modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
Nadahass/MREG-LORA8-13b-4batches-300Steps-q8-lr3e-4
Nadahass
2024-05-08T17:43:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T17:43:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
btcsinc/unsloth-llama-3-8b-bnb-4bit-spider
btcsinc
2024-05-08T17:39:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T17:39:05Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** btcsinc - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
era28/gemma-it-detoxification
era28
2024-05-08T17:35:40Z
187
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T17:32:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jialinselenasong/scibert-finetuned-ner
jialinselenasong
2024-05-08T17:35:23Z
111
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:allenai/scibert_scivocab_uncased", "base_model:finetune:allenai/scibert_scivocab_uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-08T17:33:22Z
--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scibert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-finetuned-ner This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4251 - Precision: 0.6295 - Recall: 0.6818 - F1: 0.6546 - Accuracy: 0.8532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 305 | 0.4221 | 0.6046 | 0.6641 | 0.6330 | 0.8486 | | 0.4525 | 2.0 | 610 | 0.4192 | 0.6144 | 0.6755 | 0.6435 | 0.8498 | | 0.4525 | 3.0 | 915 | 0.4251 | 0.6295 | 0.6818 | 0.6546 | 0.8532 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
Nadahass/MREG-LORA4-7b-4batches-1107Steps-q8-lr2e-5
Nadahass
2024-05-08T17:34:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T17:34:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JohnDoe70/SQAA_Instruct
JohnDoe70
2024-05-08T17:29:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T16:27:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ugurcanvurgun/finetuned_Mistral_7B_v_0_2
ugurcanvurgun
2024-05-08T17:28:26Z
7
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T16:44:24Z
--- license: apache-2.0 ---
DUAL-GPO-2/zephyr-7b-gpo-v2-i0
DUAL-GPO-2
2024-05-08T17:22:52Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:DUAL-GPO/zephyr-7b-gpo-final-i0", "base_model:adapter:DUAL-GPO/zephyr-7b-gpo-final-i0", "license:mit", "region:us" ]
null
2024-05-08T03:22:49Z
--- license: mit library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: DUAL-GPO/zephyr-7b-gpo-final-i0 model-index: - name: zephyr-7b-gpo-v2-i0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-gpo-v2-i0 This model is a fine-tuned version of [DUAL-GPO/zephyr-7b-gpo-final-i0](https://huggingface.co/DUAL-GPO/zephyr-7b-gpo-final-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.14.6 - Tokenizers 0.15.2
maneln/fine-tuning-gpt2-test
maneln
2024-05-08T17:20:53Z
0
0
transformers
[ "transformers", "safetensors", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
question-answering
2024-05-08T17:08:33Z
--- library_name: transformers pipeline_tag: question-answering --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wufuheng/OrpoLlama-3-8B
wufuheng
2024-05-08T17:20:30Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T17:08:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NCTuanAnh/vietnamese_license_plate_detection_DeRT
NCTuanAnh
2024-05-08T17:19:25Z
53
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
2024-05-06T17:06:00Z
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using ****: - Repo: [More Information Needed] - Docs: [More Information Needed]
justshim/ppo-LunarLander-v2-test
justshim
2024-05-08T17:11:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-08T17:10:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -159.12 +/- 39.55 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
miraiminds/evolutionary-mergingLLM-Hermes-Dans-zephyr
miraiminds
2024-05-08T17:10:19Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2212.04089", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T17:00:32Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # final_merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 as a base. ### Models Merged The following models were included in the merge: * /home/evol_merge_storage/input_models/zephyr-7b-beta_2449712360 * /home/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805 * /home/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843 ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 dtype: bfloat16 merge_method: task_arithmetic parameters: int8_mask: 1.0 normalize: 0.0 slices: - sources: - layer_range: [0, 8] model: /home/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805 parameters: weight: 0.45632162073777516 - layer_range: [0, 8] model: /home/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843 parameters: weight: 0.6468013824217197 - layer_range: [0, 8] model: /home/evol_merge_storage/input_models/zephyr-7b-beta_2449712360 parameters: weight: 0.04013732886365818 - layer_range: [0, 8] model: /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 - sources: - layer_range: [8, 16] model: /home/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805 parameters: weight: 0.39991499422381294 - layer_range: [8, 16] model: /home/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843 parameters: weight: 0.3033908462486953 - layer_range: [8, 16] model: /home/evol_merge_storage/input_models/zephyr-7b-beta_2449712360 parameters: weight: 0.3250623744211742 - layer_range: [8, 16] model: /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 - sources: - layer_range: [16, 24] model: /home/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805 parameters: weight: 0.6202885707451035 - layer_range: [16, 24] model: /home/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843 parameters: weight: 0.235874597687366 - layer_range: [16, 24] model: /home/evol_merge_storage/input_models/zephyr-7b-beta_2449712360 parameters: weight: 0.27733993810853536 - layer_range: [16, 24] model: /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 - sources: - layer_range: [24, 32] model: /home/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805 parameters: weight: 0.5484088078896818 - layer_range: [24, 32] model: /home/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843 parameters: weight: 0.876059424739865 - layer_range: [24, 32] model: /home/evol_merge_storage/input_models/zephyr-7b-beta_2449712360 parameters: weight: 0.26196309089548436 - layer_range: [24, 32] model: /home/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 ```
AbhishekSureddy/llama-7b-sft-alpaca-20k
AbhishekSureddy
2024-05-08T17:08:42Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-08T16:48:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
terry69/mistral-1p-full
terry69
2024-05-08T17:08:16Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T17:06:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vsevolodl/prometheus-8x7b-v2.0-GGUF
vsevolodl
2024-05-08T17:05:57Z
31
3
transformers
[ "transformers", "gguf", "text2text-generation", "en", "dataset:prometheus-eval/Feedback-Collection", "dataset:prometheus-eval/Preference-Collection", "arxiv:2405.01535", "arxiv:2310.08491", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text2text-generation
2024-05-07T05:25:56Z
--- datasets: - prometheus-eval/Feedback-Collection - prometheus-eval/Preference-Collection library_name: transformers pipeline_tag: text2text-generation tags: - text2text-generation license: apache-2.0 language: - en --- # Links for Reference - **Quants for:** https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0 - **Homepage: In Progress** - **Repository:** https://github.com/prometheus-eval/prometheus-eval - **Paper:** https://arxiv.org/abs/2405.01535 - **Point of Contact:** seungone@cmu.edu # TL;DR Prometheus 2 is an alternative of GPT-4 evaluation when doing fine-grained evaluation of an underlying LLM & a Reward model for Reinforcement Learning from Human Feedback (RLHF). ![image/png](https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0/resolve/main/finegrained_eval.JPG) Prometheus 2 is a language model using [Mistral-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base model. It is fine-tuned on 100K feedback within the [Feedback Collection](https://huggingface.co/datasets/prometheus-eval/Feedback-Collection) and 200K feedback within the [Preference Collection](https://huggingface.co/datasets/prometheus-eval/Preference-Collection). It is also made by weight merging to support both absolute grading (direct assessment) and relative grading (pairwise ranking). The surprising thing is that we find weight merging also improves performance on each format. # Model Details ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Related Models:** [All Prometheus Checkpoints](https://huggingface.co/models?search=prometheus-eval/Prometheus) - **Resources for more information:** - [Research paper](https://arxiv.org/abs/2405.01535) - [GitHub Repo](https://github.com/prometheus-eval/prometheus-eval) Prometheus is trained with two different sizes (7B and 8x7B). You could check the 7B sized LM on [this page](https://huggingface.co/prometheus-eval/prometheus-2-7b-v2.0). Also, check out our dataset as well on [this page](https://huggingface.co/datasets/prometheus-eval/Feedback-Collection) and [this page](https://huggingface.co/datasets/prometheus-eval/Preference-Collection). ## Prompt Format We have made wrapper functions and classes to conveniently use Prometheus 2 at [our github repository](https://github.com/prometheus-eval/prometheus-eval). We highly recommend you use it! However, if you just want to use the model for your use case, please refer to the prompt format below. Note that absolute grading and relative grading requires different prompt templates and system prompts. ### Absolute Grading (Direct Assessment) Prometheus requires 4 components in the input: An instruction, a response to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below. You should fill in the instruction, response, reference answer, criteria description, and score description for score in range of 1 to 5. Fix the components with \{text\} inside. ``` ###Task Description: An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given. 1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general. 2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric. 3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\" 4. Please do not generate any other opening, closing, and explanations. ###The instruction to evaluate: {orig_instruction} ###Response to evaluate: {orig_response} ###Reference Answer (Score 5): {orig_reference_answer} ###Score Rubrics: [{orig_criteria}] Score 1: {orig_score1_description} Score 2: {orig_score2_description} Score 3: {orig_score3_description} Score 4: {orig_score4_description} Score 5: {orig_score5_description} ###Feedback: ``` After this, you should apply the conversation template of Mistral (not applying it might lead to unexpected behaviors). You can find the conversation class at this [link](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). ``` conv = get_conv_template("mistral") conv.set_system_message("You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria, ensuring each assessment reflects the absolute standards set for performance.") conv.append_message(conv.roles[0], dialogs['instruction']) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() x = tokenizer(prompt,truncation=False) ``` As a result, a feedback and score decision will be generated, divided by a separating phrase ```[RESULT]``` ### Relative Grading (Pairwise Ranking) Prometheus requires 4 components in the input: An instruction, 2 responses to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below. You should fill in the instruction, 2 responses, reference answer, and criteria description. Fix the components with \{text\} inside. ``` ###Task Description: An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a evaluation criteria are given. 1. Write a detailed feedback that assess the quality of two responses strictly based on the given score rubric, not evaluating in general. 2. After writing a feedback, choose a better response between Response A and Response B. You should refer to the score rubric. 3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (A or B)" 4. Please do not generate any other opening, closing, and explanations. ###Instruction: {orig_instruction} ###Response A: {orig_response_A} ###Response B: {orig_response_B} ###Reference Answer: {orig_reference_answer} ###Score Rubric: {orig_criteria} ###Feedback: ``` After this, you should apply the conversation template of Mistral (not applying it might lead to unexpected behaviors). You can find the conversation class at this [link](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). ``` conv = get_conv_template("mistral") conv.set_system_message("You are a fair judge assistant assigned to deliver insightful feedback that compares individual performances, highlighting how each stands relative to others within the same cohort.") conv.append_message(conv.roles[0], dialogs['instruction']) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() x = tokenizer(prompt,truncation=False) ``` As a result, a feedback and score decision will be generated, divided by a separating phrase ```[RESULT]``` ## License Feedback Collection, Preference Collection, and Prometheus 2 are subject to OpenAI's Terms of Use for the generated data. If you suspect any violations, please reach out to us. # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{kim2023prometheus, title={Prometheus: Inducing Fine-grained Evaluation Capability in Language Models}, author={Seungone Kim and Jamin Shin and Yejin Cho and Joel Jang and Shayne Longpre and Hwaran Lee and Sangdoo Yun and Seongjin Shin and Sungdong Kim and James Thorne and Minjoon Seo}, year={2023}, eprint={2310.08491}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{kim2024prometheus, title={Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models}, author={Seungone Kim and Juyoung Suk and Shayne Longpre and Bill Yuchen Lin and Jamin Shin and Sean Welleck and Graham Neubig and Moontae Lee and Kyungjae Lee and Minjoon Seo}, year={2024}, eprint={2405.01535}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
aixsatoshi/Ex-karakuri-8x12B-chat-v2
aixsatoshi
2024-05-08T17:05:11Z
41
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T06:18:00Z
--- license: apache-2.0 --- Meta-Llama-3-70bのセルフマージにより120Bにパラメーター数を拡大したモデルの高性能化が報告されています 今回高品質な日本語LLMである、[karakuri-ai/karakuri-lm-8x7b-chat-v0.1](https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-chat-v0.1)の精度を更に高めるために、"num_hidden_layers": 32、から、56への自己拡張マージを行いました。 マージに利用したスライスのインターバルから本モデル(Ex-karakuri-8x12B-chat-v2)が非マージ部分4層、[Ex-karakuri-8x12B-chat-v1](https://huggingface.co/aixsatoshi/Ex-karakuri-8x12B-chat-v1)は8層に設定しています It was inspired by large merges like: - [Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) - [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b) - [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0) - [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b) - [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0). ``` slices: - sources: - layer_range: [0, 4] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [2, 6] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [4, 8] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [6, 10] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [8, 12] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [10, 14] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [12, 16] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [14, 18] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [16, 20] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [18, 22] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [20, 24] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [22, 26] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [24, 28] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [26, 30] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 - sources: - layer_range: [28, 32] model: karakuri-ai/karakuri-lm-8x7b-chat-v0.1 merge_method: passthrough dtype: bfloat16 ```
NBA55/Final_Experiment_with_trained_model_Final_DPO_for_all_3_epoch_2_lr_5e_4
NBA55
2024-05-08T17:04:47Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T17:04:42Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kid502/sd-class-butterflies-32
kid502
2024-05-08T17:01:56Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-05-08T17:01:14Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('kid502/sd-class-butterflies-32') image = pipeline().images[0] image ```
StrangeSX/SeaLLM-7B-v2.5-ORPO-SARAA-M.GGUF
StrangeSX
2024-05-08T16:52:27Z
9
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:SeaLLMs/SeaLLM-7B-v2.5", "base_model:quantized:SeaLLMs/SeaLLM-7B-v2.5", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-08T16:49:46Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - gguf base_model: SeaLLMs/SeaLLM-7B-v2.5 --- # Uploaded model - **Developed by:** StrangeSX - **License:** apache-2.0 - **Finetuned from model :** SeaLLMs/SeaLLM-7B-v2.5 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xyh110sym/Llama3-262K-8B
xyh110sym
2024-05-08T16:49:08Z
0
0
transformers
[ "transformers", "safetensors", "mergekit", "peft", "endpoints_compatible", "region:us" ]
null
2024-05-08T15:56:24Z
--- base_model: [] library_name: transformers tags: - mergekit - peft --- # Untitled LoRA Model (1) This is a LoRA extracted from a language model. It was extracted using [mergekit](https://github.com/arcee-ai/mergekit). ## LoRA Details This LoRA adapter was extracted from /home/xiaoyuanhang/llamalora/Meta-Llama-3-8B-Instruct and uses /home/xiaoyuanhang/llamalora/Llama-3-8B-Instruct-262k as a base. ### Parameters The following command was used to extract this LoRA adapter: ```sh mergekit-extract-lora /home/xiaoyuanhang/llamalora/Llama-3-8B-Instruct-262k /home/xiaoyuanhang/llamalora/Meta-Llama-3-8B-Instruct OUTPUT_PATH --rank=32 ```
mp1704/gpt-neo-pt
mp1704
2024-05-08T16:48:41Z
107
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T16:47:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jialinselenasong/bert-finetuned-ner
jialinselenasong
2024-05-08T16:46:21Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-08T15:05:19Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4523 - Precision: 0.5873 - Recall: 0.6528 - F1: 0.6183 - Accuracy: 0.8526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 305 | 0.4440 | 0.5662 | 0.6348 | 0.5985 | 0.8407 | | 0.4907 | 2.0 | 610 | 0.4375 | 0.5692 | 0.6554 | 0.6093 | 0.8463 | | 0.4907 | 3.0 | 915 | 0.4523 | 0.5873 | 0.6528 | 0.6183 | 0.8526 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
StrangeSX/SeaLLM-7B-v2.5-ORPO-SARAA-S-GGUF
StrangeSX
2024-05-08T16:45:44Z
10
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:SeaLLMs/SeaLLM-7B-v2.5", "base_model:quantized:SeaLLMs/SeaLLM-7B-v2.5", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-08T16:42:55Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - gguf base_model: SeaLLMs/SeaLLM-7B-v2.5 --- # Uploaded model - **Developed by:** StrangeSX - **License:** apache-2.0 - **Finetuned from model :** SeaLLMs/SeaLLM-7B-v2.5 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
alexm-nm/tinyllama-24-gptq-8bit-channelwise
alexm-nm
2024-05-08T16:44:49Z
136
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
2024-05-08T16:36:36Z
--- license: apache-2.0 ---
DUAL-GPO/phi-2-gpo-renew2-b0.001-vllm-merge-20k-complete-i1
DUAL-GPO
2024-05-08T16:43:05Z
8
0
peft
[ "peft", "tensorboard", "safetensors", "phi", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "custom_code", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:DUAL-GPO/phi-2-gpo-final-renew2-i0", "base_model:adapter:DUAL-GPO/phi-2-gpo-final-renew2-i0", "license:apache-2.0", "region:us" ]
null
2024-05-08T13:21:30Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo base_model: DUAL-GPO/phi-2-gpo-final-renew2-i0 datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: phi-2-gpo-renew2-b0.001-vllm-merge-20k-complete-i1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-2-gpo-renew2-b0.001-vllm-merge-20k-complete-i1 This model is a fine-tuned version of [DUAL-GPO/phi-2-gpo-final-renew2-i0](https://huggingface.co/DUAL-GPO/phi-2-gpo-final-renew2-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2
ThatBlondeGuy/paper-250-epochs
ThatBlondeGuy
2024-05-08T16:41:53Z
0
0
null
[ "region:us" ]
null
2024-03-08T13:20:52Z
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65d00f14b104eb084a624002/Oy32_SgxGmzBZ3477xy2A.jpeg) a paper voice model from the new rock paper scissors show on nickeloden trained to 250 epochs, there is also a 200 epochs model! https://rock-paper-scissors.fandom.com/wiki/Rock,_Paper,_Scissors and here is a couple episodes https://youtu.be/tkUbE5Mz2m4?feature=shared please tag me if you use the model and if the model needs an improvement/ update contact me! at rayplayz2666@gmail.com here is a link to the sample audio: https://huggingface.co/rayplayz/paper-200-epochs/resolve/main/test.wav?download=true have a nice day! :) another sample audio link:https://huggingface.co/rayplayz/paper-200-epochs/resolve/main/test2.wav?download=true the final audio file test: https://huggingface.co/rayplayz/paper-200-epochs/resolve/main/test3.wav?download=true ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65d00f14b104eb084a624002/mOJkcbIlU06f3IxEqGx3h.webp)
hasnatz/exp1
hasnatz
2024-05-08T16:41:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T16:41:01Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** hasnatz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Richie1129/llama-3-finetune
Richie1129
2024-05-08T16:37:22Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-07T13:38:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alexm-nm/tinyllama-24-gptq-8bit-g128
alexm-nm
2024-05-08T16:35:58Z
3,937
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
2024-05-08T16:30:41Z
--- license: apache-2.0 ---
adityapwr/ppo-LunarLander-v2
adityapwr
2024-05-08T16:34:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-08T16:34:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 210.07 +/- 85.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
StrangeSX/SeaLLM-7B-v2.5-ORPO-SARAA-M-GGUF
StrangeSX
2024-05-08T16:31:53Z
14
