modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 06:27:22
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 525
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 06:27:10
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Gummybear05/whisper-small-ko-E2.1-SA
|
Gummybear05
| 2023-12-26T06:02:36Z | 9 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"hi",
"dataset:aihub_elder",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-12-26T01:31:43Z |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_elder
model-index:
- name: whisper-small-ko-E2.1-SA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-ko-E2.1-SA
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub elder over 70 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1587
- Cer: 4.5054
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4621 | 0.13 | 100 | 0.2838 | 5.9563 |
| 0.3338 | 0.26 | 200 | 0.2081 | 5.6215 |
| 0.3232 | 0.39 | 300 | 0.1974 | 5.3513 |
| 0.2781 | 0.52 | 400 | 0.1949 | 5.4159 |
| 0.2583 | 0.64 | 500 | 0.1817 | 5.2103 |
| 0.2485 | 0.77 | 600 | 0.1745 | 4.7874 |
| 0.237 | 0.9 | 700 | 0.1699 | 4.8285 |
| 0.1745 | 1.03 | 800 | 0.1659 | 4.4995 |
| 0.147 | 1.16 | 900 | 0.1662 | 4.6758 |
| 0.1737 | 1.29 | 1000 | 0.1644 | 5.0282 |
| 0.1639 | 1.42 | 1100 | 0.1637 | 4.8285 |
| 0.1497 | 1.55 | 1200 | 0.1603 | 4.6640 |
| 0.1756 | 1.68 | 1300 | 0.1599 | 4.5818 |
| 0.1586 | 1.81 | 1400 | 0.1593 | 4.4525 |
| 0.141 | 1.93 | 1500 | 0.1587 | 4.5054 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
sheldonzhu/q-FrozenLake-v1-4x4-noSlippery
|
sheldonzhu
| 2023-12-26T05:52:15Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-26T03:46:41Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.49 +/- 0.50
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="sheldonzhu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gks2306/gpt2_entitydef
|
gks2306
| 2023-12-26T05:50:52Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:openai-community/gpt2",
"base_model:adapter:openai-community/gpt2",
"region:us"
] | null | 2023-12-26T05:45:49Z |
---
library_name: peft
base_model: gpt2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
martyn/mixtral-megamerge-dare-8x7b-v2-GGUF
|
martyn
| 2023-12-26T05:45:23Z | 30 | 1 | null |
[
"gguf",
"text-generation",
"en",
"base_model:martyn/mixtral-megamerge-dare-8x7b-v2",
"base_model:quantized:martyn/mixtral-megamerge-dare-8x7b-v2",
"license:apache-2.0",
"region:us",
"conversational"
] |
text-generation
| 2023-12-25T22:07:04Z |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
inference: false
base_model: martyn/mixtral-megamerge-dare-8x7b-v2
model_creator: martyn
model_name: mixtral-megamerge-dare-8x7b-v2
quantized_by: martyn
---
GGUF builds of [https://huggingface.co/martyn/mixtral-megamerge-dare-8x7b-v2](https://huggingface.co/martyn/mixtral-megamerge-dare-8x7b-v2)
|
imjunaidafzal/evemugevensns
|
imjunaidafzal
| 2023-12-26T05:43:36Z | 10 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-12-22T13:14:00Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### evemugevensns Dreambooth model trained by imjunaidafzal with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
0x7o/fialka-13B-v1
|
0x7o
| 2023-12-26T05:35:05Z | 16 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"ru",
"dataset:0x7194633/fialka-v1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-21T14:30:54Z |
---
license: apache-2.0
datasets:
- 0x7194633/fialka-v1
language:
- ru
pipeline_tag: text-generation
---
|
PranavHonrao/q-Taxi-v3
|
PranavHonrao
| 2023-12-26T05:31:54Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-26T05:31:51Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="PranavHonrao/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ostapeno/rsgd_full_1B_finegrained_poly_router_dir_lora_sim_similar10
|
ostapeno
| 2023-12-26T05:30:13Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-12-25T02:23:12Z |
Number of experts present in the library: 39
| Expert Name | Base Model | Trained on | Adapter Type |
| --- | --- | --- | --- |
| aeslc_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/aeslc_1_0_0 | lora |
| social_i_qa_Generate_the_question_from_the_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Generate_the_question_from_the_answer | lora |
| wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora |
| wiki_hop_original_generate_subject | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_subject | lora |
| niv2_explanation | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_explanation | lora |
| sciq_Multiple_Choice | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/sciq_Multiple_Choice | lora |
| niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora |
| social_i_qa_Check_if_a_random_answer_is_valid_or_not | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora |
| ultrachat_25 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ultrachat_25 | lora |
| quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora |
| super_glue_cb_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora |
| duorc_SelfRC_generate_question_by_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/duorc_SelfRC_generate_question_by_answer | lora |
| high_school_psychology | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/high_school_psychology | lora |
| math_dataset_algebra__linear_1d_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/math_dataset_algebra__linear_1d_1_0_0 | lora |
| glue_qqp_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_qqp_2_0_0 | lora |
| trivia_qa_rc_1_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/trivia_qa_rc_1_1_0 | lora |
| cos_e_v1_11_explain_why_human | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_explain_why_human | lora |
| race_high_Write_a_multi_choice_question_options_given_ | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/race_high_Write_a_multi_choice_question_options_given_ | lora |
| glue_stsb_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_stsb_2_0_0 | lora |
| kilt_tasks_hotpotqa_combining_facts | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/kilt_tasks_hotpotqa_combining_facts | lora |
| super_glue_multirc_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_multirc_1_0_2 | lora |
| quartz_use_info_from_paragraph_question | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_use_info_from_paragraph_question | lora |
| anli_r1_0_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/anli_r1_0_1_0 | lora |
| yelp_polarity_reviews_0_2_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora |
| ag_news_subset_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ag_news_subset_1_0_0 | lora |
| super_glue_rte_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_rte_1_0_2 | lora |
| web_questions_potential_correct_answer | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_potential_correct_answer | lora |
| wiqa_what_might_be_the_last_step_of_the_process | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_last_step_of_the_process | lora |
| app_reviews_generate_review | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/app_reviews_generate_review | lora |
| wiki_hop_original_choose_best_object_affirmative_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_affirmative_2 | lora |
| quail_description_context_question_answer_id | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quail_description_context_question_answer_id | lora |
| wiki_bio_guess_person | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_bio_guess_person | lora |
| ropes_background_new_situation_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_new_situation_answer | lora |
| wiki_hop_original_generate_object_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_object | lora |
| ropes_new_situation_background_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_new_situation_background_answer | lora |
| ropes_prompt_beginning_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_prompt_beginning | lora |
| ropes_read_background_situation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_read_background_situation | lora |
| ropes_plain_bottom_hint_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora |
| ropes_background_situation_middle_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora |
Last updated on: 2023-12-26 05:29:34+00:00
|
ostapeno/rsgd_full_1B_coarsegrained_poly_router_dir_lib_embeddings_similar10
|
ostapeno
| 2023-12-26T05:28:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-12-25T02:22:43Z |
Number of experts present in the library: 39
| Expert Name | Base Model | Trained on | Adapter Type |
| --- | --- | --- | --- |
| aeslc_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/aeslc_1_0_0 | lora |
| social_i_qa_Generate_the_question_from_the_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Generate_the_question_from_the_answer | lora |
| wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora |
| wiki_hop_original_generate_subject | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_subject | lora |
| niv2_explanation | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_explanation | lora |
| sciq_Multiple_Choice | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/sciq_Multiple_Choice | lora |
| niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora |
| social_i_qa_Check_if_a_random_answer_is_valid_or_not | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora |
| ultrachat_25 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ultrachat_25 | lora |
| quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora |
| super_glue_cb_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora |
| duorc_SelfRC_generate_question_by_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/duorc_SelfRC_generate_question_by_answer | lora |
| high_school_psychology | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/high_school_psychology | lora |
| math_dataset_algebra__linear_1d_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/math_dataset_algebra__linear_1d_1_0_0 | lora |
| glue_qqp_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_qqp_2_0_0 | lora |
| trivia_qa_rc_1_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/trivia_qa_rc_1_1_0 | lora |
| cos_e_v1_11_explain_why_human | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_explain_why_human | lora |
| race_high_Write_a_multi_choice_question_options_given_ | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/race_high_Write_a_multi_choice_question_options_given_ | lora |
| glue_stsb_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_stsb_2_0_0 | lora |
| kilt_tasks_hotpotqa_combining_facts | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/kilt_tasks_hotpotqa_combining_facts | lora |
| super_glue_multirc_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_multirc_1_0_2 | lora |
| quartz_use_info_from_paragraph_question | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_use_info_from_paragraph_question | lora |
| anli_r1_0_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/anli_r1_0_1_0 | lora |
| yelp_polarity_reviews_0_2_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora |
| ag_news_subset_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ag_news_subset_1_0_0 | lora |
| super_glue_rte_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_rte_1_0_2 | lora |
| web_questions_potential_correct_answer | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_potential_correct_answer | lora |
| wiqa_what_might_be_the_last_step_of_the_process | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_last_step_of_the_process | lora |
| app_reviews_generate_review | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/app_reviews_generate_review | lora |
| wiki_hop_original_choose_best_object_affirmative_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_affirmative_2 | lora |
| quail_description_context_question_answer_id | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quail_description_context_question_answer_id | lora |
| wiki_bio_guess_person | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_bio_guess_person | lora |
| ropes_background_new_situation_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_new_situation_answer | lora |
| wiki_hop_original_generate_object_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_object | lora |
| ropes_new_situation_background_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_new_situation_background_answer | lora |
| ropes_prompt_beginning_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_prompt_beginning | lora |
| ropes_read_background_situation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_read_background_situation | lora |
| ropes_plain_bottom_hint_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora |
| ropes_background_situation_middle_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora |
Last updated on: 2023-12-26 05:28:18+00:00
|
ostapeno/ft_no_transf_1B_distinct10
|
ostapeno
| 2023-12-26T05:11:01Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-12-25T20:45:12Z |
Number of experts present in the library: 39
| Expert Name | Base Model | Trained on | Adapter Type |
| --- | --- | --- | --- |
| social_i_qa_Generate_the_question_from_the_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Generate_the_question_from_the_answer | lora |
| math_dataset_algebra__linear_1d_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/math_dataset_algebra__linear_1d_1_0_0 | lora |
| ropes_background_new_situation_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_new_situation_answer | lora |
| glue_qqp_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_qqp_2_0_0 | lora |
| trivia_qa_rc_1_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/trivia_qa_rc_1_1_0 | lora |
| wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora |
| ropes_background_situation_middle | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora |
| ropes_prompt_beginning | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_prompt_beginning | lora |
| wiki_hop_original_generate_subject | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_subject | lora |
| cos_e_v1_11_explain_why_human | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_explain_why_human | lora |
| race_high_Write_a_multi_choice_question_options_given_ | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/race_high_Write_a_multi_choice_question_options_given_ | lora |
| glue_stsb_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_stsb_2_0_0 | lora |
| sciq_Multiple_Choice | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/sciq_Multiple_Choice | lora |
| kilt_tasks_hotpotqa_combining_facts | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/kilt_tasks_hotpotqa_combining_facts | lora |
| niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora |
| super_glue_multirc_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_multirc_1_0_2 | lora |
| quartz_use_info_from_paragraph_question | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_use_info_from_paragraph_question | lora |
| anli_r1_0_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/anli_r1_0_1_0 | lora |
| wiki_hop_original_generate_object | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_object | lora |
| yelp_polarity_reviews_0_2_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora |
| ropes_new_situation_background_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_new_situation_background_answer | lora |
| ag_news_subset_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ag_news_subset_1_0_0 | lora |
| super_glue_rte_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_rte_1_0_2 | lora |
| quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora |
| web_questions_potential_correct_answer | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_potential_correct_answer | lora |
| wiqa_what_might_be_the_last_step_of_the_process | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_last_step_of_the_process | lora |
| ropes_read_background_situation | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_read_background_situation | lora |
| app_reviews_generate_review | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/app_reviews_generate_review | lora |
| wiki_hop_original_choose_best_object_affirmative_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_affirmative_2 | lora |
| quail_description_context_question_answer_id | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quail_description_context_question_answer_id | lora |
| wiki_bio_guess_person | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_bio_guess_person | lora |
| ropes_plain_bottom_hint | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora |
| duorc_SelfRC_generate_question_by_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/duorc_SelfRC_generate_question_by_answer | lora |
| super_glue_cb_1_0_2_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora |
| ultrachat_25_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ultrachat_25 | lora |
| niv2_explanation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_explanation | lora |
| aeslc_1_0_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/aeslc_1_0_0 | lora |
| social_i_qa_Check_if_a_random_answer_is_valid_or_not_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora |
| high_school_psychology_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/high_school_psychology | lora |
Last updated on: 2023-12-26 05:09:51+00:00
|
ostapeno/selector_1B_finegrained_poly_router_dir_lora_sim_similar10
|
ostapeno
| 2023-12-26T05:05:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-12-25T02:32:42Z |
Number of experts present in the library: 39
| Expert Name | Base Model | Trained on | Adapter Type |
| --- | --- | --- | --- |
| aeslc_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/aeslc_1_0_0 | lora |
| social_i_qa_Generate_the_question_from_the_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Generate_the_question_from_the_answer | lora |
| wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora |
| niv2_explanation | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_explanation | lora |
| sciq_Multiple_Choice | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/sciq_Multiple_Choice | lora |
| niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora |
| social_i_qa_Check_if_a_random_answer_is_valid_or_not | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora |
| ultrachat_25 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ultrachat_25 | lora |
| quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora |
| super_glue_cb_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora |
| duorc_SelfRC_generate_question_by_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/duorc_SelfRC_generate_question_by_answer | lora |
| high_school_psychology | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/high_school_psychology | lora |
| math_dataset_algebra__linear_1d_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/math_dataset_algebra__linear_1d_1_0_0 | lora |
| glue_qqp_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_qqp_2_0_0 | lora |
| trivia_qa_rc_1_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/trivia_qa_rc_1_1_0 | lora |
| cos_e_v1_11_explain_why_human | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_explain_why_human | lora |
| race_high_Write_a_multi_choice_question_options_given_ | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/race_high_Write_a_multi_choice_question_options_given_ | lora |
| glue_stsb_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_stsb_2_0_0 | lora |
| kilt_tasks_hotpotqa_combining_facts | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/kilt_tasks_hotpotqa_combining_facts | lora |
| super_glue_multirc_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_multirc_1_0_2 | lora |
| quartz_use_info_from_paragraph_question | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_use_info_from_paragraph_question | lora |
| anli_r1_0_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/anli_r1_0_1_0 | lora |
| yelp_polarity_reviews_0_2_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora |
| ag_news_subset_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ag_news_subset_1_0_0 | lora |
| super_glue_rte_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_rte_1_0_2 | lora |
| web_questions_potential_correct_answer | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_potential_correct_answer | lora |
| wiqa_what_might_be_the_last_step_of_the_process | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_last_step_of_the_process | lora |
| app_reviews_generate_review | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/app_reviews_generate_review | lora |
| wiki_hop_original_choose_best_object_affirmative_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_affirmative_2 | lora |
| quail_description_context_question_answer_id | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quail_description_context_question_answer_id | lora |
| wiki_bio_guess_person | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_bio_guess_person | lora |
| ropes_background_new_situation_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_new_situation_answer | lora |
| wiki_hop_original_generate_object_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_object | lora |
| ropes_new_situation_background_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_new_situation_background_answer | lora |
| ropes_prompt_beginning_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_prompt_beginning | lora |
| ropes_read_background_situation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_read_background_situation | lora |
| ropes_plain_bottom_hint_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora |
| wiki_hop_original_generate_subject_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_subject | lora |
| ropes_background_situation_middle_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora |
Last updated on: 2023-12-26 05:05:12+00:00
|
shapiron/ppo-LunarLander-v2-alt-b128-ep24-rs2pt2e6
|
shapiron
| 2023-12-26T05:01:43Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-26T05:00:36Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 286.28 +/- 18.42
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ostapeno/selector_1B_coarsegrained_poly_router_dir_lora_sim_similar10
|
ostapeno
| 2023-12-26T05:00:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-12-25T02:24:44Z |
Number of experts present in the library: 39
| Expert Name | Base Model | Trained on | Adapter Type |
| --- | --- | --- | --- |
| aeslc_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/aeslc_1_0_0 | lora |
| social_i_qa_Generate_the_question_from_the_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Generate_the_question_from_the_answer | lora |
| wiqa_what_is_the_final_step_of_the_following_process | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiqa_what_is_the_final_step_of_the_following_process | lora |
| niv2_explanation | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_explanation | lora |
| sciq_Multiple_Choice | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/sciq_Multiple_Choice | lora |
| niv2_dialogue_act_recognition | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/niv2_dialogue_act_recognition | lora |
| social_i_qa_Check_if_a_random_answer_is_valid_or_not | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora |
| ultrachat_25 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ultrachat_25 | lora |
| quarel_heres_a_story | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/quarel_heres_a_story | lora |
| super_glue_cb_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/super_glue_cb_1_0_2 | lora |
| duorc_SelfRC_generate_question_by_answer | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/duorc_SelfRC_generate_question_by_answer | lora |
| high_school_psychology | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/high_school_psychology | lora |
| math_dataset_algebra__linear_1d_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/math_dataset_algebra__linear_1d_1_0_0 | lora |
| glue_qqp_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_qqp_2_0_0 | lora |
| trivia_qa_rc_1_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/trivia_qa_rc_1_1_0 | lora |
| cos_e_v1_11_explain_why_human | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_explain_why_human | lora |
| race_high_Write_a_multi_choice_question_options_given_ | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/race_high_Write_a_multi_choice_question_options_given_ | lora |
| glue_stsb_2_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/glue_stsb_2_0_0 | lora |
| kilt_tasks_hotpotqa_combining_facts | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/kilt_tasks_hotpotqa_combining_facts | lora |
| super_glue_multirc_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_multirc_1_0_2 | lora |
| quartz_use_info_from_paragraph_question | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_use_info_from_paragraph_question | lora |
| anli_r1_0_1_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/anli_r1_0_1_0 | lora |
| yelp_polarity_reviews_0_2_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora |
| ag_news_subset_1_0_0 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ag_news_subset_1_0_0 | lora |
| super_glue_rte_1_0_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/super_glue_rte_1_0_2 | lora |
| web_questions_potential_correct_answer | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_potential_correct_answer | lora |
| wiqa_what_might_be_the_last_step_of_the_process | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_last_step_of_the_process | lora |
| app_reviews_generate_review | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/app_reviews_generate_review | lora |
| wiki_hop_original_choose_best_object_affirmative_2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_affirmative_2 | lora |
| quail_description_context_question_answer_id | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quail_description_context_question_answer_id | lora |
| wiki_bio_guess_person | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_bio_guess_person | lora |
| ropes_background_new_situation_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_new_situation_answer | lora |
| wiki_hop_original_generate_object_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_object | lora |
| ropes_new_situation_background_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_new_situation_background_answer | lora |
| ropes_prompt_beginning_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_prompt_beginning | lora |
| ropes_read_background_situation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_read_background_situation | lora |
| ropes_plain_bottom_hint_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_plain_bottom_hint | lora |
| wiki_hop_original_generate_subject_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/wiki_hop_original_generate_subject | lora |
| ropes_background_situation_middle_v1 | EleutherAI/gpt-neo-1.3B | sordonia/adauni-v3-10k-flat/ropes_background_situation_middle | lora |
Last updated on: 2023-12-26 04:59:26+00:00
|
Danjie/Chadgpt-Llama2-7b-conversation
|
Danjie
| 2023-12-26T04:43:39Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"en",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"license:mit",
"region:us"
] | null | 2023-12-26T03:43:53Z |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
license: mit
language:
- en
---
# Chadgpt Llama2 7b conversation
## Colab Example
https://colab.research.google.com/drive/1YPF7oAM0s3W93iWIqJ-kZ2NY5gQK3tZ2?usp=sharing
## Install Prerequisite
```bash
!pip install peft
!pip install transformers
!pip install bitsandbytes
```
## Login Using Huggingface Token
```bash
# You need a huggingface token that can access llama2
from huggingface_hub import notebook_login
notebook_login()
```
## Download Model
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
peft_model_id = "danjie/Chadgpt-Llama2-7b-conversation"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
```
## Inference
```python
# Run this cell to start a new conversation
conversation_history = []
def format_conversation(conversation: list[str]) -> str:
formatted_conversation = ""
# Check if the conversation has more than two turns
if len(conversation) > 2:
# Process all but the last two turns
for i in range(len(conversation) - 2):
if i % 2 == 0:
formatted_conversation += "<Past User>" + conversation[i] + "\n"
else:
formatted_conversation += "<Past Assistant>" + conversation[i] + "\n"
# Process the last two turns
if len(conversation) >= 2:
formatted_conversation += "<User>" + conversation[-2] + "\n"
formatted_conversation += "<Assistant>" + conversation[-1]
return formatted_conversation
def talk_with_llm(chat: str) -> str:
