilbert-base-pwc-multi-task') model = AutoModel.from_pretrained('Elise-hf/distilbert-base-pwc-multi-task') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Elise-hf/distilbert-base-pwc-multi-task) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cansurav/bert-base-uncased-finetuned-best
cansurav
2023-05-06T18:36:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T17:27:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-best results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6093514522222457 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-best This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4101 - Matthews Correlation: 0.6094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.9901559201237305e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.4389 | 0.5041 | | 0.3831 | 2.0 | 536 | 0.4101 | 0.6094 | | 0.3831 | 3.0 | 804 | 0.5908 | 0.5854 | | 0.1334 | 4.0 | 1072 | 0.7048 | 0.6012 | | 0.1334 | 5.0 | 1340 | 0.7637 | 0.5809 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
hjdut/LunarLander
hjdut
2023-05-06T18:12:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T18:11:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.07 +/- 28.98 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ShabGaming/Brain_MRI_Tumor_Classification
ShabGaming
2023-05-06T17:59:21Z
0
2
tensorflowtts
[ "tensorflowtts", "biology", "medical", "en", "license:mit", "region:us" ]
null
2023-05-06T17:41:27Z
--- license: mit language: - en library_name: tensorflowtts tags: - biology - medical --- # Brain Tumor Classification (MRI) | AI Model This is a deep learning model that can classify MRI images of the brain into four categories: glioma tumor, meningioma tumor, no tumor, and pituitary tumor. The model was trained on the Images Dataset "Brain Tumor Classification (MRI)" From Kaggle by SARTAJ under the CC0: Public Domain License. Source Files: https://github.com/ShabGaming/Brain-Tumor-Classification-AI-Model ## Model The model is a convolutional neural network (CNN) with the following architecture: ``` Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 1248, 1248, 32) 896 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 624, 624, 32) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 622, 622, 64) 18496 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 311, 311, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 309, 309, 128) 73856 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 154, 154, 128) 0 _________________________________________________________________ flatten (Flatten) (None, 307328) 0 _________________________________________________________________ dense (Dense) (None, 128) 39338112 _________________________________________________________________ dropout (Dropout) (None, 128) 0 _________________________________________________________________ dense_1 (Dense) (None, 4) 516 ================================================================= Total params: 39,436,876 Trainable params: 39,436,876 Non-trainable params: 0 ``` The model was trained using TensorFlow and achieved an accuracy of over 95% on the validation set. ## GUI In addition to the model, we have also provided a graphical user interface (GUI) that allows users to upload an MRI image and get a prediction from the model. The GUI was built using the Tkinter library in Python. To use the GUI, simply run the gui.py file and a window will appear. Click the "Choose File" button to select an MRI image from your computer, and then click the "Predict" button to get the model's prediction. The GUI will display the selected image as well as the predicted class. ## Usage To use the model and GUI, follow these steps: - Clone or download the GitHub repository containing the model and GUI files. - Install the necessary Python libraries. - Train the model by running 'BrainTumorMRIDetection.ipynb'. This will save the trained model as a .h5 file in the repository directory (You can also just download the model, more information down below). - Run the GUI by running gui.py. This will open a window where you can upload an MRI image and get a prediction from the model. ## Credits Muhammad Shahab Hasan (Shab) - https://www.fiverr.com/best_output - https://www.youtube.com/Shabpassiongamer - https://medium.com/@ShahabH
sarahh23/gptneo-txt2ARXMLv1.6_3000
sarahh23
2023-05-06T17:57:07Z
16
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T17:56:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.6_3000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.6_3000 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1777 | 0.99 | 59 | 1.1377 | | 0.6024 | 1.99 | 119 | 0.6514 | | 0.4513 | 2.99 | 179 | 0.5405 | | 0.4204 | 3.99 | 239 | 0.4539 | | 0.3151 | 4.99 | 299 | 0.4075 | | 0.2056 | 6.0 | 359 | 0.3154 | | 0.1129 | 7.0 | 419 | 0.2234 | | 0.0871 | 8.0 | 479 | 0.1742 | | 0.0764 | 8.99 | 538 | 0.1575 | | 0.0548 | 9.85 | 590 | 0.1562 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
VinayakMane47/bert-base-cased-finetuned-on-duplicate-Q-A
VinayakMane47
2023-05-06T17:55:50Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T13:53:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: VinayakMane47/bert-base-cased-finetuned-on-duplicate-Q-A results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VinayakMane47/bert-base-cased-finetuned-on-duplicate-Q-A This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1196 - Validation Loss: 0.2625 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 30324, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3153 | 0.2493 | 0 | | 0.1929 | 0.2385 | 1 | | 0.1196 | 0.2625 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
PanoEvJ/Reinforce-Pixelcopter-PLE-v0
PanoEvJ
2023-05-06T17:52:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T17:52:18Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 52.08 +/- 45.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
TheRealRichV/ppo-LunarLander-v2
TheRealRichV
2023-05-06T17:52:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T17:52:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.57 +/- 16.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BartekSadlej/q-Taxi-v3
BartekSadlej
2023-05-06T17:42:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T17:42:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="BartekSadlej/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tmnam20/codebert-code-summarization
tmnam20
2023-05-06T17:40:25Z
0
0
null
[ "pytorch", "code", "summarization", "en", "region:us" ]
summarization
2023-05-06T17:31:38Z
--- language: - en pipeline_tag: summarization metrics: - bleu tags: - code ---
Getspastic/A-ZovyaPhotoreal
Getspastic
2023-05-06T17:38:07Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-06T17:22:44Z
--- license: creativeml-openrail-m ---
cansurav/bert-base-uncased-finetuned-cola-batch-64