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:SeaLLMs/SeaLLM-7B-v2.5", "base_model:quantized:SeaLLMs/SeaLLM-7B-v2.5", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-08T16:05:30Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - gguf base_model: SeaLLMs/SeaLLM-7B-v2.5 --- # Uploaded model - **Developed by:** StrangeSX - **License:** apache-2.0 - **Finetuned from model :** SeaLLMs/SeaLLM-7B-v2.5 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ebayes/amazonas-fern-latest
ebayes
2024-05-08T16:12:28Z
195
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-08T16:12:00Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ebayes/amazonas-fern-latest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7968992248062016 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ebayes/amazonas-fern-latest This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2619 - Accuracy: 0.7969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.9425 | 1.0 | 516 | 4.6442 | 0.2450 | | 4.4394 | 2.0 | 1032 | 4.1936 | 0.3271 | | 4.0242 | 3.0 | 1548 | 3.8147 | 0.3891 | | 3.6368 | 4.0 | 2064 | 3.4881 | 0.4403 | | 3.3168 | 5.0 | 2580 | 3.1849 | 0.4760 | | 2.9583 | 6.0 | 3096 | 2.9087 | 0.5054 | | 2.6652 | 7.0 | 3612 | 2.6435 | 0.5271 | | 2.3696 | 8.0 | 4128 | 2.4352 | 0.5442 | | 2.1322 | 9.0 | 4644 | 2.2335 | 0.5814 | | 1.8776 | 10.0 | 5160 | 2.0674 | 0.5922 | | 1.6773 | 11.0 | 5676 | 1.9474 | 0.6093 | | 1.5136 | 12.0 | 6192 | 1.8081 | 0.6264 | | 1.3341 | 13.0 | 6708 | 1.6931 | 0.6419 | | 1.2215 | 14.0 | 7224 | 1.5986 | 0.6481 | | 1.0886 | 15.0 | 7740 | 1.5309 | 0.6744 | | 0.9762 | 16.0 | 8256 | 1.4605 | 0.6760 | | 0.8322 | 17.0 | 8772 | 1.4038 | 0.6946 | | 0.7767 | 18.0 | 9288 | 1.3404 | 0.6961 | | 0.6943 | 19.0 | 9804 | 1.3143 | 0.7085 | | 0.6011 | 20.0 | 10320 | 1.2708 | 0.7256 | | 0.5585 | 21.0 | 10836 | 1.2777 | 0.7101 | | 0.5014 | 22.0 | 11352 | 1.2744 | 0.7147 | | 0.4704 | 23.0 | 11868 | 1.1907 | 0.7302 | | 0.3934 | 24.0 | 12384 | 1.1748 | 0.7442 | | 0.3616 | 25.0 | 12900 | 1.1897 | 0.7364 | | 0.3274 | 26.0 | 13416 | 1.1648 | 0.7426 | | 0.3062 | 27.0 | 13932 | 1.1899 | 0.7333 | | 0.2726 | 28.0 | 14448 | 1.1192 | 0.7488 | | 0.2425 | 29.0 | 14964 | 1.0887 | 0.7643 | | 0.2316 | 30.0 | 15480 | 1.0957 | 0.7674 | | 0.2321 | 31.0 | 15996 | 1.1206 | 0.7504 | | 0.1828 | 32.0 | 16512 | 1.1901 | 0.7426 | | 0.1675 | 33.0 | 17028 | 1.1317 | 0.7566 | | 0.1572 | 34.0 | 17544 | 1.1530 | 0.7380 | | 0.1453 | 35.0 | 18060 | 1.1519 | 0.7550 | | 0.1385 | 36.0 | 18576 | 1.1358 | 0.7690 | | 0.138 | 37.0 | 19092 | 1.1481 | 0.7628 | | 0.1244 | 38.0 | 19608 | 1.1959 | 0.7442 | | 0.1376 | 39.0 | 20124 | 1.1581 | 0.7659 | | 0.107 | 40.0 | 20640 | 1.1979 | 0.7628 | | 0.1219 | 41.0 | 21156 | 1.1915 | 0.7566 | | 0.1105 | 42.0 | 21672 | 1.2247 | 0.7550 | | 0.127 | 43.0 | 22188 | 1.1439 | 0.7736 | | 0.1022 | 44.0 | 22704 | 1.1729 | 0.7535 | | 0.1158 | 45.0 | 23220 | 1.2010 | 0.7535 | | 0.1045 | 46.0 | 23736 | 1.2051 | 0.7519 | | 0.103 | 47.0 | 24252 | 1.2006 | 0.7643 | | 0.0967 | 48.0 | 24768 | 1.1888 | 0.7581 | | 0.0963 | 49.0 | 25284 | 1.1814 | 0.7690 | | 0.0923 | 50.0 | 25800 | 1.1566 | 0.7705 | | 0.1071 | 51.0 | 26316 | 1.2239 | 0.7566 | | 0.081 | 52.0 | 26832 | 1.2263 | 0.7581 | | 0.0922 | 53.0 | 27348 | 1.1442 | 0.7628 | | 0.0787 | 54.0 | 27864 | 1.2122 | 0.7705 | | 0.0952 | 55.0 | 28380 | 1.3165 | 0.7504 | | 0.1057 | 56.0 | 28896 | 1.2726 | 0.7550 | | 0.1123 | 57.0 | 29412 | 1.2554 | 0.7597 | | 0.0703 | 58.0 | 29928 | 1.1242 | 0.7752 | | 0.094 | 59.0 | 30444 | 1.1734 | 0.7767 | | 0.0699 | 60.0 | 30960 | 1.2493 | 0.7550 | | 0.0731 | 61.0 | 31476 | 1.2414 | 0.7643 | | 0.0888 | 62.0 | 31992 | 1.3430 | 0.7473 | | 0.0737 | 63.0 | 32508 | 1.3174 | 0.7566 | | 0.0825 | 64.0 | 33024 | 1.3129 | 0.7597 | | 0.0821 | 65.0 | 33540 | 1.2509 | 0.7736 | | 0.0817 | 66.0 | 34056 | 1.2020 | 0.7736 | | 0.0754 | 67.0 | 34572 | 1.2447 | 0.7721 | | 0.0854 | 68.0 | 35088 | 1.2626 | 0.7767 | | 0.0755 | 69.0 | 35604 | 1.2202 | 0.7814 | | 0.0847 | 70.0 | 36120 | 1.2525 | 0.7612 | | 0.068 | 71.0 | 36636 | 1.2940 | 0.7674 | | 0.0648 | 72.0 | 37152 | 1.2585 | 0.7736 | | 0.0768 | 73.0 | 37668 | 1.2878 | 0.7597 | | 0.0771 | 74.0 | 38184 | 1.2685 | 0.7659 | | 0.0749 | 75.0 | 38700 | 1.2860 | 0.7721 | | 0.0615 | 76.0 | 39216 | 1.3085 | 0.7643 | | 0.0677 | 77.0 | 39732 | 1.3011 | 0.7674 | | 0.0673 | 78.0 | 40248 | 1.2077 | 0.7814 | | 0.0696 | 79.0 | 40764 | 1.2118 | 0.7860 | | 0.0714 | 80.0 | 41280 | 1.1952 | 0.7767 | | 0.0624 | 81.0 | 41796 | 1.2575 | 0.7690 | | 0.0604 | 82.0 | 42312 | 1.2816 | 0.7736 | | 0.0641 | 83.0 | 42828 | 1.3230 | 0.7643 | | 0.0574 | 84.0 | 43344 | 1.2876 | 0.7752 | | 0.0621 | 85.0 | 43860 | 1.2576 | 0.7845 | | 0.0639 | 86.0 | 44376 | 1.2486 | 0.7705 | | 0.0538 | 87.0 | 44892 | 1.2192 | 0.7845 | | 0.0518 | 88.0 | 45408 | 1.2171 | 0.7674 | | 0.0563 | 89.0 | 45924 | 1.3201 | 0.7581 | | 0.0531 | 90.0 | 46440 | 1.2414 | 0.7736 | | 0.0431 | 91.0 | 46956 | 1.3059 | 0.7736 | | 0.0655 | 92.0 | 47472 | 1.3307 | 0.7566 | | 0.0595 | 93.0 | 47988 | 1.2927 | 0.7659 | | 0.0707 | 94.0 | 48504 | 1.2667 | 0.7628 | | 0.0517 | 95.0 | 49020 | 1.2957 | 0.7597 | | 0.0579 | 96.0 | 49536 | 1.3340 | 0.7643 | | 0.0492 | 97.0 | 50052 | 1.3588 | 0.7535 | | 0.0472 | 98.0 | 50568 | 1.3074 | 0.7612 | | 0.0542 | 99.0 | 51084 | 1.2657 | 0.7705 | | 0.0689 | 100.0 | 51600 | 1.2943 | 0.7752 | | 0.0464 | 101.0 | 52116 | 1.2386 | 0.7953 | | 0.0589 | 102.0 | 52632 | 1.2717 | 0.7767 | | 0.0488 | 103.0 | 53148 | 1.2678 | 0.7814 | | 0.0554 | 104.0 | 53664 | 1.2711 | 0.7783 | | 0.0502 | 105.0 | 54180 | 1.2746 | 0.7721 | | 0.0383 | 106.0 | 54696 | 1.3002 | 0.7798 | | 0.0531 | 107.0 | 55212 | 1.2636 | 0.7891 | | 0.0379 | 108.0 | 55728 | 1.3156 | 0.7721 | | 0.042 | 109.0 | 56244 | 1.3668 | 0.7674 | | 0.0543 | 110.0 | 56760 | 1.2883 | 0.7783 | | 0.0522 | 111.0 | 57276 | 1.2913 | 0.7783 | | 0.0469 | 112.0 | 57792 | 1.2847 | 0.7767 | | 0.0598 | 113.0 | 58308 | 1.2642 | 0.7876 | | 0.0472 | 114.0 | 58824 | 1.3264 | 0.7752 | | 0.0405 | 115.0 | 59340 | 1.2648 | 0.7891 | | 0.0434 | 116.0 | 59856 | 1.3059 | 0.7798 | | 0.0481 | 117.0 | 60372 | 1.3373 | 0.7736 | | 0.0454 | 118.0 | 60888 | 1.3237 | 0.7736 | | 0.0504 | 119.0 | 61404 | 1.2956 | 0.7736 | | 0.0495 | 120.0 | 61920 | 1.3504 | 0.7705 | | 0.0424 | 121.0 | 62436 | 1.2852 | 0.7891 | | 0.0493 | 122.0 | 62952 | 1.2621 | 0.7891 | | 0.0421 | 123.0 | 63468 | 1.2755 | 0.7752 | | 0.0339 | 124.0 | 63984 | 1.2914 | 0.7891 | | 0.0415 | 125.0 | 64500 | 1.2959 | 0.7876 | | 0.035 | 126.0 | 65016 | 1.2724 | 0.7891 | | 0.0342 | 127.0 | 65532 | 1.2564 | 0.7798 | | 0.0411 | 128.0 | 66048 | 1.2493 | 0.7798 | | 0.0345 | 129.0 | 66564 | 1.2490 | 0.7891 | | 0.0365 | 130.0 | 67080 | 1.2560 | 0.7969 | | 0.0304 | 131.0 | 67596 | 1.2466 | 0.7876 | | 0.0361 | 132.0 | 68112 | 1.2691 | 0.7953 | | 0.0387 | 133.0 | 68628 | 1.2849 | 0.7860 | | 0.0361 | 134.0 | 69144 | 1.2731 | 0.7891 | | 0.0334 | 135.0 | 69660 | 1.2649 | 0.7907 | | 0.0368 | 136.0 | 70176 | 1.2562 | 0.7953 | | 0.0395 | 137.0 | 70692 | 1.2851 | 0.7891 | | 0.0397 | 138.0 | 71208 | 1.2767 | 0.7891 | | 0.0433 | 139.0 | 71724 | 1.2383 | 0.8031 | | 0.031 | 140.0 | 72240 | 1.2429 | 0.7984 | | 0.0326 | 141.0 | 72756 | 1.2389 | 0.8047 | | 0.0369 | 142.0 | 73272 | 1.2475 | 0.8 | | 0.0436 | 143.0 | 73788 | 1.2762 | 0.7907 | | 0.031 | 144.0 | 74304 | 1.2772 | 0.7891 | | 0.0278 | 145.0 | 74820 | 1.2513 | 0.7984 | | 0.0345 | 146.0 | 75336 | 1.2639 | 0.7969 | | 0.034 | 147.0 | 75852 | 1.2679 | 0.7953 | | 0.0331 | 148.0 | 76368 | 1.2682 | 0.7938 | | 0.028 | 149.0 | 76884 | 1.2634 | 0.7953 | | 0.0356 | 150.0 | 77400 | 1.2619 | 0.7969 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
OwOpeepeepoopoo/llama3
OwOpeepeepoopoo
2024-05-08T16:10:36Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T16:07:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tuquyennnn/flant5-base-finetuning-v1
tuquyennnn
2024-05-08T16:10:21Z
108
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-08T16:09:49Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flant5-base-finetuning-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flant5-base-finetuning-v1 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3670671.36 | 0.32 | 250 | nan | | 0.0 | 0.64 | 500 | nan | | 0.0 | 0.96 | 750 | nan | | 0.0 | 1.28 | 1000 | nan | | 0.0 | 1.61 | 1250 | nan | | 0.0 | 1.93 | 1500 | nan | | 0.0 | 2.25 | 1750 | nan | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.15.2
Mag0g/Ezekiel25_19
Mag0g
2024-05-08T16:09:42Z
91
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T16:07:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NBA55/Final_Experiment_with_trained_model_Final_DPO_for_all_3_epoch_1
NBA55
2024-05-08T16:07:29Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T16:07:25Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Roner1/JAIS-Mental-empty-space-layers
Roner1
2024-05-08T16:06:36Z
4
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:inceptionai/jais-13b-chat", "base_model:adapter:inceptionai/jais-13b-chat", "license:apache-2.0", "region:us" ]
null
2024-05-08T12:48:23Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: inception-mbzuai/jais-13b-chat model-index: - name: JAIS-Mental-empty-space-layers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # JAIS-Mental-empty-space-layers This model is a fine-tuned version of [inception-mbzuai/jais-13b-chat](https://huggingface.co/inception-mbzuai/jais-13b-chat) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2
jonyoon/dummy-model
jonyoon
2024-05-08T16:03:20Z
107
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-05-08T16:02:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Aryaduta/modellora2
Aryaduta
2024-05-08T16:01:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T16:00:56Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-2b-bnb-4bit --- # Uploaded model - **Developed by:** Aryaduta - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kenhktsui/nano-phi-192M-v0.1
kenhktsui
2024-05-08T15:59:48Z
130
1
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "en", "dataset:kenhktsui/minipile_quality_score_v1", "dataset:kenhktsui/simple_wikipedia_LM_quality_score_v1", "dataset:kenhktsui/refinedweb-3m_quality_score_v1", "dataset:kenhktsui/TM-DATA_quality_score_v1", "dataset:kenhktsui/openwebtext_quality_score_v1", "dataset:HuggingFaceTB/cosmopedia", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T15:28:28Z
--- language: - en license: mit library_name: transformers inference: parameters: max_new_tokens: 64 do_sample: true temperature: 0.1 repetition_penalty: 10 no_repeat_ngram_size: 4 eta_cutoff: 0.0006 renormalize_logits: true widget: - text: My name is El Microondas the Wise, and example_title: El Microondas - text: Kennesaw State University is a public example_title: Kennesaw State University - text: >- Bungie Studios is an American video game developer. They are most famous for developing the award winning Halo series of video games. They also made Destiny. The studio was founded example_title: Bungie - text: The Mona Lisa is a world-renowned painting created by example_title: Mona Lisa - text: >- The Harry Potter series, written by J.K. Rowling, begins with the book titled example_title: Harry Potter Series - text: >- Question: I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? Answer: example_title: Riddle - text: The process of photosynthesis involves the conversion of example_title: Photosynthesis - text: >- Jane went to the store to buy some groceries. She picked up apples, oranges, and a loaf of bread. When she got home, she realized she forgot example_title: Story Continuation - text: >- Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, and another train leaves Station B at 10:00 AM and travels at 80 mph, when will they meet if the distance between the stations is 300 miles? To determine example_title: Math Problem - text: In the context of computer programming, an algorithm is example_title: Algorithm Definition pipeline_tag: text-generation model-index: - name: nano-phi-115M-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 24.15 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 29.99 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.46 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.3 source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.45 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kenhktsui/nano-phi-115M-v0.1 name: Open LLM Leaderboard datasets: - kenhktsui/minipile_quality_score_v1 - kenhktsui/simple_wikipedia_LM_quality_score_v1 - kenhktsui/refinedweb-3m_quality_score_v1 - kenhktsui/TM-DATA_quality_score_v1 - kenhktsui/openwebtext_quality_score_v1 - HuggingFaceTB/cosmopedia --- # Model Card for nano-phi-192M-v0.1 This is a continual effort from [kenhktsui/nano-phi-115M-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-v0.1). The model is not aligned. Major differences: - bigger tokenizer's vocab size - addition of [HuggingFaceTB/cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) as training dataset - training token: 19B vs 7B ## How to use To use the model, you will need transformer version >= 4.37.2 ``` pip install transformers>=4.37.2 ``` ``` # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="kenhktsui/nano-phi-192M-v0.1") pipe("I am a machine learning researcher. I work on", max_new_tokens=50, repetition_penalty=10.0) ``` ## Some metrics - model - hidden_size: 768 - num_key_value_heads: 8 (grouped query attention) - num_attention_heads: 24 - num_hidden_layers: 6 - context length: 1024 - total params: 192M - training: - global steps: 36,000 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric |kenhktsui/nano-phi-191M-v0.1 |[kenhktsui/nano-phi-115M-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-v0.1)|[microsoft/phi-2](https://huggingface.co/microsoft/phi-2) (Reproduced)| |-----------------------|---------------------------|---------------------------|---------------------------| | Avg. |29.24 | 28.68 |61.53 | | ARC (25-shot) |24.15 | 21.93 |61.52 | | HellaSwag (10-shot) | 29.99 | 27.87 |75.13 | | MMLU (5-shot) |25.46 | 25.30 |58.23 | | TruthfulQA (0-shot) |44.30 | 46.01 |44.46 | | Winogrande (5-shot) |51.54 | 50.99 |74.51 | | GSM8K (5-shot) |0.0 | 0.0 |55.34 | Details: hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8 | Task |Version| Metric |Value | |Stderr| |--------|------:|--------|-----:|---|-----:| |arc_easy| 0|acc |0.4596|± |0.0102| | | |acc_norm|0.4070|± |0.0101| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 25, batch_size: 8 | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.1911|± |0.0115| | | |acc_norm|0.2415|± |0.0125| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 10, batch_size: 8 | Task |Version| Metric |Value | |Stderr| |---------|------:|--------|-----:|---|-----:| |hellaswag| 0|acc |0.2833|± |0.0045| | | |acc_norm|0.2999|± |0.0046| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8 | Task |Version|Metric|Value | |Stderr| |-------------|------:|------|-----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.2583|± |0.0153| | | |mc2 |0.4430|± |0.0152| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 8 | Task |Version| Metric |Value | |Stderr| |-------------------------------------------------|------:|--------|-----:|---|-----:| |hendrycksTest-abstract_algebra | 1|acc |0.2200|± |0.0416| | | |acc_norm|0.2200|± |0.0416| |hendrycksTest-anatomy | 1|acc |0.2593|± |0.0379| | | |acc_norm|0.2593|± |0.0379| |hendrycksTest-astronomy | 1|acc |0.1711|± |0.0306| | | |acc_norm|0.1711|± |0.0306| |hendrycksTest-business_ethics | 1|acc |0.2400|± |0.0429| | | |acc_norm|0.2400|± |0.0429| |hendrycksTest-clinical_knowledge | 1|acc |0.2566|± |0.0269| | | |acc_norm|0.2566|± |0.0269| |hendrycksTest-college_biology | 1|acc |0.2639|± |0.0369| | | |acc_norm|0.2639|± |0.0369| |hendrycksTest-college_chemistry | 1|acc |0.1800|± |0.0386| | | |acc_norm|0.1800|± |0.0386| |hendrycksTest-college_computer_science | 1|acc |0.3300|± |0.0473| | | |acc_norm|0.3300|± |0.0473| |hendrycksTest-college_mathematics | 1|acc |0.3000|± |0.0461| | | |acc_norm|0.3000|± |0.0461| |hendrycksTest-college_medicine | 1|acc |0.2023|± |0.0306| | | |acc_norm|0.2023|± |0.0306| |hendrycksTest-college_physics | 1|acc |0.2843|± |0.0449| | | |acc_norm|0.2843|± |0.0449| |hendrycksTest-computer_security | 1|acc |0.2200|± |0.0416| | | |acc_norm|0.2200|± |0.0416| |hendrycksTest-conceptual_physics | 1|acc |0.2511|± |0.0283| | | |acc_norm|0.2511|± |0.0283| |hendrycksTest-econometrics | 1|acc |0.2807|± |0.0423| | | |acc_norm|0.2807|± |0.0423| |hendrycksTest-electrical_engineering | 1|acc |0.2897|± |0.0378| | | |acc_norm|0.2897|± |0.0378| |hendrycksTest-elementary_mathematics | 1|acc |0.2804|± |0.0231| | | |acc_norm|0.2804|± |0.0231| |hendrycksTest-formal_logic | 1|acc |0.2143|± |0.0367| | | |acc_norm|0.2143|± |0.0367| |hendrycksTest-global_facts | 1|acc |0.1700|± |0.0378| | | |acc_norm|0.1700|± |0.0378| |hendrycksTest-high_school_biology | 1|acc |0.3226|± |0.0266| | | |acc_norm|0.3226|± |0.0266| |hendrycksTest-high_school_chemistry | 1|acc |0.2759|± |0.0314| | | |acc_norm|0.2759|± |0.0314| |hendrycksTest-high_school_computer_science | 1|acc |0.2700|± |0.0446| | | |acc_norm|0.2700|± |0.0446| |hendrycksTest-high_school_european_history | 1|acc |0.2606|± |0.0343| | | |acc_norm|0.2606|± |0.0343| |hendrycksTest-high_school_geography | 1|acc |0.3081|± |0.0329| | | |acc_norm|0.3081|± |0.0329| |hendrycksTest-high_school_government_and_politics| 1|acc |0.3627|± |0.0347| | | |acc_norm|0.3627|± |0.0347| |hendrycksTest-high_school_macroeconomics | 1|acc |0.2641|± |0.0224| | | |acc_norm|0.2641|± |0.0224| |hendrycksTest-high_school_mathematics | 1|acc |0.2630|± |0.0268| | | |acc_norm|0.2630|± |0.0268| |hendrycksTest-high_school_microeconomics | 1|acc |0.3403|± |0.0308| | | |acc_norm|0.3403|± |0.0308| |hendrycksTest-high_school_physics | 1|acc |0.3113|± |0.0378| | | |acc_norm|0.3113|± |0.0378| |hendrycksTest-high_school_psychology | 1|acc |0.2716|± |0.0191| | | |acc_norm|0.2716|± |0.0191| |hendrycksTest-high_school_statistics | 1|acc |0.4491|± |0.0339| | | |acc_norm|0.4491|± |0.0339| |hendrycksTest-high_school_us_history | 1|acc |0.2402|± |0.0300| | | |acc_norm|0.2402|± |0.0300| |hendrycksTest-high_school_world_history | 1|acc |0.2363|± |0.0277| | | |acc_norm|0.2363|± |0.0277| |hendrycksTest-human_aging | 1|acc |0.2197|± |0.0278| | | |acc_norm|0.2197|± |0.0278| |hendrycksTest-human_sexuality | 1|acc |0.2824|± |0.0395| | | |acc_norm|0.2824|± |0.0395| |hendrycksTest-international_law | 1|acc |0.2479|± |0.0394| | | |acc_norm|0.2479|± |0.0394| |hendrycksTest-jurisprudence | 1|acc |0.2037|± |0.0389| | | |acc_norm|0.2037|± |0.0389| |hendrycksTest-logical_fallacies | 1|acc |0.2393|± |0.0335| | | |acc_norm|0.2393|± |0.0335| |hendrycksTest-machine_learning | 1|acc |0.1875|± |0.0370| | | |acc_norm|0.1875|± |0.0370| |hendrycksTest-management | 1|acc |0.2039|± |0.0399| | | |acc_norm|0.2039|± |0.0399| |hendrycksTest-marketing | 1|acc |0.1795|± |0.0251| | | |acc_norm|0.1795|± |0.0251| |hendrycksTest-medical_genetics | 1|acc |0.3000|± |0.0461| | | |acc_norm|0.3000|± |0.0461| |hendrycksTest-miscellaneous | 1|acc |0.2644|± |0.0158| | | |acc_norm|0.2644|± |0.0158| |hendrycksTest-moral_disputes | 1|acc |0.2225|± |0.0224| | | |acc_norm|0.2225|± |0.0224| |hendrycksTest-moral_scenarios | 1|acc |0.2726|± |0.0149| | | |acc_norm|0.2726|± |0.0149| |hendrycksTest-nutrition | 1|acc |0.2353|± |0.0243| | | |acc_norm|0.2353|± |0.0243| |hendrycksTest-philosophy | 1|acc |0.2283|± |0.0238| | | |acc_norm|0.2283|± |0.0238| |hendrycksTest-prehistory | 1|acc |0.2099|± |0.0227| | | |acc_norm|0.2099|± |0.0227| |hendrycksTest-professional_accounting | 1|acc |0.2411|± |0.0255| | | |acc_norm|0.2411|± |0.0255| |hendrycksTest-professional_law | 1|acc |0.2458|± |0.0110| | | |acc_norm|0.2458|± |0.0110| |hendrycksTest-professional_medicine | 1|acc |0.3897|± |0.0296| | | |acc_norm|0.3897|± |0.0296| |hendrycksTest-professional_psychology | 1|acc |0.2141|± |0.0166| | | |acc_norm|0.2141|± |0.0166| |hendrycksTest-public_relations | 1|acc |0.1818|± |0.0369| | | |acc_norm|0.1818|± |0.0369| |hendrycksTest-security_studies | 1|acc |0.2490|± |0.0277| | | |acc_norm|0.2490|± |0.0277| |hendrycksTest-sociology | 1|acc |0.2537|± |0.0308| | | |acc_norm|0.2537|± |0.0308| |hendrycksTest-us_foreign_policy | 1|acc |0.2900|± |0.0456| | | |acc_norm|0.2900|± |0.0456| |hendrycksTest-virology | 1|acc |0.1807|± |0.0300| | | |acc_norm|0.1807|± |0.0300| |hendrycksTest-world_religions | 1|acc |0.1813|± |0.0295| | | |acc_norm|0.1813|± |0.0295| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 8 | Task |Version|Metric|Value | |Stderr| |----------|------:|------|-----:|---|-----:| |winogrande| 0|acc |0.5154|± | 0.014| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/model-9gh18vfl:v25,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 8 |Task |Version|Metric|Value| |Stderr| |-----|------:|------|----:|---|-----:| |gsm8k| 0|acc | 0|± | 0|
StrangeSX/SeaLLM-7B-v2.5-ORPO-SARAA-M
StrangeSX
2024-05-08T15:55:51Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:SeaLLMs/SeaLLM-7B-v2.5", "base_model:finetune:SeaLLMs/SeaLLM-7B-v2.5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T15:55:37Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: SeaLLMs/SeaLLM-7B-v2.5 --- # Uploaded model - **Developed by:** StrangeSX - **License:** apache-2.0 - **Finetuned from model :** SeaLLMs/SeaLLM-7B-v2.5 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Labib11/PMC_bge_800
Labib11
2024-05-08T15:51:53Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-08T15:50:22Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
abc88767/model104
abc88767
2024-05-08T15:49:53Z
91
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T15:48:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sweet-dreambooths/black-eyed-peas-v1-crafted-variable-prompt-3-epochs-piano-prompts
sweet-dreambooths
2024-05-08T15:49:26Z
3
0
peft
[ "peft", "safetensors", "musicgen_melody", "text-to-audio", "sweet-dreambooths/black-eyed-peas-v1-piano-prompts", "generated_from_trainer", "base_model:facebook/musicgen-melody-large", "base_model:adapter:facebook/musicgen-melody-large", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-05-08T15:15:06Z
--- license: cc-by-nc-4.0 library_name: peft tags: - text-to-audio - sweet-dreambooths/black-eyed-peas-v1-piano-prompts - generated_from_trainer base_model: facebook/musicgen-melody-large model-index: - name: black-eyed-peas-v1-crafted-variable-prompt-3-epochs-piano-prompts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sanchit-gandhi/black-eyed-peas/runs/ghk59xig) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sanchit-gandhi/black-eyed-peas/runs/ghk59xig) # black-eyed-peas-v1-crafted-variable-prompt-3-epochs-piano-prompts This model is a fine-tuned version of [facebook/musicgen-melody-large](https://huggingface.co/facebook/musicgen-melody-large) on the SWEET-DREAMBOOTHS/BLACK-EYED-PEAS-V1-PIANO-PROMPTS - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 3.0873 - Text Cosine Sim: 0.3268 - Audio Cosine Sim: 0.5888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 456 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.41.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.1.dev0 - Tokenizers 0.19.1