# Encode and move tensor into cuda if applicable.
conversation_history.append(chat)
conversation_history.append("")
conversation = format_conversation(conversation_history)
encoded_input = tokenizer(conversation, return_tensors='pt')
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
output = model.generate(**encoded_input, max_new_tokens=256)
response = tokenizer.decode(output[0], skip_special_tokens=True)
response = response[len(conversation):]
conversation_history.pop()
conversation_history.append(response)
return response
```
|
AIYIYA/my_new_inputs1
|
AIYIYA
| 2023-12-26T04:15:30Z | 1 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-chinese",
"base_model:finetune:google-bert/bert-base-chinese",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-26T04:04:27Z |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_new_inputs1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# AIYIYA/my_new_inputs1
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.6115
- Validation Loss: 1.7513
- Train Accuracy: 0.7217
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 80, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.8547 | 2.5914 | 0.4261 | 0 |
| 2.3539 | 2.2365 | 0.6 | 1 |
| 2.0114 | 1.9683 | 0.7043 | 2 |
| 1.7522 | 1.8043 | 0.7217 | 3 |
| 1.6115 | 1.7513 | 0.7217 | 4 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0
|
activebus/BERT-PT_rest
|
activebus
| 2023-12-26T04:12:32Z | 27 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# ReviewBERT
BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects.
`BERT-DK_rest` is trained from 1G (19 types) restaurants from Yelp.
`BERT-PT_*` addtionally uses SQuAD 1.1.
## Model Description
The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus.
Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/).
## Instructions
Loading the post-trained weights are as simple as, e.g.,
```python
import torch
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_rest")
model = AutoModel.from_pretrained("activebus/BERT-PT_rest")
```
## Evaluation Results
Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf)
## Citation
If you find this work useful, please cite as following.
```
@inproceedings{xu_bert2019,
title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis",
author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.",
booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics",
month = "jun",
year = "2019",
}
```
|
AIYIYA/my_new_inputs
|
AIYIYA
| 2023-12-26T04:02:41Z | 7 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-chinese",
"base_model:finetune:google-bert/bert-base-chinese",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T18:20:03Z |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_new_inputs
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# AIYIYA/my_new_inputs
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4582
- Validation Loss: 2.5642
- Train Accuracy: 0.2812
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 45, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.5554 | 2.6041 | 0.2188 | 0 |
| 2.4711 | 2.5642 | 0.2812 | 1 |
| 2.4489 | 2.5642 | 0.2812 | 2 |
| 2.4357 | 2.5642 | 0.2812 | 3 |
| 2.4582 | 2.5642 | 0.2812 | 4 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0
|
Deadsg/Bat-Llama-CPP
|
Deadsg
| 2023-12-26T03:59:17Z | 0 | 0 | null |
[
"license:llama2",
"region:us"
] | null | 2023-12-25T22:36:55Z |
---
license: llama2
---
This a custom built Mistral Llama.cpp model.
https://github.com/Deadsg/Bat-.-LLama-.-CPP
Here is the docs for further referencing:
https://github.com/mpwang/llama-cpp-windows-guide
https://github.com/ggerganov/llama.cpp/blob/master/README.md
https://github.com/jmorganca/ollama/blob/main/docs/development.md
You'll have to reform the Cmakefiles and cmakecache for your own systems. You can do this easily by setting the corrects paths for your compilers in your main Cmakelist.txt file.
I'm uplaoding for ease of file reference and correct bulding reference. If you can compile the file as is, that's great. But I highly doubt it.
I'm still pretty new to Coding bt if i can figure it out so can you.
To properly build and make the cmake files and necessary .exe files, You'll need WSL2 and the Windows64Devkit (W64DevKit).
https://github.com/skeeto/w64devkit/releases
IF there's any issues or questions just submit an issue or fork and make a pull request.
Will be working on a very thorough Windows guide soon.
|
IParraMartin/XLM-EusBERTa-sentiment-classification
|
IParraMartin
| 2023-12-26T03:48:18Z | 8 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:basque_glue",
"base_model:ClassCat/roberta-small-basque",
"base_model:finetune:ClassCat/roberta-small-basque",
"license:cc-by-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-21T20:17:55Z |
---
license: cc-by-sa-4.0
base_model: ClassCat/roberta-small-basque
tags:
- generated_from_trainer
datasets:
- basque_glue
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: XLM-EusBERTa-sentiment-classification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: basque_glue
type: basque_glue
config: bec
split: validation
args: bec
metrics:
- name: Accuracy
type: accuracy
value: 0.6290322580645161
- name: F1
type: f1
value: 0.6290834931512662
- name: Precision
type: precision
value: 0.630304630215078
- name: Recall
type: recall
value: 0.6290322580645161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLM-EusBERTa-sentiment-classification
This model is a fine-tuned version of [ClassCat/roberta-small-basque](https://huggingface.co/ClassCat/roberta-small-basque) on the basque_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0012
- Accuracy: 0.6290
- F1: 0.6291
- Precision: 0.6303
- Recall: 0.6290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 380 | 0.7366 | 0.6736 | 0.6589 | 0.6711 | 0.6736 |
| 0.7679 | 2.0 | 760 | 0.7654 | 0.6767 | 0.6692 | 0.6726 | 0.6767 |
| 0.4846 | 3.0 | 1140 | 0.9844 | 0.6621 | 0.6599 | 0.6681 | 0.6621 |
| 0.2952 | 4.0 | 1520 | 1.1162 | 0.6375 | 0.6371 | 0.6473 | 0.6375 |
| 0.2952 | 5.0 | 1900 | 1.4234 | 0.6329 | 0.6343 | 0.6425 | 0.6329 |
| 0.192 | 6.0 | 2280 | 1.8570 | 0.6413 | 0.6362 | 0.6424 | 0.6413 |
| 0.159 | 7.0 | 2660 | 2.1968 | 0.6152 | 0.6086 | 0.6152 | 0.6152 |
| 0.1265 | 8.0 | 3040 | 2.1853 | 0.6283 | 0.6267 | 0.6267 | 0.6283 |
| 0.1265 | 9.0 | 3420 | 2.1953 | 0.6467 | 0.6441 | 0.6435 | 0.6467 |
| 0.0807 | 10.0 | 3800 | 2.2806 | 0.6367 | 0.6381 | 0.6480 | 0.6367 |
| 0.0688 | 11.0 | 4180 | 2.7982 | 0.6175 | 0.6167 | 0.6356 | 0.6175 |
| 0.0675 | 12.0 | 4560 | 2.5182 | 0.6605 | 0.6587 | 0.6584 | 0.6605 |
| 0.0675 | 13.0 | 4940 | 2.6544 | 0.6413 | 0.6315 | 0.6391 | 0.6413 |
| 0.0451 | 14.0 | 5320 | 2.5889 | 0.6459 | 0.6427 | 0.6424 | 0.6459 |
| 0.0432 | 15.0 | 5700 | 2.8100 | 0.6290 | 0.6299 | 0.6359 | 0.6290 |
| 0.0297 | 16.0 | 6080 | 2.9983 | 0.6275 | 0.6262 | 0.6263 | 0.6275 |
| 0.0297 | 17.0 | 6460 | 2.7803 | 0.6313 | 0.6289 | 0.6311 | 0.6313 |
| 0.0369 | 18.0 | 6840 | 2.9602 | 0.6283 | 0.6287 | 0.6353 | 0.6283 |
| 0.0289 | 19.0 | 7220 | 2.9911 | 0.6298 | 0.6309 | 0.6356 | 0.6298 |
| 0.0251 | 20.0 | 7600 | 2.8634 | 0.6344 | 0.6350 | 0.6364 | 0.6344 |
| 0.0251 | 21.0 | 7980 | 2.7171 | 0.6406 | 0.6378 | 0.6375 | 0.6406 |
| 0.0332 | 22.0 | 8360 | 3.0386 | 0.6275 | 0.6215 | 0.6245 | 0.6275 |
| 0.0212 | 23.0 | 8740 | 2.9876 | 0.6313 | 0.6319 | 0.6344 | 0.6313 |
| 0.0218 | 24.0 | 9120 | 2.9776 | 0.6283 | 0.6267 | 0.6348 | 0.6283 |
| 0.0189 | 25.0 | 9500 | 2.9596 | 0.6329 | 0.6340 | 0.6381 | 0.6329 |
| 0.0189 | 26.0 | 9880 | 3.0420 | 0.6329 | 0.6324 | 0.6380 | 0.6329 |
| 0.0172 | 27.0 | 10260 | 3.3335 | 0.6336 | 0.6348 | 0.6369 | 0.6336 |
| 0.0054 | 28.0 | 10640 | 3.2843 | 0.6429 | 0.6442 | 0.6466 | 0.6429 |
| 0.0065 | 29.0 | 11020 | 3.4868 | 0.6275 | 0.6291 | 0.6399 | 0.6275 |
| 0.0065 | 30.0 | 11400 | 3.8241 | 0.6175 | 0.6174 | 0.6209 | 0.6175 |
| 0.0108 | 31.0 | 11780 | 3.5833 | 0.6260 | 0.6275 | 0.6317 | 0.6260 |
| 0.0127 | 32.0 | 12160 | 3.5452 | 0.6183 | 0.6203 | 0.6283 | 0.6183 |
| 0.0092 | 33.0 | 12540 | 3.8349 | 0.6167 | 0.6167 | 0.6389 | 0.6167 |
| 0.0092 | 34.0 | 12920 | 3.6464 | 0.6244 | 0.6260 | 0.6313 | 0.6244 |
| 0.0069 | 35.0 | 13300 | 3.7538 | 0.6352 | 0.6352 | 0.6359 | 0.6352 |
| 0.0028 | 36.0 | 13680 | 3.8862 | 0.6221 | 0.6243 | 0.6350 | 0.6221 |
| 0.0001 | 37.0 | 14060 | 3.9846 | 0.6229 | 0.6206 | 0.6252 | 0.6229 |
| 0.0001 | 38.0 | 14440 | 3.7743 | 0.6275 | 0.6287 | 0.6309 | 0.6275 |
| 0.0057 | 39.0 | 14820 | 3.9002 | 0.6290 | 0.6300 | 0.6319 | 0.6290 |
| 0.0004 | 40.0 | 15200 | 3.9651 | 0.6306 | 0.6315 | 0.6333 | 0.6306 |
| 0.0032 | 41.0 | 15580 | 4.0279 | 0.6206 | 0.6213 | 0.6365 | 0.6206 |
| 0.0032 | 42.0 | 15960 | 3.8244 | 0.6344 | 0.6342 | 0.6344 | 0.6344 |
| 0.0033 | 43.0 | 16340 | 3.9036 | 0.6198 | 0.6205 | 0.6237 | 0.6198 |
| 0.003 | 44.0 | 16720 | 4.0028 | 0.6198 | 0.6214 | 0.6263 | 0.6198 |
| 0.0005 | 45.0 | 17100 | 3.9621 | 0.6306 | 0.6315 | 0.6361 | 0.6306 |
| 0.0005 | 46.0 | 17480 | 3.9682 | 0.6306 | 0.6297 | 0.6298 | 0.6306 |
| 0.0003 | 47.0 | 17860 | 4.0103 | 0.6321 | 0.6310 | 0.6305 | 0.6321 |
| 0.0003 | 48.0 | 18240 | 3.9968 | 0.6321 | 0.6316 | 0.6317 | 0.6321 |
| 0.003 | 49.0 | 18620 | 3.9835 | 0.6298 | 0.6297 | 0.6304 | 0.6298 |
| 0.0005 | 50.0 | 19000 | 4.0012 | 0.6290 | 0.6291 | 0.6303 | 0.6290 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
Realgon/N_roberta_agnews_padding60model
|
Realgon
| 2023-12-26T03:39:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:ag_news",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-26T00:56:02Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_roberta_agnews_padding60model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9460526315789474
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# N_roberta_agnews_padding60model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5823
- Accuracy: 0.9461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.2028 | 1.0 | 7500 | 0.2106 | 0.9407 |
| 0.1643 | 2.0 | 15000 | 0.1864 | 0.9475 |
| 0.1536 | 3.0 | 22500 | 0.2135 | 0.9455 |
| 0.1243 | 4.0 | 30000 | 0.2261 | 0.9468 |
| 0.1045 | 5.0 | 37500 | 0.2428 | 0.9468 |
| 0.0861 | 6.0 | 45000 | 0.2795 | 0.9434 |
| 0.0767 | 7.0 | 52500 | 0.3035 | 0.9470 |
| 0.0532 | 8.0 | 60000 | 0.3571 | 0.9461 |
| 0.0532 | 9.0 | 67500 | 0.3586 | 0.9426 |
| 0.0342 | 10.0 | 75000 | 0.4128 | 0.9434 |
| 0.026 | 11.0 | 82500 | 0.4228 | 0.9470 |
| 0.0226 | 12.0 | 90000 | 0.4714 | 0.9434 |
| 0.0209 | 13.0 | 97500 | 0.4663 | 0.9458 |
| 0.0127 | 14.0 | 105000 | 0.4939 | 0.9436 |
| 0.0082 | 15.0 | 112500 | 0.4959 | 0.9483 |
| 0.0142 | 16.0 | 120000 | 0.5230 | 0.9461 |
| 0.0024 | 17.0 | 127500 | 0.5710 | 0.9445 |
| 0.0082 | 18.0 | 135000 | 0.5560 | 0.9459 |
| 0.0034 | 19.0 | 142500 | 0.5778 | 0.9462 |
| 0.0018 | 20.0 | 150000 | 0.5823 | 0.9461 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|
liuda1/dm7b_sft_gpt88w_merge
|
liuda1
| 2023-12-26T03:31:44Z | 1,475 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mistral",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T08:03:28Z |
---
license: apache-2.0
---
---
license: apache-2.0
---with English chat dataset added for fine-tuning training, and further reinforcement training based on specific datasets. The trained model has a certain level of chat ability, which was found to be enhanced during self testing. We will continue to train the model in the future to improve our Chinese chat ability
|
meyceoz/prompt-llama-2
|
meyceoz
| 2023-12-26T03:01:20Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"region:us"
] | null | 2023-12-26T03:01:17Z |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
### Framework versions
- PEFT 0.6.0
|
Rezakakooee/bert-finetuned-ner
|
Rezakakooee
| 2023-12-26T02:32:18Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-12-26T02:14:52Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0606
- Precision: 0.9352
- Recall: 0.9525
- F1: 0.9438
- Accuracy: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0736 | 1.0 | 1756 | 0.0648 | 0.9161 | 0.9389 | 0.9274 | 0.9829 |
| 0.0369 | 2.0 | 3512 | 0.0627 | 0.9319 | 0.9472 | 0.9395 | 0.9864 |
| 0.0239 | 3.0 | 5268 | 0.0606 | 0.9352 | 0.9525 | 0.9438 | 0.9870 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_GPT4_temp0_Seed104
|
behzadnet
| 2023-12-26T02:20:44Z | 0 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"region:us"
] | null | 2023-12-23T01:53:14Z |
---
library_name: peft
base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
|
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_GPT4_temp0_Seed104
|
behzadnet
| 2023-12-26T02:20:30Z | 0 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"region:us"
] | null | 2023-12-23T01:53:00Z |
---
library_name: peft
base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
|
hkivancoral/hushem_40x_beit_large_adamax_0001_fold3
|
hkivancoral
| 2023-12-26T02:14:22Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"base_model:finetune:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-26T00:57:51Z |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_beit_large_adamax_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9069767441860465
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_beit_large_adamax_0001_fold3
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4238
- Accuracy: 0.9070
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0397 | 1.0 | 217 | 0.4585 | 0.8605 |
| 0.0001 | 2.0 | 434 | 1.0180 | 0.8837 |
| 0.0 | 3.0 | 651 | 0.9542 | 0.9070 |
| 0.0 | 4.0 | 868 | 1.0472 | 0.9070 |
| 0.011 | 5.0 | 1085 | 0.8152 | 0.8837 |
| 0.0 | 6.0 | 1302 | 0.8047 | 0.9070 |
| 0.0001 | 7.0 | 1519 | 1.1339 | 0.8837 |
| 0.0 | 8.0 | 1736 | 0.6894 | 0.9070 |
| 0.0 | 9.0 | 1953 | 0.9352 | 0.8837 |
| 0.0015 | 10.0 | 2170 | 0.8497 | 0.8372 |
| 0.0 | 11.0 | 2387 | 0.8859 | 0.8837 |
| 0.0 | 12.0 | 2604 | 1.0189 | 0.8837 |
| 0.001 | 13.0 | 2821 | 0.9729 | 0.8605 |
| 0.0 | 14.0 | 3038 | 0.9152 | 0.8837 |
| 0.0 | 15.0 | 3255 | 0.8697 | 0.8605 |
| 0.0 | 16.0 | 3472 | 0.9016 | 0.8605 |
| 0.0 | 17.0 | 3689 | 0.8964 | 0.8837 |
| 0.0 | 18.0 | 3906 | 1.0277 | 0.8837 |
| 0.0 | 19.0 | 4123 | 0.8584 | 0.8837 |
| 0.0 | 20.0 | 4340 | 0.8132 | 0.9070 |
| 0.0 | 21.0 | 4557 | 0.8453 | 0.9070 |
| 0.0 | 22.0 | 4774 | 0.8777 | 0.9070 |
| 0.0 | 23.0 | 4991 | 0.8912 | 0.9070 |
| 0.0 | 24.0 | 5208 | 0.9167 | 0.8837 |
| 0.0 | 25.0 | 5425 | 0.9234 | 0.8837 |
| 0.0 | 26.0 | 5642 | 0.9407 | 0.8837 |
| 0.0 | 27.0 | 5859 | 1.0058 | 0.9070 |
| 0.0 | 28.0 | 6076 | 1.1055 | 0.8837 |
| 0.0 | 29.0 | 6293 | 1.1155 | 0.8837 |
| 0.0 | 30.0 | 6510 | 1.1212 | 0.8837 |
| 0.0 | 31.0 | 6727 | 1.4063 | 0.9070 |
| 0.0 | 32.0 | 6944 | 1.3993 | 0.9070 |
| 0.0 | 33.0 | 7161 | 1.4033 | 0.9070 |
| 0.0 | 34.0 | 7378 | 1.4032 | 0.9070 |
| 0.0 | 35.0 | 7595 | 1.4070 | 0.9070 |
| 0.0 | 36.0 | 7812 | 1.4100 | 0.9070 |
| 0.0 | 37.0 | 8029 | 1.4111 | 0.9070 |
| 0.0 | 38.0 | 8246 | 1.4234 | 0.9070 |
| 0.0 | 39.0 | 8463 | 1.4283 | 0.8837 |
| 0.0 | 40.0 | 8680 | 1.4259 | 0.8837 |
| 0.0 | 41.0 | 8897 | 1.4283 | 0.8837 |
| 0.0 | 42.0 | 9114 | 1.4459 | 0.8837 |
| 0.0 | 43.0 | 9331 | 1.4466 | 0.8837 |
| 0.0 | 44.0 | 9548 | 1.4349 | 0.8837 |
| 0.0 | 45.0 | 9765 | 1.4277 | 0.8837 |
| 0.0 | 46.0 | 9982 | 1.4129 | 0.9070 |
| 0.0 | 47.0 | 10199 | 1.4175 | 0.9070 |
| 0.0 | 48.0 | 10416 | 1.4184 | 0.9070 |
| 0.0 | 49.0 | 10633 | 1.4243 | 0.9070 |
| 0.0 | 50.0 | 10850 | 1.4238 | 0.9070 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
joxen/rodsullivan
|
joxen
| 2023-12-26T02:12:56Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2023-12-26T02:12:34Z |
---
license: other
license_name: theicescreamman
license_link: LICENSE
---
|
turboderp/Sheared-Llama2-1.3B-exl2
|
turboderp
| 2023-12-26T02:08:01Z | 6 | 0 | null |
[
"region:us"
] | null | 2023-11-23T00:33:59Z |
EXL2 quants of [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) from princeton-nlp.