cansurav
2023-05-06T17:24:58Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T17:00:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-batch-64 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5835943612387946 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-batch-64 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7651 - Matthews Correlation: 0.5836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 134 | 0.4344 | 0.5367 | | No log | 2.0 | 268 | 0.4313 | 0.5650 | | No log | 3.0 | 402 | 0.5034 | 0.5495 | | 0.3177 | 4.0 | 536 | 0.5733 | 0.5293 | | 0.3177 | 5.0 | 670 | 0.6364 | 0.5498 | | 0.3177 | 6.0 | 804 | 0.7316 | 0.5600 | | 0.3177 | 7.0 | 938 | 0.7651 | 0.5836 | | 0.0846 | 8.0 | 1072 | 0.8575 | 0.5625 | | 0.0846 | 9.0 | 1206 | 0.8820 | 0.5573 | | 0.0846 | 10.0 | 1340 | 0.8854 | 0.5704 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
perion/stablediffusion1-5-kingperion
perion
2023-05-06T17:20:34Z
7
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-11T16:40:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### stablediffusion1.5-kingperion Dreambooth model trained by kingjohn with [DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
esragenc/bert-base-uncased-finetuned-cola
esragenc
2023-05-06T17:17:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T16:44:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.24864597330745425 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5096 - Matthews Correlation: 0.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.312312768726691e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5717 | 1.0 | 1069 | 0.5541 | 0.0696 | | 0.4917 | 2.0 | 2138 | 0.5059 | 0.2335 | | 0.4603 | 3.0 | 3207 | 0.5096 | 0.2486 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gaokaobishuati/dqn-SpaceInvadersNoFrameskip-v4
gaokaobishuati
2023-05-06T16:57:02Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T17:02:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 580.00 +/- 254.98 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gaokaobishuati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gaokaobishuati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga gaokaobishuati ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sd-dreambooth-library/tats1
sd-dreambooth-library
2023-05-06T16:51:19Z
0
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-06T16:50:19Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### <tats1> on Stable Diffusion via Dreambooth #### model by jeca This your the Stable Diffusion model fine-tuned the <tats1> concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<tats1> white background with black line drawing** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/12.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/8.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/13.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/0.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/11.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/3.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/6.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/2.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/9.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/1.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/10.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/5.jpeg) ![image 12](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/4.jpeg) ![image 13](https://huggingface.co/sd-dreambooth-library/tats1/resolve/main/concept_images/7.jpeg)
Snim/Reinforce-cartpole-balance
Snim
2023-05-06T16:48:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-02T15:16:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-balance results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 99.90 +/- 18.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
agnesemi/sentiment-metaverse
agnesemi
2023-05-06T16:48:05Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T15:34:07Z
--- language: - en pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Philippe-USA/Mon_Premier_Test
Philippe-USA
2023-05-06T16:44:39Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-05-06T16:41:56Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cansurav/bert-base-uncased-finetuned-cola-batch-16
cansurav
2023-05-06T16:34:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T16:20:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-batch-16 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5992215466535732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-batch-16 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Matthews Correlation: 0.5992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4987 | 1.0 | 535 | 0.5145 | 0.4872 | | 0.3065 | 2.0 | 1070 | 0.4502 | 0.5992 | | 0.2059 | 3.0 | 1605 | 0.7547 | 0.5208 | | 0.1467 | 4.0 | 2140 | 0.8557 | 0.5390 | | 0.1006 | 5.0 | 2675 | 0.9277 | 0.5550 | | 0.0796 | 6.0 | 3210 | 1.0832 | 0.5765 | | 0.0532 | 7.0 | 3745 | 1.0337 | 0.5687 | | 0.0367 | 8.0 | 4280 | 1.1539 | 0.5779 | | 0.0276 | 9.0 | 4815 | 1.3224 | 0.5755 | | 0.0192 | 10.0 | 5350 | 1.3055 | 0.5810 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mariaWitch/ExperimentalBiggerMerges
mariaWitch
2023-05-06T16:29:23Z
0
3
null
[ "license:agpl-3.0", "region:us" ]
null
2023-04-09T14:32:28Z
--- license: agpl-3.0 --- This is where my experimental merges go. Expect broken models, UNETs, and models that produce weird artifacting to be common here. Models that are here may eventually make it into the other repo.
bfcr/flofrumush
bfcr
2023-05-06T16:26:05Z
0
0
null
[ "region:us" ]
null
2023-05-06T16:19:10Z
# Projeto Final - Modelos Preditivos Conexionistas Classificação de imagens de flores, frutas ou cogumelos ### Bernardo Russo |**Tipo de Projeto**|**Modelo Selecionado**|**Linguagem**| |--|--|--| |Classificação de Imagens|resnet34|PyTorch| ## Performance O modelo treinado possui performance de **91.04%**. ### Output do bloco de treinamento <details> <summary>Click to expand!</summary> ```text Epoch 0/2 ---------- Iterating through data... train Loss: 0.7545 Acc: 0.7052 Iterating through data... valid Loss: 0.1788 Acc: 0.9535 Epoch 1/2 ---------- Iterating through data... train Loss: 0.4575 Acc: 0.8057 Iterating through data... valid Loss: 0.5638 Acc: 0.8062 Epoch 2/2 ---------- Iterating through data... train Loss: 0.3874 Acc: 0.8755 Iterating through data... valid Loss: 0.2393 Acc: 0.8837 Training complete in 19m 31s Best val Acc: 0.953488 ---------- Test Acc: 0.940299 ---------- ``` </details> ### Evidências do treinamento #### Matriz de Confusão ![matriz de confusão](confusion_matrix.png) ## Roboflow Link do data set: [Roboflow Project - Flower, Fruit or Mushroom](https://app.roboflow.com/cesar-school-ulsik/flower_fruit_mushroom/1) ## HuggingFace Nessa seção você deve publicar o link para o HuggingFace
JustasVit/autotrain-roberta_legal_classification-55997130178