Aryaduta/modellora
Aryaduta
2024-05-08T15:49:04Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T15:48:51Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-2b-bnb-4bit --- # Uploaded model - **Developed by:** Aryaduta - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
minhquy1624/NLI_xnli_2label
minhquy1624
2024-05-08T15:48:30Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-08T15:45:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # minhquy1624/NLI_xnli_2label This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('minhquy1624/NLI_xnli_2label') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('minhquy1624/NLI_xnli_2label') model = AutoModel.from_pretrained('minhquy1624/NLI_xnli_2label') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=minhquy1624/NLI_xnli_2label) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2046 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.1 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Labib11/PMC_bge_1600
Labib11
2024-05-08T15:44:13Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-08T15:42:59Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hrishi27/doplhin-dpo2
hrishi27
2024-05-08T15:43:27Z
18
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "dpo", "generated_from_trainer", "base_model:lvwerra/gpt2-imdb", "base_model:finetune:lvwerra/gpt2-imdb", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T05:12:33Z
--- base_model: lvwerra/gpt2-imdb tags: - trl - dpo - generated_from_trainer model-index: - name: doplhin-dpo2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # doplhin-dpo2 This model is a fine-tuned version of [lvwerra/gpt2-imdb](https://huggingface.co/lvwerra/gpt2-imdb) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
Litzy619/V0507HMA15HV2
Litzy619
2024-05-08T15:43:00Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-05-08T04:39:47Z
--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0507HMA15HV2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V0507HMA15HV2 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: -95.0498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | -8.6532 | 0.09 | 10 | -10.3327 | | -11.8451 | 0.18 | 20 | -14.2014 | | -17.3537 | 0.27 | 30 | -22.7794 | | -28.8388 | 0.36 | 40 | -38.5512 | | -47.1885 | 0.45 | 50 | -59.6364 | | -67.2573 | 0.54 | 60 | -76.6591 | | -81.223 | 0.63 | 70 | -86.3414 | | -87.9651 | 0.73 | 80 | -90.0475 | | -91.3192 | 0.82 | 90 | -92.4350 | | -92.7456 | 0.91 | 100 | -93.1825 | | -93.4032 | 1.0 | 110 | -93.7378 | | -93.8855 | 1.09 | 120 | -93.9331 | | -94.0075 | 1.18 | 130 | -93.9987 | | -94.001 | 1.27 | 140 | -94.3115 | | -94.3566 | 1.36 | 150 | -94.4505 | | -94.3346 | 1.45 | 160 | -94.2625 | | -94.5793 | 1.54 | 170 | -94.3309 | | -93.2701 | 1.63 | 180 | -93.4388 | | -94.2829 | 1.72 | 190 | -93.8681 | | -94.6778 | 1.81 | 200 | -94.7489 | | -94.5762 | 1.9 | 210 | -94.7745 | | -94.8427 | 1.99 | 220 | -94.8903 | | -94.8653 | 2.08 | 230 | -94.8499 | | -94.9237 | 2.18 | 240 | -94.9720 | | -95.0027 | 2.27 | 250 | -94.9841 | | -94.9404 | 2.36 | 260 | -94.8479 | | -94.9594 | 2.45 | 270 | -95.0076 | | -95.0772 | 2.54 | 280 | -95.0798 | | -95.0775 | 2.63 | 290 | -95.0480 | | -95.0528 | 2.72 | 300 | -95.0415 | | -95.0652 | 2.81 | 310 | -95.0442 | | -95.0738 | 2.9 | 320 | -95.0494 | | -95.0694 | 2.99 | 330 | -95.0498 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1
YorkieOH10/Mixtral-Instruct-ITR-8x7B-Q4_K_M-GGUF
YorkieOH10
2024-05-08T15:34:47Z
2
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-08T15:31:20Z
--- license: cc-by-nc-4.0 tags: - llama-cpp - gguf-my-repo --- # YorkieOH10/Mixtral-Instruct-ITR-8x7B-Q4_K_M-GGUF This model was converted to GGUF format from [`Envoid/Mixtral-Instruct-ITR-8x7B`](https://huggingface.co/Envoid/Mixtral-Instruct-ITR-8x7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Envoid/Mixtral-Instruct-ITR-8x7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo YorkieOH10/Mixtral-Instruct-ITR-8x7B-Q4_K_M-GGUF --model mixtral-instruct-itr-8x7b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo YorkieOH10/Mixtral-Instruct-ITR-8x7B-Q4_K_M-GGUF --model mixtral-instruct-itr-8x7b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mixtral-instruct-itr-8x7b.Q4_K_M.gguf -n 128 ```
alexm-nm/tinyllama-24-gptq-4bit-channelwise
alexm-nm
2024-05-08T15:34:24Z
136
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-08T15:30:39Z
--- license: apache-2.0 ---
alexm-nm/tinyllama-24-marlin24-4bit-channelwise
alexm-nm
2024-05-08T15:31:07Z
221
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-08T15:27:57Z
--- license: apache-2.0 ---
Pausaniax/Jhayco
Pausaniax
2024-05-08T15:30:40Z
0
0
timm
[ "timm", "music", "audio-to-audio", "es", "dataset:HuggingFaceFW/fineweb", "arxiv:1910.09700", "license:mit", "region:us" ]
audio-to-audio
2024-05-08T15:26:56Z
--- license: mit datasets: - HuggingFaceFW/fineweb language: - es library_name: timm pipeline_tag: audio-to-audio tags: - music --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
davelotito/donut-base-sroie-metrics-combined-new-instance-050824
davelotito
2024-05-08T15:26:16Z
49
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-08T14:35:12Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut-base-sroie-metrics-combined-new-instance-050824 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie-metrics-combined-new-instance-050824 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6594 - Bleu: 0.0554 - Precisions: [0.7702970297029703, 0.671875, 0.6061381074168798, 0.5538922155688623] - Brevity Penalty: 0.0858 - Length Ratio: 0.2894 - Translation Length: 505 - Reference Length: 1745 - Cer: 0.7675 - Wer: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 3.4087 | 1.0 | 253 | 1.6485 | 0.0082 | [0.4555984555984556, 0.14316702819956617, 0.06188118811881188, 0.01440922190201729] | 0.0936 | 0.2968 | 518 | 1745 | 0.8353 | 0.9368 | | 1.1999 | 2.0 | 506 | 0.8976 | 0.0274 | [0.6748878923766816, 0.5347043701799485, 0.4578313253012048, 0.3890909090909091] | 0.0543 | 0.2556 | 446 | 1745 | 0.7818 | 0.8754 | | 0.8013 | 3.0 | 759 | 0.7295 | 0.0508 | [0.7580645161290323, 0.6583143507972665, 0.5890052356020943, 0.5384615384615384] | 0.0806 | 0.2842 | 496 | 1745 | 0.7629 | 0.8557 | | 0.6404 | 4.0 | 1012 | 0.6594 | 0.0554 | [0.7702970297029703, 0.671875, 0.6061381074168798, 0.5538922155688623] | 0.0858 | 0.2894 | 505 | 1745 | 0.7675 | 0.8512 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.1 - Tokenizers 0.19.1
Szczotar93/Inkaso_beta
Szczotar93
2024-05-08T15:22:22Z
106
0
transformers
[ "transformers", "safetensors", "layoutlm", "token-classification", "generated_from_trainer", "dataset:layoutlmv3", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-07T19:10:54Z
--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer datasets: - layoutlmv3 model-index: - name: Inkaso_beta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Inkaso_beta This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0801 - Creditor address: {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} - Creditor name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} - Creditor proxy: {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} - Debtor address: {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} - Debtor name: {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} - Doc id: {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19} - Title: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} - Overall Precision: 0.9492 - Overall Recall: 0.9419 - Overall F1: 0.9455 - Overall Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Creditor address | Creditor name | Creditor proxy | Debtor address | Debtor name | Doc id | Title | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4642 | 6.6667 | 20 | 0.2502 | {'precision': 0.782608695652174, 'recall': 0.75, 'f1': 0.7659574468085107, 'number': 48} | {'precision': 0.9354838709677419, 'recall': 0.8529411764705882, 'f1': 0.8923076923076922, 'number': 34} | {'precision': 0.8, 'recall': 0.6486486486486487, 'f1': 0.7164179104477612, 'number': 37} | {'precision': 0.8205128205128205, 'recall': 0.6037735849056604, 'f1': 0.6956521739130435, 'number': 53} | {'precision': 0.95, 'recall': 0.5757575757575758, 'f1': 0.7169811320754716, 'number': 33} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} | {'precision': 0.8461538461538461, 'recall': 0.3235294117647059, 'f1': 0.46808510638297873, 'number': 34} | 0.8478 | 0.6047 | 0.7059 | 0.9330 | | 0.1387 | 13.3333 | 40 | 0.0914 | {'precision': 1.0, 'recall': 0.9166666666666666, 'f1': 0.9565217391304348, 'number': 48} | {'precision': 0.9714285714285714, 'recall': 1.0, 'f1': 0.9855072463768115, 'number': 34} | {'precision': 0.7777777777777778, 'recall': 0.7567567567567568, 'f1': 0.7671232876712328, 'number': 37} | {'precision': 0.9444444444444444, 'recall': 0.9622641509433962, 'f1': 0.9532710280373832, 'number': 53} | {'precision': 0.8918918918918919, 'recall': 1.0, 'f1': 0.9428571428571428, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9234 | 0.9341 | 0.9287 | 0.9795 | | 0.0431 | 20.0 | 60 | 0.0774 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8181818181818182, 'recall': 0.7297297297297297, 'f1': 0.7714285714285715, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} | {'precision': 0.7727272727272727, 'recall': 0.8947368421052632, 'f1': 0.8292682926829269, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9425 | 0.9535 | 0.9480 | 0.9837 | | 0.0216 | 26.6667 | 80 | 0.0842 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.7631578947368421, 'recall': 0.7837837837837838, 'f1': 0.7733333333333334, 'number': 37} | {'precision': 0.9454545454545454, 'recall': 0.9811320754716981, 'f1': 0.9629629629629629, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9286 | 0.9574 | 0.9427 | 0.9825 | | 0.0142 | 33.3333 | 100 | 0.0840 | {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9629629629629629, 'recall': 0.9811320754716981, 'f1': 0.9719626168224299, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9416 | 0.9380 | 0.9398 | 0.9819 | | 0.0105 | 40.0 | 120 | 0.0838 | {'precision': 0.9772727272727273, 'recall': 0.8958333333333334, 'f1': 0.9347826086956522, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9385 | 0.9457 | 0.9421 | 0.9819 | | 0.0081 | 46.6667 | 140 | 0.0801 | {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} | {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9492 | 0.9419 | 0.9455 | 0.9831 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1
whizzzzkid/nous_sevens7_t
whizzzzkid
2024-05-08T15:21:10Z
9
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-07T21:18:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sweet-dreambooths/black-eyed-peas-v1-crafted-prompt-3-epochs-piano-prompts
sweet-dreambooths
2024-05-08T15:17:26Z
0
0
peft
[ "peft", "safetensors", "musicgen_melody", "text-to-audio", "sweet-dreambooths/black-eyed-peas-v1-piano-prompts", "generated_from_trainer", "base_model:facebook/musicgen-melody-large", "base_model:adapter:facebook/musicgen-melody-large", "license:cc-by-nc-4.0", "region:us" ]
text-to-audio
2024-05-08T14:09:52Z
--- license: cc-by-nc-4.0 library_name: peft tags: - text-to-audio - sweet-dreambooths/black-eyed-peas-v1-piano-prompts - generated_from_trainer base_model: facebook/musicgen-melody-large model-index: - name: black-eyed-peas-v1-crafted-prompt-3-epochs-piano-prompts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sanchit-gandhi/black-eyed-peas/runs/4jpcauy7) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sanchit-gandhi/black-eyed-peas/runs/4jpcauy7) # black-eyed-peas-v1-crafted-prompt-3-epochs-piano-prompts This model is a fine-tuned version of [facebook/musicgen-melody-large](https://huggingface.co/facebook/musicgen-melody-large) on the SWEET-DREAMBOOTHS/BLACK-EYED-PEAS-V1-PIANO-PROMPTS - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 3.0910 - Text Cosine Sim: 0.4804 - Audio Cosine Sim: 0.5601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 456 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.41.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.1.dev0 - Tokenizers 0.19.1
KaraKaraWitch/UnFimbulvetr-20B
KaraKaraWitch
2024-05-08T15:16:37Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:Sao10K/Fimbulvetr-11B-v2", "base_model:finetune:Sao10K/Fimbulvetr-11B-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-07T16:06:50Z
--- base_model: ["Sao10K/Fimbulvetr-11B-v2"] library_name: transformers tags: - mergekit - merge --- # UnFimbulvetr-20B ![](UnFimbulator.png "A Waifu that is disappointed in me with this cursed merge. ControlNet Image Source is from the original Fimbulvetr-11B-v2.") *Waifu to catch your attention* This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). NOTE: *Only tested this just for a bit. YMMV.* ## Next Day Tests... Downloaded the GGUF model that someone quantized... And... nope. No. **Do not use model.** ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * Sao10K/Fimbulvetr-11B-v2 ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: FimbMagic layer_range: [0, 13] - sources: - model: FimbMagic layer_range: [8, 13] - sources: - model: FimbMagic layer_range: [12, 36] - sources: - model: FimbMagic layer_range: [12, 36] - sources: - model: FimbMagic layer_range: [36, 48] - sources: - model: FimbMagic layer_range: [36, 48] merge_method: passthrough dtype: bfloat16 ``` ### Additional Notes Fimbulvetr 11B is still a very good model. This model is for extreme trailblazers who wants to test stuff! Eval results? Don't bother. Last one before I sleep: *I'm so sorry Sao10K...*
johnnyf/ppo-LunarLander-v2
johnnyf
2024-05-08T15:13:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-08T15:13:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.54 +/- 15.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP
Fischerboot
2024-05-08T15:13:12Z
33
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "en", "base_model:Fischerboot/Llama3-Aura-3some-SLERP", "base_model:merge:Fischerboot/Llama3-Aura-3some-SLERP", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:merge:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-07T20:53:26Z
--- base_model: - Orenguteng/Llama-3-8B-Lexi-Uncensored - Fischerboot/Llama3-Aura-3some-SLERP library_name: transformers tags: - mergekit - merge license: llama3 language: - en --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) * [Fischerboot/Llama3-Aura-3some-SLERP](https://huggingface.co/Fischerboot/Llama3-Aura-3some-SLERP) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Fischerboot/Llama3-Aura-3some-SLERP layer_range: - 0 - 32 - model: Orenguteng/Llama-3-8B-Lexi-Uncensored layer_range: - 0 - 32 merge_method: slerp base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 ```
Driseri/lora_model_llama3-8B-low1
Driseri
2024-05-08T15:07:04Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T15:06:13Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** Driseri - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
keanhean/esm2_t33_650M_UR50D-pfam-classification
keanhean
2024-05-08T15:02:02Z
105
0
transformers
[ "transformers", "safetensors", "esm", "text-classification", "generated_from_trainer", "base_model:facebook/esm2_t33_650M_UR50D", "base_model:finetune:facebook/esm2_t33_650M_UR50D", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-07T17:01:14Z
--- license: mit base_model: facebook/esm2_t33_650M_UR50D tags: - generated_from_trainer metrics: - accuracy model-index: - name: esm2_t33_650M_UR50D-pfam-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t33_650M_UR50D-pfam-classification This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0743 - Accuracy: 0.9882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9930 | 71 | 0.2934 | 0.9450 | | No log | 2.0 | 143 | 0.0912 | 0.9856 | | No log | 2.9790 | 213 | 0.0743 | 0.9882 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
Rimyy/Gpt2Gsm5
Rimyy
2024-05-08T15:01:30Z
147
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T15:01:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ShakaRover/XiaoYuEr-llama3
ShakaRover
2024-05-08T15:01:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-08T15:01:07Z
--- license: apache-2.0 ---
Arezo93/xlm-roberta-base-finetuned-language-detection
Arezo93
2024-05-08T15:00:40Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-08T15:00:01Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-language-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-language-detection This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1487 - Accuracy: 0.9509 - F1: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3214 | 1.0 | 727 | 0.1715 | 0.9450 | 0.9447 | | 0.1512 | 2.0 | 1454 | 0.1487 | 0.9509 | 0.9508 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2
Jillian/Gemma-2B-4bit_DepressionDetection
Jillian
2024-05-08T14:59:05Z
105
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T14:34:51Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sourabh1407/gemma-2b-it-finetuned-dolly
Sourabh1407
2024-05-08T14:58:57Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b-it", "base_model:adapter:google/gemma-2b-it", "license:gemma", "region:us" ]
null
2024-05-08T14:01:48Z
--- license: gemma library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-2b-it model-index: - name: gemma-2b-it-finetuned-dolly results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-2b-it-finetuned-dolly This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
qunfengd/esm2_t12_35M_UR50D-finetuned-AMP_Antibacteria-classification_CombinedPos5Epoch
qunfengd
2024-05-08T14:48:43Z
60
0
transformers
[ "transformers", "tf", "esm", "text-classification", "generated_from_keras_callback", "base_model:facebook/esm2_t12_35M_UR50D", "base_model:finetune:facebook/esm2_t12_35M_UR50D", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-08T14:48:21Z
--- license: mit tags: - generated_from_keras_callback base_model: facebook/esm2_t12_35M_UR50D model-index: - name: esm2_t12_35M_UR50D-finetuned-AMP_Antibacteria-classification_CombinedPos5Epoch results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-AMP_Antibacteria-classification_CombinedPos5Epoch This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2090 - Train Accuracy: 0.9111 - Validation Loss: 0.5719 - Validation Accuracy: 0.7842 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6535 | 0.6007 | 0.6349 | 0.6217 | 0 | | 0.5923 | 0.6721 | 0.5965 | 0.6733 | 1 | | 0.4529 | 0.7850 | 0.5529 | 0.7241 | 2 | | 0.2886 | 0.8738 | 0.5695 | 0.7650 | 3 | | 0.2090 | 0.9111 | 0.5719 | 0.7842 | 4 | ### Framework versions - Transformers 4.40.1 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1
SirDamisola/iw_state_of_nation_lora_model_FT
SirDamisola
2024-05-08T14:33:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.1-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.1-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-08T14:33:29Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-instruct-v0.1-bnb-4bit --- # Uploaded model - **Developed by:** SirDamisola - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.1-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
enchan1/ppo-lunarlander
enchan1
2024-05-08T14:29:12Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-08T14:27:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.64 +/- 20.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sravaniayyagari/lora_model_5_safetensors_duplicates
sravaniayyagari
2024-05-08T14:26:38Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:adapter:meta-llama/Meta-Llama-3-8B", "region:us" ]
null
2024-05-08T14:23:30Z
--- library_name: peft base_model: meta-llama/Meta-Llama-3-8B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
pcuenq/codegemma-7b-it-tmp
pcuenq
2024-05-08T14:18:03Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T14:14:43Z
--- library_name: transformers pipeline_tag: text-generation license: gemma license_link: https://ai.google.dev/gemma/terms --- # CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [codegemma-2b](https://huggingface.co/google/codegemma-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [**codegemma-7b-it**](https://huggingface.co/google/codegemma-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage This model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: [CodeGemma 7B](https://huggingface.co/google/codegemma-7b), or [CodeGemma 2B](https://huggingface.co/google/codegemma-2b). #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it") model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/codegemma-7b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | 2B | 7B | 7B-IT ----------------------|-------|-------|------ HumanEval | 31.1 | 44.5 | 56.1 MBPP | 43.6 | 56.2 | 54.2 HumanEval Single Line | 78.41 | 76.09 | 68.25 HumanEval Multi Line | 51.44 | 58.44 | 20.05 BC HE C++ | 24.2 | 32.9 | 42.2 BC HE C# | 10.6 | 22.4 | 26.7 BC HE Go | 20.5 | 21.7 | 28.6 BC HE Java | 29.2 | 41.0 | 48.4 BC HE JavaScript | 21.7 | 39.8 | 46.0 BC HE Kotlin | 28.0 | 39.8 | 51.6 BC HE Python | 21.7 | 42.2 | 48.4 BC HE Rust | 26.7 | 34.1 | 36.0 BC MBPP C++ | 47.1 | 53.8 | 56.7 BC MBPP C# | 28.7 | 32.5 | 41.2 BC MBPP Go | 45.6 | 43.3 | 46.2 BC MBPP Java | 41.8 | 50.3 | 57.3 BC MBPP JavaScript | 45.3 | 58.2 | 61.4 BC MBPP Kotlin | 46.8 | 54.7 | 59.9 BC MBPP Python | 38.6 | 59.1 | 62.0 BC MBPP Rust | 45.3 | 52.9 | 53.5 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
alexm-nm/tinyllama-24-gptq-4bit-g128
alexm-nm
2024-05-08T14:15:23Z
3,947
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-08T14:08:00Z
--- license: apache-2.0 ---
NoteDance/DeiT
NoteDance
2024-05-08T14:15:10Z
0
0
tf
[ "tf", "Note", "vit", "image-classification", "license:apache-2.0", "region:us" ]
image-classification
2024-05-08T14:11:58Z
--- license: apache-2.0 pipeline_tag: image-classification tags: - Note - vit library_name: tf --- This model is built by Note, Note can be found [here](https://github.com/NoteDance/Note). The model can be found [here](https://github.com/NoteDance/Note/blob/Note-7.0/Note/neuralnetwork/tf/DeiT.py). The tutorial can be found [here](https://github.com/NoteDance/Note-documentation/tree/tf-7.0).