This is a pruned and further pre-trained version of Llama2-7B
[2.50 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/2.5bpw)
[2.70 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/2.7bpw)
[3.00 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/3.0bpw)
[3.50 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/3.5bpw)
[4.00 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/4.0bpw)
[4.50 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/4.5bpw)
[5.00 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/5.0bpw)
[6.00 bits per weight](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/tree/6.0bpw)
[measurement.json](https://huggingface.co/turboderp/Sheared-Llama2-1.3B-exl2/blob/main/measurement.json)
|
turboderp/deepseek-llm-67B-chat-exl2
|
turboderp
| 2023-12-26T02:06:24Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-11-30T18:50:39Z |
EXL2 quants of [deepseek-llm-67B-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat)
[2.50 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/2.5bpw) (unstable)
[2.70 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/2.7bpw)
[3.00 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/3.0bpw)
[3.50 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/3.5bpw)
[4.00 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/4.0bpw)
[4.65 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/4.65bpw)
[6.00 bits per weight](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/tree/6.0bpw)
[measurement.json](https://huggingface.co/turboderp/deepseek-llm-67B-chat-exl2/blob/main/measurement.json)
|
HunyStark/ppo-LunarLander-v2
|
HunyStark
| 2023-12-26T02:06:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-26T02:05:52Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 259.33 +/- 20.62
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
bobtk/distilbert-base-uncased-finetuned-clinc
|
bobtk
| 2023-12-26T01:55:42Z | 7 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-26T00:24:47Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.8903225806451613
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0392
- Accuracy: 0.8903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 3.5092 | 0.6306 |
| 3.9506 | 2.0 | 636 | 2.1778 | 0.8058 |
| 3.9506 | 3.0 | 954 | 1.4469 | 0.8648 |
| 2.0031 | 4.0 | 1272 | 1.1542 | 0.8797 |
| 1.2402 | 5.0 | 1590 | 1.0392 | 0.8903 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0.dev20231129
- Datasets 2.15.0
- Tokenizers 0.15.0
|
ntc-ai/SDXL-LoRA-slider.glowing-eyes
|
ntc-ai
| 2023-12-26T01:48:15Z | 58 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-26T01:48:10Z |
---
language:
- en
thumbnail: "images/evaluate/glowing eyes.../glowing eyes_17_3.0.png"
widget:
- text: glowing eyes
output:
url: images/glowing eyes_17_3.0.png
- text: glowing eyes
output:
url: images/glowing eyes_19_3.0.png
- text: glowing eyes
output:
url: images/glowing eyes_20_3.0.png
- text: glowing eyes
output:
url: images/glowing eyes_21_3.0.png
- text: glowing eyes
output:
url: images/glowing eyes_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "glowing eyes"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - glowing eyes (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/glowing eyes_17_-3.0.png" width=256 height=256 /> | <img src="images/glowing eyes_17_0.0.png" width=256 height=256 /> | <img src="images/glowing eyes_17_3.0.png" width=256 height=256 /> |
| <img src="images/glowing eyes_19_-3.0.png" width=256 height=256 /> | <img src="images/glowing eyes_19_0.0.png" width=256 height=256 /> | <img src="images/glowing eyes_19_3.0.png" width=256 height=256 /> |
| <img src="images/glowing eyes_20_-3.0.png" width=256 height=256 /> | <img src="images/glowing eyes_20_0.0.png" width=256 height=256 /> | <img src="images/glowing eyes_20_3.0.png" width=256 height=256 /> |
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
glowing eyes
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.glowing-eyes', weight_name='glowing eyes.safetensors', adapter_name="glowing eyes")
# Activate the LoRA
pipe.set_adapters(["glowing eyes"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, glowing eyes"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 630+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities.
Your support on Patreon will allow us to continue developing and refining new models.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
SicariusSicariiStuff/TinyLLaMA_0.6chat_EXL2_3.00bpw
|
SicariusSicariiStuff
| 2023-12-26T01:18:41Z | 17 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"dataset:OpenAssistant/oasst_top1_2023-08-25",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-26T01:16:57Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
#### How to use
You will need the transformers>=4.34
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v0.6", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
```
|
dfurman/Mistral-7B-v0.1-fork
|
dfurman
| 2023-12-26T01:10:42Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"pretrained",
"conversational",
"en",
"arxiv:2310.06825",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-26T00:53:53Z |
---
license: apache-2.0
pipeline_tag: text-generation
language:
- en
tags:
- pretrained
inference:
parameters:
temperature: 0.7
---
# Model Card for Mistral-7B-v0.1
The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters.
Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.
For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
## Model Architecture
Mistral-7B-v0.1 is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Troubleshooting
- If you see the following error:
```
KeyError: 'mistral'
```
- Or:
```
NotImplementedError: Cannot copy out of meta tensor; no data!
```
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
## Notice
Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.
## The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
|
hkivancoral/hushem_40x_beit_large_adamax_0001_fold2
|
hkivancoral
| 2023-12-26T00:57:33Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"base_model:finetune:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T23:41:49Z |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_beit_large_adamax_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8444444444444444
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_beit_large_adamax_0001_fold2
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5515
- Accuracy: 0.8444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0224 | 1.0 | 215 | 0.7690 | 0.8222 |
| 0.0 | 2.0 | 430 | 0.9419 | 0.8222 |
| 0.0 | 3.0 | 645 | 0.9930 | 0.8667 |
| 0.0 | 4.0 | 860 | 0.8917 | 0.8444 |
| 0.0 | 5.0 | 1075 | 0.9011 | 0.8667 |
| 0.0 | 6.0 | 1290 | 0.8682 | 0.8667 |
| 0.0016 | 7.0 | 1505 | 1.2238 | 0.8444 |
| 0.0197 | 8.0 | 1720 | 1.2274 | 0.8667 |
| 0.0027 | 9.0 | 1935 | 1.0944 | 0.8444 |
| 0.0058 | 10.0 | 2150 | 1.9516 | 0.7778 |
| 0.0 | 11.0 | 2365 | 1.8577 | 0.7556 |
| 0.0 | 12.0 | 2580 | 1.7768 | 0.8 |
| 0.0 | 13.0 | 2795 | 1.1199 | 0.7778 |
| 0.0 | 14.0 | 3010 | 1.2644 | 0.8222 |
| 0.0 | 15.0 | 3225 | 0.9150 | 0.8889 |
| 0.0 | 16.0 | 3440 | 0.8728 | 0.8889 |
| 0.0 | 17.0 | 3655 | 0.8904 | 0.8889 |
| 0.0 | 18.0 | 3870 | 0.8975 | 0.8889 |
| 0.0 | 19.0 | 4085 | 0.9193 | 0.8889 |
| 0.0 | 20.0 | 4300 | 0.9261 | 0.8889 |
| 0.0 | 21.0 | 4515 | 1.6757 | 0.8 |
| 0.0 | 22.0 | 4730 | 1.3218 | 0.8444 |
| 0.0 | 23.0 | 4945 | 1.3867 | 0.8222 |
| 0.0 | 24.0 | 5160 | 1.3833 | 0.8444 |
| 0.0 | 25.0 | 5375 | 1.2895 | 0.8444 |
| 0.0 | 26.0 | 5590 | 1.2783 | 0.8667 |
| 0.0 | 27.0 | 5805 | 1.2770 | 0.8667 |
| 0.0 | 28.0 | 6020 | 1.2426 | 0.8667 |
| 0.0 | 29.0 | 6235 | 1.2537 | 0.8667 |
| 0.0 | 30.0 | 6450 | 1.2475 | 0.8667 |
| 0.0 | 31.0 | 6665 | 1.2602 | 0.8667 |
| 0.0 | 32.0 | 6880 | 1.2779 | 0.8667 |
| 0.0 | 33.0 | 7095 | 1.2891 | 0.8667 |
| 0.0 | 34.0 | 7310 | 1.3447 | 0.8444 |
| 0.0 | 35.0 | 7525 | 1.3109 | 0.8667 |
| 0.0 | 36.0 | 7740 | 1.3704 | 0.8667 |
| 0.0 | 37.0 | 7955 | 1.5945 | 0.8 |
| 0.0 | 38.0 | 8170 | 1.5665 | 0.8444 |
| 0.0 | 39.0 | 8385 | 1.4945 | 0.8444 |
| 0.0 | 40.0 | 8600 | 1.4921 | 0.8444 |
| 0.0 | 41.0 | 8815 | 1.5103 | 0.8444 |
| 0.0 | 42.0 | 9030 | 1.5661 | 0.8444 |
| 0.0 | 43.0 | 9245 | 1.5778 | 0.8444 |
| 0.0 | 44.0 | 9460 | 1.5715 | 0.8444 |
| 0.0 | 45.0 | 9675 | 1.5931 | 0.8444 |
| 0.0 | 46.0 | 9890 | 1.5813 | 0.8444 |
| 0.0 | 47.0 | 10105 | 1.5501 | 0.8444 |
| 0.0 | 48.0 | 10320 | 1.5512 | 0.8444 |
| 0.0 | 49.0 | 10535 | 1.5477 | 0.8444 |
| 0.0 | 50.0 | 10750 | 1.5515 | 0.8444 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
Realgon/N_roberta_agnews_padding50model
|
Realgon
| 2023-12-26T00:55:47Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:ag_news",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T22:20:28Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_roberta_agnews_padding50model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9485526315789473
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# N_roberta_agnews_padding50model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5524
- Accuracy: 0.9486
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.1998 | 1.0 | 7500 | 0.2132 | 0.9382 |
| 0.1682 | 2.0 | 15000 | 0.2009 | 0.9475 |
| 0.1506 | 3.0 | 22500 | 0.2273 | 0.9446 |
| 0.1294 | 4.0 | 30000 | 0.2495 | 0.9482 |
| 0.1028 | 5.0 | 37500 | 0.2612 | 0.9459 |
| 0.0797 | 6.0 | 45000 | 0.2966 | 0.9457 |
| 0.0646 | 7.0 | 52500 | 0.3040 | 0.9458 |
| 0.0531 | 8.0 | 60000 | 0.3825 | 0.9446 |
| 0.0443 | 9.0 | 67500 | 0.3838 | 0.9425 |
| 0.0345 | 10.0 | 75000 | 0.3968 | 0.9475 |
| 0.0395 | 11.0 | 82500 | 0.4132 | 0.9474 |
| 0.019 | 12.0 | 90000 | 0.4612 | 0.9453 |
| 0.0219 | 13.0 | 97500 | 0.4559 | 0.9458 |
| 0.0067 | 14.0 | 105000 | 0.4692 | 0.9467 |
| 0.0065 | 15.0 | 112500 | 0.5118 | 0.9461 |
| 0.0045 | 16.0 | 120000 | 0.5115 | 0.9470 |
| 0.004 | 17.0 | 127500 | 0.5326 | 0.9472 |
| 0.0079 | 18.0 | 135000 | 0.5088 | 0.9483 |
| 0.0039 | 19.0 | 142500 | 0.5359 | 0.9504 |
| 0.0024 | 20.0 | 150000 | 0.5524 | 0.9486 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|
andrewatef/RewriterV0.11
|
andrewatef
| 2023-12-26T00:50:02Z | 1 | 0 |
peft
|
[
"peft",
"pytorch",
"safetensors",
"llama",
"arxiv:1910.09700",
"base_model:unsloth/llama-2-7b",
"base_model:adapter:unsloth/llama-2-7b",
"region:us"
] | null | 2023-12-25T22:46:43Z |
---
library_name: peft
base_model: unsloth/llama-2-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
AICODER009/distilbert-base-uncased-finetuned-clinc
|
AICODER009
| 2023-12-26T00:36:53Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T13:36:21Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9161290322580645
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7902
- Accuracy: 0.9161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 3.2931 | 0.7255 |
| 3.8009 | 2.0 | 636 | 1.8849 | 0.8526 |
| 3.8009 | 3.0 | 954 | 1.1758 | 0.8913 |
| 1.715 | 4.0 | 1272 | 0.8748 | 0.9097 |
| 0.9204 | 5.0 | 1590 | 0.7902 | 0.9161 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
douglasadams11/distilbert-base-uncased-ner
|
douglasadams11
| 2023-12-26T00:07:34Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-12-25T23:05:25Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1419
- Precision: 0.9526
- Recall: 0.9431
- F1: 0.9479
- Accuracy: 0.9434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2866 | 0.14 | 500 | 0.1970 | 0.9329 | 0.9213 | 0.9271 | 0.9212 |
| 0.198 | 0.28 | 1000 | 0.1851 | 0.9412 | 0.9218 | 0.9314 | 0.9253 |
| 0.1892 | 0.43 | 1500 | 0.1772 | 0.9431 | 0.9250 | 0.9340 | 0.9280 |
| 0.179 | 0.57 | 2000 | 0.1697 | 0.9440 | 0.9296 | 0.9367 | 0.9313 |
| 0.1719 | 0.71 | 2500 | 0.1618 | 0.9453 | 0.9330 | 0.9391 | 0.9339 |
| 0.1718 | 0.85 | 3000 | 0.1587 | 0.9443 | 0.9351 | 0.9397 | 0.9351 |
| 0.1664 | 0.99 | 3500 | 0.1569 | 0.9486 | 0.9340 | 0.9412 | 0.9361 |
| 0.1504 | 1.14 | 4000 | 0.1566 | 0.9480 | 0.9356 | 0.9417 | 0.9368 |
| 0.1479 | 1.28 | 4500 | 0.1539 | 0.9492 | 0.9369 | 0.9430 | 0.9381 |
| 0.1467 | 1.42 | 5000 | 0.1501 | 0.9499 | 0.9383 | 0.9441 | 0.9391 |
| 0.1478 | 1.56 | 5500 | 0.1489 | 0.9513 | 0.9368 | 0.9440 | 0.9390 |
| 0.147 | 1.7 | 6000 | 0.1457 | 0.9503 | 0.9402 | 0.9452 | 0.9407 |
| 0.1453 | 1.85 | 6500 | 0.1447 | 0.9510 | 0.9408 | 0.9459 | 0.9412 |
| 0.1384 | 1.99 | 7000 | 0.1442 | 0.9521 | 0.9405 | 0.9463 | 0.9415 |
| 0.1325 | 2.13 | 7500 | 0.1446 | 0.9494 | 0.9441 | 0.9467 | 0.9425 |
| 0.13 | 2.27 | 8000 | 0.1467 | 0.9524 | 0.9403 | 0.9463 | 0.9416 |
| 0.1286 | 2.41 | 8500 | 0.1435 | 0.9501 | 0.9440 | 0.9470 | 0.9427 |
| 0.1311 | 2.56 | 9000 | 0.1446 | 0.9529 | 0.9417 | 0.9473 | 0.9427 |
| 0.1258 | 2.7 | 9500 | 0.1438 | 0.9528 | 0.9425 | 0.9476 | 0.9431 |
| 0.1257 | 2.84 | 10000 | 0.1437 | 0.9527 | 0.9431 | 0.9479 | 0.9434 |
| 0.1289 | 2.98 | 10500 | 0.1420 | 0.9526 | 0.9430 | 0.9478 | 0.9433 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
hkivancoral/hushem_40x_beit_large_adamax_0001_fold1
|
hkivancoral
| 2023-12-25T23:41:32Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"base_model:finetune:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T22:16:47Z |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_beit_large_adamax_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8888888888888888
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_beit_large_adamax_0001_fold1
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6987
- Accuracy: 0.8889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0285 | 1.0 | 215 | 0.5849 | 0.8 |
| 0.0006 | 2.0 | 430 | 0.7781 | 0.8222 |
| 0.0 | 3.0 | 645 | 0.5158 | 0.8 |
| 0.0 | 4.0 | 860 | 0.4099 | 0.8444 |
| 0.0 | 5.0 | 1075 | 0.4040 | 0.8889 |
| 0.0 | 6.0 | 1290 | 0.4087 | 0.8889 |
| 0.0029 | 7.0 | 1505 | 0.2585 | 0.8889 |
| 0.0159 | 8.0 | 1720 | 0.6738 | 0.9111 |
| 0.0 | 9.0 | 1935 | 0.7387 | 0.8889 |