JustasVit
2023-05-06T16:18:32Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:JustasVit/autotrain-data-roberta_legal_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T16:16:40Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - JustasVit/autotrain-data-roberta_legal_classification co2_eq_emissions: emissions: 0.7083751813545671 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 55997130178 - CO2 Emissions (in grams): 0.7084 ## Validation Metrics - Loss: 0.047 - Accuracy: 0.990 - Macro F1: 0.990 - Micro F1: 0.990 - Weighted F1: 0.990 - Macro Precision: 0.990 - Micro Precision: 0.990 - Weighted Precision: 0.990 - Macro Recall: 0.990 - Micro Recall: 0.990 - Weighted Recall: 0.990 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/JustasVit/autotrain-roberta_legal_classification-55997130178 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("JustasVit/autotrain-roberta_legal_classification-55997130178", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("JustasVit/autotrain-roberta_legal_classification-55997130178", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
johnjose223/xlnet_squad2
johnjose223
2023-05-06T16:11:14Z
7
0
transformers
[ "transformers", "pytorch", "safetensors", "xlnet", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-04-27T03:21:10Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: wd_0.01_bs_24_lr_2e-05_epochs_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wd_0.01_bs_24_lr_2e-05_epochs_4 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 72 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.11.0
ilkekas/bert-base-uncased-mean-pooling-finetuned-cola
ilkekas
2023-05-06T15:58:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T14:24:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-mean-pooling-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5627810283916928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-mean-pooling-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4983 - Matthews Correlation: 0.5628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.3487316926587096e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5613 | 1.0 | 535 | 0.4981 | 0.4273 | | 0.43 | 2.0 | 1070 | 0.4379 | 0.5367 | | 0.3647 | 3.0 | 1605 | 0.5213 | 0.5030 | | 0.312 | 4.0 | 2140 | 0.5085 | 0.5391 | | 0.2832 | 5.0 | 2675 | 0.4983 | 0.5628 | | 0.245 | 6.0 | 3210 | 0.6061 | 0.5339 | | 0.2291 | 7.0 | 3745 | 0.5835 | 0.5443 | | 0.2065 | 8.0 | 4280 | 0.5907 | 0.5443 | | 0.2032 | 9.0 | 4815 | 0.6072 | 0.5469 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jeremyvictor/mt5-large-gecfirst-e8-b16
jeremyvictor
2023-05-06T15:31:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T14:31:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-large-gecfirst-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-gecfirst-e8-b16 This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2672 - Rouge1: 64.1391 - Rouge2: 56.9117 - Rougel: 64.0719 - Rougelsum: 64.1665 - Gen Len: 18.7753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8204 | 0.25 | 74 | 0.4021 | 61.4087 | 52.3887 | 61.2674 | 61.3674 | 18.7804 | | 0.7246 | 0.5 | 148 | 0.3252 | 63.347 | 55.3862 | 63.1874 | 63.2961 | 18.7652 | | 0.6142 | 0.75 | 222 | 0.3028 | 63.725 | 56.2856 | 63.5597 | 63.6491 | 18.7838 | | 0.5472 | 1.0 | 296 | 0.2919 | 63.8647 | 56.6097 | 63.7525 | 63.8544 | 18.7973 | | 0.3687 | 1.25 | 370 | 0.2777 | 64.0686 | 56.686 | 63.883 | 63.9804 | 18.7703 | | 0.3907 | 1.49 | 444 | 0.2870 | 64.0517 | 56.6668 | 63.9062 | 64.0017 | 18.7838 | | 0.3466 | 1.74 | 518 | 0.2726 | 64.2559 | 57.4463 | 64.1045 | 64.2199 | 18.7770 | | 0.3341 | 1.99 | 592 | 0.2672 | 64.1391 | 56.9117 | 64.0719 | 64.1665 | 18.7753 | | 0.2036 | 2.24 | 666 | 0.2834 | 64.5476 | 57.8246 | 64.3771 | 64.5255 | 18.7804 | | 0.2091 | 2.49 | 740 | 0.2897 | 64.1422 | 56.9715 | 64.0481 | 64.1689 | 18.7432 | | 0.2002 | 2.74 | 814 | 0.2703 | 64.6648 | 57.707 | 64.4805 | 64.5948 | 18.7804 | | 0.204 | 2.99 | 888 | 0.2824 | 64.0966 | 56.9705 | 63.9888 | 64.073 | 18.7551 | | 0.1185 | 3.24 | 962 | 0.3022 | 64.4346 | 57.6011 | 64.3542 | 64.4615 | 18.7939 | | 0.117 | 3.49 | 1036 | 0.2870 | 64.455 | 57.3607 | 64.2925 | 64.3963 | 18.7669 | | 0.1135 | 3.74 | 1110 | 0.2890 | 64.7671 | 58.0409 | 64.5938 | 64.6987 | 18.7669 | | 0.1175 | 3.99 | 1184 | 0.2977 | 64.8082 | 58.0379 | 64.6993 | 64.7849 | 18.7652 | | 0.0726 | 4.24 | 1258 | 0.3135 | 64.5297 | 57.6752 | 64.4134 | 64.5109 | 18.7736 | | 0.0654 | 4.48 | 1332 | 0.3298 | 64.5051 | 57.6982 | 64.3561 | 64.4885 | 18.7787 | | 0.0719 | 4.73 | 1406 | 0.3139 | 64.8793 | 58.1936 | 64.749 | 64.8532 | 18.7720 | | 0.0665 | 4.98 | 1480 | 0.3174 | 64.9015 | 58.1975 | 64.786 | 64.907 | 18.7703 | | 0.0452 | 5.23 | 1554 | 0.3272 | 64.5715 | 58.067 | 64.4336 | 64.5425 | 18.7889 | | 0.0395 | 5.48 | 1628 | 0.3337 | 64.7712 | 58.1058 | 64.6351 | 64.7423 | 18.7703 | | 0.0367 | 5.73 | 1702 | 0.3422 | 64.9298 | 58.4592 | 64.8188 | 64.8927 | 18.7787 | | 0.0393 | 5.98 | 1776 | 0.3394 | 64.8953 | 58.162 | 64.7892 | 64.8822 | 18.7787 | | 0.0247 | 6.23 | 1850 | 0.3532 | 64.9207 | 58.2827 | 64.8053 | 64.8903 | 18.7872 | | 0.0222 | 6.48 | 1924 | 0.3543 | 64.902 | 58.3086 | 64.793 | 64.8973 | 18.7736 | | 0.0203 | 6.73 | 1998 | 0.3628 | 65.1022 | 58.7138 | 64.9734 | 65.0891 | 18.7720 | | 0.0218 | 6.98 | 2072 | 0.3599 | 64.9409 | 58.387 | 64.7925 | 64.9157 | 18.7720 | | 0.0156 | 7.23 | 2146 | 0.3802 | 65.1242 | 58.8116 | 64.9962 | 65.1097 | 18.7736 | | 0.013 | 7.47 | 2220 | 0.3845 | 64.9358 | 58.4528 | 64.8099 | 64.925 | 18.7703 | | 0.0114 | 7.72 | 2294 | 0.3913 | 64.9827 | 58.6449 | 64.863 | 64.9661 | 18.7720 | | 0.0125 | 7.97 | 2368 | 0.3886 | 65.0031 | 58.5507 | 64.8805 | 64.9845 | 18.7720 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
EExe/rl_course_vizdoom_health_gathering_supreme
EExe
2023-05-06T15:21:30Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T15:21:23Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.93 +/- 3.52 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r EExe/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
pecra/mit-b0-finetuned-sidewalks
pecra
2023-05-06T15:20:22Z
1
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "license:other", "endpoints_compatible", "region:us" ]
null
2023-05-06T15:04:07Z