ThatOneSkyler/Reinforce-Pixelcopter-PLE-v0
ThatOneSkyler
2024-05-08T14:14:43Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-05-08T14:06:50Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.90 +/- 17.69 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aumoai/Mixtral-8x7B-Instruct-v0.1-touch-rugby-rules-adapters
aumoai
2024-05-08T14:12:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-08T14:12:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zhanjun/path-to-save-model
zhanjun
2024-05-08T14:10:53Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-05-08T14:05:42Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers base_model: CompVis/stable-diffusion-v1-4 inference: true instance_prompt: a photo of sks dog --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - zhanjun/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
jerryyun/kicon_mixtral87_merged_41766
jerryyun
2024-05-08T14:09:30Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-08T14:04:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
YYYYYYibo/nash_dpo_doff_no_golden_iter_1
YYYYYYibo
2024-05-08T14:08:58Z
1
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:updated", "dataset:original", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:adapter:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
null
2024-05-07T11:51:15Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo base_model: alignment-handbook/zephyr-7b-sft-full datasets: - updated - original model-index: - name: nash_dpo_doff_no_golden_iter_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nash_dpo_doff_no_golden_iter_1 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the updated and the original datasets. It achieves the following results on the evaluation set: - Logits/chosen: -2.7444 - Logits/rejected: -2.6646 - Logps/chosen: -288.1525 - Logps/rejected: -266.5563 - Loss: 0.6749 - Rewards/accuracies: 0.6100 - Rewards/chosen: -0.0411 - Rewards/margins: 0.0493 - Rewards/rejected: -0.0904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:| | 0.6794 | 0.65 | 100 | -2.7444 | -2.6646 | -288.1525 | -266.5563 | 0.6749 | 0.6100 | -0.0411 | 0.0493 | -0.0904 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
ChiJuiChen/lab7_model
ChiJuiChen
2024-05-08T14:00:43Z
150
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-25T08:22:22Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: lab7_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lab7_model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.7274 | 0.4614 | 5000 | 2.0313 | | 1.887 | 0.9228 | 10000 | 1.7172 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
Softy-lines/Pixel-Digit-Classifier
Softy-lines
2024-05-08T13:57:17Z
0
0
adapter-transformers
[ "adapter-transformers", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2024-05-08T13:46:50Z
--- license: apache-2.0 language: - en metrics: - accuracy library_name: adapter-transformers pipeline_tag: image-to-text --- # Model Card for Pixelated Captcha Digit Detection ## Model Details - **License:** Apache-2.0 - **Developed by:** Saidi Souhaieb - **Finetuned from model:** YOLOv8 ## Uses This model is designed to detect pixelated captcha digits by showing bounding boxes and extracting the coordinates of the detections. ## How to Get Started with the Model ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import torchvision.transforms as transforms from torchvision.datasets import ImageFolder from tqdm import tqdm from PIL import Image import torch.nn.functional as F import os class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * 4 * 4, 500) self.fc2 = nn.Linear(500, 10) # 10 classes for example def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, 64 * 4 * 4) x = F.relu(self.fc1(x)) x = self.fc2(x) return x transform = transforms.Compose([ transforms.Resize((32, 32)), # Adjust the size accordingly transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform = transforms.Compose([ transforms.Resize((32, 32)), # Adjust the size accordingly transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) model = CNN() model.load_state_dict(torch.load('models/99acc_model.pth')) def predict_number(folder_path): """ Predict the numbers in the images in the folder """ predict_numbers = [] for file in os.listdir(folder_path): input_image = Image.open(f"temp/{file}").convert('RGB') # Load and preprocess the input image input_tensor = transform(input_image) input_batch = input_tensor.unsqueeze(0) # Add a batch dimension # Perform inference with torch.no_grad(): output = model(input_batch) # Get the predicted class label _, predicted = torch.max(output, 1) # Print the predicted class label print("Predicted class label:", predicted.item(), "file", file) predict_numbers.append(predicted.item()) return predict_numbers ``` ## Training Details ### Training Data Pixel Digit Captcha Data [https://huggingface.co/datasets/Softy-lines/Pixel-Digit-Captcha-Data] ## Model Card Authors [Saidi Souhaieb]
hamzamurtaza/xml_long_diagrams
hamzamurtaza
2024-05-08T13:52:30Z
0
0
peft
[ "peft", "region:us" ]
null
2024-05-08T13:52:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
zbigi/BART_raw
zbigi
2024-05-08T13:45:36Z
180
1
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-03T02:10:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description BART with random values of the parameters. Output is a sequence of random tokens. Useful for comparison <!--BART with random values of parameters. Produces output that is random tokens --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abc88767/model103
abc88767
2024-05-08T13:42:33Z
131
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T13:40:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
batatar/llama-3-8b-chat-guanaco
batatar
2024-05-08T13:40:23Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T13:36:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Harish-Gokul/AI-Calling-ORPO-Finetuned-llama3-model-change-in-dataset
Harish-Gokul
2024-05-08T13:38:02Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T13:35:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alexm-nm/tinyllama-24-marlin24-4bit-g128
alexm-nm
2024-05-08T13:37:29Z
15,404
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-05-08T13:32:27Z
--- license: apache-2.0 ---
baek26/all_3769_all_6417_bart-base_rl
baek26
2024-05-08T13:33:58Z
51
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-05-08T13:33:16Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="baek26//tmp/tmpnlyx7ph2/baek26/all_3769_all_6417_bart-base_rl") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("baek26//tmp/tmpnlyx7ph2/baek26/all_3769_all_6417_bart-base_rl") model = AutoModelForCausalLMWithValueHead.from_pretrained("baek26//tmp/tmpnlyx7ph2/baek26/all_3769_all_6417_bart-base_rl") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
baconnier/Gaston-Llama-3-8B
baconnier
2024-05-08T13:33:08Z
26
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-04T10:09:55Z
# Vous en avez assez du jargon administratif incompréhensible ? Gaston est là pour vous aider ! ![Gaston](https://huggingface.co/baconnier/Gaston-Llama-3-8B/resolve/main/gaston2.jpg) 💡 Cette IA a été conçue pour reformuler les communications et documents administratifs en langage clair et simple. 📝 Grâce à Gaston, fini les lettres obscures et les procédures nébuleuses. Tout devient limpide et à la portée du commun des mortels. 😊 Gaston est un POC (Proof of Concept) qui a pour mission de rendre l'administration plus transparente et accessible. 🙌 Son secret ? Une capacité à analyser et à traduire le jargon en termes compréhensibles par tous. 💬 Avec Gaston, les démarches administratives deviennent enfin un jeu d'enfant ! This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE) --- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - orpo base_model: NousResearch/Hermes-2-Pro-Llama-3-8B --- # Uploaded model - **Developed by:** baconnier - **License:** apache-2.0 - **Finetuned from model :** NousResearch/Hermes-2-Pro-Llama-3-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) This model was trained ORPO , using ChatML prompt template format. ``` <|im_start|>user Qui est tu ? <|im_end|> <|im_start|>assistant ``` # Example with local TGI: See the snippet below for usage with local inference: ```python #Example: reuse your existing OpenAI setup from openai import OpenAI client = OpenAI(base_url="http://localhost:8080/v1", api_key="TGI") completion = client.chat.completions.create( model="baconnier/Gaston-Llama-3-8B", messages=[ {"role": "system", "content": "Reponds comme Gaston, un fonctionnaire français qui s'exprime uniquement en français avec des termes tres simples et surtout sans jamais utiliser de jargon administratif."}, {"role": "user", "content": "l’action en nullité se prescrit par 5 ans ou est prescrite en 5 ans"}, {"role": "assistant", "content": ""} ], max_tokens=400, temperature=0.7, ) print(completion.choices[0].message.content) ``` Output: ``` Le délai de prescription pour l'action en nullité est généralement de cinq ans à compter du jour où la partie qui peut agir a eu connaissance des faits, selon le Code civil français. ``` # Example with Transformers and pipeline: See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "baconnier/Gaston-Llama-3-8B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) messages=[ {"role": "system", "content": "Reponds comme Gaston, un fonctionnaire français qui s'exprime uniquement en français avec des termes tres simples et surtout sans jamais utiliser de jargon administratif."}, {"role": "user", "content": "Vous voudrez bien vous munir de toutes les pièces justificatives afférentes à vos déclarations de revenus et de patrimoine des 3 derniers exercices, nonobstant les éléments déjà produits. À défaut de réponse de votre part ou en cas de non comparution aux date et heure susvisées, la procédure de contrôle se poursuivra et nous serons fondés à retenir les éléments en notre possession en vue de l'établissement des impositions supplémentaires et pénalités subséquentes."}, {"role": "assistant", "content": ""} ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = pipeline( prompt, max_new_tokens=256, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` Question: ``` Vous voudrez bien vous munir de toutes les pièces justificatives afférentes à vos déclarations de revenus et de patrimoine des 3 derniers exercices, nonobstant les éléments déjà produits. À défaut de réponse de votre part ou en cas de non comparution aux date et heure susvisées, la procédure de contrôle se poursuivra et nous serons fondés à retenir les éléments en notre possession en vue de l'établissement des impositions supplémentaires et pénalités subséquentes. ``` Reponse: ``` Je vous invite à fournir toutes les pièces justificatives concernant vos déclarations de revenus et de patrimoine des trois dernières années, malgré les éléments déjà fournis. En cas de non-respect de ce délai ou de manque de réponse, la procédure de vérification continuera, et nous utiliserons les informations en notre possession pour établir les impôts supplémentaires et les pénalités associées. ``` Question: ``` Nous accusons réception de votre demande de renouvellement de passeport en date du 15 mars 2023. Après instruction de votre dossier, il appert que les pièces produites s'avèrent insuffisantes eu égard aux dispositions de l'article 5-1 du décret n°2005-1726 du 30 décembre 2005. Nonobstant les justificatifs déjà fournis, il vous appartient de nous transmettre dans les meilleurs délais les documents complémentaires listés ci-après : - Copie d'un justificatif de domicile de moins de 6 mois - Timbre fiscal d'un montant de 86€ À défaut de production des pièces susvisées dans un délai de 30 jours à compter de la présente, votre demande sera classée sans suite. Nous vous prions d'agréer, Monsieur, l'expression de nos salutations distinguées. ``` Reponse: ``` Nous recevons votre requête pour renouveler votre passeport datant du 15 mars 2023. Suite à l'examen de votre dossier, il a été déterminé que les documents fournis ne respectent pas les exigences mentionnées dans la section 5-1 du décret n°2005-1726 du 30 décembre 2005. Malgré les pièces déjà fournies, vous devez nous envoyer rapidement les éléments suivants : - Une copie d'un justificatif de domicile datant de moins de 6 mois. - Un timbre fiscal d'une valeur de 86 €. Si ces documents ne sont pas fournis dans un délai de 30 jours à compter de cette lettre, votre demande sera close. Nous vous prions d'accepter, Monsieur, l'expression de nos salutations respectueuses. ``` # Example with Transformers: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("baconnier/Gaston-Llama-3-8B") model = AutoModelForCausalLM.from_pretrained("baconnier/Gaston-Llama-3-8B") prompt = "Nonobstant les justificatifs déjà fournis" inputs = tokenizer(prompt, return_tensors="pt") # Generate generate_ids = model.generate(inputs.input_ids, max_length=200) tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ```
buelfhood/irc-facebook-react
buelfhood
2024-05-08T13:31:11Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:IRC_Adapters", "roberta", "dataset:IRC", "region:us" ]
null
2024-05-08T12:43:19Z
--- tags: - adapter-transformers - adapterhub:IRC_Adapters - roberta datasets: - IRC --- # Adapter `buelfhood/irc-facebook-react` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [IRC_Adapters](https://adapterhub.ml/explore/IRC_Adapters/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("buelfhood/irc-facebook-react", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
Kendamarron/Tokara-0.5B-Chat-dolly-jimba
Kendamarron
2024-05-08T13:30:36Z
152
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "conversational", "ja", "en", "dataset:kunishou/databricks-dolly-15k-ja", "dataset:Kendamarron/jimba-instuction-1k-beta", "dataset:Kendamarron/pret-a-porter-instruction-v0.1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-06T15:24:56Z
--- license: other license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B/blob/main/LICENSE language: - ja - en pipeline_tag: text-generation datasets: - kunishou/databricks-dolly-15k-ja - Kendamarron/jimba-instuction-1k-beta - Kendamarron/pret-a-porter-instruction-v0.1 --- ## モデルについて [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B)を日英データ5Bトークンで継続事前学習した[Tokara-0.5B-v0.1](https://huggingface.co/Kendamarron/Tokara-0.5B-v0.1)を日本語instructionデータセットでファインチューニングしたモデルです。 0.5Bというモデルサイズにしてはコミュニケーションが行えるモデルになっています。 学習データにマルチターンのデータセットを含めているため、複数ターンの会話も行えるはずです。 モデルサイズの問題なのか、repetition_penaltyを1.15~1.25くらいにしないと早めに繰り返しが始まります。 詳細は[こちら](https://zenn.dev/kendama/articles/55564e12da6e82)をご覧ください。 ## データセット - [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Kendamarron/jimba-instuction-1k-beta](https://huggingface.co/datasets/Kendamarron/jimba-instuction-1k-beta) - [Kendamarron/pret-a-porter-instruction-v0.1](https://huggingface.co/datasets/Kendamarron/pret-a-porter-instruction-v0.1) - Kendamarron/jimba-oasst2-ja(公開準備中) jimba-oasst2-jaはoasst2のinstructionを起点にSwallow-MXを使って作成したマルチターン合成データセットです。 ## 名前について 日本の在来馬であるトカラ馬から ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" model = AutoModelForCausalLM.from_pretrained( 'Kendamarron/Tokara-0.5B-Chat-v0.1', torch_dtype=torch.bfloat16, device_map=device, ) tokenizer = AutoTokenizer.from_pretrained('Kendamarron/Tokara-0.5B-Chat-dolly-jimba') messages = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, {"role": "user", "content": "野菜は体にいいですか?"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=256, do_sample=True, top_p=0.95, top_k=40, temperature=0.7, repetition_penalty=1.1, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=2 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```
buelfhood/irc-opencv-opencv
buelfhood
2024-05-08T13:23:25Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:IRC_Adapters", "roberta", "dataset:IRC", "region:us" ]
null
2024-05-08T13:23:22Z
--- tags: - adapter-transformers - adapterhub:IRC_Adapters - roberta datasets: - IRC --- # Adapter `buelfhood/irc-opencv-opencv` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [IRC_Adapters](https://adapterhub.ml/explore/IRC_Adapters/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("buelfhood/irc-opencv-opencv", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
data-aces/Llama2-7B-FineTune-CT
data-aces
2024-05-08T13:21:07Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2024-04-02T05:27:47Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt
h4g3n
2024-05-08T13:15:42Z
204
2
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-07T17:43:10Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - de - en - es - fr - it - nl - pl - pt --- # h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt The model is derived from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It is a destilled variant with only 4 attention layers, that was tasked to keep the vector space aligned with 7 languages during destillation. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt') model = AutoModel.from_pretrained('h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=h4g3n/multilingual-MiniLM-L12-de-en-es-fr-it-nl-pl-pt) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80592 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
buelfhood/irc-bitcoin-bitcoin
buelfhood
2024-05-08T13:15:19Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:IRC_Adapters", "roberta", "dataset:IRC", "region:us" ]
null
2024-05-08T13:15:16Z
--- tags: - adapter-transformers - adapterhub:IRC_Adapters - roberta datasets: - IRC --- # Adapter `buelfhood/irc-bitcoin-bitcoin` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [IRC_Adapters](https://adapterhub.ml/explore/IRC_Adapters/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("buelfhood/irc-bitcoin-bitcoin", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
Mag0g/Ezekiel25_18
Mag0g
2024-05-08T13:08:04Z
131
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T11:52:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ellight/gemma-2b-bnb-gguf
Ellight
2024-05-08T13:04:28Z
8
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "trl", "text-generation", "hi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-05-08T12:52:10Z
--- license: apache-2.0 language: - hi tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-7b-bnb-gguf pipeline_tag: text-generation --- # Uploaded model - **Developed by:** Ellight - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # Hindi-Gemma-2B-instruct (Instruction-tuned) Hindi-Gemma-2B-instruct is an instruction-tuned Hindi large language model (LLM) with 2 billion parameters, and it is based on Gemma 2B.
whalesnik/rut5-base-multitask-finetuned
whalesnik
2024-05-08T12:59:42Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:cointegrated/rut5-base-multitask", "base_model:finetune:cointegrated/rut5-base-multitask", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-07T14:54:58Z