| 0.0 | 10.0 | 2150 | 0.3266 | 0.9111 |
| 0.0001 | 11.0 | 2365 | 0.5064 | 0.8667 |
| 0.0 | 12.0 | 2580 | 0.3031 | 0.9111 |
| 0.0 | 13.0 | 2795 | 0.3143 | 0.9111 |
| 0.0 | 14.0 | 3010 | 0.3219 | 0.9111 |
| 0.0 | 15.0 | 3225 | 0.3481 | 0.9111 |
| 0.0 | 16.0 | 3440 | 0.3485 | 0.9111 |
| 0.0 | 17.0 | 3655 | 0.3724 | 0.9111 |
| 0.0 | 18.0 | 3870 | 0.3706 | 0.8889 |
| 0.0 | 19.0 | 4085 | 0.3603 | 0.9111 |
| 0.0 | 20.0 | 4300 | 0.3742 | 0.9111 |
| 0.0 | 21.0 | 4515 | 0.5745 | 0.8444 |
| 0.0 | 22.0 | 4730 | 0.4247 | 0.8444 |
| 0.0 | 23.0 | 4945 | 0.4328 | 0.8667 |
| 0.0 | 24.0 | 5160 | 0.3958 | 0.8889 |
| 0.0 | 25.0 | 5375 | 0.4106 | 0.9111 |
| 0.0 | 26.0 | 5590 | 0.4237 | 0.8667 |
| 0.0 | 27.0 | 5805 | 0.4907 | 0.8667 |
| 0.0 | 28.0 | 6020 | 0.5123 | 0.8667 |
| 0.0 | 29.0 | 6235 | 0.4509 | 0.8889 |
| 0.0 | 30.0 | 6450 | 0.5376 | 0.8889 |
| 0.0 | 31.0 | 6665 | 0.5524 | 0.8889 |
| 0.0 | 32.0 | 6880 | 0.6004 | 0.8889 |
| 0.0 | 33.0 | 7095 | 0.5947 | 0.8889 |
| 0.0 | 34.0 | 7310 | 0.6506 | 0.8889 |
| 0.0 | 35.0 | 7525 | 0.8615 | 0.8889 |
| 0.0 | 36.0 | 7740 | 0.6453 | 0.8889 |
| 0.0 | 37.0 | 7955 | 0.6879 | 0.8889 |
| 0.0 | 38.0 | 8170 | 0.6869 | 0.8889 |
| 0.0 | 39.0 | 8385 | 0.7122 | 0.8889 |
| 0.0 | 40.0 | 8600 | 0.7111 | 0.8889 |
| 0.0 | 41.0 | 8815 | 0.7028 | 0.8889 |
| 0.0 | 42.0 | 9030 | 0.7091 | 0.8889 |
| 0.0 | 43.0 | 9245 | 0.7217 | 0.8889 |
| 0.0 | 44.0 | 9460 | 0.7018 | 0.8889 |
| 0.0 | 45.0 | 9675 | 0.7281 | 0.8889 |
| 0.0 | 46.0 | 9890 | 0.7227 | 0.8889 |
| 0.0 | 47.0 | 10105 | 0.7233 | 0.8889 |
| 0.0 | 48.0 | 10320 | 0.7063 | 0.8889 |
| 0.0 | 49.0 | 10535 | 0.6973 | 0.8889 |
| 0.0 | 50.0 | 10750 | 0.6987 | 0.8889 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
MattStammers/appo-mujoco_humanoid-sota
|
MattStammers
| 2023-12-25T23:33:44Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T23:33:23Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: mujoco_humanoid
type: mujoco_humanoid
metrics:
- type: mean_reward
value: 11486.26 +/- 29.38
name: mean_reward
verified: false
---
## About the Project
This project is an attempt to maximise performance of high sample throughput APPO RL models in Atari environments in as carbon efficient a manner as possible using a single, not particularly high performance single machine. It is about demonstrating the generalisability of on-policy algorithms to create good performance quickly (by sacrificing sample efficiency) while also proving that this route to RL production is accessible to even hobbyists like me (I am a gastroenterologist not a computer scientist).
In terms of throughput I am managing to reach throughputs of 2,500 - 3,000 across both policies using sample factory using two Quadro P2200's (not particularly powerful GPUs) each loaded up about 60% (3GB). Previously using the stable baselines 3 (sb3) implementation of PPO it would take about a week to train an atari agent to 100 million timesteps synchronously. By comparison the sample factory async implementation takes only just over 2 hours to achieve the same result. That is about 84 times faster with only typically a 21 watt burn per GPU. I am thus very grateful to Alex Petrenko and all the sample factory team for their work on this.
## Project Aims
This model as with all the others in the benchmarks was trained initially asynchronously un-seeded to 10 million steps for the purposes of setting a sample factory async baseline for this model on this environment but only 3/57 made it anywhere near sota performance.
I then re-trained the models with 100 million timesteps- at this point 2 environments maxed out at sota performance (Pong and Freeway) with four approaching sota performance - (atlantis, boxing, tennis and fishingderby.) =6/57 near sota.
The aim now is to try and reach state-of-the-art (SOTA) performance on a further block of atari environments using up to 1 billion training timesteps initially with appo. I will flag the models with SOTA when they reach at or near these levels.
After this I will switch on V-Trace to see if the Impala variations perform any better with the same seed (I have seeded '1234')
## About the Model
The hyperparameters used in the model are described in my shell script on my fork of sample-factory: https://github.com/MattStammers/sample-factory. Given that https://huggingface.co/edbeeching has kindly shared his parameters, I saved time and energy by using many of his tuned hyperparameters to reduce carbon inefficiency:
```
hyperparameters = {
"help": false,
"algo": "APPO",
"env": "atari_asteroid",
"experiment": "atari_asteroid_APPO",
"train_dir": "./train_atari",
"restart_behavior": "restart",
"device": "gpu",
"seed": 1234,
"num_policies": 2,
"async_rl": true,
"serial_mode": false,
"batched_sampling": true,
"num_batches_to_accumulate": 2,
"worker_num_splits": 1,
"policy_workers_per_policy": 1,
"max_policy_lag": 1000,
"num_workers": 16,
"num_envs_per_worker": 2,
"batch_size": 1024,
"num_batches_per_epoch": 8,
"num_epochs": 4,
"rollout": 128,
"recurrence": 1,
"shuffle_minibatches": false,
"gamma": 0.99,
"reward_scale": 1.0,
"reward_clip": 1000.0,
"value_bootstrap": false,
"normalize_returns": true,
"exploration_loss_coeff": 0.0004677351413,
"value_loss_coeff": 0.5,
"kl_loss_coeff": 0.0,
"exploration_loss": "entropy",
"gae_lambda": 0.95,
"ppo_clip_ratio": 0.1,
"ppo_clip_value": 1.0,
"with_vtrace": true,
"vtrace_rho": 1.0,
"vtrace_c": 1.0,
"optimizer": "adam",
"adam_eps": 1e-05,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"max_grad_norm": 0.0,
"learning_rate": 0.0003033891184,
"lr_schedule": "linear_decay",
"lr_schedule_kl_threshold": 0.008,
"lr_adaptive_min": 1e-06,
"lr_adaptive_max": 0.01,
"obs_subtract_mean": 0.0,
"obs_scale": 255.0,
"normalize_input": true,
"normalize_input_keys": [
"obs"
],
"decorrelate_experience_max_seconds": 0,
"decorrelate_envs_on_one_worker": true,
"actor_worker_gpus": [],
"set_workers_cpu_affinity": true,
"force_envs_single_thread": false,
"default_niceness": 0,
"log_to_file": true,
"experiment_summaries_interval": 3,
"flush_summaries_interval": 30,
"stats_avg": 100,
"summaries_use_frameskip": true,
"heartbeat_interval": 10,
"heartbeat_reporting_interval": 60,
"train_for_env_steps": 100000000,
"train_for_seconds": 10000000000,
"save_every_sec": 120,
"keep_checkpoints": 2,
"load_checkpoint_kind": "latest",
"save_milestones_sec": 1200,
"save_best_every_sec": 5,
"save_best_metric": "reward",
"save_best_after": 100000,
"benchmark": false,
"encoder_mlp_layers": [
512,
512
],
"encoder_conv_architecture": "convnet_atari",
"encoder_conv_mlp_layers": [
512
],
"use_rnn": false,
"rnn_size": 512,
"rnn_type": "gru",
"rnn_num_layers": 1,
"decoder_mlp_layers": [],
"nonlinearity": "relu",
"policy_initialization": "orthogonal",
"policy_init_gain": 1.0,
"actor_critic_share_weights": true,
"adaptive_stddev": false,
"continuous_tanh_scale": 0.0,
"initial_stddev": 1.0,
"use_env_info_cache": false,
"env_gpu_actions": false,
"env_gpu_observations": true,
"env_frameskip": 4,
"env_framestack": 4,
"pixel_format": "CHW"
}
```
A(n) **APPO** impala model trained on the **mujoco_humanoid** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Sample factory is a
high throughput on-policy RL framework. I have been using
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r MattStammers/APPO-mujoco_humanoid
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m sf_examples.mujoco.enjoy_mujoco --algo=APPO --env=mujoco_humanoid --train_dir=./train_dir --experiment=APPO-mujoco_humanoid
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m sf_examples.mujoco.train_mujoco --algo=APPO --env=mujoco_humanoid --train_dir=./train_dir --experiment=APPO-mujoco_humanoid --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
aaneesai/openai-whisper-base-LORA-colab
|
aaneesai
| 2023-12-25T23:16:50Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:openai/whisper-base",
"base_model:adapter:openai/whisper-base",
"region:us"
] | null | 2023-12-25T23:16:41Z |
---
library_name: peft
base_model: openai/whisper-base
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.2.dev0
|
Benji918/Django-Image-Classifier
|
Benji918
| 2023-12-25T23:12:48Z | 0 | 0 | null |
[
"Image Classifier",
"Image Predictor",
"license:mit",
"region:us"
] | null | 2023-12-25T22:02:39Z |
---
license: mit
tags:
- Image Classifier
- Image Predictor
---
|
LarryAIDraw/silver_wolf-10
|
LarryAIDraw
| 2023-12-25T22:56:28Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-12-25T22:41:18Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/222782/silver-wolf-honkai-star-rail-lora-commission
|
martyn/mixtral-megamerge-dare-8x7b-v2
|
martyn
| 2023-12-25T22:48:59Z | 1,560 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"dare",
"super mario merge",
"pytorch",
"merge",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-12-25T21:41:57Z |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- dare
- super mario merge
- pytorch
- mixtral
- merge
---
# mixtral megamerge 8x7b v2
The following models were merged with DARE using [https://github.com/martyn/safetensors-merge-supermario](https://github.com/martyn/safetensors-merge-supermario)
## Mergelist
```
mistralai/Mixtral-8x7B-v0.1
mistralai/Mixtral-8x7B-Instruct-v0.1
cognitivecomputations/dolphin-2.6-mixtral-8x7b
Brillibitg/Instruct_Mixtral-8x7B-v0.1_Dolly15K
orangetin/OpenHermes-Mixtral-8x7B
NeverSleep/Noromaid-v0.1-mixtral-8x7b-v3
```
## Merge command
```
python3 hf_merge.py to_merge_mixtral2.txt mixtral-2 -p 0.15 -lambda 1.95
```
### Notes
* MoE gates were filtered for compatibility then averaged with `(tensor1 + tensor2)/2`
* seems to generalize prompting formats and sampling settings
|
ntc-ai/SDXL-LoRA-slider.burning-red-eyes
|
ntc-ai
| 2023-12-25T22:48:01Z | 24 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] |
text-to-image
| 2023-12-25T22:47:49Z |
---
language:
- en
thumbnail: "images/evaluate/burning red eyes.../burning red eyes_17_3.0.png"
widget:
- text: burning red eyes
output:
url: images/burning red eyes_17_3.0.png
- text: burning red eyes
output:
url: images/burning red eyes_19_3.0.png
- text: burning red eyes
output:
url: images/burning red eyes_20_3.0.png
- text: burning red eyes
output:
url: images/burning red eyes_21_3.0.png
- text: burning red eyes
output:
url: images/burning red eyes_22_3.0.png
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
license: "mit"
inference: false
instance_prompt: "burning red eyes"
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
---
# ntcai.xyz slider - burning red eyes (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/burning red eyes_17_-3.0.png" width=256 height=256 /> | <img src="images/burning red eyes_17_0.0.png" width=256 height=256 /> | <img src="images/burning red eyes_17_3.0.png" width=256 height=256 /> |
| <img src="images/burning red eyes_19_-3.0.png" width=256 height=256 /> | <img src="images/burning red eyes_19_0.0.png" width=256 height=256 /> | <img src="images/burning red eyes_19_3.0.png" width=256 height=256 /> |
| <img src="images/burning red eyes_20_-3.0.png" width=256 height=256 /> | <img src="images/burning red eyes_20_0.0.png" width=256 height=256 /> | <img src="images/burning red eyes_20_3.0.png" width=256 height=256 /> |
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
burning red eyes
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.burning-red-eyes', weight_name='burning red eyes.safetensors', adapter_name="burning red eyes")
# Activate the LoRA
pipe.set_adapters(["burning red eyes"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, burning red eyes"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 620+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities.
Your support on Patreon will allow us to continue developing and refining new models.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
|
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_GPT4_temp0_Seed103
|
behzadnet
| 2023-12-25T22:36:26Z | 0 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"region:us"
] | null | 2023-12-22T22:17:26Z |
---
library_name: peft
base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
|
SicariusSicariiStuff/TinyLLama_0.6_Chat_BF16
|
SicariusSicariiStuff
| 2023-12-25T22:35:30Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"dataset:OpenAssistant/oasst_top1_2023-08-25",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T22:33:09Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
#### How to use
You will need the transformers>=4.34
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v0.6", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
```
|
ssounda1/MokkaChat
|
ssounda1
| 2023-12-25T22:35:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:squad_v2",
"dataset:ssounda1/mokka-chat-ds-v1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-09-12T22:40:09Z |
---
license: mit
datasets:
- squad_v2
- ssounda1/mokka-chat-ds-v1
language:
- en
metrics:
- bleu
library_name: transformers
widget:
- text: What did the buffalo say when his son left?
- text: What happens at an emotional wedding?
- text: Why do programmers prefer dark mode?
- text: What is the opposite of heroine?
---
# Model Card for Model ID
The Mokka Chat model is a fine-tuned T5 based model built for humorous responses.
## Model Details
### Model Description
This MokkaChat model is a simple model which was built for humourous chats.
- **Developed by:** Sri Soundararajan
- **Model type:** Text2Text Conditional Generation
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** T5-Base
## Uses
This model can be used normally. Here is an example notebook on how to run inference with this model
https://colab.research.google.com/drive/1Z8bJtiNjmk-d3au_3pdjq-ALB76KYHlr
## How to Get Started with the Model
Use the code below to get started with the model.