--- license: other tags: - generated_from_keras_callback model-index: - name: pecra/mit-b0-finetuned-sidewalks results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pecra/mit-b0-finetuned-sidewalks This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8276 - Validation Loss: 0.7087 - Validation Mean Iou: 0.2488 - Validation Mean Accuracy: 0.3100 - Validation Overall Accuracy: 0.7987 - Validation Accuracy Unlabeled: 0.0 - Validation Accuracy Flat-road: 0.7917 - Validation Accuracy Flat-sidewalk: 0.9332 - Validation Accuracy Flat-crosswalk: 0.7636 - Validation Accuracy Flat-cyclinglane: 0.8238 - Validation Accuracy Flat-parkingdriveway: 0.1196 - Validation Accuracy Flat-railtrack: nan - Validation Accuracy Flat-curb: 0.3568 - Validation Accuracy Human-person: 0.7259 - Validation Accuracy Human-rider: 0.0 - Validation Accuracy Vehicle-car: 0.8780 - Validation Accuracy Vehicle-truck: 0.0 - Validation Accuracy Vehicle-bus: 0.0 - Validation Accuracy Vehicle-tramtrain: nan - Validation Accuracy Vehicle-motorcycle: 0.0 - Validation Accuracy Vehicle-bicycle: 0.3959 - Validation Accuracy Vehicle-caravan: 0.0 - Validation Accuracy Vehicle-cartrailer: 0.0 - Validation Accuracy Construction-building: 0.8757 - Validation Accuracy Construction-door: 0.0 - Validation Accuracy Construction-wall: 0.2241 - Validation Accuracy Construction-fenceguardrail: 0.3394 - Validation Accuracy Construction-bridge: 0.0 - Validation Accuracy Construction-tunnel: 0.0 - Validation Accuracy Construction-stairs: 0.0 - Validation Accuracy Object-pole: 0.1857 - Validation Accuracy Object-trafficsign: 0.0 - Validation Accuracy Object-trafficlight: 0.0 - Validation Accuracy Nature-vegetation: 0.9210 - Validation Accuracy Nature-terrain: 0.7914 - Validation Accuracy Sky: 0.9488 - Validation Accuracy Void-ground: 0.0 - Validation Accuracy Void-dynamic: 0.0 - Validation Accuracy Void-static: 0.1548 - Validation Accuracy Void-unclear: 0.0 - Validation Iou Unlabeled: 0.0 - Validation Iou Flat-road: 0.6333 - Validation Iou Flat-sidewalk: 0.8196 - Validation Iou Flat-crosswalk: 0.5763 - Validation Iou Flat-cyclinglane: 0.7280 - Validation Iou Flat-parkingdriveway: 0.1057 - Validation Iou Flat-railtrack: nan - Validation Iou Flat-curb: 0.2409 - Validation Iou Human-person: 0.4810 - Validation Iou Human-rider: 0.0 - Validation Iou Vehicle-car: 0.7216 - Validation Iou Vehicle-truck: 0.0 - Validation Iou Vehicle-bus: 0.0 - Validation Iou Vehicle-tramtrain: nan - Validation Iou Vehicle-motorcycle: 0.0 - Validation Iou Vehicle-bicycle: 0.2825 - Validation Iou Vehicle-caravan: 0.0 - Validation Iou Vehicle-cartrailer: 0.0 - Validation Iou Construction-building: 0.6307 - Validation Iou Construction-door: 0.0 - Validation Iou Construction-wall: 0.1908 - Validation Iou Construction-fenceguardrail: 0.2551 - Validation Iou Construction-bridge: 0.0 - Validation Iou Construction-tunnel: 0.0 - Validation Iou Construction-stairs: 0.0 - Validation Iou Object-pole: 0.1625 - Validation Iou Object-trafficsign: 0.0 - Validation Iou Object-trafficlight: 0.0 - Validation Iou Nature-vegetation: 0.7648 - Validation Iou Nature-terrain: 0.6071 - Validation Iou Sky: 0.8958 - Validation Iou Void-ground: 0.0 - Validation Iou Void-dynamic: 0.0 - Validation Iou Void-static: 0.1149 - Validation Iou Void-unclear: 0.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Flat-road | Validation Accuracy Flat-sidewalk | Validation Accuracy Flat-crosswalk | Validation Accuracy Flat-cyclinglane | Validation Accuracy Flat-parkingdriveway | Validation Accuracy Flat-railtrack | Validation Accuracy Flat-curb | Validation Accuracy Human-person | Validation Accuracy Human-rider | Validation Accuracy Vehicle-car | Validation Accuracy Vehicle-truck | Validation Accuracy Vehicle-bus | Validation Accuracy Vehicle-tramtrain | Validation Accuracy Vehicle-motorcycle | Validation Accuracy Vehicle-bicycle | Validation Accuracy Vehicle-caravan | Validation Accuracy Vehicle-cartrailer | Validation Accuracy Construction-building | Validation Accuracy Construction-door | Validation Accuracy Construction-wall | Validation Accuracy Construction-fenceguardrail | Validation Accuracy Construction-bridge | Validation Accuracy Construction-tunnel | Validation Accuracy Construction-stairs | Validation Accuracy Object-pole | Validation Accuracy Object-trafficsign | Validation Accuracy Object-trafficlight | Validation Accuracy Nature-vegetation | Validation Accuracy Nature-terrain | Validation Accuracy Sky | Validation Accuracy Void-ground | Validation Accuracy Void-dynamic | Validation Accuracy Void-static | Validation Accuracy Void-unclear | Validation Iou Unlabeled | Validation Iou Flat-road | Validation Iou Flat-sidewalk | Validation Iou Flat-crosswalk | Validation Iou Flat-cyclinglane | Validation Iou Flat-parkingdriveway | Validation Iou Flat-railtrack | Validation Iou Flat-curb | Validation Iou Human-person | Validation Iou Human-rider | Validation Iou Vehicle-car | Validation Iou Vehicle-truck | Validation Iou Vehicle-bus | Validation Iou Vehicle-tramtrain | Validation Iou Vehicle-motorcycle | Validation Iou Vehicle-bicycle | Validation Iou Vehicle-caravan | Validation Iou Vehicle-cartrailer | Validation Iou Construction-building | Validation Iou Construction-door | Validation Iou Construction-wall | Validation Iou Construction-fenceguardrail | Validation Iou Construction-bridge | Validation Iou Construction-tunnel | Validation Iou Construction-stairs | Validation Iou Object-pole | Validation Iou Object-trafficsign | Validation Iou Object-trafficlight | Validation Iou Nature-vegetation | Validation Iou Nature-terrain | Validation Iou Sky | Validation Iou Void-ground | Validation Iou Void-dynamic | Validation Iou Void-static | Validation Iou Void-unclear | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:---------------------------------:|:----------------------------------:|:------------------------------------:|:----------------------------------------:|:----------------------------------:|:-----------------------------:|:--------------------------------:|:-------------------------------:|:-------------------------------:|:---------------------------------:|:-------------------------------:|:-------------------------------------:|:--------------------------------------:|:-----------------------------------:|:-----------------------------------:|:--------------------------------------:|:-----------------------------------------:|:-------------------------------------:|:-------------------------------------:|:-----------------------------------------------:|:---------------------------------------:|:---------------------------------------:|:---------------------------------------:|:-------------------------------:|:--------------------------------------:|:---------------------------------------:|:-------------------------------------:|:----------------------------------:|:-----------------------:|:-------------------------------:|:--------------------------------:|:-------------------------------:|:--------------------------------:|:------------------------:|:------------------------:|:----------------------------:|:-----------------------------:|:-------------------------------:|:-----------------------------------:|:-----------------------------:|:------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:--------------------------------:|:---------------------------------:|:------------------------------:|:------------------------------:|:---------------------------------:|:------------------------------------:|:--------------------------------:|:--------------------------------:|:------------------------------------------:|:----------------------------------:|:----------------------------------:|:----------------------------------:|:--------------------------:|:---------------------------------:|:----------------------------------:|:--------------------------------:|:-----------------------------:|:------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----:| | 