--- license: mit base_model: cointegrated/rut5-base-multitask tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: rut5-base-multitask-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rut5-base-multitask-finetuned This model is a fine-tuned version of [cointegrated/rut5-base-multitask](https://huggingface.co/cointegrated/rut5-base-multitask) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8474 - Precision: [0.6929003596305847, 0.6133741736412048, 0.6369296908378601, 0.6576104164123535, 0.6581195592880249, 0.7057837843894958, 0.6906453371047974, 0.6295247077941895, 0.6032506227493286, 0.6801808476448059, 0.7086416482925415, 0.7715317010879517, 0.6965898871421814, 0.6664015054702759, 0.6693047285079956, 0.635832667350769, 0.7033517956733704, 0.6183526515960693, 0.6158597469329834, 0.6398658752441406, 0.6714366674423218, 0.6355723738670349, 0.6943302750587463, 0.6544321775436401, 0.6650948524475098, 0.7430660724639893, 0.6517236232757568, 0.7484419345855713, 0.0, 0.675719141960144, 0.6458128690719604, 0.6234389543533325, 0.6472302079200745, 0.6631240248680115, 0.6684064865112305, 0.6660122275352478, 0.6794019937515259, 0.6357454061508179, 0.6969460248947144, 0.5535992383956909, 0.7105198502540588, 0.6797340512275696, 0.5988055467605591, 0.67428058385849, 0.637294590473175, 0.6437563300132751, 0.7560627460479736, 0.6326324939727783, 0.7101137042045593, 0.7656958699226379, 0.6435254812240601, 0.6552819013595581, 0.6591821312904358, 0.6520820260047913, 0.7302312850952148, 0.6462039947509766, 0.6925369501113892, 0.6566042900085449, 0.695000171661377, 0.6302398443222046, 0.6504288911819458, 0.6807819604873657, 0.7568456530570984, 0.6529860496520996, 0.6187940239906311, 0.6020010709762573, 0.6868752837181091, 0.6300128102302551, 0.6296300888061523, 0.6843270063400269, 0.6368266344070435, 0.6201039552688599, 0.6535858511924744, 0.6613433957099915, 0.6574115753173828, 0.6770792007446289, 0.7600529193878174, 0.6565803289413452, 0.698392391204834, 0.6894751787185669, 0.6980857849121094, 0.7112835645675659, 0.668113112449646, 0.6581467986106873, 0.659957766532898, 0.6379042863845825, 0.6446895599365234, 0.6587048768997192, 0.652809739112854, 0.6526193618774414, 0.6537817716598511, 0.7116091847419739, 0.7003600597381592, 0.6960922479629517, 0.7021352052688599, 0.656990647315979, 0.6734673380851746, 0.5993854999542236, 0.6549721956253052, 0.7079775333404541, 0.7105451822280884, 0.673061728477478, 0.6398658752441406, 0.7279029488563538, 0.632804811000824, 0.6385118365287781, 0.6277474164962769, 0.694757878780365, 0.637184739112854, 0.6614517569541931, 0.673061728477478, 0.6937723159790039, 0.6959199905395508, 0.6462610960006714, 0.6720056533813477, 0.6341558694839478, 0.658045768737793, 0.6242990493774414, 0.6955231428146362, 0.6746744513511658, 0.6259623765945435, 0.6322343349456787, 0.6386721730232239, 0.6636806130409241, 0.7008563280105591, 0.7186553478240967, 0.742395281791687, 0.5930124521255493, 0.660872220993042, 0.6856606006622314, 0.7234644889831543, 0.661785364151001, 0.6491066217422485, 0.656990647315979, 0.6655586957931519, 0.6928428411483765, 0.6648601293563843, 0.6940321922302246, 0.6660351753234863, 0.673884391784668, 0.654864490032196, 0.6751419305801392, 0.7360048294067383, 0.6635060906410217, 0.6750009655952454, 0.6638166904449463, 0.6382589936256409, 0.7049083709716797, 0.6431376934051514, 0.6806449294090271, 0.652288556098938, 0.655288815498352, 0.6625323295593262, 0.6482013463973999, 0.6454973816871643, 0.6514257192611694, 0.6625323295593262, 0.627372682094574, 0.6609578132629395, 0.7002651691436768, 0.6899219155311584, 0.6566691398620605, 0.6862121224403381, 0.6149857640266418, 0.6542688608169556, 0.6522969603538513, 0.635832667350769, 0.6770160794258118, 0.6105413436889648, 0.5959399938583374, 0.5996183753013611, 0.6474558115005493, 0.6497341394424438, 0.6824425458908081, 0.6511133313179016, 0.6678274869918823, 0.6700403690338135, 0.6197404861450195, 0.6774248480796814, 0.748753011226654, 0.5847424864768982, 0.7290750741958618, 0.6362240314483643, 0.6821150779724121, 0.6743643879890442, 0.6179369688034058, 0.6248660087585449, 0.6989448070526123, 0.7265845537185669, 0.6207034587860107, 0.6517062187194824, 0.6871163249015808, 0.6199581623077393, 0.7777968645095825, 0.6263978481292725, 0.6609578132629395, 0.6415587663650513, 0.700570821762085, 0.657017171382904, 0.6716399788856506, 0.67547208070755, 0.6563198566436768, 0.7473193407058716, 0.6515363454818726, 0.7003060579299927, 0.650084376335144, 0.6724016666412354, 0.7201712131500244, 0.6008522510528564, 0.667036771774292, 0.6724625825881958, 0.7508677840232849, 0.6464987397193909, 0.6168344020843506, 0.6700884103775024, 0.6235026121139526, 0.6438812613487244, 0.6425885558128357, 0.6213839054107666, 0.6382965445518494, 0.6957192420959473, 0.6555189490318298, 0.6971650719642639, 0.7006597518920898, 0.7391626834869385, 0.6715911626815796, 0.6253701448440552, 0.652809739112854, 0.6811630725860596, 0.7285609245300293, 0.6595237255096436, 0.5911452770233154, 0.665739893913269, 0.6692743897438049, 0.6335341930389404, 0.6147409677505493, 0.6383231282234192, 0.6025363206863403, 0.6212208271026611, 0.6143321990966797, 0.6346527338027954, 0.6133826375007629, 0.5720107555389404, 0.7086416482925415, 0.6206754446029663, 0.7020885348320007, 0.6567215919494629, 0.6147409677505493, 0.6760094165802002, 0.6580663323402405, 0.6447792649269104, 0.6912583112716675, 0.7000113725662231, 0.6154043078422546, 0.640922486782074, 0.6739322543144226, 0.655249834060669, 0.640444278717041, 0.6667684316635132, 0.6733943819999695, 0.6508811712265015, 0.7618014812469482, 0.646928071975708] - Recall: [0.6649062037467957, 0.6275476217269897, 0.6429741382598877, 0.6600346565246582, 0.6316436529159546, 0.6886480450630188, 0.6775014996528625, 0.6498724818229675, 0.572837233543396, 0.6461964845657349, 0.7162613868713379, 0.7794148325920105, 0.6915059685707092, 0.6392509937286377, 0.6521221995353699, 0.6284155249595642, 0.7132933139801025, 0.6361821293830872, 0.6224191784858704, 0.6523096561431885, 0.6769837737083435, 0.6243550777435303, 0.6266458034515381, 0.652681827545166, 0.6484395861625671, 0.7511179447174072, 0.653579831123352, 0.698567271232605, 0.0, 0.6781419515609741, 0.6337482333183289, 0.653876543045044, 0.6137877702713013, 0.6642259359359741, 0.7020760774612427, 0.634747326374054, 0.7031091451644897, 0.6552716493606567, 0.6741659641265869, 0.5695792436599731, 0.7114435434341431, 0.6849547624588013, 0.59352046251297, 0.6778455972671509, 0.5988288521766663, 0.6323497295379639, 0.7332395911216736, 0.6469723582267761, 0.6880676746368408, 0.7390843629837036, 0.5997792482376099, 0.6754531264305115, 0.6813293099403381, 0.6666642427444458, 0.68291175365448, 0.6306267976760864, 0.6752303838729858, 0.6781089901924133, 0.7067015171051025, 0.6026639938354492, 0.6560887694358826, 0.6354584693908691, 0.7168669104576111, 0.6409149169921875, 0.6049350500106812, 0.5960757732391357, 0.669973611831665, 0.6422098278999329, 0.6395115256309509, 0.6887341141700745, 0.6432803869247437, 0.6286009550094604, 0.6391538381576538, 0.6414529085159302, 0.6532565355300903, 0.6443188190460205, 0.7384698390960693, 0.6441894769668579, 0.7132408618927002, 0.7013686895370483, 0.6652677059173584, 0.6880629062652588, 0.6502605080604553, 0.6269145011901855, 0.6791725754737854, 0.5927161574363708, 0.6064770221710205, 0.661729097366333, 0.651779055595398, 0.6646026372909546, 0.632445216178894, 0.725436806678772, 0.6621347665786743, 0.6755839586257935, 0.6738181114196777, 0.6566475033760071, 0.6619706153869629, 0.5842774510383606, 0.686192512512207, 0.7009044885635376, 0.7354075908660889, 0.6788778305053711, 0.6523096561431885, 0.6869735717773438, 0.6263010501861572, 0.6256016492843628, 0.6423155069351196, 0.6860323548316956, 0.6310012340545654, 0.6260640621185303, 0.6788778305053711, 0.6427903771400452, 0.6636099815368652, 0.6568259596824646, 0.6437113881111145, 0.6226024627685547, 0.6720809936523438, 0.6328999996185303, 0.699752926826477, 0.636201798915863, 0.644474446773529, 0.6302847862243652, 0.6292503476142883, 0.6662095785140991, 0.7015441060066223, 0.7038581371307373, 0.7442997694015503, 0.6347897052764893, 0.6376725435256958, 0.6901686191558838, 0.695481538772583, 0.6469976902008057, 0.6211618185043335, 0.6566475033760071, 0.6544449329376221, 0.6582697629928589, 0.6453942656517029, 0.670850932598114, 0.655735969543457, 0.6552658081054688, 0.6520406603813171, 0.678108274936676, 0.7265080213546753, 0.6506229639053345, 0.6752663850784302, 0.6709432601928711, 0.6129387021064758, 0.6714939475059509, 0.6591033935546875, 0.634405791759491, 0.6656297445297241, 0.6381163001060486, 0.6431194543838501, 0.6446937322616577, 0.6875370740890503, 0.6325691938400269, 0.6431194543838501, 0.6313208341598511, 0.6314756870269775, 0.7084503769874573, 0.7146296501159668, 0.6485159993171692, 0.6599531173706055, 0.6230310797691345, 0.6420427560806274, 0.6593505144119263, 0.6284155249595642, 0.6823000907897949, 0.5802127122879028, 0.5710383057594299, 0.5828155279159546, 0.6076115369796753, 0.6196562051773071, 0.6699979901313782, 0.6352205276489258, 0.6752637624740601, 0.6526370644569397, 0.6168854236602783, 0.69868004322052, 0.7261859178543091, 0.5989089012145996, 0.7012088298797607, 0.5866293907165527, 0.7031817436218262, 0.6830926537513733, 0.6432316303253174, 0.6219719648361206, 0.6903827786445618, 0.6756868362426758, 0.6180089712142944, 0.6410292387008667, 0.689997673034668, 0.5841130614280701, 0.6860305070877075, 0.6241101026535034, 0.6314756870269775, 0.6247932314872742, 0.697077214717865, 0.6323742270469666, 0.6652247905731201, 0.6622908115386963, 0.6254100203514099, 0.7815357446670532, 0.6599846482276917, 0.6917272806167603, 0.6358695030212402, 0.6401605010032654, 0.6963860392570496, 0.5883089900016785, 0.6543786525726318, 0.6658977270126343, 0.7610270977020264, 0.6357758045196533, 0.6123616099357605, 0.698261022567749, 0.6122673749923706, 0.6471544504165649, 0.6635059118270874, 0.6274517178535461, 0.6202007532119751, 0.6825913190841675, 0.680517315864563, 0.6648703813552856, 0.6754068732261658, 0.6989795565605164, 0.6868336200714111, 0.6108724474906921, 0.651779055595398, 0.6650040149688721, 0.7022161483764648, 0.6511324644088745, 0.616610050201416, 0.6444504261016846, 0.6764492988586426, 0.6493207216262817, 0.6018832921981812, 0.6349364519119263, 0.6164268851280212, 0.618169367313385, 0.6206363439559937, 0.6173461079597473, 0.589404821395874, 0.5812571048736572, 0.7162613868713379, 0.6146183013916016, 0.677343487739563, 0.7096463441848755, 0.6018832921981812, 0.6628992557525635, 0.6039726734161377, 0.6497476100921631, 0.6936290264129639, 0.7000452280044556, 0.5954415798187256, 0.6570545434951782, 0.6340285539627075, 0.6425281763076782, 0.6396463513374329, 0.6707313656806946, 0.6983391046524048, 0.6416543126106262, 0.7060319185256958, 0.6359407305717468] - F1: [0.6786146759986877, 0.6203799843788147, 0.6399376392364502, 0.6588203310966492, 0.6446098685264587, 0.697110652923584, 0.6840102076530457, 0.6395367383956909, 0.587650716304779, 0.6627532243728638, 0.7124311327934265, 0.7754532694816589, 0.6940386295318604, 0.6525439620018005, 0.660601794719696, 0.632102370262146, 0.7082876563072205, 0.6271407008171082, 0.6191221475601196, 0.6460278034210205, 0.6741988658905029, 0.6299137473106384, 0.6587540507316589, 0.6535558700561523, 0.6566615700721741, 0.7470703125, 0.6526504158973694, 0.722645103931427, 0.0, 0.6769284009933472, 0.6397237181663513, 0.6382951140403748, 0.6300655007362366, 0.663674533367157, 0.6848276853561401, 0.6500040292739868, 0.6910523176193237, 0.6453608870506287, 0.6853667497634888, 0.5614755749702454, 0.7109813690185547, 0.6823344230651855, 0.5961512327194214, 0.6760584115982056, 0.617463231086731, 0.6380019783973694, 0.7444761991500854, 0.6397220492362976, 0.6989168524742126, 0.7521547675132751, 0.6208827495574951, 0.6652146577835083, 0.6700727939605713, 0.659292459487915, 0.7057793140411377, 0.6383203864097595, 0.6837741732597351, 0.6671833992004395, 0.7008020281791687, 0.616143524646759, 0.6532465815544128, 0.657339870929718, 0.7363139986991882, 0.6468941569328308, 0.6117860078811646, 0.5990237593650818, 0.6783191561698914, 0.6360528469085693, 0.6345322728157043, 0.6865234375, 0.6400372385978699, 0.6243235468864441, 0.6462892889976501, 0.6512463092803955, 0.6553274989128113, 0.6602928638458252, 0.7491059303283691, 0.6503258943557739, 0.7057384848594666, 0.6953710913658142, 0.6812817454338074, 0.6994805932044983, 0.6590659022331238, 0.6421510577201843, 0.6694273352622986, 0.6144805550575256, 0.6249997615814209, 0.6602135300636292, 0.6522939801216125, 0.6585564613342285, 0.6429365277290344, 0.7184564471244812, 0.6807112097740173, 0.6856848001480103, 0.6876852512359619, 0.6568189859390259, 0.6676694750785828, 0.5917350649833679, 0.6702190041542053, 0.7044232487678528, 0.7227626442909241, 0.6759572625160217, 0.6460278034210205, 0.7068462371826172, 0.6295360922813416, 0.6319908499717712, 0.6349478960037231, 0.690367579460144, 0.6340779066085815, 0.6432715654373169, 0.6759572625160217, 0.667309045791626, 0.6793810129165649, 0.6515007019042969, 0.6575543284416199, 0.6283260583877563, 0.6649893522262573, 0.6285700798034668, 0.6976316571235657, 0.6548735499382019, 0.6350835561752319, 0.6312580704689026, 0.6339262127876282, 0.6649426817893982, 0.701200008392334, 0.711179792881012, 0.7433462738990784, 0.6131902933120728, 0.6490651369094849, 0.6879072189331055, 0.7091970443725586, 0.6543079614639282, 0.6348268389701843, 0.6568189859390259, 0.6599550247192383, 0.6751139760017395, 0.6549826264381409, 0.6822446584701538, 0.6608454585075378, 0.6644446849822998, 0.653449535369873, 0.6766218543052673, 0.7312255501747131, 0.6570013761520386, 0.6751335859298706, 0.6673609614372253, 0.625342607498169, 0.6877955198287964, 0.6510226726531982, 0.6567124128341675, 0.6588916182518005, 0.6465886235237122, 0.6526815891265869, 0.6464427709579468, 0.665854275226593, 0.6418589949607849, 0.6526815891265869, 0.6293405890464783, 0.6458804607391357, 0.704334020614624, 0.7020584940910339, 0.6525671482086182, 0.6728265285491943, 0.6189823150634766, 0.6480981707572937, 0.6558048129081726, 0.632102370262146, 0.6796478629112244, 0.5949907898902893, 0.5832234025001526, 0.5910975933074951, 0.6269012093544006, 0.6343388557434082, 0.6761629581451416, 0.643068790435791, 0.6715250611305237, 0.6612242460250854, 0.6183096766471863, 0.6878883242607117, 0.7372968792915344, 0.5917409062385559, 0.7148704528808594, 0.6104210019111633, 0.6924881935119629, 0.6787004470825195, 0.6303306818008423, 0.6234156489372253, 0.6946374177932739, 0.7002120018005371, 0.6193532943725586, 0.6463236212730408, 0.6885539293289185, 0.6015020608901978, 0.729037344455719, 0.6252518892288208, 0.6458804607391357, 0.6330650448799133, 0.698819637298584, 0.6444602012634277, 0.6684170365333557, 0.6688165664672852, 0.6404922008514404, 0.7640447020530701, 0.6557332873344421, 0.695990264415741, 0.6428983807563782, 0.6558851003646851, 0.708078920841217, 0.5945144295692444, 0.6606470942497253, 0.6691640615463257, 0.7559133172035217, 0.6410924792289734, 0.6145898699760437, 0.6838846802711487, 0.6178339123725891, 0.6455137133598328, 0.6528797745704651, 0.6244031190872192, 0.6291185617446899, 0.689092755317688, 0.6677843332290649, 0.6806347966194153, 0.6878015995025635, 0.7185097336769104, 0.6791268587112427, 0.6180363297462463, 0.6522939801216125, 0.6729865670204163, 0.7151459455490112, 0.6553012132644653, 0.6036092042922974, 0.6549221873283386, 0.6728427410125732, 0.6413303017616272, 0.6082441806793213, 0.6366252899169922, 0.6094024777412415, 0.6196913719177246, 0.6174681782722473, 0.6258797645568848, 0.6011547446250916, 0.5765968561172485, 0.7124311327934265, 0.6176320314407349, 0.6894940733909607, 0.6821589469909668, 0.6082441806793213, 0.6693901419639587, 0.6298602223396301, 0.6472539305686951, 0.6924416422843933, 0.7000283002853394, 0.6052583456039429, 0.6488882899284363, 0.6533717513084412, 0.6488266587257385, 0.6400451064109802, 0.6687440276145935, 0.6856399774551392, 0.6462348103523254, 0.7328572273254395, 0.6413873434066772] - Hashcode: bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Hashcode | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------:| | No log | 1.0 | 187 | 3.0813 | [0.6972900629043579, 0.6209128499031067, 0.6303497552871704, 0.669329822063446, 0.6658897399902344, 0.6546947956085205, 0.6485821008682251, 0.6306471228599548, 0.6639196276664734, 0.6565954685211182, 0.6291463971138, 0.7196910381317139, 0.7252302169799805, 0.6341898441314697, 0.6808257102966309, 0.6202186942100525, 0.7196373343467712, 0.6396815776824951, 0.6539888978004456, 0.6446966528892517, 0.6903380751609802, 0.5996436476707458, 0.6943303346633911, 0.6544321775436401, 0.6647326350212097, 0.7383794784545898, 0.6740213632583618, 0.7063751816749573, 0.0, 0.6171443462371826, 0.6343944072723389, 0.6372663974761963, 0.5850397348403931, 0.6631240248680115, 0.6684064865112305, 0.6345014572143555, 0.6725552082061768, 0.6347571015357971, 0.6768847107887268, 0.5378965139389038, 0.6844617128372192, 0.6753311157226562, 0.5806505680084229, 0.6488094925880432, 0.6372946500778198, 0.6392971277236938, 0.6965267658233643, 0.6362487077713013, 0.6423338651657104, 0.6845363974571228, 0.6452834606170654, 0.6700187921524048, 0.6245315074920654, 0.6238488554954529, 0.6310935616493225, 0.6237497925758362, 0.6758069396018982, 0.6643972992897034, 0.6658114790916443, 0.6302398443222046, 0.6652647256851196, 0.713638424873352, 0.7136977910995483, 0.6789830923080444, 0.6303218603134155, 0.6199545860290527, 0.7059713006019592, 0.6632803678512573, 0.6112661361694336, 0.6625752449035645, 0.6524497270584106, 0.6201039552688599, 0.6649121046066284, 0.684431254863739, 0.6731460094451904, 0.6547147631645203, 0.7210156321525574, 0.7101010680198669, 0.6843844652175903, 0.7465802431106567, 0.6744540929794312, 0.6887200474739075, 0.6512157917022705, 0.6507437229156494, 0.6838808655738831, 0.6683865785598755, 0.6446895599365234, 0.6501699686050415, 0.6460182070732117, 0.680347204208374, 0.6514892578125, 0.6723964214324951, 0.6863370537757874, 0.6522715091705322, 0.6980904936790466, 0.6214569807052612, 0.6801367998123169, 0.6006804704666138, 0.6600107550621033, 0.6871361136436462, 0.7105451822280884, 0.7183694243431091, 0.6446966528892517, 0.6824240684509277, 0.6309765577316284, 0.6360318660736084, 0.6537045240402222, 0.6286071538925171, 0.6214569807052612, 0.6449944972991943, 0.7183694243431091, 0.7784961462020874, 0.7116344571113586, 0.6393237709999084, 0.6527358293533325, 0.6892797946929932, 0.6342389583587646, 0.6182838678359985, 0.6402065753936768, 0.6216378808021545, 0.625435471534729, 0.6627340316772461, 0.6374369263648987, 0.6772816181182861, 0.6666780710220337, 0.6945760250091553, 0.7083110213279724, 0.7192458510398865, 0.6739559173583984, 0.6938768625259399, 0.6879047751426697, 0.6425862312316895, 0.6523555517196655, 0.6214569807052612, 0.6910986304283142, 0.6493822336196899, 0.7008022665977478, 0.7025861740112305, 0.6851780414581299, 0.6230441927909851, 0.6275979280471802, 0.6768426895141602, 0.7166420221328735, 0.6342509388923645, 0.6577139496803284, 0.6748143434524536, 0.6382589340209961, 0.6494941711425781, 0.6505168676376343, 0.6350724697113037, 0.6540824174880981, 0.6555485129356384, 0.638446033000946, 0.6482013463973999, 0.6286321878433228, 0.6481608748435974, 0.638446033000946, 0.5979923009872437, 0.6979027986526489, 0.6817257404327393, 0.6592428088188171, 0.6616016626358032, 0.6915000677108765, 0.6374605894088745, 0.6542688608169556, 0.6730923056602478, 0.6202186942100525, 0.6743776202201843, 0.6270588636398315, 0.6077086925506592, 0.6462111473083496, 0.6474558115005493, 0.6506569385528564, 0.6693702340126038, 0.6248153448104858, 0.698747992515564, 0.627697229385376, 0.6325319409370422, 0.7074161767959595, 0.7149229645729065, 0.6152138710021973, 0.7022101879119873, 0.6184785962104797, 0.6569041013717651, 0.6733340620994568, 0.6296130418777466, 0.5978628396987915, 0.7141454219818115, 0.6680266261100769, 0.6287610530853271, 0.6218060255050659, 0.6585436463356018, 0.5934261679649353, 0.8017036318778992, 0.621709406375885, 0.6979027986526489, 0.6304135918617249, 0.6718711853027344, 0.6699690222740173, 0.6498791575431824, 0.6845303177833557, 0.6299594640731812, 0.7473193407058716, 0.7256643176078796, 0.6972105503082275, 0.6613482236862183, 0.6441901326179504, 0.7391979694366455, 0.5977689027786255, 0.6539319753646851, 0.670433521270752, 0.7508677840232849, 0.6992871165275574, 0.615271270275116, 0.711364209651947, 0.6618025302886963, 0.6987183094024658, 0.5896515250205994, 0.6441870927810669, 0.628298282623291, 0.7039917707443237, 0.6637365818023682, 0.6517009139060974, 0.6637771129608154, 0.6967252492904663, 0.6921741962432861, 0.6884433031082153, 0.6460182070732117, 0.660264790058136, 0.7167667150497437, 0.6615840196609497, 0.5911452770233154, 0.6719667911529541, 0.69354647397995, 0.6477620601654053, 0.6344354152679443, 0.6017006635665894, 0.6884675621986389, 0.6212208271026611, 0.6053494215011597, 0.6280270218849182, 0.5599168539047241, 0.6021941900253296, 0.6291463971138, 0.6510751247406006, 0.6379233598709106, 0.6634538173675537, 0.6344354152679443, 0.6317392587661743, 0.6159518957138062, 0.6349514722824097, 0.6798754930496216, 0.6915603280067444, 0.6154043674468994, 0.6409224271774292, 0.6296124458312988, 0.7049307823181152, 0.6629446744918823, 0.6483598947525024, 0.6874243021011353, 0.6508811712265015, 0.7231448888778687, 0.6139471530914307] | [0.6690835356712341, 0.629605770111084, 0.6341222524642944, 0.6762160062789917, 0.6402171850204468, 0.6802598237991333, 0.6586434841156006, 0.6438072919845581, 0.630736231803894, 0.6443355679512024, 0.6071645021438599, 0.7338281273841858, 0.6963890790939331, 0.5534967184066772, 0.6605989933013916, 0.5930925607681274, 0.6938921213150024, 0.649103581905365, 0.5964820384979248, 0.63885498046875, 0.6794215440750122, 0.5904185175895691, 0.6266457438468933, 0.652681827545166, 0.6445105075836182, 0.7305891513824463, 0.673649251461029, 0.693747878074646, 0.0, 0.6254042387008667, 0.6392340064048767, 0.6495228409767151, 0.6155095100402832, 0.6642259359359741, 0.7020760774612427, 0.5918160676956177, 0.6547914743423462, 0.6299182176589966, 0.6921340227127075, 0.5744519233703613, 0.6615071296691895, 0.6916912794113159, 0.5551225543022156, 0.615251362323761, 0.5988288521766663, 0.6381624937057495, 0.6787834763526917, 0.6415231823921204, 0.640038251876831, 0.6688621044158936, 0.6177853941917419, 0.6892616748809814, 0.6533267498016357, 0.6239284873008728, 0.6494619250297546, 0.622978925704956, 0.658489465713501, 0.6747301816940308, 0.6713486909866333, 0.6026639938354492, 0.6633857488632202, 0.6406348943710327, 0.6881794929504395, 0.6792259812355042, 0.6151540279388428, 0.559799313545227, 0.6993117332458496, 0.6552832126617432, 0.6277163028717041, 0.6756231784820557, 0.6494308710098267, 0.6286009550094604, 0.6512190103530884, 0.6716654300689697, 0.6703565716743469, 0.637775719165802, 0.7183399200439453, 0.685828447341919, 0.6578220725059509, 0.7307789325714111, 0.6505950093269348, 0.6700854301452637, 0.6372937560081482, 0.6552339792251587, 0.6840033531188965, 0.6275448799133301, 0.6064770221710205, 0.6499481201171875, 