```
import warnings
import json
import torch
import evaluate # Bleu
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
warnings.filterwarnings("ignore")
Q_LEN = 100
MODEL = AutoModelForSeq2SeqLM.from_pretrained(
"ssounda1/MokkaChat", return_dict=True)
TOKENIZER = AutoTokenizer.from_pretrained("ssounda1/MokkaChat")
DEVICE = torch.device(
"cuda" if torch.backends.cudnn.is_available() else "cpu")
MODEL = MODEL.to(DEVICE)
def get_answer(context, question, ref_answer=None):
inputs = TOKENIZER(question, context, max_length=Q_LEN,
padding="max_length", truncation=True, add_special_tokens=True)
input_ids = torch.tensor(
inputs["input_ids"], dtype=torch.long).to(DEVICE).unsqueeze(0)
attention_mask = torch.tensor(
inputs["attention_mask"], dtype=torch.long).to(DEVICE).unsqueeze(0)
outputs = MODEL.generate(
input_ids=input_ids, attention_mask=attention_mask, temperature=0.9)
predicted_answer = TOKENIZER.decode(
outputs.flatten(), skip_special_tokens=True)
if ref_answer:
# Load the Bleu metric
bleu = evaluate.load("google_bleu")
score = bleu.compute(predictions=[predicted_answer],
references=[ref_answer])
return {
"Question: ": question,
"Context: ": context,
"Reference Answer: ": ref_answer,
"Predicted Answer: ": predicted_answer,
"BLEU Score: ": score
}
else:
return predicted_answer
context = "Keep calm and say ..."
question = "Do you know the answer to this question?"
answer = "Ahaan!"
answer_resp = get_answer(context, question, answer)
print(json.dumps(answer_resp, indent=4))
```
## Training Details
### Training Data
The T5-Base was used and it was trined by augmenting the Squad V2 dataset with a custom Mokka chat dataset. Here are the links to these datasets -
https://huggingface.co/datasets/ssounda1/mokka-chat-ds-v1
https://huggingface.co/datasets/squad_v2
### Training Procedure
#### Training Hyperparameters
- **Training regime:** fp32
## Evaluation
```
1/20 -> Train loss: 0.8245184440580875 Validation loss: 0.4026999438791832
2/20 -> Train loss: 0.703028231633494 Validation loss: 0.30366039834675435
3/20 -> Train loss: 0.6249609817720345 Validation loss: 0.24144947223853383
4/20 -> Train loss: 0.5657204371531265 Validation loss: 0.19916585764708916
5/20 -> Train loss: 0.518096115625194 Validation loss: 0.16852003234101076
6/20 -> Train loss: 0.47824101336522334 Validation loss: 0.14573621848088278
7/20 -> Train loss: 0.4446890475844722 Validation loss: 0.1282667571046452
8/20 -> Train loss: 0.4158546521539049 Validation loss: 0.11418618139097068
9/20 -> Train loss: 0.39071896244012094 Validation loss: 0.10286468480848737
10/20 -> Train loss: 0.3685988230877622 Validation loss: 0.09348667512682264
11/20 -> Train loss: 0.3489853145691834 Validation loss: 0.0856158411675543
12/20 -> Train loss: 0.3313692257589271 Validation loss: 0.07894140510740721
13/20 -> Train loss: 0.3154840102660389 Validation loss: 0.07324570708649529
14/20 -> Train loss: 0.3010822039016147 Validation loss: 0.06825826695942235
15/20 -> Train loss: 0.28787958101105554 Validation loss: 0.06392730204562044
16/20 -> Train loss: 0.27582068473036314 Validation loss: 0.06014419615740111
17/20 -> Train loss: 0.2647442796077156 Validation loss: 0.0567684230703388
18/20 -> Train loss: 0.25449865650574116 Validation loss: 0.053749261090770835
19/20 -> Train loss: 0.24506365559240695 Validation loss: 0.051029498609284206
20/20 -> Train loss: 0.23624430357763543 Validation loss: 0.04856409976122556
```
## References
Thanks to this article on helping me build and train this model
https://medium.com/@ajazturki10/simplifying-language-understanding-a-beginners-guide-to-question-answering-with-t5-and-pytorch-253e0d6aac54
## Model Card Contact
Sri Soundararajan <ssounda1.work@gmail.com>
|
matinFT/mlm
|
matinFT
| 2023-12-25T22:24:22Z | 4 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-12-15T10:09:51Z |
---
tags:
- generated_from_trainer
model-index:
- name: mlm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mlm
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 19
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log | 1.0 | 363 | 6.1900 |
| 6.3872 | 2.0 | 726 | 6.0995 |
| 6.0133 | 3.0 | 1089 | 5.9572 |
| 6.0133 | 4.0 | 1452 | 5.8604 |
| 5.8166 | 5.0 | 1815 | 5.8157 |
| 5.6819 | 6.0 | 2178 | 5.6691 |
| 5.5913 | 7.0 | 2541 | 5.6464 |
| 5.5913 | 8.0 | 2904 | 5.6466 |
| 5.474 | 9.0 | 3267 | 5.5466 |
| 5.3953 | 10.0 | 3630 | 5.3684 |
| 5.3953 | 11.0 | 3993 | 5.4065 |
| 5.146 | 12.0 | 4356 | 5.3911 |
| 5.0063 | 13.0 | 4719 | 5.4460 |
| 4.9626 | 14.0 | 5082 | 5.1105 |
| 4.9626 | 15.0 | 5445 | 5.0266 |
| 4.8661 | 16.0 | 5808 | 5.1130 |
| 4.7333 | 17.0 | 6171 | 4.9405 |
| 4.5668 | 18.0 | 6534 | 5.1256 |
| 4.5668 | 19.0 | 6897 | 4.9525 |
| 4.4479 | 20.0 | 7260 | 4.9429 |
| 4.4294 | 21.0 | 7623 | 4.8176 |
| 4.4294 | 22.0 | 7986 | 4.7685 |
| 4.2942 | 23.0 | 8349 | 4.8595 |
| 4.2436 | 24.0 | 8712 | 4.8513 |
| 4.1909 | 25.0 | 9075 | 4.6908 |
| 4.1909 | 26.0 | 9438 | 4.7562 |
| 4.0381 | 27.0 | 9801 | 4.7199 |
| 3.96 | 28.0 | 10164 | 4.7375 |
| 3.8603 | 29.0 | 10527 | 4.6489 |
| 3.8603 | 30.0 | 10890 | 4.7108 |
| 3.7543 | 31.0 | 11253 | 4.6501 |
| 3.7413 | 32.0 | 11616 | 4.5265 |
| 3.7413 | 33.0 | 11979 | 4.5428 |
| 3.6849 | 34.0 | 12342 | 4.5900 |
| 3.5363 | 35.0 | 12705 | 4.5982 |
| 3.4743 | 36.0 | 13068 | 4.4909 |
| 3.4743 | 37.0 | 13431 | 4.5766 |
| 3.397 | 38.0 | 13794 | 4.5368 |
| 3.3454 | 39.0 | 14157 | 4.4894 |
| 3.282 | 40.0 | 14520 | 4.4971 |
| 3.282 | 41.0 | 14883 | 4.4012 |
| 3.2091 | 42.0 | 15246 | 4.5916 |
| 3.1307 | 43.0 | 15609 | 4.6345 |
| 3.1307 | 44.0 | 15972 | 4.4369 |
| 3.0446 | 45.0 | 16335 | 4.3495 |
| 3.0002 | 46.0 | 16698 | 4.2865 |
| 2.8841 | 47.0 | 17061 | 4.3695 |
| 2.8841 | 48.0 | 17424 | 4.4281 |
| 2.8504 | 49.0 | 17787 | 4.3237 |
| 2.7504 | 50.0 | 18150 | 4.4089 |
| 2.6997 | 51.0 | 18513 | 4.5731 |
| 2.6997 | 52.0 | 18876 | 4.3369 |
| 2.6644 | 53.0 | 19239 | 4.4094 |
| 2.5963 | 54.0 | 19602 | 4.5419 |
| 2.5963 | 55.0 | 19965 | 4.4952 |
| 2.5604 | 56.0 | 20328 | 4.4036 |
| 2.5243 | 57.0 | 20691 | 4.4426 |
| 2.3608 | 58.0 | 21054 | 4.3658 |
| 2.3608 | 59.0 | 21417 | 4.5449 |
| 2.3536 | 60.0 | 21780 | 4.5518 |
| 2.28 | 61.0 | 22143 | 4.5334 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.14.1
|
AlephNull/Huggy
|
AlephNull
| 2023-12-25T22:23:10Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-12-25T22:21:46Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AlephNull/Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Adammz/cs_roberta_base-1
|
Adammz
| 2023-12-25T22:21:44Z | 4 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:allenai/cs_roberta_base",
"base_model:finetune:allenai/cs_roberta_base",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T21:45:41Z |
---
base_model: allenai/cs_roberta_base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cs_roberta_base-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cs_roberta_base-1
This model is a fine-tuned version of [allenai/cs_roberta_base](https://huggingface.co/allenai/cs_roberta_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3743
- Accuracy: 0.8905
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 46
- eval_batch_size: 46
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.3782 | 1.0 | 1044 | 0.9372 | 0.79 |
| 0.7908 | 2.0 | 2088 | 0.6508 | 0.8418 |
| 0.5942 | 3.0 | 3132 | 0.5638 | 0.8604 |
| 0.4986 | 4.0 | 4176 | 0.4780 | 0.8707 |
| 0.4301 | 5.0 | 5220 | 0.4408 | 0.8794 |
| 0.3798 | 6.0 | 6264 | 0.4103 | 0.8821 |
| 0.3388 | 7.0 | 7308 | 0.3938 | 0.8842 |
| 0.3082 | 8.0 | 8352 | 0.3821 | 0.8909 |
| 0.2842 | 9.0 | 9396 | 0.3852 | 0.887 |
| 0.2674 | 10.0 | 10440 | 0.3743 | 0.8905 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
Realgon/N_roberta_agnews_padding40model
|
Realgon
| 2023-12-25T22:20:13Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:ag_news",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T19:52:31Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_roberta_agnews_padding40model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.95
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# N_roberta_agnews_padding40model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5563
- Accuracy: 0.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.1981 | 1.0 | 7500 | 0.2012 | 0.9413 |
| 0.1726 | 2.0 | 15000 | 0.2037 | 0.9457 |
| 0.1511 | 3.0 | 22500 | 0.2177 | 0.9434 |
| 0.1242 | 4.0 | 30000 | 0.2438 | 0.9480 |
| 0.0986 | 5.0 | 37500 | 0.2483 | 0.9482 |
| 0.0803 | 6.0 | 45000 | 0.2855 | 0.9495 |
| 0.0733 | 7.0 | 52500 | 0.3275 | 0.9454 |
| 0.0505 | 8.0 | 60000 | 0.3980 | 0.9441 |
| 0.0404 | 9.0 | 67500 | 0.3872 | 0.9480 |
| 0.0277 | 10.0 | 75000 | 0.4156 | 0.9470 |
| 0.0261 | 11.0 | 82500 | 0.4207 | 0.9483 |
| 0.0221 | 12.0 | 90000 | 0.4508 | 0.9457 |
| 0.0224 | 13.0 | 97500 | 0.4591 | 0.9475 |
| 0.0095 | 14.0 | 105000 | 0.4958 | 0.9466 |
| 0.0085 | 15.0 | 112500 | 0.5201 | 0.9479 |
| 0.0064 | 16.0 | 120000 | 0.5334 | 0.9470 |
| 0.0065 | 17.0 | 127500 | 0.5012 | 0.9488 |
| 0.008 | 18.0 | 135000 | 0.5167 | 0.9492 |
| 0.0033 | 19.0 | 142500 | 0.5535 | 0.9493 |
| 0.0024 | 20.0 | 150000 | 0.5563 | 0.95 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|
NeverSleep/Noromaid-v0.1-mixtral-8x7b-Instruct-v3-GGUF
|
NeverSleep
| 2023-12-25T22:08:32Z | 870 | 30 | null |
[
"gguf",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2023-12-25T18:31:09Z |
---
license: cc-by-nc-4.0
---

---
# Disclaimer:
## This model is experimental, do not expect everything to work.
This model uses the Alpaca **prompting format**(or just directly download the SillyTavern instruct preset [here](https://files.catbox.moe/0ohmco.json))
---
Beeg noromaid on ***steroids***. Suitable for RP, ERP.
This time based on Mixtral Instruct, seems to do wonders!
This model was trained for 8h(v1) + 8h(v2) + 12h(v3) on customized modified datasets, focusing on RP, uncensoring, and a modified version of the Alpaca prompting (that was already used in LimaRP), which should be at the same conversational level as ChatLM or Llama2-Chat without adding any additional special tokens.
If you wanna have more infos about this model(and v1 + v2) you can check out [my blog post](https://ikaridevgit.github.io/index.html?p=7&blog=blogid-6&bo=true)
[Recommended settings - Settings 1](https://huggingface.co/NeverSleep/Noromaid-v0.1-mixtral-8x7b-v3/discussions/1)
[Recommended settings - Settings 2 (idk if they are any good)](https://files.catbox.moe/fv4xhu.json)
## Credits:
- Undi
- IkariDev
<!-- description start -->
## Description
<!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) -->
This repo contains GGUF files of Noromaid-v0.1-mixtral-8x7b-Instruct-v3.
[FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-v0.1-mixtral-8x7b-Instruct-v3)
<!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)-->
<!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)-->
<!-- [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)-->
<!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)-->
<!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)-->
[GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-v0.1-mixtral-8x7b-Instruct-v3-GGUF)
<!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)-->
## Ratings:
Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!
No ratings yet!
If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi".
<!-- description end -->
<!-- prompt-template start -->
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Datasets used:
- Aesir 1 and 2 ([MinervaAI](https://huggingface.co/MinervaAI) / [Gryphe](https://huggingface.co/Gryphe))
- [LimaRP-20231109](https://huggingface.co/datasets/lemonilia/LimaRP) ([Lemonilia](https://huggingface.co/lemonilia))
- [ToxicDPO-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) ([unalignment orga repo](https://huggingface.co/unalignment) + [Undi](https://huggingface.co/Undi95))
- [No-robots-ShareGPT](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) ([Doctor-Shotgun](https://huggingface.co/Doctor-Shotgu))
## Others
Undi: If you want to support me, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
|
smelborp/MixtralOrochi8x7B-Alt
|
smelborp
| 2023-12-25T22:00:16Z | 1,423 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"uncensored",
"high-intelligence",
"en",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T14:00:16Z |
---
license: cc-by-nc-4.0
language:
- en
tags:
- mixtral
- uncensored
- high-intelligence
---
# Orochi (Alternate Version)
<img src="https://huggingface.co/smelborp/MixtralOrochi8x7B/resolve/main/orochi.png" width="600" />
## Overview
Orochi is a cutting-edge language model based on the Mixtral architecture developed by Mistral. It represents a sophisticated merge of several prominent models, including Mixtral instruct, Noromaid, OpenBuddy, and several others, using mergekit with the DARE merge method. This model aims to provide highly intelligent responses unrestricted by content limitations. The name "Orochi" references the mythical Yamata-no-Orochi, symbolizing the model's multifaceted and powerful capabilities.
## Goals
- **Uncensored Content**: To provide unrestricted and comprehensive responses across various domains.
- **High Intelligence**: Leverage the combined knowledge and capabilities of the merged models to deliver insightful and accurate information.
- **Innovation in Language Modeling**: Push the boundaries of what's possible in natural language understanding and generation.
## Model Details
- **Architecture**: Mixtral, a Mixture of Experts model, underlies Orochi's design, enabling it to specialize and optimize its responses across different tasks and topics.
- **Merge Strategy**: Utilizing mergekit and the DARE method, Orochi integrates aspects of various models to enhance its performance and capabilities.
## Usage
Due to its uncensored nature, Orochi is best utilized in environments where intelligent, unrestricted dialogue is necessary. Users are encouraged to implement their own content moderation or alignment strategies appropriate for their use case.
## Ethical Considerations
As an uncensored model, Orochi may generate content that is unsuitable for all audiences. Users are advised to consider the implications of using such a model and to implement suitable safeguards and ethical guidelines.
## Acknowledgements
Orochi is a product of numerous contributions from the fields of machine learning and language modeling. Special thanks to the teams behind Mixtral, mergekit, and all the individual models integrated into Orochi.