1.3899 | 0.8648 | 0.1967 | 0.2417 | 0.7536 | 0.0 | 0.6349 | 0.9590 | 0.1580 | 0.7351 | 0.1644 | nan | 0.1925 | 0.4170 | 0.0 | 0.8121 | 0.0 | 0.0 | nan | 0.0 | 0.1536 | 0.0 | 0.0 | 0.8972 | 0.0 | 0.1150 | 0.0695 | 0.0 | 0.0 | 0.0 | 0.0352 | 0.0 | 0.0 | 0.8874 | 0.7578 | 0.9500 | 0.0 | 0.0 | 0.0383 | 0.0 | 0.0 | 0.4984 | 0.7628 | 0.1568 | 0.6469 | 0.1219 | nan | 0.1421 | 0.3436 | 0.0 | 0.6648 | 0.0 | 0.0 | nan | 0.0 | 0.1348 | 0.0 | 0.0 | 0.5662 | 0.0 | 0.1019 | 0.0655 | 0.0 | 0.0 | 0.0 | 0.0345 | 0.0 | 0.0 | 0.7491 | 0.5971 | 0.8673 | 0.0 | 0.0 | 0.0366 | 0.0 | 0 | | 0.8276 | 0.7087 | 0.2488 | 0.3100 | 0.7987 | 0.0 | 0.7917 | 0.9332 | 0.7636 | 0.8238 | 0.1196 | nan | 0.3568 | 0.7259 | 0.0 | 0.8780 | 0.0 | 0.0 | nan | 0.0 | 0.3959 | 0.0 | 0.0 | 0.8757 | 0.0 | 0.2241 | 0.3394 | 0.0 | 0.0 | 0.0 | 0.1857 | 0.0 | 0.0 | 0.9210 | 0.7914 | 0.9488 | 0.0 | 0.0 | 0.1548 | 0.0 | 0.0 | 0.6333 | 0.8196 | 0.5763 | 0.7280 | 0.1057 | nan | 0.2409 | 0.4810 | 0.0 | 0.7216 | 0.0 | 0.0 | nan | 0.0 | 0.2825 | 0.0 | 0.0 | 0.6307 | 0.0 | 0.1908 | 0.2551 | 0.0 | 0.0 | 0.0 | 0.1625 | 0.0 | 0.0 | 0.7648 | 0.6071 | 0.8958 | 0.0 | 0.0 | 0.1149 | 0.0 | 1 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
jeremyvictor/mt5-base-gecfirst-e8-b16
jeremyvictor
2023-05-06T15:02:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T14:36:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-gecfirst-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-gecfirst-e8-b16 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Rouge1: 63.8499 - Rouge2: 56.2662 - Rougel: 63.73 - Rougelsum: 63.6591 - Gen Len: 18.7736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.409 | 0.25 | 74 | 0.6899 | 58.0459 | 46.7233 | 57.9944 | 57.9576 | 18.7669 | | 1.0497 | 0.5 | 148 | 0.4335 | 61.3353 | 51.8804 | 61.174 | 61.1541 | 18.7703 | | 0.8355 | 0.75 | 222 | 0.3734 | 62.5279 | 54.5952 | 62.4436 | 62.4377 | 18.7720 | | 0.7339 | 1.0 | 296 | 0.3814 | 62.8071 | 54.8468 | 62.7075 | 62.6933 | 18.7770 | | 0.5946 | 1.25 | 370 | 0.3418 | 63.1523 | 55.3752 | 62.9987 | 62.9879 | 18.7770 | | 0.5746 | 1.49 | 444 | 0.3234 | 62.9253 | 55.1955 | 62.821 | 62.7592 | 18.7905 | | 0.5278 | 1.74 | 518 | 0.3252 | 63.3056 | 55.6505 | 63.1271 | 63.0661 | 18.7804 | | 0.4886 | 1.99 | 592 | 0.3265 | 63.1652 | 55.0909 | 62.979 | 62.9613 | 18.7753 | | 0.366 | 2.24 | 666 | 0.3126 | 63.8131 | 56.5685 | 63.7303 | 63.6682 | 18.7703 | | 0.3553 | 2.49 | 740 | 0.3192 | 63.6195 | 55.9276 | 63.4796 | 63.4692 | 18.7703 | | 0.3558 | 2.74 | 814 | 0.3009 | 63.8499 | 56.2662 | 63.73 | 63.6591 | 18.7736 | | 0.353 | 2.99 | 888 | 0.3014 | 63.7417 | 56.241 | 63.6192 | 63.5985 | 18.7686 | | 0.2398 | 3.24 | 962 | 0.3119 | 63.999 | 56.8854 | 63.88 | 63.8705 | 18.7804 | | 0.2459 | 3.49 | 1036 | 0.3222 | 64.0299 | 56.5581 | 63.9247 | 63.8934 | 18.7686 | | 0.2423 | 3.74 | 1110 | 0.3125 | 63.6601 | 56.1864 | 63.4956 | 63.4819 | 18.7686 | | 0.243 | 3.99 | 1184 | 0.3174 | 63.6676 | 56.1724 | 63.5183 | 63.4947 | 18.7736 | | 0.1696 | 4.24 | 1258 | 0.3353 | 63.9905 | 56.3781 | 63.7979 | 63.7802 | 18.7652 | | 0.1643 | 4.48 | 1332 | 0.3386 | 64.0219 | 56.7311 | 63.8823 | 63.8654 | 18.7703 | | 0.1728 | 4.73 | 1406 | 0.3306 | 64.0261 | 56.7331 | 63.8978 | 63.8731 | 18.7720 | | 0.1657 | 4.98 | 1480 | 0.3269 | 63.9735 | 56.4556 | 63.8514 | 63.8168 | 18.7703 | | 0.1186 | 5.23 | 1554 | 0.3390 | 63.9831 | 56.6624 | 63.8953 | 63.8717 | 18.7703 | | 0.1129 | 5.48 | 1628 | 0.3521 | 63.8674 | 56.528 | 63.7626 | 63.7362 | 18.7770 | | 0.1061 | 5.73 | 1702 | 0.3539 | 63.9886 | 56.5753 | 63.881 | 63.8615 | 18.7703 | | 0.1179 | 5.98 | 1776 | 0.3490 | 63.9949 | 56.7369 | 63.8929 | 63.8516 | 18.7736 | | 0.0793 | 6.23 | 1850 | 0.3704 | 64.1527 | 57.0111 | 64.0496 | 63.9953 | 18.7686 | | 0.0779 | 6.48 | 1924 | 0.3723 | 64.1833 | 57.0654 | 64.0686 | 64.0317 | 18.7669 | | 0.0827 | 6.73 | 1998 | 0.3663 | 64.2185 | 56.9382 | 64.1096 | 64.0743 | 18.7736 | | 0.0807 | 6.98 | 2072 | 0.3691 | 64.2298 | 56.9752 | 64.0957 | 64.0777 | 18.7686 | | 0.0633 | 7.23 | 2146 | 0.3865 | 64.4729 | 57.5503 | 64.3733 | 64.3509 | 18.7652 | | 0.0603 | 7.47 | 2220 | 0.3919 | 64.3001 | 57.2684 | 64.1693 | 64.1391 | 18.7635 | | 0.0565 | 7.72 | 2294 | 0.3946 | 64.4077 | 57.3413 | 64.2825 | 64.2491 | 18.7635 | | 0.0583 | 7.97 | 2368 | 0.3923 | 64.4078 | 57.3672 | 64.2775 | 64.2367 | 18.7652 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
riho1710/distilbert-base-uncased-finetuned-emotion
riho1710
2023-05-06T14:54:42Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-27T03:36:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240047123379981 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2239 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8403 | 1.0 | 250 | 0.3219 | 0.9085 | 0.9059 | | 0.2549 | 2.0 | 500 | 0.2239 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.13.0.dev0
OpenBuddy/openbuddy-7b-v1.0-bf16-enc
OpenBuddy
2023-05-06T14:51:34Z
9
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-27T03:11:17Z
--- language: - zh - en pipeline_tag: text-generation inference: false library_name: transformers --- # ⚠️ DEPRECATION WARNING ⚠️ This model is an outdated version and has been preserved specifically for evaluating differences between model versions. We highly recommend visiting our GitHub repository to find and use the latest version of the model: https://github.com/OpenBuddy/OpenBuddy ## Installation Due to licensing restrictions from LLAMA, you need to have the original LLAMA-7B model to decrypt the model weights. To decrypt the model weights, please follow the guide in our GitHub: https://github.com/OpenBuddy/OpenBuddy#installation ## Disclaimer OpenBuddy is provided as-is without any warranty of any kind, either express or implied. The authors and contributors shall not be held liable for any damages resulting from the use or inability to use this software. By using OpenBuddy, you agree to these terms and conditions. ## License Restrictions OpenBuddy is intended for non-commercial research purposes only, following the same restrictions as the LLAMA model. Any use outside of this scope is strictly prohibited. For more information, please refer to the LLAMA license.