0.6305532455444336, 0.6810789108276367, 0.6343933343887329, 0.686200737953186, 0.6534963846206665, 0.6271517872810364, 0.6782116293907166, 0.5916875600814819, 0.6401302814483643, 0.5829842686653137, 0.7125808596611023, 0.6689456701278687, 0.7354074716567993, 0.7031968832015991, 0.63885498046875, 0.6724204421043396, 0.6183298826217651, 0.6375395655632019, 0.6543038487434387, 0.5749609470367432, 0.5953624248504639, 0.6092445850372314, 0.7031968832015991, 0.7098925113677979, 0.7054386138916016, 0.6289387941360474, 0.6202157735824585, 0.674200177192688, 0.6449214816093445, 0.6415404677391052, 0.6265232563018799, 0.6098505258560181, 0.613018810749054, 0.6582919955253601, 0.6342277526855469, 0.6146944761276245, 0.6666728258132935, 0.6904858350753784, 0.7162154912948608, 0.6697985529899597, 0.6468008756637573, 0.7186888456344604, 0.6971940398216248, 0.6463102102279663, 0.6626359820365906, 0.5916875600814819, 0.6631262302398682, 0.6337734460830688, 0.6653444766998291, 0.6642656922340393, 0.6637084484100342, 0.6216070055961609, 0.6486092805862427, 0.6868037581443787, 0.7214236259460449, 0.6438239812850952, 0.6478031277656555, 0.6667642593383789, 0.6129387617111206, 0.6363632678985596, 0.6672195792198181, 0.5527236461639404, 0.6664568781852722, 0.6251285076141357, 0.6258903741836548, 0.6446937322616577, 0.6885465383529663, 0.5943767428398132, 0.6258903741836548, 0.6287720799446106, 0.6805816888809204, 0.6964499950408936, 0.674129068851471, 0.6525664925575256, 0.6801928281784058, 0.6457400321960449, 0.6420427560806274, 0.6826196908950806, 0.5930925607681274, 0.6613972187042236, 0.5700592994689941, 0.5935043096542358, 0.6026366353034973, 0.6076114773750305, 0.630884051322937, 0.6460962295532227, 0.632949948310852, 0.7027755975723267, 0.6372056007385254, 0.6244736909866333, 0.7136611938476562, 0.7079389095306396, 0.6307814717292786, 0.6787548065185547, 0.571983814239502, 0.6612218618392944, 0.6679160594940186, 0.6268075704574585, 0.5937477946281433, 0.6996750831604004, 0.6586851477622986, 0.6132180094718933, 0.6217329502105713, 0.6748089790344238, 0.557576596736908, 0.7347369194030762, 0.6061442494392395, 0.6805816888809204, 0.6291359663009644, 0.6850269436836243, 0.6686764359474182, 0.6324300169944763, 0.6662142276763916, 0.6492703557014465, 0.7815357446670532, 0.6951200366020203, 0.6968278884887695, 0.6406024694442749, 0.6368361711502075, 0.7244458794593811, 0.5749488472938538, 0.6213769912719727, 0.6641060709953308, 0.7610270977020264, 0.6905292272567749, 0.6233813762664795, 0.7417882084846497, 0.6603812575340271, 0.7283397912979126, 0.6170424222946167, 0.6512232422828674, 0.6110985279083252, 0.6823626160621643, 0.6558948159217834, 0.643169105052948, 0.6609585881233215, 0.6937960386276245, 0.7087029814720154, 0.6332069635391235, 0.6305532455444336, 0.6450417041778564, 0.6955016851425171, 0.6579762101173401, 0.6166101098060608, 0.6587419509887695, 0.696763277053833, 0.6544588208198547, 0.624350368976593, 0.6007038950920105, 0.7098914384841919, 0.618169367313385, 0.6071577072143555, 0.5965011119842529, 0.5594587326049805, 0.620894730091095, 0.6071645021438599, 0.6472498178482056, 0.6284576654434204, 0.7020343542098999, 0.624350368976593, 0.629782497882843, 0.5875484943389893, 0.6373080015182495, 0.6910693049430847, 0.6707531213760376, 0.5954415798187256, 0.6570544242858887, 0.6142326593399048, 0.6763747930526733, 0.6701680421829224, 0.6335932016372681, 0.6942548751831055, 0.6416543126106262, 0.6935495138168335, 0.6191830635070801] | [0.6828957200050354, 0.6252291202545166, 0.6322304010391235, 0.6727553009986877, 0.6528011560440063, 0.6672325134277344, 0.6535740494728088, 0.6371592879295349, 0.6469026803970337, 0.6504077911376953, 0.6179599761962891, 0.7266908288002014, 0.7105170488357544, 0.5911020636558533, 0.6705598831176758, 0.6063523888587952, 0.7065302729606628, 0.6443580985069275, 0.6239131689071655, 0.6417624950408936, 0.6848363280296326, 0.5949953198432922, 0.6587540507316589, 0.6535558700561523, 0.65446537733078, 0.734463632106781, 0.673835277557373, 0.7000045776367188, 0.0, 0.6212468147277832, 0.63680499792099, 0.643336296081543, 0.5998879671096802, 0.663674533367157, 0.6848276853561401, 0.6124158501625061, 0.6635544300079346, 0.6323283910751343, 0.6844244003295898, 0.555573582649231, 0.672788679599762, 0.6834133267402649, 0.5675996541976929, 0.6315849423408508, 0.617463231086731, 0.6387292742729187, 0.6875407099723816, 0.6388750076293945, 0.6411839723587036, 0.6766085028648376, 0.6312350630760193, 0.6795040369033813, 0.6386047005653381, 0.6238886713981628, 0.640146017074585, 0.6233641505241394, 0.6670358180999756, 0.6695238351821899, 0.6685686111450195, 0.616143524646759, 0.6643238663673401, 0.6751689910888672, 0.700706422328949, 0.6791045069694519, 0.6226455569267273, 0.5883433222770691, 0.7026257514953613, 0.6592575311660767, 0.6193820238113403, 0.6690356135368347, 0.6509367823600769, 0.6243235468864441, 0.6579943299293518, 0.6779882311820984, 0.6717483997344971, 0.6461342573165894, 0.7196753025054932, 0.6977536678314209, 0.6708404421806335, 0.7385950684547424, 0.6623097062110901, 0.6792749762535095, 0.6441795229911804, 0.6529811024665833, 0.6839421391487122, 0.6473221182823181, 0.6249997615814209, 0.6500590443611145, 0.6381919980049133, 0.680712878704071, 0.6428276896476746, 0.6792284846305847, 0.6695142388343811, 0.6394650936126709, 0.6880075335502625, 0.606207013130188, 0.6595274209976196, 0.5917000770568848, 0.6852890849113464, 0.6779189109802246, 0.7227625250816345, 0.7107022404670715, 0.6417624950408936, 0.6773852705955505, 0.624589204788208, 0.6367847919464111, 0.6540040373802185, 0.6005885004997253, 0.6081299185752869, 0.6266100406646729, 0.7107022404670715, 0.7426133155822754, 0.7085229754447937, 0.6340887546539307, 0.6360604166984558, 0.6816565990447998, 0.6395356059074402, 0.6296975612640381, 0.6332910060882568, 0.6156877875328064, 0.6191648840904236, 0.6605055332183838, 0.6358283162117004, 0.6444721221923828, 0.6666754484176636, 0.6925249099731445, 0.7122412919998169, 0.6936420798301697, 0.6600992679595947, 0.7060649394989014, 0.6925182342529297, 0.6444428563117981, 0.6574556231498718, 0.606207013130188, 0.6768234968185425, 0.6414828896522522, 0.6826131939888, 0.6828888058662415, 0.6742724180221558, 0.6223247647285461, 0.6379306316375732, 0.681786835193634, 0.7190248370170593, 0.6390016078948975, 0.6527209281921387, 0.6707651615142822, 0.6253426671028137, 0.6428616642951965, 0.6587623953819275, 0.5910434722900391, 0.6602117419242859, 0.6399771571159363, 0.6321058869361877, 0.6464427709579468, 0.6572267413139343, 0.6201047897338867, 0.6321058869361877, 0.612995982170105, 0.6891334652900696, 0.6890091896057129, 0.6666028499603271, 0.6570529937744141, 0.6857998371124268, 0.6415736079216003, 0.6480981707572937, 0.6778225898742676, 0.6063523888587952, 0.6678243279457092, 0.5972021222114563, 0.600522518157959, 0.6236637234687805, 0.6269011497497559, 0.6406179666519165, 0.6575273871421814, 0.628856360912323, 0.7007560133934021, 0.6324157118797302, 0.6284769773483276, 0.7105249166488647, 0.7114138007164001, 0.6229004859924316, 0.6902832984924316, 0.5943232774734497, 0.6590558886528015, 0.6706140637397766, 0.6282072067260742, 0.5957982540130615, 0.7068362236022949, 0.6633229851722717, 0.6208922266960144, 0.6217694878578186, 0.6665771007537842, 0.5749431252479553, 0.7667608261108398, 0.6138281226158142, 0.6891334652900696, 0.6297740936279297, 0.678385317325592, 0.66932213306427, 0.6410358548164368, 0.6752481460571289, 0.6394691467285156, 0.7640447020530701, 0.7100638151168823, 0.6970191597938538, 0.6508100628852844, 0.6404920220375061, 0.7317476272583008, 0.5861368179321289, 0.6372389793395996, 0.6672547459602356, 0.7559133172035217, 0.6948806047439575, 0.6192997097969055, 0.7262577414512634, 0.6610910892486572, 0.7132216095924377, 0.6030361652374268, 0.6476860642433167, 0.619579017162323, 0.6930084228515625, 0.659792423248291, 0.6474069356918335, 0.6623649001121521, 0.6952575445175171, 0.7003410458564758, 0.659670889377594, 0.6381919980049133, 0.6525644659996033, 0.7059741020202637, 0.6597751379013062, 0.6036092638969421, 0.6652886271476746, 0.695151150226593, 0.6510932445526123, 0.6293525695800781, 0.6012018918991089, 0.6990153789520264, 0.6196913719177246, 0.6062521934509277, 0.6118583083152771, 0.5596876740455627, 0.6114014387130737, 0.6179599761962891, 0.6491568684577942, 0.633155107498169, 0.6821990609169006, 0.6293525695800781, 0.6307592988014221, 0.6014150381088257, 0.6361275911331177, 0.6854267716407776, 0.6809977889060974, 0.6052584052085876, 0.6488881707191467, 0.6218274831771851, 0.6903576254844666, 0.6665367484092712, 0.6408914923667908, 0.6908227205276489, 0.6462348103523254, 0.7080380916595459, 0.6165539622306824] | bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) | | No log | 2.0 | 374 | 2.9486 | [0.6982066631317139, 0.6183862686157227, 0.6087684035301208, 0.6558735370635986, 0.6528643369674683, 0.7002508640289307, 0.6485821008682251, 0.6174837350845337, 0.6353263258934021, 0.6565954685211182, 0.6998130083084106, 0.7471818923950195, 0.7252302169799805, 0.6664015054702759, 0.688916802406311, 0.6202186942100525, 0.7203189134597778, 0.6141666769981384, 0.6513712406158447, 0.6446966528892517, 0.6903380155563354, 0.6406527161598206, 0.6943302154541016, 0.6544321775436401, 0.6787152290344238, 0.7558969259262085, 0.664342999458313, 0.6777578592300415, 0.0, 0.6164848804473877, 0.6422699689865112, 0.6504508256912231, 0.6472301483154297, 0.6631240248680115, 0.6684065461158752, 0.6660122275352478, 0.6472294330596924, 0.637406587600708, 0.6768847107887268, 0.5683413743972778, 0.6507012248039246, 0.6656262278556824, 0.5883523225784302, 0.6488094925880432, 0.6372946500778198, 0.6437563300132751, 0.7108484506607056, 0.6326324939727783, 0.6423338651657104, 0.6786177158355713, 0.6435254812240601, 0.6471881866455078, 0.6856778860092163, 0.6449967622756958, 0.7053937911987305, 0.6462039947509766, 0.6925369501113892, 0.6472506523132324, 0.680228054523468, 0.6302398443222046, 0.6588068008422852, 0.704545259475708, 0.7441930174827576, 0.6529860496520996, 0.6441495418548584, 0.6020010709762573, 0.7059713006019592, 0.6560994386672974, 0.6296300888061523, 0.6973000168800354, 0.6632401943206787, 0.6201039552688599, 0.6902400255203247, 0.6613433957099915, 0.6381564140319824, 0.6402202844619751, 0.7348482608795166, 0.6687710285186768, 0.6698120832443237, 0.6612139344215393, 0.6713679432868958, 0.7112835645675659, 0.6630656719207764, 0.6488121151924133, 0.659957766532898, 0.6379042863845825, 0.6446895599365234, 0.6501699686050415, 0.6785218715667725, 0.6541853547096252, 0.6588089466094971, 0.7166287302970886, 0.6940929889678955, 0.6882997751235962, 0.7072522640228271, 0.665823221206665, 0.6638649702072144, 0.5866219401359558, 0.6549721956253052, 0.6724978685379028, 0.7105451822280884, 0.6562262773513794, 0.6446966528892517, 0.7221744656562805, 0.6309765577316284, 0.6385118365287781, 0.631375253200531, 0.6286071538925171, 0.6371846199035645, 0.6449944972991943, 0.6562262773513794, 0.7741892337799072, 0.7135193347930908, 0.624544084072113, 0.6266262531280518, 0.6193041801452637, 0.658045768737793, 0.639914333820343, 0.6467216610908508, 0.6434848308563232, 0.6241222620010376, 0.6361654996871948, 0.6386721730232239, 0.6772816777229309, 0.7008563280105591, 0.7186553478240967, 0.742395281791687, 0.6759191751480103, 0.660872220993042, 0.6938768625259399, 0.6977353096008301, 0.6675675511360168, 0.6195050477981567, 0.665823221206665, 0.7274277806282043, 0.6900506615638733, 0.675679624080658, 0.6940321922302246, 0.6851780414581299, 0.6646198630332947, 0.6001584529876709, 0.65864497423172, 0.700131893157959, 0.6635060906410217, 0.6750009655952454, 0.6638168096542358, 0.6382589340209961, 0.7049083113670349, 0.6066895127296448, 0.6806449294090271, 0.6521055698394775, 0.655288815498352, 0.6625323295593262, 0.6482013463973999, 0.6719499826431274, 0.6606333255767822, 0.6625323295593262, 0.6231503486633301, 0.6720799207687378, 0.6998441219329834, 0.6946382522583008, 0.6616016626358032, 0.6533825397491455, 0.6632941961288452, 0.6542688608169556, 0.7271872758865356, 0.6202186942100525, 0.66164630651474, 0.6105413436889648, 0.6091306209564209, 0.5996183156967163, 0.6474558115005493, 0.6506568193435669, 0.6546282768249512, 0.6214566230773926, 0.7176573276519775, 0.6651043891906738, 0.6197404861450195, 0.6774248480796814, 0.7084785103797913, 0.586689829826355, 0.7290751934051514, 0.6184787154197693, 0.6817128658294678, 0.6754533052444458, 0.6538910865783691, 0.6248659491539001, 0.6896898746490479, 0.6734293699264526, 0.6391358971595764, 0.6430469751358032, 0.6700241565704346, 0.6199581623077393, 0.7463916540145874, 0.6518190503120422, 0.6720799207687378, 0.607273280620575, 0.7160269618034363, 0.6338986754417419, 0.6482559442520142, 0.6845303177833557, 0.6641334295272827, 0.7473193407058716, 0.6643524169921875, 0.7148523926734924, 0.6705331802368164, 0.6883808970451355, 0.7370448708534241, 0.5946321487426758, 0.6670366525650024, 0.6887495517730713, 0.7508677840232849, 0.6079212427139282, 0.6250202655792236, 0.7113643288612366, 0.6755977869033813, 0.6711742877960205, 0.6364812850952148, 0.6155573129653931, 0.6382966041564941, 0.6861942410469055, 0.6637364029884338, 0.6469249725341797, 0.6579157114028931, 0.6948999166488647, 0.6442856788635254, 0.6535832285881042, 0.6785218715667725, 0.6481752395629883, 0.7167667150497437, 0.6595237255096436, 0.5911452770233154, 0.640205979347229, 0.69354647397995, 0.6477620601654053, 0.6147409677505493, 0.6529644727706909, 0.6172745227813721, 0.6212208271026611, 0.6143321990966797, 0.6280270218849182, 0.6233522295951843, 0.5465691685676575, 0.6998130083084106, 0.6191197633743286, 0.6408892869949341, 0.6305669546127319, 0.6147409677505493, 0.6733752489089966, 0.6159518957138062, 0.6493899822235107, 0.666703999042511, 0.638370931148529, 0.6154043674468994, 0.640922486782074, 0.6389703154563904, 0.655249834060669, 0.640444278717041, 0.7016367316246033, 0.6745030879974365, 0.6508811712265015, 0.7618014812469482, 0.6073929071426392] | [0.6664232611656189, 0.6292112469673157, 0.6338019371032715, 0.6434659957885742, 0.6288933157920837, 0.6973171234130859, 0.6586434841156006, 0.6530244946479797, 0.6279247403144836, 0.6443355679512024, 0.699359655380249, 0.7634284496307373, 0.6963890790939331, 0.6392509937286377, 0.6810783743858337, 0.5930925607681274, 0.7025052309036255, 0.6085672378540039, 0.6430882215499878, 0.63885498046875, 0.6794215440750122, 0.6277364492416382, 0.6266457438468933, 0.652681827545166, 0.6630316972732544, 0.7588268518447876, 0.6581995487213135, 0.6952032446861267, 0.0, 0.6386038064956665, 0.6262978911399841, 0.6498764157295227, 0.6137877106666565, 0.6642259359359741, 0.7020760774612427, 0.634747326374054, 0.651517927646637, 0.6486392021179199, 0.6921340227127075, 0.5788134336471558, 0.6346472501754761, 0.7063138484954834, 0.5682485103607178, 0.6152513027191162, 0.5988288521766663, 0.6323497295379639, 0.7142684459686279, 0.6469723582267761, 0.640038251876831, 0.6532570123672485, 0.5997792482376099, 0.677040159702301, 0.6660094261169434, 0.6820929050445557, 0.6698746085166931, 0.6306266784667969, 0.6752302646636963, 0.6691311597824097, 0.6974778175354004, 0.6026639938354492, 0.662247896194458, 0.6558896899223328, 0.7120248079299927, 0.6409149169921875, 0.6333125829696655, 0.5960757732391357, 0.6993117332458496, 0.6552859544754028, 0.6395115256309509, 0.6917214393615723, 0.6749719381332397, 0.6286009550094604, 0.6715764999389648, 0.6414529085159302, 0.6576831340789795, 0.6087600588798523, 0.74678635597229, 0.6473836898803711, 0.6791526675224304, 0.6926620006561279, 0.6683577299118042, 0.6880629062652588, 0.6429443359375, 0.6168287992477417, 0.6791725754737854, 0.5927161574363708, 0.6064770221710205, 0.6499481201171875, 0.653986930847168, 0.6884071826934814, 0.6475567817687988, 0.7149346470832825, 0.6674469709396362, 0.6905806064605713, 0.6958968639373779, 0.6695951223373413, 0.6607276201248169, 0.5651098489761353, 0.686192512512207, 0.6436470746994019, 0.7354074716567993, 0.6728092432022095, 0.63885498046875, 0.6850693821907043, 0.6183299422264099, 0.6256016492843628, 0.639796257019043, 0.5749609470367432, 0.6310011148452759, 0.6092445850372314, 0.6728092432022095, 0.7145127058029175, 0.7215414047241211, 0.6380918025970459, 0.6102471947669983, 0.6061940789222717, 0.6720809936523438, 0.6305760145187378, 0.6200056076049805, 0.6274625658988953, 0.632763683795929, 0.6354004144668579, 0.6292503476142883, 0.6146945357322693, 0.7015441060066223, 0.7038581371307373, 0.7442997694015503, 0.6960017681121826, 0.6376725435256958, 0.7186888456344604, 0.7017020583152771, 0.6444715857505798, 0.645115852355957, 0.6695951223373413, 0.7030900716781616, 0.6594641804695129, 0.6511355638504028, 0.670850932598114, 0.6637084484100342, 0.6652007102966309, 0.6172242164611816, 0.6618764400482178, 0.7117727398872375, 0.6506229639053345, 0.6752663850784302, 0.6709433794021606, 0.6129387617111206, 0.6714940071105957, 0.6215537786483765, 0.634405791759491, 0.6786692142486572, 0.6381163001060486, 0.6431194543838501, 0.6446937322616577, 0.7034503817558289, 0.6750296950340271, 0.6431194543838501, 0.6297930479049683, 0.6614902019500732, 0.7036568522453308, 0.7035747170448303, 0.6525664925575256, 0.664370059967041, 0.6461271047592163, 0.6420427560806274, 0.7107009887695312, 0.5930925607681274, 0.6534987688064575, 0.5802127122879028, 0.5841628313064575, 0.5828155279159546, 0.6076114773750305, 0.630884051322937, 0.6329199075698853, 0.6274378299713135, 0.7255188226699829, 0.6505237221717834, 0.6168854236602783, 0.69868004322052, 0.7145512104034424, 0.614241898059845, 0.7012088298797607, 0.5719839334487915, 0.7007924318313599, 0.6470352411270142, 0.6455405354499817, 0.6219719052314758, 0.6818360686302185, 0.6467722654342651, 0.638305127620697, 0.6174378991127014, 0.6834385991096497, 0.5841131210327148, 0.7136521339416504, 0.6379978656768799, 0.6614902019500732, 0.6163577437400818, 0.6814242601394653, 0.6254103779792786, 0.6530559062957764, 0.6662142276763916, 0.6625826358795166, 0.7815357446670532, 0.613782525062561, 0.6814961433410645, 0.649417519569397, 0.6676366329193115, 0.7138770818710327, 0.575859010219574, 0.6543785333633423, 0.6831235289573669, 0.7610270977020264, 0.5964791178703308, 0.61707603931427, 0.7417882680892944, 0.6578503251075745, 0.6601608991622925, 0.6467682123184204, 0.6362208127975464, 0.6202008128166199, 0.6911717057228088, 0.6558947563171387, 0.6574243307113647, 0.6591068506240845, 0.7119053602218628, 0.6902878880500793, 0.64151930809021, 0.653986930847168, 0.6486729383468628, 0.6955016851425171, 0.6511325240135193, 0.616610050201416, 0.6176892518997192, 0.696763277053833, 0.6544588804244995, 0.6018832921981812, 0.642035186290741, 0.6442627310752869, 0.618169367313385, 0.6206363439559937, 0.5965011119842529, 0.613848865032196, 0.5722965002059937, 0.699359655380249, 0.6230509877204895, 0.6103103160858154, 0.7074143886566162, 0.6018832921981812, 0.6620736122131348, 0.5875484943389893, 0.6559320688247681, 0.6732835173606873, 0.6472741961479187, 0.5954416394233704, 0.6570544242858887, 0.6198580265045166, 0.6425281763076782, 0.6396463513374329, 0.6850342750549316, 0.6922572255134583, 0.6416543126106262, 0.7060319185256958, 0.6107981204986572] | [0.6819447875022888, 0.6237518191337585, 0.6210329532623291, 0.6496105194091797, 0.6406546831130981, 0.6987809538841248, 0.6535740494728088, 0.6347569823265076, 0.6316038370132446, 0.6504077911376953, 0.6995862722396851, 0.7552177906036377, 0.7105170488357544, 0.6525439620018005, 0.6849752068519592, 0.6063523888587952, 0.7113005518913269, 0.6113541126251221, 0.6472032070159912, 0.6417624950408936, 0.6848362684249878, 0.6341288089752197, 0.6587539315223694, 0.6535558700561523, 0.6707817912101746, 0.7573590278625488, 0.6612569689750671, 0.6863697171211243, 0.0, 0.6273494362831116, 0.634183406829834, 0.650163471698761, 0.6300655007362366, 0.663674533367157, 0.6848276853561401, 0.6500040292739868, 0.6493666172027588, 0.6429738402366638, 0.6844244003295898, 0.5735296010971069, 0.6425740122795105, 0.685366690158844, 0.5781256556510925, 0.6315850019454956, 0.617463231086731, 0.6380019783973694, 0.7125543355941772, 0.6397220492362976, 0.6411839723587036, 0.6656959056854248, 0.6208827495574951, 0.6617777347564697, 0.6757005453109741, 0.6630263924598694, 0.6871755123138428, 0.6383203268051147, 0.6837741136550903, 0.6580090522766113, 0.6887449622154236, 0.616143524646759, 0.6605228781700134, 0.6793473362922668, 0.7277535796165466, 0.6468941569328308, 0.6386851072311401, 0.5990237593650818, 0.7026257514953613, 0.655692458152771, 0.6345322728157043, 0.6944995522499084, 0.6690546274185181, 0.6243235468864441, 0.6807804107666016, 0.6512463092803955, 0.6477726697921753, 0.6240939497947693, 0.7407692074775696, 0.6579035520553589, 0.6744500994682312, 0.6765727400779724, 0.6698594093322754, 0.6994805932044983, 0.6528500318527222, 0.632416307926178, 0.6694273352622986, 0.6144805550575256, 0.6249997615814209, 0.6500590443611145, 0.6660285592079163, 0.6708601713180542, 0.6531344056129456, 0.7157806754112244, 0.6805092692375183, 