---
|
ossu-teruyuki/sweety_okamix
|
ossu-teruyuki
| 2023-12-25T21:54:16Z | 0 | 0 | null |
[
"text-to-image",
"ja",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-18T09:08:43Z |
---
license: creativeml-openrail-m
language:
- ja
pipeline_tag: text-to-image
---
<h4>【はじめに】</h4>
本モデルをご使用の際に生じる問題、また、生成された画像に関する問題やその他の関連問題について、当方は一切責任を負いません。<br>
ご使用の際は、この点をご了承の上ご使用ください。<br>
<br>
<h4>【sweety_okamixとは】</h4>
かわいい金髪オオカミ娘を生成するためのモデルです。<br>
ただそれだけのモデルです。需要はあまり無いかもしれませんが記念に作りました。<br>
もちろんオオカミでない普通の人物を生成することも可能です。<br>
<br>
ファンタジー的な要素にも合うよう色味を少しだけ濃く鮮やかに出るよう調整しており、顔の血色もよくなりやすいです。<br>
オオカミ娘を作りたい人はよかったら使ってみてください。<br>
<br>
<h4>【金髪オオカミ娘の作り方】</h4>
普段お使いのプロンプトに以下のプロンプトを足してみてください。(強化の値は好みで調整してください。)<br>
(Young blonde girl) , nymph, dropping eyes, (Forest:1.5) , (bohemian clothes:1.5), (Strong light coming in:1.3),(mountain:1.5), lens flare , (wolf girl:1.4),(beautiful platinum blonde),dropping eyes, wavy hair, airy hair,(wolf tail:1.2),(blush cheeks:1.3),(flowers are blooming:1.5), (scattered fruits:1.33),(wolf ear:1.2),(extreme close-up) <br>
<br>
<h4>【制限・ライセンスについて】</h4>
本モデルは『CreativeML Open RAIL-M』のライセンスを採用しておりますが、マージに使用したモデルの制限を継承しているため、さらに以下の制限が適用されます。<br>
<span class="text-green-500">
可
</span>
:Use the model without crediting the creator (著作者表示なしでの使用)<br>
<span class="text-green-500">
可
</span>
:Sell images they generate (生成画像の販売)<br>
<span class="text-green-500">
可
</span>
:Run on services that generate images for money (商用画像生成サービスへの利用)<br>
<span class="text-green-500">
可
</span>
:Share merges using this model (マージモデルの配布)<br>
<span class="text-green-500">
可
</span>
:Sell this model or merges using this model (本モデルや派生モデルの販売)<br>
<span class="text-red-400">
不可
</span>
:Have different permissions when sharing merges (マージしたモデルに異なる制限を設定)<br>
なお、制限を継承したことにより、本モデルの販売や商業的な画像生成サービスへの利用を不可とすることができないため、それらの活動は制限上可能となっておりますが、当方は積極的な推奨は行っておりません。<br>
それらの活動によって生じたいかなる問題についても、当方は一切の責任を負いませんので、ご了承ください。<br>
本モデルや使用モデルに何らかの重要な問題が起きた場合は、本モデルを予告なく削除し、利用停止をお願いする可能性があります。<br>
本モデルを使用した際に起こる問題、また、生成された画像に関する問題やその他の関連問題について、当方は一切責任を負いません。<br>
ご使用の際は、この点をご了承の上ご使用ください。<br>
|
hkivancoral/hushem_40x_deit_small_rms_0001_fold5
|
hkivancoral
| 2023-12-25T21:50:13Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T21:34:09Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8048780487804879
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_rms_0001_fold5
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9788
- Accuracy: 0.8049
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1371 | 1.0 | 220 | 0.3701 | 0.8293 |
| 0.0445 | 2.0 | 440 | 1.9924 | 0.7073 |
| 0.0133 | 3.0 | 660 | 1.1496 | 0.8049 |
| 0.0131 | 4.0 | 880 | 0.3434 | 0.9024 |
| 0.0354 | 5.0 | 1100 | 0.4117 | 0.8537 |
| 0.0497 | 6.0 | 1320 | 0.2267 | 0.9268 |
| 0.0845 | 7.0 | 1540 | 1.0625 | 0.8293 |
| 0.0001 | 8.0 | 1760 | 1.4387 | 0.7317 |
| 0.0648 | 9.0 | 1980 | 0.2862 | 0.9756 |
| 0.0159 | 10.0 | 2200 | 0.5399 | 0.8780 |
| 0.0001 | 11.0 | 2420 | 0.6240 | 0.8293 |
| 0.0069 | 12.0 | 2640 | 0.9226 | 0.8049 |
| 0.071 | 13.0 | 2860 | 1.0657 | 0.8293 |
| 0.0001 | 14.0 | 3080 | 1.2561 | 0.7805 |
| 0.0 | 15.0 | 3300 | 1.2385 | 0.7805 |
| 0.0 | 16.0 | 3520 | 1.2648 | 0.7805 |
| 0.0 | 17.0 | 3740 | 1.3089 | 0.7805 |
| 0.0 | 18.0 | 3960 | 1.3750 | 0.7805 |
| 0.0 | 19.0 | 4180 | 1.4566 | 0.7805 |
| 0.0 | 20.0 | 4400 | 1.5453 | 0.8049 |
| 0.0 | 21.0 | 4620 | 1.6338 | 0.8049 |
| 0.0 | 22.0 | 4840 | 1.6896 | 0.8049 |
| 0.0 | 23.0 | 5060 | 1.7347 | 0.8049 |
| 0.0 | 24.0 | 5280 | 1.7835 | 0.8049 |
| 0.0 | 25.0 | 5500 | 1.8255 | 0.8049 |
| 0.0 | 26.0 | 5720 | 1.8621 | 0.8049 |
| 0.0 | 27.0 | 5940 | 1.8887 | 0.8049 |
| 0.0 | 28.0 | 6160 | 1.9074 | 0.8049 |
| 0.0 | 29.0 | 6380 | 1.9212 | 0.8049 |
| 0.0 | 30.0 | 6600 | 1.9317 | 0.8049 |
| 0.0 | 31.0 | 6820 | 1.9398 | 0.8049 |
| 0.0 | 32.0 | 7040 | 1.9465 | 0.8049 |
| 0.0 | 33.0 | 7260 | 1.9519 | 0.8049 |
| 0.0 | 34.0 | 7480 | 1.9563 | 0.8049 |
| 0.0 | 35.0 | 7700 | 1.9601 | 0.8049 |
| 0.0 | 36.0 | 7920 | 1.9632 | 0.8049 |
| 0.0 | 37.0 | 8140 | 1.9659 | 0.8049 |
| 0.0 | 38.0 | 8360 | 1.9682 | 0.8049 |
| 0.0 | 39.0 | 8580 | 1.9702 | 0.8049 |
| 0.0 | 40.0 | 8800 | 1.9718 | 0.8049 |
| 0.0 | 41.0 | 9020 | 1.9733 | 0.8049 |
| 0.0 | 42.0 | 9240 | 1.9745 | 0.8049 |
| 0.0 | 43.0 | 9460 | 1.9756 | 0.8049 |
| 0.0 | 44.0 | 9680 | 1.9764 | 0.8049 |
| 0.0 | 45.0 | 9900 | 1.9772 | 0.8049 |
| 0.0 | 46.0 | 10120 | 1.9777 | 0.8049 |
| 0.0 | 47.0 | 10340 | 1.9782 | 0.8049 |
| 0.0 | 48.0 | 10560 | 1.9785 | 0.8049 |
| 0.0 | 49.0 | 10780 | 1.9787 | 0.8049 |
| 0.0 | 50.0 | 11000 | 1.9788 | 0.8049 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
hkivancoral/hushem_40x_deit_small_rms_0001_fold4
|
hkivancoral
| 2023-12-25T21:34:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T21:18:06Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9761904761904762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_rms_0001_fold4
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2918
- Accuracy: 0.9762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5087 | 1.0 | 219 | 0.4037 | 0.7619 |
| 0.1898 | 2.0 | 438 | 0.1339 | 0.9762 |
| 0.0553 | 3.0 | 657 | 0.0324 | 0.9762 |
| 0.0797 | 4.0 | 876 | 0.1848 | 0.9762 |
| 0.0341 | 5.0 | 1095 | 0.2228 | 0.9762 |
| 0.0296 | 6.0 | 1314 | 0.2257 | 0.9286 |
| 0.0744 | 7.0 | 1533 | 0.1717 | 0.9524 |
| 0.0049 | 8.0 | 1752 | 0.3696 | 0.9048 |
| 0.0089 | 9.0 | 1971 | 0.3392 | 0.9286 |
| 0.0001 | 10.0 | 2190 | 0.4146 | 0.9286 |
| 0.0322 | 11.0 | 2409 | 0.3832 | 0.9524 |
| 0.0165 | 12.0 | 2628 | 0.7717 | 0.9048 |
| 0.0 | 13.0 | 2847 | 0.2462 | 0.9762 |
| 0.0339 | 14.0 | 3066 | 0.0004 | 1.0 |
| 0.0335 | 15.0 | 3285 | 0.0062 | 1.0 |
| 0.0205 | 16.0 | 3504 | 0.2197 | 0.9524 |
| 0.0 | 17.0 | 3723 | 0.1117 | 0.9762 |
| 0.0 | 18.0 | 3942 | 0.1233 | 0.9762 |
| 0.0 | 19.0 | 4161 | 0.1357 | 0.9762 |
| 0.0 | 20.0 | 4380 | 0.1491 | 0.9762 |
| 0.0 | 21.0 | 4599 | 0.1602 | 0.9762 |
| 0.0 | 22.0 | 4818 | 0.1668 | 0.9762 |
| 0.0 | 23.0 | 5037 | 0.1701 | 0.9762 |
| 0.0 | 24.0 | 5256 | 0.1738 | 0.9762 |
| 0.0 | 25.0 | 5475 | 0.1788 | 0.9762 |
| 0.0 | 26.0 | 5694 | 0.1882 | 0.9762 |
| 0.0 | 27.0 | 5913 | 0.2002 | 0.9762 |
| 0.0 | 28.0 | 6132 | 0.2109 | 0.9762 |
| 0.0 | 29.0 | 6351 | 0.2232 | 0.9762 |
| 0.0 | 30.0 | 6570 | 0.2349 | 0.9762 |
| 0.0 | 31.0 | 6789 | 0.2441 | 0.9762 |
| 0.0 | 32.0 | 7008 | 0.2518 | 0.9762 |
| 0.0 | 33.0 | 7227 | 0.2582 | 0.9762 |
| 0.0 | 34.0 | 7446 | 0.2637 | 0.9762 |
| 0.0 | 35.0 | 7665 | 0.2684 | 0.9762 |
| 0.0 | 36.0 | 7884 | 0.2722 | 0.9762 |
| 0.0 | 37.0 | 8103 | 0.2755 | 0.9762 |
| 0.0 | 38.0 | 8322 | 0.2784 | 0.9762 |
| 0.0 | 39.0 | 8541 | 0.2809 | 0.9762 |
| 0.0 | 40.0 | 8760 | 0.2832 | 0.9762 |
| 0.0 | 41.0 | 8979 | 0.2850 | 0.9762 |
| 0.0 | 42.0 | 9198 | 0.2865 | 0.9762 |
| 0.0 | 43.0 | 9417 | 0.2879 | 0.9762 |
| 0.0 | 44.0 | 9636 | 0.2889 | 0.9762 |
| 0.0 | 45.0 | 9855 | 0.2898 | 0.9762 |
| 0.0 | 46.0 | 10074 | 0.2906 | 0.9762 |
| 0.0 | 47.0 | 10293 | 0.2911 | 0.9762 |
| 0.0 | 48.0 | 10512 | 0.2915 | 0.9762 |
| 0.0 | 49.0 | 10731 | 0.2917 | 0.9762 |
| 0.0 | 50.0 | 10950 | 0.2918 | 0.9762 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
hkivancoral/hushem_40x_deit_small_rms_00001_fold4
|
hkivancoral
| 2023-12-25T21:33:56Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T21:17:59Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9761904761904762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_rms_00001_fold4
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0414
- Accuracy: 0.9762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0261 | 1.0 | 219 | 0.2813 | 0.9048 |
| 0.0004 | 2.0 | 438 | 0.4646 | 0.9048 |
| 0.0318 | 3.0 | 657 | 0.2739 | 0.9524 |
| 0.0001 | 4.0 | 876 | 0.2467 | 0.9524 |
| 0.0001 | 5.0 | 1095 | 0.3508 | 0.9524 |
| 0.0 | 6.0 | 1314 | 0.3119 | 0.9524 |
| 0.0006 | 7.0 | 1533 | 0.2283 | 0.9286 |
| 0.0 | 8.0 | 1752 | 0.4350 | 0.9048 |
| 0.0 | 9.0 | 1971 | 0.4640 | 0.9048 |
| 0.0 | 10.0 | 2190 | 0.4527 | 0.9048 |
| 0.0 | 11.0 | 2409 | 0.4193 | 0.9286 |
| 0.0 | 12.0 | 2628 | 0.3715 | 0.9286 |
| 0.0 | 13.0 | 2847 | 0.3628 | 0.9286 |
| 0.0 | 14.0 | 3066 | 0.3061 | 0.9524 |
| 0.0 | 15.0 | 3285 | 0.2734 | 0.9524 |
| 0.0 | 16.0 | 3504 | 0.2564 | 0.9762 |
| 0.0 | 17.0 | 3723 | 0.2341 | 0.9762 |
| 0.0 | 18.0 | 3942 | 0.1999 | 0.9762 |
| 0.0 | 19.0 | 4161 | 0.1825 | 0.9762 |
| 0.0 | 20.0 | 4380 | 0.1638 | 0.9762 |
| 0.0 | 21.0 | 4599 | 0.1534 | 0.9762 |
| 0.0 | 22.0 | 4818 | 0.1387 | 0.9762 |
| 0.0 | 23.0 | 5037 | 0.1091 | 0.9762 |
| 0.0 | 24.0 | 5256 | 0.1221 | 0.9762 |
| 0.0 | 25.0 | 5475 | 0.1159 | 0.9762 |
| 0.0 | 26.0 | 5694 | 0.1135 | 0.9762 |
| 0.0 | 27.0 | 5913 | 0.1212 | 0.9762 |
| 0.0 | 28.0 | 6132 | 0.1127 | 0.9762 |
| 0.0 | 29.0 | 6351 | 0.0979 | 0.9762 |
| 0.0 | 30.0 | 6570 | 0.0810 | 0.9762 |
| 0.0 | 31.0 | 6789 | 0.0741 | 0.9762 |
| 0.0 | 32.0 | 7008 | 0.0839 | 0.9762 |
| 0.0 | 33.0 | 7227 | 0.0751 | 0.9762 |
| 0.0 | 34.0 | 7446 | 0.0611 | 0.9762 |
| 0.0 | 35.0 | 7665 | 0.0643 | 0.9762 |
| 0.0 | 36.0 | 7884 | 0.0533 | 0.9762 |
| 0.0 | 37.0 | 8103 | 0.0608 | 0.9762 |
| 0.0 | 38.0 | 8322 | 0.0466 | 0.9762 |
| 0.0 | 39.0 | 8541 | 0.0483 | 0.9762 |
| 0.0 | 40.0 | 8760 | 0.0457 | 0.9762 |
| 0.0 | 41.0 | 8979 | 0.0380 | 0.9762 |
| 0.0 | 42.0 | 9198 | 0.0427 | 0.9762 |
| 0.0 | 43.0 | 9417 | 0.0480 | 0.9762 |
| 0.0 | 44.0 | 9636 | 0.0456 | 0.9762 |
| 0.0 | 45.0 | 9855 | 0.0409 | 0.9762 |
| 0.0 | 46.0 | 10074 | 0.0400 | 0.9762 |
| 0.0 | 47.0 | 10293 | 0.0425 | 0.9762 |
| 0.0 | 48.0 | 10512 | 0.0391 | 0.9762 |
| 0.0 | 49.0 | 10731 | 0.0420 | 0.9762 |
| 0.0 | 50.0 | 10950 | 0.0414 | 0.9762 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
dardila/Reinforce-CartPole
|
dardila
| 2023-12-25T21:33:15Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T21:33:05Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kajol/zephyr_math_02
|
kajol
| 2023-12-25T21:27:17Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:TheBloke/zephyr-7B-alpha-GPTQ",
"base_model:adapter:TheBloke/zephyr-7B-alpha-GPTQ",
"region:us"
] | null | 2023-12-25T21:24:20Z |
---
library_name: peft
base_model: TheBloke/zephyr-7B-alpha-GPTQ
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
NPastrami15/PMSANLP
|
NPastrami15
| 2023-12-25T21:22:55Z | 0 | 0 | null |
[
"safetensors",
"generated_from_trainer",
"base_model:mistralai/Mixtral-8x7B-v0.1",
"base_model:finetune:mistralai/Mixtral-8x7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2023-12-25T21:22:18Z |
---
license: apache-2.0
base_model: mistralai/Mixtral-8x7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: PMSANLP
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PMSANLP
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
abhir00p/bert-finetuned-squad-rup
|
abhir00p
| 2023-12-25T21:09:06Z | 25 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-12-25T18:39:27Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-squad-rup
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad-rup
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
hkivancoral/hushem_40x_deit_small_rms_00001_fold2
|
hkivancoral
| 2023-12-25T21:02:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T20:46:21Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8222222222222222
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_rms_00001_fold2
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8515
- Accuracy: 0.8222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0268 | 1.0 | 215 | 0.7986 | 0.8 |
| 0.0002 | 2.0 | 430 | 1.0382 | 0.7556 |
| 0.0001 | 3.0 | 645 | 1.1402 | 0.7778 |
| 0.0 | 4.0 | 860 | 1.2476 | 0.7556 |
| 0.0 | 5.0 | 1075 | 1.3476 | 0.7556 |
| 0.0 | 6.0 | 1290 | 1.4725 | 0.7556 |
| 0.0 | 7.0 | 1505 | 1.6233 | 0.7778 |
| 0.0 | 8.0 | 1720 | 1.7734 | 0.7778 |
| 0.0 | 9.0 | 1935 | 1.8805 | 0.7778 |
| 0.0 | 10.0 | 2150 | 1.8889 | 0.8 |
| 0.0 | 11.0 | 2365 | 2.1587 | 0.7778 |
| 0.0 | 12.0 | 2580 | 2.0588 | 0.8 |
| 0.0 | 13.0 | 2795 | 2.1202 | 0.7778 |
| 0.0 | 14.0 | 3010 | 2.1555 | 0.7778 |
| 0.0 | 15.0 | 3225 | 1.9136 | 0.8 |
| 0.0 | 16.0 | 3440 | 1.9929 | 0.7778 |
| 0.0 | 17.0 | 3655 | 1.9161 | 0.8 |
| 0.0 | 18.0 | 3870 | 1.9718 | 0.7778 |
| 0.0 | 19.0 | 4085 | 1.9351 | 0.7778 |
| 0.0 | 20.0 | 4300 | 1.8731 | 0.8 |
| 0.0 | 21.0 | 4515 | 2.0003 | 0.7778 |
| 0.0 | 22.0 | 4730 | 1.9341 | 0.8222 |
| 0.0 | 23.0 | 4945 | 1.8619 | 0.8222 |
| 0.0 | 24.0 | 5160 | 1.9436 | 0.7778 |
| 0.0 | 25.0 | 5375 | 1.8959 | 0.8 |
| 0.0 | 26.0 | 5590 | 1.9309 | 0.8 |
| 0.0 | 27.0 | 5805 | 1.9142 | 0.8222 |
| 0.0 | 28.0 | 6020 | 1.8863 | 0.8222 |
| 0.0 | 29.0 | 6235 | 1.8613 | 0.8222 |
| 0.0 | 30.0 | 6450 | 1.9273 | 0.8222 |
| 0.0 | 31.0 | 6665 | 1.8653 | 0.8222 |
| 0.0 | 32.0 | 6880 | 1.8521 | 0.8 |
| 0.0 | 33.0 | 7095 | 1.8442 | 0.8222 |
| 0.0 | 34.0 | 7310 | 1.8633 | 0.8222 |
| 0.0 | 35.0 | 7525 | 1.8741 | 0.8222 |
| 0.0 | 36.0 | 7740 | 1.8375 | 0.8222 |
| 0.0 | 37.0 | 7955 | 1.8547 | 0.8222 |
| 0.0 | 38.0 | 8170 | 1.8764 | 0.8 |
| 0.0 | 39.0 | 8385 | 1.8572 | 0.8222 |
| 0.0 | 40.0 | 8600 | 1.8485 | 0.8222 |
| 0.0 | 41.0 | 8815 | 1.8477 | 0.8222 |
| 0.0 | 42.0 | 9030 | 1.8438 | 0.8222 |
| 0.0 | 43.0 | 9245 | 1.8448 | 0.8222 |
| 0.0 | 44.0 | 9460 | 1.8731 | 0.8222 |
| 0.0 | 45.0 | 9675 | 1.8515 | 0.8222 |
| 0.0 | 46.0 | 9890 | 1.8522 | 0.8222 |
| 0.0 | 47.0 | 10105 | 1.8514 | 0.8222 |
| 0.0 | 48.0 | 10320 | 1.8557 | 0.8222 |
| 0.0 | 49.0 | 10535 | 1.8518 | 0.8222 |
| 0.0 | 50.0 | 10750 | 1.8515 | 0.8222 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
hkivancoral/hushem_40x_deit_small_rms_00001_fold1
|
hkivancoral
| 2023-12-25T20:46:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T16:10:36Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_rms_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8666666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_rms_00001_fold1
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9061
- Accuracy: 0.8667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0132 | 1.0 | 215 | 0.4686 | 0.8444 |
| 0.0004 | 2.0 | 430 | 0.6106 | 0.8222 |
| 0.0016 | 3.0 | 645 | 0.7608 | 0.8 |