AhmedTaha012/gptneo-txt2ARXMLv1.3.0
AhmedTaha012
2023-05-06T14:50:59Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T10:57:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.3.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.3.0 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5205 | 0.98 | 45 | 1.4385 | | 0.7083 | 1.98 | 91 | 0.7334 | | 0.5779 | 2.99 | 137 | 0.5942 | | 0.531 | 3.99 | 183 | 0.4915 | | 0.3721 | 4.9 | 225 | 0.4324 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mHossain/bangla-para-v2-180000
mHossain
2023-05-06T14:48:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T13:50:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bangla-para-v2-180000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla-para-v2-180000 This model is a fine-tuned version of [mHossain/bangla-para-v2-150000](https://huggingface.co/mHossain/bangla-para-v2-150000) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9033 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 17.506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.137 | 1.0 | 3375 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | 17.506 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Dwightun/my_awesome_model
Dwightun
2023-05-06T14:46:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T12:08:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2077 - Accuracy: 0.9169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 75 | 0.3656 | 0.7874 | | No log | 2.0 | 150 | 0.2077 | 0.9169 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
CooliusMaximusnv/distilbert-base-uncased-finetuned-emotion
CooliusMaximusnv
2023-05-06T14:38:51Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-25T15:31:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.932802704305435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1598 - Accuracy: 0.9325 - F1: 0.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1657 | 1.0 | 250 | 0.1701 | 0.933 | 0.9330 | | 0.1101 | 2.0 | 500 | 0.1598 | 0.9325 | 0.9328 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
mazkooleg/digit-mask-unispeech-sat-base-ft
mazkooleg
2023-05-06T14:33:43Z
4
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "audio-classification", "generated_from_trainer", "dataset:mazkooleg/digit_mask_augmented_raw", "endpoints_compatible", "region:us" ]
audio-classification
2023-05-06T13:39:30Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: unispeech-sat-base-digit-mask-ft results: [] datasets: - mazkooleg/digit_mask_augmented_raw --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-base-digit-mask-ft This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0053 - Accuracy: 0.9991 - F1: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:------:|:---------------:| | 0.0079 | 1.0 | 14264 | 0.9991 | 0.9991 | 0.0053 | | 0.0019 | 2.0 | 28528 | 0.9987 | 0.9987 | 0.0078 | | 0.0009 | 3.0 | 42792 | 0.9989 | 0.9989 | 0.0069 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.0+cpu - Datasets 2.12.0 - Tokenizers 0.13.2
bluenguyen/movie_chatbot_v1
bluenguyen
2023-05-06T14:25:39Z
14
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2023-03-14T06:12:53Z
--- inference: false license: mit --- # Model Card for Model ID A movie recommendation chatbot which is finetune from GODEL model using data generated from ChatGPT. ## Model Details - **Model type:** seq2seq(T5) - **License:** MIT - **Finetuned from model:** microsoft/GODEL-v1_1-base-seq2seq - **Final eval loss:** 0.2331 ## Limitations This model is trained using supervised learning on small amount of movie conversation data so it is not that good.\ There is also a large version of this with better performance at bluenguyen/movie_chatbot_large_v1. ### How to Get Started with the Model Use the code below to get started with the model. ```python: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bluenguyen/movie_chatbot_v1") model = AutoModelForSeq2SeqLM.from_pretrained("bluenguyen/movie_chatbot_v1").to('cuda') def current_context(dialog, instruction): dialog = ' EOS '.join(dialog) context = f"{instruction} [CONTEXT] {dialog} " return context def generate(context): input_ids = tokenizer(f"{context}", return_tensors="pt").input_ids.to('cuda') outputs = model.generate(input_ids, max_length=128, min_length=8, top_p=0.9, do_sample=True) output = tokenizer.decode(outputs[0], skip_special_tokens=True) return output instruction = f'Instruction: given a dialog about movie recommendation, you need to respond based on human preferences.' dialog = [ 'Do you have any recommendation about a movie?', 'Yes! Any particular genre that you\'d like to see mentioned?', ] print('User: ' + dialog[0]) print('Bot: ' + dialog[1]) while(1): print('User: ', end = '') query = input() if query == 'end': break dialog.append(query) response = generate(current_context(dialog, instruction)) print('Bot: ' + response) dialog.append(response) ``` ### Demo Example 1: > User: Do you have any recommendation about a movie? <br> > Bot: Yes! Any particular genre that you'd like to see mentioned? <br> > User: I like love story. <br> > Bot: How about "The Notebook"? It's a classic love story with a great plot twist. <br> > User: I have seen that one. Give me another one. <br> > Bot: Have you seen "Eternal Sunshine of the Spotless Mind"? It's a unique romantic story with a captivating twist. <br> > User: Is it any good? <br> > Bot: Absolutely! It has an amazing cast and an engaging storyline. I highly recommend it. <br> > User: Thank you <br> > Bot: You're welcome! Let me know how you liked it. <br> > User: end <br> Example 2: > User: Do you have any recommendation about a movie? <br> > Bot: Yes! Any particular genre that you'd like to see mentioned? <br> > User: I like super hero movie. <br> > Bot: Have you watched "The Dark Knight"? It's a classic superhero movie. <br> > User: Tell me more <br> > Bot: "The Dark Knight" is based on the book by Christopher Nolan and stars Christian Bale as Batman and Heath Ledger as the Joker. <br> > User: Who is the Joker in this movie? <br> > Bot: Heath Ledger is the Joker and the movie is based on a novel. <br> > User: I mean what happen in the movie? <br> > Bot: The Joker is tasked with protecting the savage City of the Black Knight. <br> > User: Really? <br> > Bot: It's a very intense movie with a great performance by Heath Ledger. <br> > User: Nice :)) <br> > Bot: Glad to hear it! How about "The Shawshank Redemption"? <br> > User: What is it about? <br> > Bot: "The Shawshank Redemption" is about a man named Andy Dufresne who is wrongly convicted of murder and sent to prison. <br> > User: Who does he murder? <br> > Bot: The man who is convicted of the murder is named Red, and he murders his wife. <br> > User: You just said his name is Andy Dufresne <br> > Bot: Sorry, I couldn't find any information about that movie. <br> > User: yikes <br> > Bot: Sorry again, I must have missed your recommendation. Is there any other movie you'd like to recommend? <br> > User: end <br> Example 3: > User: Do you have any recommendation about a movie? <br> > Bot: Yes! Any particular genre that you'd like to see mentioned? <br> > User: I like action movie. <br> > Bot: Have you seen "John Wick"? <br> > User: Yes I have <br> > Bot: How about "The Bourne Identity"? <br> > User: What is it about? <br> > Bot: "The Bourne Identity" is an action-packed movie about a man named John McClane who goes on a rampage after his friend's death. <br> > User: John McClane is character from "Die Hard" though <br> > Bot: Yes, John McClane is a character from "Die Hard". Have you seen "The Raid: Redemption"? <br> > User: You are not that good its funny haha <br> > Bot: That's alright. How about "Die Hard"? <br> > User: Is it any good? <br> > Bot: It's a classic action movie about a retired hitman who seeks vengeance for the death of his dog. <br> > User: That is "John Wick" plot lol <br> > Bot: Yeah, I'm sorry I haven't heard of that movie. <br> > User: You've just recommended that for me <br> > Bot: Great! How about "The Matrix"? <br> > User: What is the main character in that movie? <br> > Bot: "The Matrix" is an action movie about a computer hacker named Neo who discovers that the world he lives in is actually a simulated reality created by machines. <br> > User: What actor play Neo in that movie? <br> > Bot: Neo is played by Keanu Reeves and plays the main character Neo. <br> > User: end <br> ## Model Card Contact For personal questions related to this model, please contact via reddotbluename@gmail.com
lewdryuna/A-Fulouma
lewdryuna
2023-05-06T14:08:32Z
0
1
null
[ "license:unknown", "region:us" ]
null
2023-05-06T14:08:32Z
--- license: unknown duplicated_from: fulouma/MyLoRAs --- Trigger word for LoRA on folder `concept`: cic everything else: sls note: - unsuffixed LoRA is usually trained 10 epoch - some of those need LoCon extension to work.