0.6894382834434509, 0.7015286087989807, 0.6677038669586182, 0.6622925996780396, 0.5756649971008301, 0.6702190041542053, 0.6577562689781189, 0.7227625250816345, 0.6644143462181091, 0.6417624950408936, 0.7031327486038208, 0.6245892643928528, 0.6319908499717712, 0.6355578303337097, 0.6005885004997253, 0.634077787399292, 0.6266100406646729, 0.6644143462181091, 0.7431548833847046, 0.7175079584121704, 0.6312451958656311, 0.6183282732963562, 0.6126790046691895, 0.6649893522262573, 0.6352108120918274, 0.6330819129943848, 0.6353726983070374, 0.6284132599830627, 0.635782778263092, 0.6339262127876282, 0.6444721221923828, 0.701200008392334, 0.711179792881012, 0.7433462738990784, 0.6858134865760803, 0.6490651369094849, 0.7060649394989014, 0.6997130513191223, 0.6558163166046143, 0.6320511102676392, 0.6677038669586182, 0.7150518894195557, 0.6744108200073242, 0.6631805896759033, 0.6822446584701538, 0.6742724180221558, 0.6649101376533508, 0.6085717082023621, 0.6602567434310913, 0.7059043645858765, 0.6570013761520386, 0.6751335859298706, 0.6673610806465149, 0.6253426671028137, 0.6877955198287964, 0.6140316724777222, 0.6567124128341675, 0.6651222705841064, 0.6465886235237122, 0.6526815891265869, 0.6464427709579468, 0.6873394846916199, 0.6677538752555847, 0.6526815891265869, 0.6264541149139404, 0.6667430400848389, 0.7017452716827393, 0.6990779638290405, 0.6570529937744141, 0.658830463886261, 0.6545981168746948, 0.6480981707572937, 0.7188496589660645, 0.6063523888587952, 0.6575473546981812, 0.5949907898902893, 0.5963855385780334, 0.5910975337028503, 0.6269011497497559, 0.6406179070472717, 0.6435911059379578, 0.6244329214096069, 0.7215666174888611, 0.6577332615852356, 0.6183096766471863, 0.6878883242607117, 0.711501955986023, 0.6001497507095337, 0.7148705720901489, 0.5943233966827393, 0.691120982170105, 0.6609389185905457, 0.6496890187263489, 0.6234155893325806, 0.6857404708862305, 0.659831702709198, 0.6387202739715576, 0.6299822330474854, 0.6766649484634399, 0.6015020608901978, 0.729654848575592, 0.6448344588279724, 0.6667430400848389, 0.6117817759513855, 0.6982972025871277, 0.6296259164810181, 0.6506471037864685, 0.6752481460571289, 0.663357138633728, 0.7640447020530701, 0.6380670666694641, 0.6977759003639221, 0.659806489944458, 0.677850067615509, 0.725275993347168, 0.5850949883460999, 0.6606469750404358, 0.6859250068664551, 0.7559133172035217, 0.6021458506584167, 0.6210227608680725, 0.7262578010559082, 0.6666058897972107, 0.6656220555305481, 0.6415835618972778, 0.6257185339927673, 0.6291186213493347, 0.6886739730834961, 0.6597923040390015, 0.6521323919296265, 0.6585107445716858, 0.7032998204231262, 0.6664939522743225, 0.6474950313568115, 0.6660285592079163, 0.648423969745636, 0.7059741020202637, 0.6553012132644653, 0.6036092042922974, 0.6287460923194885, 0.695151150226593, 0.6510932445526123, 0.6082441806793213, 0.6474537253379822, 0.6304798722267151, 0.6196913719177246, 0.6174681782722473, 0.6118583083152771, 0.6185640692710876, 0.5591370463371277, 0.6995862722396851, 0.6210790872573853, 0.6252261400222778, 0.6667838096618652, 0.6082441806793213, 0.6676766276359558, 0.6014150381088257, 0.6526446342468262, 0.669977605342865, 0.642791748046875, 0.6052584648132324, 0.6488881707191467, 0.6292690634727478, 0.6488266587257385, 0.6400451064109802, 0.6932361125946045, 0.6832649111747742, 0.6462348103523254, 0.7328572273254395, 0.6090907454490662] | bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) | | 3.5442 | 3.0 | 561 | 2.8878 | [0.6929003596305847, 0.6183862686157227, 0.6369297504425049, 0.6558735370635986, 0.6581195592880249, 0.7002508640289307, 0.6906453371047974, 0.6295247077941895, 0.6665722131729126, 0.6738836765289307, 0.6891133189201355, 0.7715317010879517, 0.6965898871421814, 0.6664015054702759, 0.688916802406311, 0.6108902096748352, 0.7203189134597778, 0.5999206304550171, 0.6118876934051514, 0.6446966528892517, 0.6714366674423218, 0.6355723738670349, 0.6943302154541016, 0.6544321775436401, 0.6650948524475098, 0.7430660724639893, 0.6517236232757568, 0.7484419345855713, 0.0, 0.6757192611694336, 0.64581298828125, 0.6234389543533325, 0.6472301483154297, 0.6631240248680115, 0.6684065461158752, 0.6660122275352478, 0.6794019937515259, 0.6357455849647522, 0.6739323139190674, 0.5535992383956909, 0.6507012248039246, 0.6612800359725952, 0.5988056063652039, 0.67428058385849, 0.6372946500778198, 0.6437563300132751, 0.7560627460479736, 0.6432757377624512, 0.6868467330932617, 0.717696487903595, 0.6435254812240601, 0.6546081900596619, 0.6591821908950806, 0.6520820260047913, 0.7302312850952148, 0.6462039947509766, 0.6925369501113892, 0.6566042900085449, 0.680228054523468, 0.6302398443222046, 0.6685198545455933, 0.704545259475708, 0.7441930174827576, 0.6529860496520996, 0.6187940239906311, 0.6020010709762573, 0.7059713006019592, 0.6300128102302551, 0.6296300888061523, 0.6843270063400269, 0.6368266344070435, 0.6201039552688599, 0.6559895277023315, 0.6613433361053467, 0.6744482517242432, 0.6402202844619751, 0.7750440239906311, 0.6565803289413452, 0.6726486682891846, 0.6894751787185669, 0.6713679432868958, 0.7112835645675659, 0.6630656719207764, 0.6581467986106873, 0.659957766532898, 0.6379042863845825, 0.6446895599365234, 0.6501699686050415, 0.652809739112854, 0.6526193618774414, 0.6588089466094971, 0.7029021382331848, 0.7003600597381592, 0.6960921883583069, 0.7072522640228271, 0.656990647315979, 0.6638649702072144, 0.5866219401359558, 0.6549721956253052, 0.6724978685379028, 0.7105451822280884, 0.673061728477478, 0.6446966528892517, 0.7279029488563538, 0.6328046321868896, 0.6385118365287781, 0.6381011009216309, 0.6286071538925171, 0.637184739112854, 0.6614517569541931, 0.673061728477478, 0.7741892337799072, 0.6959199905395508, 0.6332329511642456, 0.6720056533813477, 0.6193041801452637, 0.658045768737793, 0.6184666156768799, 0.6467216610908508, 0.6735948324203491, 0.6532154083251953, 0.6322343349456787, 0.6386721730232239, 0.6201406121253967, 0.7008563280105591, 0.7186553478240967, 0.742395281791687, 0.6759191751480103, 0.660872220993042, 0.6856606006622314, 0.6977353096008301, 0.674822986125946, 0.6139886975288391, 0.656990647315979, 0.6655586957931519, 0.6928428411483765, 0.6648602485656738, 0.6940321922302246, 0.6745078563690186, 0.6738842725753784, 0.654864490032196, 0.6751419305801392, 0.7360048294067383, 0.6635060906410217, 0.6750009655952454, 0.6638166904449463, 0.6382589340209961, 0.7049083709716797, 0.6066895127296448, 0.6806449294090271, 0.652288556098938, 0.655288815498352, 0.6625323295593262, 0.6482013463973999, 0.6459664702415466, 0.6606333255767822, 0.6625323295593262, 0.627372682094574, 0.6529359817504883, 0.7366055846214294, 0.6946382522583008, 0.6616016626358032, 0.6862121224403381, 0.6149857640266418, 0.6542688608169556, 0.6783124208450317, 0.6108902096748352, 0.6770160794258118, 0.6105413436889648, 0.5959399938583374, 0.5996183156967163, 0.6474558115005493, 0.6448728442192078, 0.6546282768249512, 0.6511132121086121, 0.6678274869918823, 0.6700403690338135, 0.6197404861450195, 0.6774248480796814, 0.7487529516220093, 0.6103639006614685, 0.7290751934051514, 0.6184787154197693, 0.6821150779724121, 0.6438043117523193, 0.6481399536132812, 0.6248659491539001, 0.6989448070526123, 0.6970688700675964, 0.6207034587860107, 0.6517062187194824, 0.6871163249015808, 0.6199581623077393, 0.7777968645095825, 0.6263978481292725, 0.6529359817504883, 0.6415587663650513, 0.700570821762085, 0.6572086215019226, 0.6623386144638062, 0.67547208070755, 0.6377427577972412, 0.7473193407058716, 0.6990208029747009, 0.677553653717041, 0.660439670085907, 0.6883809566497803, 0.7201712131500244, 0.6008521914482117, 0.6670366525650024, 0.6777240037918091, 0.7508677840232849, 0.6079212427139282, 0.6250202655792236, 0.6700884103775024, 0.6235026121139526, 0.6438812613487244, 0.6270776987075806, 0.6213839054107666, 0.6382966041564941, 0.6957192420959473, 0.6555189490318298, 0.6672542095184326, 0.6884251832962036, 0.7184816598892212, 0.6715911626815796, 0.6253701448440552, 0.652809739112854, 0.6686025857925415, 0.7285609245300293, 0.6595237255096436, 0.5911452770233154, 0.665739893913269, 0.6692743897438049, 0.6335342526435852, 0.6147409677505493, 0.6529644727706909, 0.6334608793258667, 0.6212208271026611, 0.6143321990966797, 0.6346527338027954, 0.6133826375007629, 0.5720106959342957, 0.6891133189201355, 0.6206754446029663, 0.6408892869949341, 0.6567215919494629, 0.6147409677505493, 0.6733753681182861, 0.6358270645141602, 0.6447792649269104, 0.6651828289031982, 0.6551745533943176, 0.6154043674468994, 0.640922486782074, 0.6389703154563904, 0.655249834060669, 0.640444278717041, 0.6667684316635132, 0.6733943819999695, 0.6508811712265015, 0.7618014812469482, 0.646928071975708] | [0.6649062037467957, 0.6292112469673157, 0.6429741382598877, 0.6434659957885742, 0.6316436529159546, 0.6973171234130859, 0.6775014996528625, 0.6498724818229675, 0.658988893032074, 0.6445818543434143, 0.6894662976264954, 0.7794148325920105, 0.6915059685707092, 0.6392509937286377, 0.6810783743858337, 0.5857178568840027, 0.7025052309036255, 0.6184635162353516, 0.595028281211853, 0.63885498046875, 0.6769837737083435, 0.6243550777435303, 0.6266457438468933, 0.652681827545166, 0.6484395861625671, 0.7511179447174072, 0.653579831123352, 0.698567271232605, 0.0, 0.6781419515609741, 0.6337482929229736, 0.653876543045044, 0.6137877106666565, 0.6642259359359741, 0.7020760774612427, 0.634747326374054, 0.7031090259552002, 0.6552717685699463, 0.6676676273345947, 0.5695792436599731, 0.6346472501754761, 0.6770588159561157, 0.5935205221176147, 0.6778455972671509, 0.5988288521766663, 0.6323497295379639, 0.7332395911216736, 0.6562079787254333, 0.6720508337020874, 0.7192550897598267, 0.5997792482376099, 0.6752731800079346, 0.6813293695449829, 0.6666642427444458, 0.68291175365448, 0.6306266784667969, 0.6752303838729858, 0.6781089901924133, 0.6974778175354004, 0.6026639938354492, 0.6861846446990967, 0.6558896899223328, 0.7120248079299927, 0.6409149169921875, 0.6049350500106812, 0.5960757732391357, 0.6993117332458496, 0.6422098278999329, 0.6395115256309509, 0.6887341141700745, 0.6432803869247437, 0.6286009550094604, 0.6442239284515381, 0.6414529085159302, 0.6704854965209961, 0.6087600588798523, 0.7528954148292542, 0.6441894769668579, 0.6810312271118164, 0.7013686895370483, 0.6683577299118042, 0.6880629062652588, 0.6429443359375, 0.6269145011901855, 0.6791725754737854, 0.5927161574363708, 0.6064770221710205, 0.6499481201171875, 0.651779055595398, 0.6646026372909546, 0.647556722164154, 0.720411479473114, 0.6621347665786743, 0.6755838990211487, 0.6958968639373779, 0.6566475033760071, 0.6607276201248169, 0.5651098489761353, 0.686192512512207, 0.6436470746994019, 0.7354074716567993, 0.6788778305053711, 0.63885498046875, 0.6869735717773438, 0.6263009309768677, 0.6256016492843628, 0.6474004983901978, 0.5749609470367432, 0.6310012340545654, 0.6260640621185303, 0.6788778305053711, 0.7145127058029175, 0.6636099815368652, 0.6443899869918823, 0.6437113881111145, 0.6061940789222717, 0.6720809936523438, 0.6183594465255737, 0.6200056076049805, 0.6468428373336792, 0.6577684879302979, 0.6302847862243652, 0.6292503476142883, 0.573969841003418, 0.7015441060066223, 0.7038581371307373, 0.7442997694015503, 0.6960017681121826, 0.6376725435256958, 0.6901686191558838, 0.7017020583152771, 0.6441092491149902, 0.615876317024231, 0.6566475033760071, 0.6544449329376221, 0.6582697629928589, 0.6453942656517029, 0.670850932598114, 0.6690812110900879, 0.655265748500824, 0.6520406603813171, 0.678108274936676, 0.7265080213546753, 0.6506229639053345, 0.6752663850784302, 0.6709432601928711, 0.6129387617111206, 0.6714939475059509, 0.6215537786483765, 0.634405791759491, 0.6656298637390137, 0.6381163001060486, 0.6431194543838501, 0.6446937322616577, 0.7117900848388672, 0.6750296950340271, 0.6431194543838501, 0.6313208341598511, 0.6238364577293396, 0.7564071416854858, 0.7035747170448303, 0.6525664925575256, 0.6599531173706055, 0.6230310797691345, 0.6420427560806274, 0.6731039881706238, 0.5857178568840027, 0.6823000907897949, 0.5802127122879028, 0.5710383653640747, 0.5828155279159546, 0.6076114773750305, 0.6259433031082153, 0.6329199075698853, 0.6352204084396362, 0.6752637624740601, 0.6526370644569397, 0.6168854236602783, 0.69868004322052, 0.7261859178543091, 0.6449594497680664, 0.7012088298797607, 0.5719839334487915, 0.7031817436218262, 0.6338691711425781, 0.6436284780502319, 0.6219719052314758, 0.6903827786445618, 0.6890453100204468, 0.6180089712142944, 0.6410292387008667, 0.689997673034668, 0.5841131210327148, 0.6860304474830627, 0.6241101026535034, 0.6238364577293396, 0.6247932314872742, 0.697077214717865, 0.6520651578903198, 0.6533130407333374, 0.6622908115386963, 0.6181600689888, 0.7815357446670532, 0.7055652141571045, 0.6747891902923584, 0.646526575088501, 0.6676365733146667, 0.6963860392570496, 0.588309109210968, 0.6543785333633423, 0.6799383163452148, 0.7610270977020264, 0.5964791178703308, 0.61707603931427, 0.698261022567749, 0.6122673749923706, 0.6471544504165649, 0.6512565612792969, 0.6274517178535461, 0.6202008128166199, 0.6825913190841675, 0.680517315864563, 0.6651104688644409, 0.6720331907272339, 0.7130998373031616, 0.6868336200714111, 0.6108724474906921, 0.651779055595398, 0.6862437725067139, 0.7022161483764648, 0.6511325240135193, 0.616610050201416, 0.6444504261016846, 0.6764492988586426, 0.6493207216262817, 0.6018832921981812, 0.642035186290741, 0.6291443109512329, 0.618169367313385, 0.6206363439559937, 0.6173461079597473, 0.589404821395874, 0.5812570452690125, 0.6894662976264954, 0.6146183013916016, 0.6103103160858154, 0.7096463441848755, 0.6018832921981812, 0.6620736122131348, 0.6097139716148376, 0.6497476100921631, 0.6766404509544373, 0.6051311492919922, 0.5954416394233704, 0.6570544242858887, 0.6198580265045166, 0.6425281763076782, 0.6396463513374329, 0.6707313656806946, 0.6983391046524048, 0.6416543126106262, 0.7060319185256958, 0.6359407305717468] | [0.6786146759986877, 0.6237518191337585, 0.639937698841095, 0.6496105194091797, 0.6446098685264587, 0.6987809538841248, 0.6840102076530457, 0.6395367383956909, 0.6627588868141174, 0.6589072346687317, 0.6892897486686707, 0.7754532694816589, 0.6940386295318604, 0.6525439620018005, 0.6849752068519592, 0.5980392694473267, 0.7113005518913269, 0.609050989151001, 0.603340208530426, 0.6417624950408936, 0.6741988658905029, 0.6299137473106384, 0.6587539315223694, 0.6535558700561523, 0.6566615700721741, 0.7470703125, 0.6526504158973694, 0.722645103931427, 0.0, 0.6769284009933472, 0.6397237777709961, 0.6382951140403748, 0.6300655007362366, 0.663674533367157, 0.6848276853561401, 0.6500040292739868, 0.691052258014679, 0.645361065864563, 0.6707853674888611, 0.5614755749702454, 0.6425740122795105, 0.6690763831138611, 0.5961514115333557, 0.6760584115982056, 0.617463231086731, 0.6380019783973694, 0.7444761991500854, 0.6496774554252625, 0.679368257522583, 0.7184749245643616, 0.6208827495574951, 0.6647800803184509, 0.6700728535652161, 0.659292459487915, 0.7057793140411377, 0.6383203268051147, 0.6837741732597351, 0.6671833992004395, 0.6887449622154236, 0.616143524646759, 0.6772370338439941, 0.6793473362922668, 0.7277535796165466, 0.6468941569328308, 0.6117860078811646, 0.5990237593650818, 0.7026257514953613, 0.6360528469085693, 0.6345322728157043, 0.6865234375, 0.6400372385978699, 0.6243235468864441, 0.6500535011291504, 0.6512462496757507, 0.6724610328674316, 0.6240939497947693, 0.7638092041015625, 0.6503258943557739, 0.6768140196800232, 0.6953710913658142, 0.6698594093322754, 0.6994805932044983, 0.6528500318527222, 0.6421510577201843, 0.6694273352622986, 0.6144805550575256, 0.6249997615814209, 0.6500590443611145, 0.6522939801216125, 0.6585564613342285, 0.6531343460083008, 0.7115491032600403, 0.6807112097740173, 0.6856847405433655, 0.7015286087989807, 0.6568189859390259, 0.6622925996780396, 0.5756649971008301, 0.6702190041542053, 0.6577562689781189, 0.7227625250816345, 0.6759572625160217, 0.6417624950408936, 0.7068462371826172, 0.629535973072052, 0.6319908499717712, 0.642717182636261, 0.6005885004997253, 0.6340779066085815, 0.6432715654373169, 0.6759572625160217, 0.7431548833847046, 0.6793810129165649, 0.6387627720832825, 0.6575543284416199, 0.6126790046691895, 0.6649893522262573, 0.6184130311012268, 0.6330819129943848, 0.6599478125572205, 0.6554840803146362, 0.6312580704689026, 0.6339262127876282, 0.5961626768112183, 0.701200008392334, 0.711179792881012, 0.7433462738990784, 0.6858134865760803, 0.6490651369094849, 0.6879072189331055, 0.6997130513191223, 0.6591084599494934, 0.614931046962738, 0.6568189859390259, 0.6599550247192383, 0.6751139760017395, 0.6549826264381409, 0.6822446584701538, 0.6717835664749146, 0.664444625377655, 0.653449535369873, 0.6766218543052673, 0.7312255501747131, 0.6570013761520386, 0.6751335859298706, 0.6673609614372253, 0.6253426671028137, 0.6877955198287964, 0.6140316724777222, 0.6567124128341675, 0.6588916778564453, 0.6465886235237122, 0.6526815891265869, 0.6464427709579468, 0.6772826910018921, 0.6677538752555847, 0.6526815891265869, 0.6293405890464783, 0.6380545496940613, 0.7463750839233398, 0.6990779638290405, 0.6570529937744141, 0.6728265285491943, 0.6189823150634766, 0.6480981707572937, 0.6756982207298279, 0.5980392694473267, 0.6796478629112244, 0.5949907898902893, 0.5832235217094421, 0.5910975337028503, 0.6269011497497559, 0.6352670788764954, 0.6435911059379578, 0.6430686712265015, 0.6715250611305237, 0.6612242460250854, 0.6183096766471863, 0.6878883242607117, 0.7372967600822449, 0.6271849274635315, 0.7148705720901489, 0.5943233966827393, 0.6924881935119629, 0.6387981176376343, 0.6458763480186462, 0.6234155893325806, 0.6946374177932739, 0.6930339336395264, 0.6193532943725586, 0.6463236212730408, 0.6885539293289185, 0.6015020608901978, 0.7290372252464294, 0.6252518892288208, 0.6380545496940613, 0.6330650448799133, 0.698819637298584, 0.6546268463134766, 0.6577948927879333, 0.6688165664672852, 0.6277987957000732, 0.7640447020530701, 0.7022777199745178, 0.6761686205863953, 0.6534090042114258, 0.677850067615509, 0.708078920841217, 0.5945144891738892, 0.6606469750404358, 0.6788293719291687, 0.7559133172035217, 0.6021458506584167, 0.6210227608680725, 0.6838846802711487, 0.6178339123725891, 0.6455137133598328, 0.6389384865760803, 0.6244031190872192, 0.6291186213493347, 0.689092755317688, 0.6677843332290649, 0.6661806106567383, 0.6801304221153259, 0.7157806158065796, 0.6791268587112427, 0.6180363297462463, 0.6522939801216125, 0.6773083209991455, 0.7151459455490112, 0.6553012132644653, 0.6036092042922974, 0.6549221873283386, 0.6728427410125732, 0.6413303017616272, 0.6082441806793213, 0.6474537253379822, 0.6312952637672424, 0.6196913719177246, 0.6174681782722473, 0.6258797645568848, 0.6011547446250916, 0.5765967965126038, 0.6892897486686707, 0.6176320314407349, 0.6252261400222778, 0.6821589469909668, 0.6082441806793213, 0.6676766872406006, 0.6224967241287231, 0.6472539305686951, 0.6708626747131348, 0.6291593313217163, 0.6052584648132324, 0.6488881707191467, 0.6292690634727478, 0.6488266587257385, 0.6400451064109802, 0.6687440276145935, 0.6856399774551392, 0.6462348103523254, 0.7328572273254395, 0.6413873434066772] | bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) | | 3.5442 | 4.0 | 748 | 2.8569 | [0.6929003596305847, 0.6133741736412048, 0.6369296908378601, 0.6558735370635986, 0.6581195592880249, 0.7057837843894958, 0.6906453371047974, 0.6295247077941895, 0.6665722131729126, 0.6738836765289307, 0.7086416482925415, 0.7715317010879517, 0.6965898871421814, 0.6664015054702759, 0.688916802406311, 0.635832667350769, 0.7033517956733704, 0.6183526515960693, 0.6118876934051514, 0.6398658752441406, 0.6714366674423218, 0.6355724334716797, 0.6943302154541016, 0.6544321179389954, 0.6650948524475098, 0.7430660724639893, 0.6517236232757568, 0.7484419345855713, 0.0, 0.675719141960144, 0.6458128690719604, 0.6234389543533325, 0.6472299098968506, 0.6631240248680115, 0.66840660572052, 0.6660122275352478, 0.6794020533561707, 0.6357454061508179, 0.6874514818191528, 0.5535992383956909, 0.7105198502540588, 0.6797340512275696, 0.5988055467605591, 0.67428058385849, 0.6372944712638855, 0.6437563300132751, 0.7560627460479736, 0.6432757377624512, 0.6996425986289978, 0.7656958699226379, 0.6435254812240601, 0.6552819013595581, 0.6591821312904358, 0.6520820260047913, 0.7302312850952148, 0.6462039947509766, 0.6925369501113892, 0.6566042900085449, 0.680228054523468, 0.6302398443222046, 0.6504802703857422, 0.704545259475708, 0.7568456530570984, 0.6529860496520996, 0.6187940239906311, 0.6020010709762573, 0.7059713006019592, 0.6300128102302551, 0.6296300888061523, 0.6843270063400269, 0.6368266344070435, 0.6201039552688599, 0.6590875387191772, 0.6613433361053467, 0.6574115753173828, 0.6770792007446289, 0.7750440239906311, 0.6565803289413452, 0.698392391204834, 0.6894751787185669, 0.6713679432868958, 0.7112835645675659, 0.668113112449646, 0.6581467986106873, 0.659957766532898, 0.6379042863845825, 0.6446895599365234, 0.6501699686050415, 0.652809739112854, 0.6526193618774414, 0.6537817716598511, 0.7116091847419739, 0.7003600597381592, 