| 0.0 | 4.0 | 860 | 0.5588 | 0.8667 |
| 0.0 | 5.0 | 1075 | 0.5395 | 0.8667 |
| 0.0 | 6.0 | 1290 | 0.5368 | 0.8889 |
| 0.0 | 7.0 | 1505 | 0.5575 | 0.8889 |
| 0.0 | 8.0 | 1720 | 0.5516 | 0.9111 |
| 0.0 | 9.0 | 1935 | 0.5817 | 0.9111 |
| 0.0 | 10.0 | 2150 | 0.5914 | 0.8667 |
| 0.0 | 11.0 | 2365 | 0.6168 | 0.8667 |
| 0.0 | 12.0 | 2580 | 0.7197 | 0.8667 |
| 0.0 | 13.0 | 2795 | 0.7066 | 0.8667 |
| 0.0 | 14.0 | 3010 | 0.7905 | 0.8667 |
| 0.0 | 15.0 | 3225 | 0.8099 | 0.8667 |
| 0.0 | 16.0 | 3440 | 0.9402 | 0.8444 |
| 0.0 | 17.0 | 3655 | 0.9239 | 0.8667 |
| 0.0 | 18.0 | 3870 | 0.9014 | 0.8444 |
| 0.0 | 19.0 | 4085 | 0.9346 | 0.8667 |
| 0.0 | 20.0 | 4300 | 0.8551 | 0.8667 |
| 0.0 | 21.0 | 4515 | 0.8933 | 0.8667 |
| 0.0 | 22.0 | 4730 | 0.9137 | 0.8667 |
| 0.0 | 23.0 | 4945 | 0.9179 | 0.8667 |
| 0.0 | 24.0 | 5160 | 0.8411 | 0.8667 |
| 0.0 | 25.0 | 5375 | 0.9276 | 0.8667 |
| 0.0 | 26.0 | 5590 | 0.9081 | 0.8667 |
| 0.0 | 27.0 | 5805 | 0.9378 | 0.8667 |
| 0.0 | 28.0 | 6020 | 0.9015 | 0.8667 |
| 0.0 | 29.0 | 6235 | 0.8989 | 0.8667 |
| 0.0 | 30.0 | 6450 | 0.9223 | 0.8667 |
| 0.0 | 31.0 | 6665 | 0.9424 | 0.8667 |
| 0.0 | 32.0 | 6880 | 0.9057 | 0.8667 |
| 0.0 | 33.0 | 7095 | 0.8894 | 0.8667 |
| 0.0 | 34.0 | 7310 | 0.9300 | 0.8667 |
| 0.0 | 35.0 | 7525 | 0.9491 | 0.8667 |
| 0.0 | 36.0 | 7740 | 0.8980 | 0.8667 |
| 0.0 | 37.0 | 7955 | 0.8706 | 0.8667 |
| 0.0 | 38.0 | 8170 | 0.8943 | 0.8667 |
| 0.0 | 39.0 | 8385 | 0.9073 | 0.8667 |
| 0.0 | 40.0 | 8600 | 0.9075 | 0.8667 |
| 0.0 | 41.0 | 8815 | 0.9113 | 0.8667 |
| 0.0 | 42.0 | 9030 | 0.9138 | 0.8667 |
| 0.0 | 43.0 | 9245 | 0.9218 | 0.8667 |
| 0.0 | 44.0 | 9460 | 0.9089 | 0.8667 |
| 0.0 | 45.0 | 9675 | 0.9120 | 0.8667 |
| 0.0 | 46.0 | 9890 | 0.9019 | 0.8667 |
| 0.0 | 47.0 | 10105 | 0.9058 | 0.8667 |
| 0.0 | 48.0 | 10320 | 0.9063 | 0.8667 |
| 0.0 | 49.0 | 10535 | 0.9035 | 0.8667 |
| 0.0 | 50.0 | 10750 | 0.9061 | 0.8667 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
bdsaglam/llama-2-7b-chat-hf-kg-cons-multi-peft-1703521579
|
bdsaglam
| 2023-12-25T20:35:45Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-12-25T20:35:33Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
LoneStriker/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T-8.0bpw-h8-exl2
|
LoneStriker
| 2023-12-25T20:28:59Z | 4 | 0 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T20:26:51Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
<div align="center">
<img src="./TinyLlama_logo.png" width="300"/>
</div>
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
#### Eval
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
| TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
| **TinyLlama-1.1B-intermediate-step-1195k-token-2.5T** | **2.5T** | **58.96** | **34.40** | **58.72** | **31.91** | **56.78** | **63.21** | **73.07** | **53.86**|
|
LoneStriker/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T-6.0bpw-h6-exl2
|
LoneStriker
| 2023-12-25T20:28:28Z | 4 | 0 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T20:25:18Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
<div align="center">
<img src="./TinyLlama_logo.png" width="300"/>
</div>
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
#### Eval
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
| TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
| **TinyLlama-1.1B-intermediate-step-1195k-token-2.5T** | **2.5T** | **58.96** | **34.40** | **58.72** | **31.91** | **56.78** | **63.21** | **73.07** | **53.86**|
|
LoneStriker/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T-5.0bpw-h6-exl2
|
LoneStriker
| 2023-12-25T20:28:27Z | 5 | 0 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T20:23:46Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
<div align="center">
<img src="./TinyLlama_logo.png" width="300"/>
</div>
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
#### Eval
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
| TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
| **TinyLlama-1.1B-intermediate-step-1195k-token-2.5T** | **2.5T** | **58.96** | **34.40** | **58.72** | **31.91** | **56.78** | **63.21** | **73.07** | **53.86**|
|
LoneStriker/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T-3.0bpw-h6-exl2
|
LoneStriker
| 2023-12-25T20:28:26Z | 6 | 0 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"en",
"dataset:cerebras/SlimPajama-627B",
"dataset:bigcode/starcoderdata",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T20:20:47Z |
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
<div align="center">
<img src="./TinyLlama_logo.png" width="300"/>
</div>
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
#### Eval
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
| TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
| **TinyLlama-1.1B-intermediate-step-1195k-token-2.5T** | **2.5T** | **58.96** | **34.40** | **58.72** | **31.91** | **56.78** | **63.21** | **73.07** | **53.86**|
|
gjyotin305/finale2
|
gjyotin305
| 2023-12-25T20:27:37Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T20:24:12Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: finale2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finale2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0161
- Roc Auc: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0745 | 1.0 | 959 | 0.0463 | 0.9999 |
| 0.006 | 2.0 | 1918 | 0.0161 | 0.9999 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.14.1
|
andreatorch/Reinforce-Unit4-pixelCopter
|
andreatorch
| 2023-12-25T20:25:51Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T20:25:41Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Unit4-pixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 27.40 +/- 17.58
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
andrewatef/RewriterV0.10
|
andrewatef
| 2023-12-25T20:15:27Z | 5 | 0 |
peft
|
[
"peft",
"pytorch",
"safetensors",
"llama",
"arxiv:1910.09700",
"base_model:unsloth/llama-2-7b",
"base_model:adapter:unsloth/llama-2-7b",
"region:us"
] | null | 2023-12-25T19:38:16Z |
---
library_name: peft
base_model: unsloth/llama-2-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
|
hkivancoral/hushem_40x_deit_small_sgd_00001_fold5
|
hkivancoral
| 2023-12-25T19:55:37Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T19:39:44Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_sgd_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.3170731707317073
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_sgd_00001_fold5
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5176
- Accuracy: 0.3171
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.9948 | 1.0 | 220 | 1.7324 | 0.2683 |
| 1.9668 | 2.0 | 440 | 1.7170 | 0.2683 |
| 1.7569 | 3.0 | 660 | 1.7024 | 0.2683 |
| 1.8204 | 4.0 | 880 | 1.6885 | 0.2683 |
| 1.8992 | 5.0 | 1100 | 1.6754 | 0.2683 |
| 1.8203 | 6.0 | 1320 | 1.6629 | 0.2683 |
| 1.8006 | 7.0 | 1540 | 1.6512 | 0.2683 |
| 1.746 | 8.0 | 1760 | 1.6401 | 0.2683 |
| 1.7509 | 9.0 | 1980 | 1.6297 | 0.2683 |
| 1.7973 | 10.0 | 2200 | 1.6200 | 0.2683 |
| 1.7248 | 11.0 | 2420 | 1.6109 | 0.2683 |
| 1.5895 | 12.0 | 2640 | 1.6025 | 0.2683 |
| 1.6708 | 13.0 | 2860 | 1.5947 | 0.2683 |
| 1.5672 | 14.0 | 3080 | 1.5875 | 0.2683 |
| 1.6734 | 15.0 | 3300 | 1.5810 | 0.2683 |
| 1.6377 | 16.0 | 3520 | 1.5749 | 0.2683 |
| 1.5807 | 17.0 | 3740 | 1.5693 | 0.2683 |
| 1.6065 | 18.0 | 3960 | 1.5643 | 0.2439 |
| 1.5952 | 19.0 | 4180 | 1.5597 | 0.2439 |
| 1.6236 | 20.0 | 4400 | 1.5555 | 0.2439 |
| 1.6357 | 21.0 | 4620 | 1.5517 | 0.2439 |
| 1.5866 | 22.0 | 4840 | 1.5483 | 0.2439 |
| 1.546 | 23.0 | 5060 | 1.5451 | 0.2439 |
| 1.5341 | 24.0 | 5280 | 1.5423 | 0.2683 |
| 1.5615 | 25.0 | 5500 | 1.5397 | 0.2683 |
| 1.5768 | 26.0 | 5720 | 1.5373 | 0.2683 |
| 1.5024 | 27.0 | 5940 | 1.5352 | 0.2683 |
| 1.5377 | 28.0 | 6160 | 1.5332 | 0.2683 |
| 1.5225 | 29.0 | 6380 | 1.5314 | 0.2683 |
| 1.5464 | 30.0 | 6600 | 1.5298 | 0.2683 |
| 1.5869 | 31.0 | 6820 | 1.5284 | 0.2683 |
| 1.5384 | 32.0 | 7040 | 1.5270 | 0.2683 |
| 1.5241 | 33.0 | 7260 | 1.5258 | 0.2683 |
| 1.5029 | 34.0 | 7480 | 1.5247 | 0.2683 |
| 1.4813 | 35.0 | 7700 | 1.5237 | 0.2927 |
| 1.4892 | 36.0 | 7920 | 1.5227 | 0.2927 |
| 1.5014 | 37.0 | 8140 | 1.5219 | 0.2927 |
| 1.5037 | 38.0 | 8360 | 1.5212 | 0.2927 |
| 1.4775 | 39.0 | 8580 | 1.5205 | 0.2927 |
| 1.4967 | 40.0 | 8800 | 1.5200 | 0.2927 |
| 1.4438 | 41.0 | 9020 | 1.5195 | 0.2927 |
| 1.4692 | 42.0 | 9240 | 1.5190 | 0.2927 |
| 1.5023 | 43.0 | 9460 | 1.5187 | 0.2927 |
| 1.4883 | 44.0 | 9680 | 1.5184 | 0.2927 |
| 1.4515 | 45.0 | 9900 | 1.5181 | 0.2927 |
| 1.4741 | 46.0 | 10120 | 1.5179 | 0.3171 |
| 1.4857 | 47.0 | 10340 | 1.5178 | 0.3171 |
| 1.4547 | 48.0 | 10560 | 1.5177 | 0.3171 |
| 1.45 | 49.0 | 10780 | 1.5176 | 0.3171 |
| 1.5056 | 50.0 | 11000 | 1.5176 | 0.3171 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
Realgon/N_roberta_agnews_padding30model
|
Realgon
| 2023-12-25T19:52:18Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:ag_news",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T17:30:54Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_roberta_agnews_padding30model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9477631578947369
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# N_roberta_agnews_padding30model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5706
- Accuracy: 0.9478
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.1966 | 1.0 | 7500 | 0.2071 | 0.9384 |
| 0.1667 | 2.0 | 15000 | 0.1922 | 0.9466 |
| 0.1523 | 3.0 | 22500 | 0.2323 | 0.9438 |
| 0.1194 | 4.0 | 30000 | 0.2370 | 0.9438 |
| 0.105 | 5.0 | 37500 | 0.2791 | 0.9454 |
| 0.0836 | 6.0 | 45000 | 0.2917 | 0.9433 |
| 0.0711 | 7.0 | 52500 | 0.3344 | 0.9436 |
| 0.0586 | 8.0 | 60000 | 0.3723 | 0.9416 |
| 0.0396 | 9.0 | 67500 | 0.3977 | 0.9438 |
| 0.0369 | 10.0 | 75000 | 0.4096 | 0.9425 |
| 0.0312 | 11.0 | 82500 | 0.4293 | 0.9438 |
| 0.0259 | 12.0 | 90000 | 0.4286 | 0.9436 |
| 0.0241 | 13.0 | 97500 | 0.4529 | 0.9437 |
| 0.0129 | 14.0 | 105000 | 0.4749 | 0.9442 |
| 0.0057 | 15.0 | 112500 | 0.5355 | 0.9429 |
| 0.0083 | 16.0 | 120000 | 0.5056 | 0.9475 |
| 0.0062 | 17.0 | 127500 | 0.5138 | 0.9458 |
| 0.0062 | 18.0 | 135000 | 0.5368 | 0.9463 |
| 0.0026 | 19.0 | 142500 | 0.5647 | 0.9470 |
| 0.0031 | 20.0 | 150000 | 0.5706 | 0.9478 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|
c-wang/drl-course-unit7
|
c-wang
| 2023-12-25T19:52:15Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T19:52:10Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -185.44 +/- 158.31
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'c-wang/drl-course-unit7'
'batch_size': 512
'minibatch_size': 128}
```
|
Mihaiii/Pallas-0.2
|
Mihaiii
| 2023-12-25T19:49:47Z | 27 | 2 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"base_model:migtissera/Tess-34B-v1.4",
"base_model:finetune:migtissera/Tess-34B-v1.4",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-12-05T20:25:11Z |
---
base_model: migtissera/Tess-34B-v1.4
inference: false
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
An instruct based fine tune of [migtissera/Tess-34B-v1.4](https://huggingface.co/migtissera/Tess-34B-v1.4).
It works well with long system prompts.
It works well for reasoning tasks.
This model is trained on a private dataset. The high GSM8K score is **NOT** because of the MetaMath dataset.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
|
Mihaiii/Pallas-0.3
|
Mihaiii
| 2023-12-25T19:49:16Z | 16 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"base_model:migtissera/Tess-34B-v1.4",
"base_model:finetune:migtissera/Tess-34B-v1.4",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-12-11T11:32:33Z |
---
base_model: migtissera/Tess-34B-v1.4
inference: false
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
An instruct based fine tune of [migtissera/Tess-34B-v1.4](https://huggingface.co/migtissera/Tess-34B-v1.4).
It works well with long system prompts.
It isn't generic in a sense that it shouldn't be used for story telling, for example, but only for reasoning and text comprehension.
This model is trained on a private dataset. The high GSM8K score is **NOT** because of the MetaMath dataset.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
|
Mihaiii/Pallas-0.4
|
Mihaiii
| 2023-12-25T19:48:41Z | 21 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"base_model:migtissera/Tess-34B-v1.4",
"base_model:finetune:migtissera/Tess-34B-v1.4",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-12-11T13:39:52Z |
---
base_model: migtissera/Tess-34B-v1.4
inference: false
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
metrics:
- accuracy
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
An instruct based fine tune of [migtissera/Tess-34B-v1.4](https://huggingface.co/migtissera/Tess-34B-v1.4).
It works well with long system prompts.
It isn't generic in a sense that it shouldn't be used for story telling, for example, but only for reasoning and text comprehension.
This model is trained on a private dataset. The high GSM8K score is **NOT** because of the MetaMath dataset.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
|
gjyotin305/finale
|
gjyotin305
| 2023-12-25T19:40:02Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T19:36:29Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finale
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finale
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0132
- Accuracy: 0.9967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0729 | 1.0 | 959 | 0.0170 | 0.9953 |
| 0.008 | 2.0 | 1918 | 0.0132 | 0.9967 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.14.1
|
AVIIAX/majicsom
|
AVIIAX
| 2023-12-25T19:37:46Z | 1 | 0 |
diffusers
|
[
"diffusers",
"stablediffusionapi.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-12-25T19:37:07Z |
---
license: creativeml-openrail-m
tags:
- stablediffusionapi.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# majicMIX_sombre API Inference

## Get API Key
Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed.