Baljinnyam/mongolian-gpt2-ner-finetuning
Baljinnyam
2023-05-06T14:06:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "mn", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-05-06T11:36:36Z
--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mongolian-gpt2-ner-finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mongolian-gpt2-ner-finetuning This model is a fine-tuned version of [bayartsogt/mongolian-gpt2](https://huggingface.co/bayartsogt/mongolian-gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3230 - Precision: 0.0989 - Recall: 0.2277 - F1: 0.1380 - Accuracy: 0.9078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5225 | 1.0 | 477 | 0.3650 | 0.0743 | 0.1674 | 0.1030 | 0.8821 | | 0.322 | 2.0 | 954 | 0.3129 | 0.0853 | 0.1903 | 0.1178 | 0.8966 | | 0.2681 | 3.0 | 1431 | 0.3008 | 0.0915 | 0.2034 | 0.1262 | 0.9022 | | 0.232 | 4.0 | 1908 | 0.2963 | 0.0914 | 0.2070 | 0.1269 | 0.9053 | | 0.2029 | 5.0 | 2385 | 0.2974 | 0.0933 | 0.2120 | 0.1295 | 0.9071 | | 0.1791 | 6.0 | 2862 | 0.3038 | 0.0949 | 0.2140 | 0.1315 | 0.9076 | | 0.1603 | 7.0 | 3339 | 0.3100 | 0.0958 | 0.2186 | 0.1332 | 0.9079 | | 0.146 | 8.0 | 3816 | 0.3174 | 0.0950 | 0.2156 | 0.1319 | 0.9079 | | 0.1355 | 9.0 | 4293 | 0.3233 | 0.1001 | 0.2274 | 0.1390 | 0.9080 | | 0.1291 | 10.0 | 4770 | 0.3230 | 0.0989 | 0.2277 | 0.1380 | 0.9078 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
PanoEvJ/Reinforce-CartPole-v1
PanoEvJ
2023-05-06T14:00:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T13:09:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sarahh23/gptneo-txt2ARXMLv1.4
sarahh23
2023-05-06T13:40:20Z
12
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T13:38:41Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.4 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8955 | 0.98 | 24 | 2.7129 | | 1.3737 | 1.97 | 48 | 1.3135 | | 0.8242 | 2.99 | 73 | 0.8354 | | 0.66 | 3.98 | 97 | 0.6753 | | 0.6143 | 4.92 | 120 | 0.6133 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
patilrohan94/ppo-LunarLander-v2
patilrohan94
2023-05-06T13:37:10Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-01T19:37:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_MLP results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.61 +/- 64.54 name: mean_reward verified: false --- # **PPO_MLP** Agent playing **LunarLander-v2** This is a trained model of a **PPO_MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
FredDYyy/roberta-base-squadv2
FredDYyy
2023-05-06T13:29:10Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-06T10:27:06Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squadv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squadv2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.6731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1898 | 1.0 | 1221 | 1.5332 | | 0.7719 | 2.0 | 2443 | 1.5191 | | 0.5484 | 3.0 | 3663 | 1.6731 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
yigg/bert-base-uncased-finetuned-cola
yigg
2023-05-06T13:25:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T11:01:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.46698933079472565 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5629 - Matthews Correlation: 0.4670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.866149341238024e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5043 | 1.0 | 2138 | 0.5637 | 0.3863 | | 0.4399 | 2.0 | 4276 | 0.5629 | 0.4670 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
crumb/gpt-joke
crumb
2023-05-06T13:17:00Z
7
2
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T18:26:02Z
gpt2 trained on reddit jokes that I was originally gonna do an instruct-gpt type thing with to finetune it to be better at jokes but I abandoned the project oops
Slygags/finetuned-Sentiment-classfication-BERT-model
Slygags
2023-05-06T13:14:34Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-02T20:40:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuned-Sentiment-classfication-BERT-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-Sentiment-classfication-BERT-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6050 - Rmse: 0.6736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7556 | 2.0 | 500 | 0.6050 | 0.6736 | | 0.3957 | 4.0 | 1000 | 0.7329 | 0.6560 | | 0.1413 | 6.0 | 1500 | 1.0727 | 0.6941 | | 0.0598 | 8.0 | 2000 | 1.3042 | 0.6483 | | 0.0319 | 10.0 | 2500 | 1.3687 | 0.6544 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rifatozkurt/bert-base-uncased-finetuned-cola
rifatozkurt
2023-05-06T13:12:00Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T11:50:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5805514135255713 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4434 - Matthews Correlation: 0.5806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.302384098327798e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5122 | 1.0 | 535 | 0.4803 | 0.4895 | | 0.3629 | 2.0 | 1070 | 0.4434 | 0.5806 | | 0.2857 | 3.0 | 1605 | 0.5283 | 0.5704 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
tabbleman/test
tabbleman
2023-05-06T13:02:20Z
0
0
diffusers
[ "diffusers", "code", "ar", "dataset:fka/awesome-chatgpt-prompts", "license:mit", "region:us" ]
null
2023-05-06T12:59:25Z
--- license: mit datasets: - fka/awesome-chatgpt-prompts language: - ar metrics: - accuracy library_name: diffusers tags: - code ---
Soulaimen/convnext-large-224-22k-1k-bottomCleanedData
Soulaimen
2023-05-06T12:57:47Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-05T08:59:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnext-large-224-22k-1k-bottomCleanedData results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9977298524404086 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-large-224-22k-1k-bottomCleanedData This model is a fine-tuned version of [facebook/convnext-large-224-22k-1k](https://huggingface.co/facebook/convnext-large-224-22k-1k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0067 - Accuracy: 0.9977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 7 - total_train_batch_size: 56 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2003 | 1.0 | 141 | 0.0628 | 0.9807 | | 0.1568 | 2.0 | 283 | 0.0173 | 0.9943 | | 0.1499 | 2.99 | 424 | 0.0211 | 0.9898 | | 0.1189 | 4.0 | 566 | 0.0140 | 0.9955 | | 0.084 | 4.99 | 707 | 0.0105 | 0.9955 | | 0.0797 | 6.0 | 849 | 0.0093 | 0.9966 | | 0.0781 | 7.0 | 991 | 0.0157 | 0.9921 | | 0.1075 | 8.0 | 1132 | 0.0079 | 0.9943 | | 0.0718 | 9.0 | 1274 | 0.0075 | 0.9966 | | 0.0592 | 9.96 | 1410 | 0.0067 | 0.9977 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jwcho/polyglot-ko-5.8b-chatdoctor
jwcho
2023-05-06T12:54:19Z
14
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-06T12:48:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: polyglot-5.8b-chatdoctor-v1.1b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # polyglot-5.8b-chatdoctor-v1.1b This model is a fine-tuned version of [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
research-backup/mbart-large-cc25-squad-qa
research-backup
2023-05-06T12:48:31Z
6
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question answering", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-31T19:43:55Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things." example_title: "Question Answering Example 1" - text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014" example_title: "Question Answering Example 2" model-index: - name: lmqg/mbart-large-cc25-squad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 56.23 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 74.73 - name: METEOR (Question Answering) type: meteor_question_answering value: 43.17 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 92.7 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 84.01 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 76.98 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 62.63 --- # Model Card of `lmqg/mbart-large-cc25-squad-qa` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question answering task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/mbart-large-cc25-squad-qa") # model prediction answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-squad-qa") output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-squad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 62.63 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 76.98 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 92.7 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 69.46 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 64.72 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 60.19 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 56.23 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 43.17 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 84.01 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 74.73 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 16 - lr: 6e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-squad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
mHossain/bangla-para-v2-120000
mHossain
2023-05-06T12:39:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T10:42:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bangla-para-v2-120000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla-para-v2-120000 This model is a fine-tuned version of [mHossain/bangla-para-v2-90000](https://huggingface.co/mHossain/bangla-para-v2-90000) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9277 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 17.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.1615 | 1.0 | 3375 | 0.9277 | 0.0 | 0.0 | 0.0 | 0.0 | 17.575 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
sarahh23/gptneo-txt2ARXMLv1.3
sarahh23
2023-05-06T12:35:02Z
14
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-02T23:07:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.3 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2367 | 0.99 | 32 | 2.1758 | | 0.9974 | 1.98 | 64 | 0.9551 | | 0.664 | 2.98 | 96 | 0.7031 | | 0.5799 | 4.0 | 129 | 0.5972 | | 0.4837 | 4.96 | 160 | 0.5190 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
amu-cai/slavlemma-base
amu-cai
2023-05-06T12:21:02Z
6
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "mT5", "lemmatization", "pl", "cs", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T15:34:35Z
--- language: - pl - cs - ru tags: - mT5 - lemmatization license: apache-2.0 --- # SlavLemma Base SlavLemma models are intended for lemmatization of named entities and multi-word expressions in Polish, Czech and Russian languages. They were fine-tuned from the google/mT5 models, e.g.: [google/mt5-base](https://huggingface.co/google/mt5-base). ## Usage When using the model, prepend one of the language tokens (`>>pl<<`, `>>cs<<`, `>>ru<<`) to the input, based on the language of the phrase you want to lemmatize. Sample usage: ``` from transformers import pipeline pipe = pipeline(task="text2text-generation", model="amu-cai/slavlemma-base", tokenizer="amu-cai/slavlemma-base") hyp = [res['generated_text'] for res in pipe([">>pl<< federalnego urzędu statystycznego"], clean_up_tokenization_spaces=True, num_beams=5)][0] ``` ## Evaluation results Lemmatization Exact Match was computed on the SlavNER 2021 test sets (COVID-19 and USA 2020 Elections). COVID-19: | Model | pl | cs | ru | | :------ | ------: | ------: | ------: | | [slavlemma-large](https://huggingface.co/amu-cai/slavlemma-large) | 93.76 | 89.80 | 77.30 | [slavlemma-base](https://huggingface.co/amu-cai/slavlemma-base) | 91.00 |86.29| 76.10 | [slavlemma-small](https://huggingface.co/amu-cai/slavlemma-small)| 86.80 |80.98| 73.83 USA 2020 Elections: | Model | pl | cs | ru | | :------ | ------: | ------: | ------: | | [slavlemma-large](https://huggingface.co/amu-cai/slavlemma-large) | 89.12 | 87.27| 82.50 | [slavlemma-base](https://huggingface.co/amu-cai/slavlemma-base) | 84.19 |81.97| 80.27 | [slavlemma-small](https://huggingface.co/amu-cai/slavlemma-small)| 78.85 |75.86| 76.18 ## Citation If you use the model, please cite the following paper: ``` @inproceedings{palka-nowakowski-2023-exploring, title = "Exploring the Use of Foundation Models for Named Entity Recognition and Lemmatization Tasks in {S}lavic Languages", author = "Pa{\l}ka, Gabriela and Nowakowski, Artur", booktitle = "Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.bsnlp-1.19", pages = "165--171", abstract = "This paper describes Adam Mickiewicz University{'}s (AMU) solution for the 4th Shared Task on SlavNER. The task involves the identification, categorization, and lemmatization of named entities in Slavic languages. Our approach involved exploring the use of foundation models for these tasks. In particular, we used models based on the popular BERT and T5 model architectures. Additionally, we used external datasets to further improve the quality of our models. Our solution obtained promising results, achieving high metrics scores in both tasks. We describe our approach and the results of our experiments in detail, showing that the method is effective for NER and lemmatization in Slavic languages. Additionally, our models for lemmatization will be available at: https://huggingface.co/amu-cai.", } ``` ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
Actuary/ppo-Huggy
Actuary
2023-05-06T11:58:23Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-06T11:58:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Actuary/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sarahh23/gptneo-txt2ARXMLv1.2
sarahh23
2023-05-06T11:40:17Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-03T10:14:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.2 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.563 | 0.99 | 42 | 1.7070 | | 0.8432 | 1.98 | 84 | 0.8247 | | 0.6679 | 3.0 | 127 | 0.6406 | | 0.5054 | 3.99 | 169 | 0.5493 | | 0.4171 | 4.96 | 210 | 0.4856 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rlagofls33/kogpt2-base-v2-finetuned-klue-ner
rlagofls33
2023-05-06T11:23:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "token-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2023-05-03T11:56:12Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: kogpt2-base-v2-finetuned-klue-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: validation args: ner metrics: - name: F1 type: f1 value: 0.37298165525403665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kogpt2-base-v2-finetuned-klue-ner This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4076 - F1: 0.3730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6084 | 1.0 | 876 | 0.5353 | 0.2118 | | 0.3911 | 2.0 | 1752 | 0.4691 | 0.3041 | | 0.2855 | 3.0 | 2628 | 0.4076 | 0.3730 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
philschmid/gpt-j-6B-fp16-sharded
philschmid
2023-05-06T11:06:03Z
5
9
generic
[ "generic", "pytorch", "gptj", "endpoints-template", "endpoints_compatible", "region:us" ]
null
2022-08-25T12:19:41Z
--- tags: - endpoints-template library_name: generic --- # Shareded fp16 copy of [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) > This is fork of [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) with shareded fp16 weights implementing a custom `handler.py` as an example for how to use `gpt-j` [inference-endpoints](https://hf.co/inference-endpoints)
reachlin/ppo-LunarLander-v2
reachlin
2023-05-06T10:53:04Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-06T10:52:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.02 +/- 46.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```