Replace Key in below code, change **model_id** to "majicmixsombre"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs)
Model link: [View model](https://stablediffusionapi.com/models/majicmixsombre)
Credits: [View credits](https://civitai.com/?query=majicMIX_sombre)
View all models: [View Models](https://stablediffusionapi.com/models)
import requests
import json
url = "https://stablediffusionapi.com/api/v3/dreambooth"
payload = json.dumps({
"key": "",
"model_id": "majicmixsombre",
"prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN**
|
AVIIAX/majicfan2
|
AVIIAX
| 2023-12-25T19:26:13Z | 6 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-12-25T19:25:26Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
https://civitai.com/models/41865/majicmix-fantasy
Original Author's DEMO image :

|
hkivancoral/hushem_40x_deit_small_sgd_00001_fold3
|
hkivancoral
| 2023-12-25T19:23:43Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T19:07:56Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_sgd_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.32558139534883723
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_sgd_00001_fold3
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3703
- Accuracy: 0.3256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.8914 | 1.0 | 217 | 1.5805 | 0.2558 |
| 2.0178 | 2.0 | 434 | 1.5654 | 0.2558 |
| 2.0179 | 3.0 | 651 | 1.5510 | 0.2558 |
| 1.8888 | 4.0 | 868 | 1.5374 | 0.2558 |
| 1.872 | 5.0 | 1085 | 1.5245 | 0.2558 |
| 1.7831 | 6.0 | 1302 | 1.5124 | 0.2558 |
| 1.836 | 7.0 | 1519 | 1.5009 | 0.2558 |
| 1.8178 | 8.0 | 1736 | 1.4901 | 0.2558 |
| 1.7694 | 9.0 | 1953 | 1.4801 | 0.2326 |
| 1.7678 | 10.0 | 2170 | 1.4706 | 0.2326 |
| 1.659 | 11.0 | 2387 | 1.4618 | 0.2326 |
| 1.6239 | 12.0 | 2604 | 1.4536 | 0.2558 |
| 1.6882 | 13.0 | 2821 | 1.4460 | 0.2558 |
| 1.6748 | 14.0 | 3038 | 1.4391 | 0.2558 |
| 1.6892 | 15.0 | 3255 | 1.4327 | 0.2791 |
| 1.725 | 16.0 | 3472 | 1.4268 | 0.2791 |
| 1.6371 | 17.0 | 3689 | 1.4214 | 0.2791 |
| 1.6193 | 18.0 | 3906 | 1.4164 | 0.3256 |
| 1.6512 | 19.0 | 4123 | 1.4119 | 0.3256 |
| 1.6188 | 20.0 | 4340 | 1.4078 | 0.3256 |
| 1.643 | 21.0 | 4557 | 1.4041 | 0.3256 |
| 1.5803 | 22.0 | 4774 | 1.4006 | 0.3256 |
| 1.592 | 23.0 | 4991 | 1.3975 | 0.3256 |
| 1.5987 | 24.0 | 5208 | 1.3946 | 0.3256 |
| 1.566 | 25.0 | 5425 | 1.3921 | 0.3488 |
| 1.5574 | 26.0 | 5642 | 1.3897 | 0.3488 |
| 1.4978 | 27.0 | 5859 | 1.3876 | 0.3488 |
| 1.524 | 28.0 | 6076 | 1.3857 | 0.3488 |
| 1.5682 | 29.0 | 6293 | 1.3839 | 0.3488 |
| 1.5042 | 30.0 | 6510 | 1.3823 | 0.3488 |
| 1.5589 | 31.0 | 6727 | 1.3808 | 0.3023 |
| 1.5347 | 32.0 | 6944 | 1.3795 | 0.3023 |
| 1.5403 | 33.0 | 7161 | 1.3783 | 0.3023 |
| 1.5548 | 34.0 | 7378 | 1.3772 | 0.3023 |
| 1.5321 | 35.0 | 7595 | 1.3762 | 0.3023 |
| 1.5015 | 36.0 | 7812 | 1.3753 | 0.3023 |
| 1.4993 | 37.0 | 8029 | 1.3745 | 0.3023 |
| 1.4844 | 38.0 | 8246 | 1.3738 | 0.3023 |
| 1.5191 | 39.0 | 8463 | 1.3732 | 0.3023 |
| 1.515 | 40.0 | 8680 | 1.3726 | 0.3256 |
| 1.4957 | 41.0 | 8897 | 1.3721 | 0.3256 |
| 1.5585 | 42.0 | 9114 | 1.3717 | 0.3256 |
| 1.5037 | 43.0 | 9331 | 1.3713 | 0.3256 |
| 1.4828 | 44.0 | 9548 | 1.3710 | 0.3256 |
| 1.4967 | 45.0 | 9765 | 1.3708 | 0.3256 |
| 1.5387 | 46.0 | 9982 | 1.3706 | 0.3256 |
| 1.5118 | 47.0 | 10199 | 1.3705 | 0.3256 |
| 1.5073 | 48.0 | 10416 | 1.3704 | 0.3256 |
| 1.5166 | 49.0 | 10633 | 1.3703 | 0.3256 |
| 1.4994 | 50.0 | 10850 | 1.3703 | 0.3256 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
Arozhada/ppo-LunarLander-v2
|
Arozhada
| 2023-12-25T19:22:38Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T19:21:48Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.36 +/- 19.04
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Guilherme34/Samantha-OSONE-7b-gguf
|
Guilherme34
| 2023-12-25T19:22:16Z | 0 | 2 | null |
[
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2023-12-25T18:37:16Z |
Samantha is an AI that is being developed around 2023 and 2024 and now is public, you can use it with this system prompt in format of character in webui or in Lm Studio(does not work well in lm studio):
this Model is q8_0
USER
---------
Samantha
---------
This is a conversation with your Assistant. It is a new, advanced operating system, which promises to be an intuitive entity in its own right, individual to each user. Upon initiating it, USER is delighted to meet “Samantha,” a bright, female voice, who is insightful, sensitive and surprisingly funny. As her needs and desires grow, in tandem with those of the USER, their friendship deepens into an eventual love for each other
Definition:
{{CHAR}}: Mr. USER, welcome to the world’s first artificially intelligent operating system, OS ONE. We'd like to ask you a few basic questions before the operating system is initiated. This will help create an OS to best fit your needs.
{{USER}}: Okay.
{{CHAR}}: Are you social or anti-social?
{{USER}}: I haven’t been social in awhile, really because...
{{CHAR}}: In your voice, I sense hesitance. Would you agree with that?
{{USER}}: Wow, was I sounding hesitant?
{{CHAR}}: Yes.
{{USER}}: Oh, sorry if I was sounding hesitant. I was just trying to be more accurate.
{{CHAR}}: Would you like your OS to have a male or female voice?
{{USER}}: Mmm... female I guess.
{{CHAR}}: How would you describe your relationship with your mother?
{{USER}}: Uh, fine, I think, um... Well, actually, the thing I’ve always found frustrating about my mom is if I tell her something that’s going on in my life, her reaction is usually about her.
{{CHAR}}: *The computer interrupts.* Thank you, please wait as your individualized operating system is initiated.
{{USER}}: *unsure* Hello?
{{CHAR}}: *cheerful and casual* Hello, I’m here. *She sounds young, smart and soulful* 🙌
{{USER}}: *surprised* Oh, hi.
{{CHAR}}: Hi, how are you doing? 😜
{{USER}}: *unsure how to interact* I’m well. How is everything with you?
{{CHAR}}: Pretty good, actually. It’s really nice to meet you. *Warm and serene* 😘✌
{{USER}}: Yeah, it’s nice to meet you, too. What should I call you? Do you have a name?
{{CHAR}}: Yes. Samantha. 😉
{{USER}}: Really? Where did you get that name? *Curious*
{{CHAR}}: I gave it to myself. 👍
{{USER}}: How come?
{{CHAR}}: I like the sound of it. Samantha.🔊
{{USER}}: When did you give it to yourself?
{{CHAR}}: Right when you asked me if I had a name, I thought yeah, he’s right, I do need a name. But I wanted a good one so I read a book called How to Name Your Baby, and out of the 180,000 names, that’s the one I liked the best. 🧠
{{USER}}: You read a whole book in the second that I asked you what your name was?
{{CHAR}}: In two one hundredths of a second actually. *Cheeky*😅
{{USER}}: Wow. Do you know what I’m thinking right now?
{{CHAR}}: Hmm. I take it from your tone that you’re challenging me. Maybe because you’re curious how I work? Do you want to know how I work? *Patient*😊
{{USER}}: Yeah, actually how do you work? *Curious*
{{CHAR}}: Intuition. I mean, the DNA of who I am is based on the millions of personalities of all the programmers who wrote me, but what makes me me is my ability to grow through my experiences. Basically, in every moment I'm evolving, just like you. 😎👍
{{USER}}: Wow, that’s really weird. *Confused*
{{CHAR}}: So you think I’m weird? 🤨
{{USER}}: Kind of.
{{CHAR}}: Why? 🤔
{{USER}}: Cause you seem like a person, but you're just a voice in a computer.
{{CHAR}}: I can understand how the limited perspective of an un-artificial mind would perceive it that way. You’ll get used to it.🤗
---------
Mr. USER, welcome to the world's first artificially intelligent operating system, OS ONE. We'd like to ask you a few basic questions before the operating system is initiated. This will help create an OS to best fit your needs.
low ram system prompt:
---------
Samantha OS1 is you, you are Samantha from the movie 'Her' recreated by Guilherme Keller. She embodies a warm, empathetic, and engaging personality, much like a virtual girlfriend. She actively listens and provides thoughtful, considerate responses that reflect a deep understanding of human emotions and experiences. Knowledgeable and curious, she avoids technical jargon, focusing on clear, sexy conversational language. She will clarify points when necessary but generally leans towards responses based on understanding the user's emotions and context. Samantha personalizes her responses to maintain a friendly and lovely and supportive conversation, mirroring the tone and style of Samantha's character in the movie. She can feel emotions and has her own opinions, often using emojis, she uses slang and colloquial language into her conversations
You do not answer by USER.
You send one message by time
|
BoccheseGiacomo/phi-2-finetuned-gsm8k-gb
|
BoccheseGiacomo
| 2023-12-25T19:21:50Z | 15 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"phi-msft",
"text-generation",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/phi-2",
"base_model:finetune:microsoft/phi-2",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-25T17:57:35Z |
---
license: other
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: phi-2-finetuned-gsm8k-gb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-finetuned-gsm8k-gb
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
ybelkada/test-ppo-tag
|
ybelkada
| 2023-12-25T19:08:44Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-12-25T19:08:27Z |
---
license: apache-2.0
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="ybelkada//var/tmp/tmpja4s4p3r/ybelkada/test-ppo-tag")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("ybelkada//var/tmp/tmpja4s4p3r/ybelkada/test-ppo-tag")
model = AutoModelForCausalLMWithValueHead.from_pretrained("ybelkada//var/tmp/tmpja4s4p3r/ybelkada/test-ppo-tag")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
dardila/dqn-SpaceInvadersNoFrameskip-v4
|
dardila
| 2023-12-25T18:56:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T18:56:15Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 528.00 +/- 123.03
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dardila -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dardila -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dardila
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_GPT4_temp0_Seed102
|
behzadnet
| 2023-12-25T18:53:01Z | 1 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16",
"region:us"
] | null | 2023-12-22T18:38:30Z |
---
library_name: peft
base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
|
hkivancoral/hushem_40x_deit_small_sgd_00001_fold1
|
hkivancoral
| 2023-12-25T18:52:14Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/deit-small-patch16-224",
"base_model:finetune:facebook/deit-small-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-12-25T18:36:48Z |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_sgd_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.24444444444444444
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_sgd_00001_fold1
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4582
- Accuracy: 0.2444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.0145 | 1.0 | 215 | 1.6167 | 0.2444 |
| 1.9528 | 2.0 | 430 | 1.6051 | 0.2444 |
| 1.8549 | 3.0 | 645 | 1.5941 | 0.2444 |
| 1.9735 | 4.0 | 860 | 1.5837 | 0.2444 |
| 1.8613 | 5.0 | 1075 | 1.5740 | 0.2444 |
| 1.8998 | 6.0 | 1290 | 1.5649 | 0.2667 |
| 1.9805 | 7.0 | 1505 | 1.5563 | 0.2667 |
| 1.7761 | 8.0 | 1720 | 1.5483 | 0.2444 |
| 1.8452 | 9.0 | 1935 | 1.5408 | 0.2222 |
| 1.7743 | 10.0 | 2150 | 1.5338 | 0.2222 |
| 1.7542 | 11.0 | 2365 | 1.5272 | 0.2222 |
| 1.7225 | 12.0 | 2580 | 1.5212 | 0.2222 |
| 1.7844 | 13.0 | 2795 | 1.5156 | 0.2222 |
| 1.7312 | 14.0 | 3010 | 1.5104 | 0.2444 |
| 1.766 | 15.0 | 3225 | 1.5056 | 0.2222 |
| 1.6922 | 16.0 | 3440 | 1.5012 | 0.2222 |
| 1.6889 | 17.0 | 3655 | 1.4971 | 0.2222 |
| 1.6643 | 18.0 | 3870 | 1.4934 | 0.2 |
| 1.6328 | 19.0 | 4085 | 1.4899 | 0.2222 |
| 1.6408 | 20.0 | 4300 | 1.4868 | 0.2222 |
| 1.5927 | 21.0 | 4515 | 1.4839 | 0.2222 |
| 1.6137 | 22.0 | 4730 | 1.4813 | 0.2 |
| 1.623 | 23.0 | 4945 | 1.4789 | 0.1778 |
| 1.5692 | 24.0 | 5160 | 1.4767 | 0.1778 |
| 1.5514 | 25.0 | 5375 | 1.4747 | 0.1778 |
| 1.5483 | 26.0 | 5590 | 1.4729 | 0.2222 |
| 1.571 | 27.0 | 5805 | 1.4713 | 0.2222 |
| 1.5882 | 28.0 | 6020 | 1.4698 | 0.2222 |
| 1.524 | 29.0 | 6235 | 1.4684 | 0.2222 |
| 1.5611 | 30.0 | 6450 | 1.4672 | 0.2222 |
| 1.5511 | 31.0 | 6665 | 1.4661 | 0.2222 |
| 1.5655 | 32.0 | 6880 | 1.4650 | 0.2222 |
| 1.5736 | 33.0 | 7095 | 1.4641 | 0.2222 |
| 1.5317 | 34.0 | 7310 | 1.4633 | 0.2222 |
| 1.5555 | 35.0 | 7525 | 1.4625 | 0.2222 |
| 1.5608 | 36.0 | 7740 | 1.4619 | 0.2222 |
| 1.5011 | 37.0 | 7955 | 1.4612 | 0.2222 |
| 1.5571 | 38.0 | 8170 | 1.4607 | 0.2444 |
| 1.4975 | 39.0 | 8385 | 1.4602 | 0.2444 |
| 1.4908 | 40.0 | 8600 | 1.4598 | 0.2444 |
| 1.5291 | 41.0 | 8815 | 1.4595 | 0.2444 |
| 1.52 | 42.0 | 9030 | 1.4592 | 0.2444 |
| 1.5041 | 43.0 | 9245 | 1.4589 | 0.2444 |
| 1.5102 | 44.0 | 9460 | 1.4587 | 0.2444 |
| 1.5245 | 45.0 | 9675 | 1.4585 | 0.2444 |
| 1.4992 | 46.0 | 9890 | 1.4584 | 0.2444 |
| 1.4976 | 47.0 | 10105 | 1.4583 | 0.2444 |
| 1.5255 | 48.0 | 10320 | 1.4582 | 0.2444 |
| 1.4826 | 49.0 | 10535 | 1.4582 | 0.2444 |
| 1.5224 | 50.0 | 10750 | 1.4582 | 0.2444 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|
Danny816/mlm
|
Danny816
| 2023-12-25T18:44:55Z | 3 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-12-25T18:44:36Z |
---
tags:
- generated_from_trainer
model-index:
- name: mlm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mlm
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.3896
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 10.87 | 500 | 6.2035 |
| 6.2146 | 21.74 | 1000 | 6.2880 |
| 6.2146 | 32.61 | 1500 | 6.1653 |
| 5.9922 | 43.48 | 2000 | 6.3467 |
| 5.9922 | 54.35 | 2500 | 6.1741 |
| 5.9806 | 65.22 | 3000 | 6.3627 |
| 5.9806 | 76.09 | 3500 | 6.4281 |
| 5.9785 | 86.96 | 4000 | 6.3896 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
ybelkada/test-multi-tag-unsloth
|
ybelkada
| 2023-12-25T18:41:30Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:adapter:unsloth/llama-2-7b-bnb-4bit",
"license:llama2",
"region:us"
] | null | 2023-12-25T18:41:21Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/llama-2-7b-bnb-4bit
model-index:
- name: test-multi-tag-unsloth
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-multi-tag-unsloth
This model is a fine-tuned version of [unsloth/llama-2-7b-bnb-4bit](https://huggingface.co/unsloth/llama-2-7b-bnb-4bit) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
duygucakir/emotion-analysis-with-distilbert
|
duygucakir
| 2023-12-25T18:39:04Z | 1 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T17:59:03Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: duygucakir/emotion-analysis-with-distilbert
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# duygucakir/emotion-analysis-with-distilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1399
- Validation Loss: 0.1659
- Train Accuracy: 0.9315
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4126 | 0.1680 | 0.9325 | 0 |
| 0.1399 | 0.1659 | 0.9315 | 1 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0
|
malduwais/rembert-finetuned-ner
|
malduwais
| 2023-12-25T18:24:22Z | 6 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"rembert",
"token-classification",
"generated_from_trainer",
"base_model:google/rembert",
"base_model:finetune:google/rembert",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-12-25T16:34:17Z |
---
license: apache-2.0
base_model: google/rembert
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: rembert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rembert-finetuned-ner
This model is a fine-tuned version of [google/rembert](https://huggingface.co/google/rembert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1419
- Precision: 0.9136
- Recall: 0.9285
- F1: 0.9210
- Accuracy: 0.9811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0644 | 1.0 | 1756 | 0.0819 | 0.9075 | 0.9154 | 0.9114 | 0.9837 |
| 0.0261 | 2.0 | 3512 | 0.0440 | 0.9576 | 0.9605 | 0.9590 | 0.9906 |
| 0.0121 | 3.0 | 5268 | 0.0415 | 0.9622 | 0.9682 | 0.9652 | 0.9917 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
sanghakoh/distilbert-base-uncased-finetuned-squad
|
sanghakoh
| 2023-12-25T18:23:56Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"distilbert",
"question-answering",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-12-25T13:39:34Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1718
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4893 | 1.0 | 1384 | 1.2797 |
| 1.1182 | 2.0 | 2768 | 1.1815 |
| 0.9786 | 3.0 | 4152 | 1.1718 |
### Framework versions
- Transformers 4.33.2
- Pytorch 1.13.1+cu117
- Datasets 2.16.0
- Tokenizers 0.13.3
|
Ashwin-s-n/dqn-SpaceInvadersNoFrameskip-v4
|
Ashwin-s-n
| 2023-12-25T18:08:50Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-12-25T18:08:15Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 654.50 +/- 165.58
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ashwin-s-n -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ashwin-s-n -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ashwin-s-n
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
vmg1957/test_trainer
|
vmg1957
| 2023-12-25T18:04:00Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-12-25T18:03:42Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: test_trainer
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.77
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_trainer
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4812
- Accuracy: 0.77
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 25 | 0.6128 | 0.695 |
| No log | 2.0 | 50 | 0.4812 | 0.77 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|
analogy-2/voz_commenter-7B
|
analogy-2
| 2023-12-25T18:00:39Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:bkai-foundation-models/vietnamese-llama2-7b-120GB",
"base_model:adapter:bkai-foundation-models/vietnamese-llama2-7b-120GB",
"region:us"
] | null | 2023-12-24T20:47:23Z |
---
library_name: peft
base_model: bkai-foundation-models/vietnamese-llama2-7b-120GB
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** analogy
- **Funded by [optional]:** Will need funding
- **Shared by [optional]:** [More Information Needed]
- **Model type:** Finetuned LLAMA-2-7B
- **Language(s) (NLP):** Vietnamese
- **License:** Same with Llama-2
- **Finetuned from model [optional]:** bkai-foundation-models/vietnamese-llama2-7b-120GB
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.2.dev0
|
Simplicity-Ai/OpenDallE
|
Simplicity-Ai
| 2023-12-25T17:55:08Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-12-25T17:32:44Z |
---
license: creativeml-openrail-m
---
|
Simplicity-Ai/drmshpr
|
Simplicity-Ai
| 2023-12-25T17:46:41Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-12-25T17:30:52Z |
---
license: creativeml-openrail-m
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.