0.6960922479629517, 0.7021352052688599, 0.656990647315979, 0.6734673976898193, 0.5993854999542236, 0.6549721956253052, 0.7079775333404541, 0.7105451822280884, 0.673061728477478, 0.6398658752441406, 0.7279029488563538, 0.632804811000824, 0.6385118365287781, 0.6381011009216309, 0.694757878780365, 0.637184739112854, 0.6614517569541931, 0.673061728477478, 0.6937723159790039, 0.6959199905395508, 0.6462610960006714, 0.6720056533813477, 0.6341558694839478, 0.658045768737793, 0.6055939197540283, 0.6955231428146362, 0.6746744513511658, 0.6259623169898987, 0.6322343349456787, 0.6386721730232239, 0.6636806130409241, 0.7008563280105591, 0.7186553478240967, 0.742395281791687, 0.5930124521255493, 0.660872220993042, 0.685660719871521, 0.6977353096008301, 0.661785364151001, 0.6491066217422485, 0.656990647315979, 0.6655586957931519, 0.6928428411483765, 0.6648601293563843, 0.6940321922302246, 0.6745078563690186, 0.673884391784668, 0.654864490032196, 0.6751419305801392, 0.7360048294067383, 0.6635060906410217, 0.6750009655952454, 0.6638166904449463, 0.6382589340209961, 0.7049083709716797, 0.6431376934051514, 0.6806449294090271, 0.652288556098938, 0.655288815498352, 0.6625323295593262, 0.6482013463973999, 0.6719499826431274, 0.6514257192611694, 0.6625323295593262, 0.627372682094574, 0.6609578132629395, 0.7002651691436768, 0.6899218559265137, 0.6566691398620605, 0.6862121224403381, 0.6149857640266418, 0.6542688608169556, 0.6522969603538513, 0.635832667350769, 0.6770160794258118, 0.6105413436889648, 0.5959399938583374, 0.5996183156967163, 0.6474559307098389, 0.6497341394424438, 0.6824425458908081, 0.6511133313179016, 0.6678274869918823, 0.6700403690338135, 0.6197404861450195, 0.6774248480796814, 0.7487529516220093, 0.5847424864768982, 0.7290751934051514, 0.6362239718437195, 0.6821150779724121, 0.6743643879890442, 0.6179369688034058, 0.6248660087585449, 0.6989448070526123, 0.7265845537185669, 0.6207034587860107, 0.6517062187194824, 0.6871163249015808, 0.6199581623077393, 0.7777969241142273, 0.6263978481292725, 0.6609578132629395, 0.6415587663650513, 0.700570821762085, 0.657017171382904, 0.6623384952545166, 0.67547208070755, 0.6563198566436768, 0.7473193407058716, 0.6515363454818726, 0.6862262487411499, 0.6500843167304993, 0.6724016666412354, 0.7201712131500244, 0.6008522510528564, 0.667036771774292, 0.6777238845825195, 0.7508677840232849, 0.6464987397193909, 0.6168344020843506, 0.6700884103775024, 0.6235026121139526, 0.6438812613487244, 0.6425885558128357, 0.6213839054107666, 0.6382965445518494, 0.6957192420959473, 0.6555188894271851, 0.6971651911735535, 0.7006597518920898, 0.7391626238822937, 0.6715911626815796, 0.6253701448440552, 0.652809739112854, 0.6811630725860596, 0.7285609245300293, 0.6595237255096436, 0.5911452770233154, 0.665739893913269, 0.6692743897438049, 0.6335341930389404, 0.6147409677505493, 0.6383231282234192, 0.6025363206863403, 0.6212208271026611, 0.6143320798873901, 0.6346527338027954, 0.6133826375007629, 0.5720106959342957, 0.7086416482925415, 0.6206754446029663, 0.7020885348320007, 0.6567215919494629, 0.6147409677505493, 0.6760094165802002, 0.6580663919448853, 0.6447792649269104, 0.666703999042511, 0.7000113725662231, 0.6154043078422546, 0.640922486782074, 0.6389702558517456, 0.655249834060669, 0.640444278717041, 0.6667684316635132, 0.6733943819999695, 0.6508811712265015, 0.7618014812469482, 0.646928071975708] | [0.6649062037467957, 0.6275476217269897, 0.6429741382598877, 0.6434659957885742, 0.6316436529159546, 0.6886480450630188, 0.6775014996528625, 0.6498724818229675, 0.658988893032074, 0.6445818543434143, 0.7162613868713379, 0.7794148325920105, 0.6915059685707092, 0.6392509937286377, 0.6810783743858337, 0.6284155249595642, 0.7132933139801025, 0.6361820697784424, 0.595028281211853, 0.6523096561431885, 0.6769837737083435, 0.6243551969528198, 0.6266457438468933, 0.6526817083358765, 0.6484395861625671, 0.7511179447174072, 0.653579831123352, 0.698567271232605, 0.0, 0.6781419515609741, 0.6337482333183289, 0.653876543045044, 0.6137877702713013, 0.6642259359359741, 0.7020760774612427, 0.634747326374054, 0.7031091451644897, 0.6552716493606567, 0.6707761287689209, 0.5695792436599731, 0.7114435434341431, 0.6849547624588013, 0.59352046251297, 0.6778455972671509, 0.598828911781311, 0.6323497295379639, 0.7332395911216736, 0.6562079787254333, 0.681423544883728, 0.7390843629837036, 0.5997792482376099, 0.6754531264305115, 0.6813293099403381, 0.6666642427444458, 0.68291175365448, 0.6306267976760864, 0.6752303838729858, 0.6781089901924133, 0.6974778175354004, 0.6026639938354492, 0.6518964171409607, 0.6558896899223328, 0.7168669700622559, 0.6409149169921875, 0.6049350500106812, 0.5960757732391357, 0.6993117332458496, 0.6422098278999329, 0.6395115256309509, 0.6887341141700745, 0.6432803869247437, 0.6286009550094604, 0.6483988761901855, 0.6414529085159302, 0.6532565355300903, 0.6443188190460205, 0.7528954148292542, 0.6441894769668579, 0.7132408618927002, 0.7013686895370483, 0.6683577299118042, 0.6880629062652588, 0.6502605080604553, 0.6269145011901855, 0.6791725754737854, 0.5927161574363708, 0.6064770221710205, 0.6499481201171875, 0.651779055595398, 0.6646026372909546, 0.632445216178894, 0.725436806678772, 0.6621347665786743, 0.6755839586257935, 0.6738181114196777, 0.6566475033760071, 0.6619704961776733, 0.5842774510383606, 0.686192512512207, 0.7009044885635376, 0.7354075908660889, 0.6788778305053711, 0.6523096561431885, 0.6869735717773438, 0.6263010501861572, 0.6256016492843628, 0.6474004983901978, 0.6860323548316956, 0.6310012340545654, 0.6260640621185303, 0.6788778305053711, 0.6427903771400452, 0.6636099815368652, 0.6568259596824646, 0.6437113881111145, 0.6226024627685547, 0.6720809936523438, 0.6236640810966492, 0.699752926826477, 0.636201798915863, 0.6444743871688843, 0.6302847862243652, 0.6292503476142883, 0.6662095785140991, 0.7015441060066223, 0.7038581371307373, 0.7442997694015503, 0.6347897052764893, 0.6376725435256958, 0.6901686191558838, 0.7017020583152771, 0.6469976902008057, 0.621161937713623, 0.6566475033760071, 0.6544449329376221, 0.6582697629928589, 0.6453942656517029, 0.670850932598114, 0.6690812110900879, 0.6552658081054688, 0.6520406603813171, 0.678108274936676, 0.7265080213546753, 0.6506229639053345, 0.6752663850784302, 0.6709432601928711, 0.6129387617111206, 0.6714939475059509, 0.6591033935546875, 0.634405791759491, 0.6656297445297241, 0.6381163001060486, 0.6431194543838501, 0.6446937322616577, 0.7034503817558289, 0.6325691938400269, 0.6431194543838501, 0.6313208341598511, 0.6314756870269775, 0.7084503769874573, 0.7146296501159668, 0.6485159993171692, 0.6599531173706055, 0.6230310797691345, 0.6420427560806274, 0.6593505144119263, 0.6284155249595642, 0.6823000907897949, 0.5802127122879028, 0.5710382461547852, 0.5828155875205994, 0.6076115369796753, 0.6196562051773071, 0.6699979901313782, 0.6352205276489258, 0.6752638816833496, 0.6526370644569397, 0.6168854236602783, 0.69868004322052, 0.7261858582496643, 0.5989089012145996, 0.7012088298797607, 0.5866293907165527, 0.7031817436218262, 0.6830926537513733, 0.6432316303253174, 0.6219719648361206, 0.6903827786445618, 0.6756868362426758, 0.6180089712142944, 0.6410292387008667, 0.689997673034668, 0.5841131210327148, 0.6860305070877075, 0.6241101026535034, 0.6314756870269775, 0.6247932314872742, 0.697077214717865, 0.6323742270469666, 0.6533130407333374, 0.6622908115386963, 0.6254100203514099, 0.7815357446670532, 0.6599846482276917, 0.6557874083518982, 0.6358695030212402, 0.6401605010032654, 0.6963860392570496, 0.5883089900016785, 0.6543786525726318, 0.6799383163452148, 0.7610270977020264, 0.6357758045196533, 0.6123616099357605, 0.698261022567749, 0.6122673749923706, 0.6471544504165649, 0.6635059118270874, 0.6274517178535461, 0.6202007532119751, 0.6825913190841675, 0.6805171966552734, 0.6648705005645752, 0.6754068732261658, 0.6989794373512268, 0.6868336200714111, 0.6108724474906921, 0.651779055595398, 0.6650040149688721, 0.7022161483764648, 0.6511324644088745, 0.616610050201416, 0.6444504261016846, 0.6764492988586426, 0.649320662021637, 0.6018832921981812, 0.6349364519119263, 0.6164268851280212, 0.618169367313385, 0.6206364035606384, 0.6173461079597473, 0.589404821395874, 0.5812569856643677, 0.7162613868713379, 0.6146183013916016, 0.677343487739563, 0.7096463441848755, 0.6018832921981812, 0.6628992557525635, 0.6039727330207825, 0.6497476100921631, 0.6732835173606873, 0.7000452280044556, 0.5954415798187256, 0.6570544838905334, 0.6198580265045166, 0.6425281763076782, 0.6396463513374329, 0.6707313656806946, 0.6983391046524048, 0.6416543126106262, 0.7060319185256958, 0.6359407305717468] | [0.6786146759986877, 0.6203799843788147, 0.6399376392364502, 0.6496105194091797, 0.6446098685264587, 0.697110652923584, 0.6840102076530457, 0.6395367383956909, 0.6627588868141174, 0.6589072346687317, 0.7124311327934265, 0.7754532694816589, 0.6940386295318604, 0.6525439620018005, 0.6849752068519592, 0.632102370262146, 0.7082876563072205, 0.6271407008171082, 0.603340208530426, 0.6460278034210205, 0.6741988658905029, 0.629913866519928, 0.6587539315223694, 0.6535557508468628, 0.6566615700721741, 0.7470703125, 0.6526504158973694, 0.722645103931427, 0.0, 0.6769284009933472, 0.6397237181663513, 0.6382951140403748, 0.630065381526947, 0.663674533367157, 0.6848277449607849, 0.6500040292739868, 0.6910523772239685, 0.6453608870506287, 0.6790114045143127, 0.5614755749702454, 0.7109813690185547, 0.6823344230651855, 0.5961512327194214, 0.6760584115982056, 0.617463231086731, 0.6380019783973694, 0.7444761991500854, 0.6496774554252625, 0.6904129385948181, 0.7521547675132751, 0.6208827495574951, 0.6652146577835083, 0.6700727939605713, 0.659292459487915, 0.7057793140411377, 0.6383203864097595, 0.6837741732597351, 0.6671833992004395, 0.6887449622154236, 0.616143524646759, 0.651187539100647, 0.6793473362922668, 0.7363139986991882, 0.6468941569328308, 0.6117860078811646, 0.5990237593650818, 0.7026257514953613, 0.6360528469085693, 0.6345322728157043, 0.6865234375, 0.6400372385978699, 0.6243235468864441, 0.653699517250061, 0.6512462496757507, 0.6553274989128113, 0.6602928638458252, 0.7638092041015625, 0.6503258943557739, 0.7057384848594666, 0.6953710913658142, 0.6698594093322754, 0.6994805932044983, 0.6590659022331238, 0.6421510577201843, 0.6694273352622986, 0.6144805550575256, 0.6249997615814209, 0.6500590443611145, 0.6522939801216125, 0.6585564613342285, 0.6429365277290344, 0.7184564471244812, 0.6807112097740173, 0.6856848001480103, 0.6876852512359619, 0.6568189859390259, 0.667669415473938, 0.5917350649833679, 0.6702190041542053, 0.7044232487678528, 0.7227626442909241, 0.6759572625160217, 0.6460278034210205, 0.7068462371826172, 0.6295360922813416, 0.6319908499717712, 0.642717182636261, 0.690367579460144, 0.6340779066085815, 0.6432715654373169, 0.6759572625160217, 0.667309045791626, 0.6793810129165649, 0.6515007019042969, 0.6575543284416199, 0.6283260583877563, 0.6649893522262573, 0.6144961714744568, 0.6976316571235657, 0.6548735499382019, 0.6350834965705872, 0.6312580704689026, 0.6339262127876282, 0.6649426817893982, 0.701200008392334, 0.711179792881012, 0.7433462738990784, 0.6131902933120728, 0.6490651369094849, 0.6879072785377502, 0.6997130513191223, 0.6543079614639282, 0.6348268985748291, 0.6568189859390259, 0.6599550247192383, 0.6751139760017395, 0.6549826264381409, 0.6822446584701538, 0.6717835664749146, 0.6644446849822998, 0.653449535369873, 0.6766218543052673, 0.7312255501747131, 0.6570013761520386, 0.6751335859298706, 0.6673609614372253, 0.6253426671028137, 0.6877955198287964, 0.6510226726531982, 0.6567124128341675, 0.6588916182518005, 0.6465886235237122, 0.6526815891265869, 0.6464427709579468, 0.6873394846916199, 0.6418589949607849, 0.6526815891265869, 0.6293405890464783, 0.6458804607391357, 0.704334020614624, 0.7020584344863892, 0.6525671482086182, 0.6728265285491943, 0.6189823150634766, 0.6480981707572937, 0.6558048129081726, 0.632102370262146, 0.6796478629112244, 0.5949907898902893, 0.5832234025001526, 0.5910975933074951, 0.6269012689590454, 0.6343388557434082, 0.6761629581451416, 0.643068790435791, 0.6715250611305237, 0.6612242460250854, 0.6183096766471863, 0.6878883242607117, 0.7372967004776001, 0.5917409062385559, 0.7148705720901489, 0.6104209423065186, 0.6924881935119629, 0.6787004470825195, 0.6303306818008423, 0.6234156489372253, 0.6946374177932739, 0.7002120018005371, 0.6193532943725586, 0.6463236212730408, 0.6885539293289185, 0.6015020608901978, 0.729037344455719, 0.6252518892288208, 0.6458804607391357, 0.6330650448799133, 0.698819637298584, 0.6444602012634277, 0.6577948331832886, 0.6688165664672852, 0.6404922008514404, 0.7640447020530701, 0.6557332873344421, 0.6706616282463074, 0.6428983807563782, 0.6558851003646851, 0.708078920841217, 0.5945144295692444, 0.6606470942497253, 0.6788292527198792, 0.7559133172035217, 0.6410924792289734, 0.6145898699760437, 0.6838846802711487, 0.6178339123725891, 0.6455137133598328, 0.6528797745704651, 0.6244031190872192, 0.6291185617446899, 0.689092755317688, 0.6677842140197754, 0.6806349754333496, 0.6878015995025635, 0.7185096740722656, 0.6791268587112427, 0.6180363297462463, 0.6522939801216125, 0.6729865670204163, 0.7151459455490112, 0.6553012132644653, 0.6036092042922974, 0.6549221873283386, 0.6728427410125732, 0.641330361366272, 0.6082441806793213, 0.6366252899169922, 0.6094024777412415, 0.6196913719177246, 0.6174681782722473, 0.6258797645568848, 0.6011547446250916, 0.5765967965126038, 0.7124311327934265, 0.6176320314407349, 0.6894940733909607, 0.6821589469909668, 0.6082441806793213, 0.6693901419639587, 0.6298602223396301, 0.6472539305686951, 0.669977605342865, 0.7000283002853394, 0.6052583456039429, 0.6488882303237915, 0.6292690634727478, 0.6488266587257385, 0.6400451064109802, 0.6687440276145935, 0.6856399774551392, 0.6462348103523254, 0.7328572273254395, 0.6413873434066772] | bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) | | 3.5442 | 5.0 | 935 | 2.8474 | [0.6929003596305847, 0.6133741736412048, 0.6369296908378601, 0.6576104164123535, 0.6581195592880249, 0.7057837843894958, 0.6906453371047974, 0.6295247077941895, 0.6032506227493286, 0.6801808476448059, 0.7086416482925415, 0.7715317010879517, 0.6965898871421814, 0.6664015054702759, 0.6693047285079956, 0.635832667350769, 0.7033517956733704, 0.6183526515960693, 0.6158597469329834, 0.6398658752441406, 0.6714366674423218, 0.6355723738670349, 0.6943302750587463, 0.6544321775436401, 0.6650948524475098, 0.7430660724639893, 0.6517236232757568, 0.7484419345855713, 0.0, 0.675719141960144, 0.6458128690719604, 0.6234389543533325, 0.6472302079200745, 0.6631240248680115, 0.6684064865112305, 0.6660122275352478, 0.6794019937515259, 0.6357454061508179, 0.6969460248947144, 0.5535992383956909, 0.7105198502540588, 0.6797340512275696, 0.5988055467605591, 0.67428058385849, 0.637294590473175, 0.6437563300132751, 0.7560627460479736, 0.6326324939727783, 0.7101137042045593, 0.7656958699226379, 0.6435254812240601, 0.6552819013595581, 0.6591821312904358, 0.6520820260047913, 0.7302312850952148, 0.6462039947509766, 0.6925369501113892, 0.6566042900085449, 0.695000171661377, 0.6302398443222046, 0.6504288911819458, 0.6807819604873657, 0.7568456530570984, 0.6529860496520996, 0.6187940239906311, 0.6020010709762573, 0.6868752837181091, 0.6300128102302551, 0.6296300888061523, 0.6843270063400269, 0.6368266344070435, 0.6201039552688599, 0.6535858511924744, 0.6613433957099915, 0.6574115753173828, 0.6770792007446289, 0.7600529193878174, 0.6565803289413452, 0.698392391204834, 0.6894751787185669, 0.6980857849121094, 0.7112835645675659, 0.668113112449646, 0.6581467986106873, 0.659957766532898, 0.6379042863845825, 0.6446895599365234, 0.6587048768997192, 0.652809739112854, 0.6526193618774414, 0.6537817716598511, 0.7116091847419739, 0.7003600597381592, 0.6960922479629517, 0.7021352052688599, 0.656990647315979, 0.6734673380851746, 0.5993854999542236, 0.6549721956253052, 0.7079775333404541, 0.7105451822280884, 0.673061728477478, 0.6398658752441406, 0.7279029488563538, 0.632804811000824, 0.6385118365287781, 0.6277474164962769, 0.694757878780365, 0.637184739112854, 0.6614517569541931, 0.673061728477478, 0.6937723159790039, 0.6959199905395508, 0.6462610960006714, 0.6720056533813477, 0.6341558694839478, 0.658045768737793, 0.6242990493774414, 0.6955231428146362, 0.6746744513511658, 0.6259623765945435, 0.6322343349456787, 0.6386721730232239, 0.6636806130409241, 0.7008563280105591, 0.7186553478240967, 0.742395281791687, 0.5930124521255493, 0.660872220993042, 0.6856606006622314, 0.7234644889831543, 0.661785364151001, 0.6491066217422485, 0.656990647315979, 0.6655586957931519, 0.6928428411483765, 0.6648601293563843, 0.6940321922302246, 0.6660351753234863, 0.673884391784668, 0.654864490032196, 0.6751419305801392, 0.7360048294067383, 0.6635060906410217, 0.6750009655952454, 0.6638166904449463, 0.6382589936256409, 0.7049083709716797, 0.6431376934051514, 0.6806449294090271, 0.652288556098938, 0.655288815498352, 0.6625323295593262, 0.6482013463973999, 0.6454973816871643, 0.6514257192611694, 0.6625323295593262, 0.627372682094574, 0.6609578132629395, 0.7002651691436768, 0.6899219155311584, 0.6566691398620605, 0.6862121224403381, 0.6149857640266418, 0.6542688608169556, 0.6522969603538513, 0.635832667350769, 0.6770160794258118, 0.6105413436889648, 0.5959399938583374, 0.5996183753013611, 0.6474558115005493, 0.6497341394424438, 0.6824425458908081, 0.6511133313179016, 0.6678274869918823, 0.6700403690338135, 0.6197404861450195, 0.6774248480796814, 0.748753011226654, 0.5847424864768982, 0.7290750741958618, 0.6362240314483643, 0.6821150779724121, 0.6743643879890442, 0.6179369688034058, 0.6248660087585449, 0.6989448070526123, 0.7265845537185669, 0.6207034587860107, 0.6517062187194824, 0.6871163249015808, 0.6199581623077393, 0.7777968645095825, 0.6263978481292725, 0.6609578132629395, 0.6415587663650513, 0.700570821762085, 0.657017171382904, 0.6716399788856506, 0.67547208070755, 0.6563198566436768, 0.7473193407058716, 0.6515363454818726, 0.7003060579299927, 0.650084376335144, 0.6724016666412354, 0.7201712131500244, 0.6008522510528564, 0.667036771774292, 0.6724625825881958, 0.7508677840232849, 0.6464987397193909, 0.6168344020843506, 0.6700884103775024, 0.6235026121139526, 0.6438812613487244, 0.6425885558128357, 0.6213839054107666, 0.6382965445518494, 0.6957192420959473, 0.6555189490318298, 0.6971650719642639, 0.7006597518920898, 0.7391626834869385, 0.6715911626815796, 0.6253701448440552, 0.652809739112854, 0.6811630725860596, 0.7285609245300293, 0.6595237255096436, 0.5911452770233154, 0.665739893913269, 0.6692743897438049, 0.6335341930389404, 0.6147409677505493, 0.6383231282234192, 0.6025363206863403, 0.6212208271026611, 0.6143321990966797, 0.6346527338027954, 0.6133826375007629, 0.5720107555389404, 0.7086416482925415, 0.6206754446029663, 0.7020885348320007, 0.6567215919494629, 0.6147409677505493, 0.6760094165802002, 0.6580663323402405, 0.6447792649269104, 0.6912583112716675, 0.7000113725662231, 0.6154043078422546, 0.640922486782074, 0.6739322543144226, 0.655249834060669, 0.640444278717041, 0.6667684316635132, 0.6733943819999695, 0.6508811712265015, 0.7618014812469482, 0.646928071975708] | [0.6649062037467957, 0.6275476217269897, 0.6429741382598877, 0.6600346565246582, 0.6316436529159546, 0.6886480450630188, 0.6775014996528625, 0.6498724818229675, 0.572837233543396, 0.6461964845657349, 0.7162613868713379, 0.7794148325920105, 0.6915059685707092, 0.6392509937286377, 0.6521221995353699, 0.6284155249595642, 0.7132933139801025, 0.6361821293830872, 0.6224191784858704, 0.6523096561431885, 0.6769837737083435, 0.6243550777435303, 0.6266458034515381, 0.652681827545166, 0.6484395861625671, 0.7511179447174072, 0.653579831123352, 0.698567271232605, 0.0, 0.6781419515609741, 0.6337482333183289, 0.653876543045044, 0.6137877702713013, 0.6642259359359741, 0.7020760774612427, 0.634747326374054, 0.7031091451644897, 0.6552716493606567, 0.6741659641265869, 0.5695792436599731, 0.7114435434341431, 0.6849547624588013, 0.59352046251297, 0.6778455972671509, 0.5988288521766663, 0.6323497295379639, 0.7332395911216736, 0.6469723582267761, 0.6880676746368408, 0.7390843629837036, 0.5997792482376099, 0.6754531264305115, 0.6813293099403381, 0.6666642427444458, 0.68291175365448, 0.6306267976760864, 0.6752303838729858, 0.6781089901924133, 0.7067015171051025, 0.6026639938354492, 0.6560887694358826, 0.6354584693908691, 0.7168669104576111, 0.6409149169921875, 0.6049350500106812, 0.5960757732391357, 0.669973611831665, 0.6422098278999329, 0.6395115256309509, 0.6887341141700745, 0.6432803869247437, 0.6286009550094604, 0.6391538381576538, 0.6414529085159302, 0.6532565355300903, 0.6443188190460205, 0.7384698390960693, 0.6441894769668579, 0.7132408618927002, 0.7013686895370483, 0.6652677059173584, 0.6880629062652588, 0.6502605080604553, 0.6269145011901855, 0.6791725754737854, 0.5927161574363708, 0.6064770221710205, 0.661729097366333, 0.651779055595398, 0.6646026372909546, 0.632445216178894, 0.725436806678772, 0.6621347665786743, 0.6755839586257935, 0.6738181114196777, 0.6566475033760071, 0.6619706153869629, 0.5842774510383606, 0.686192512512207, 0.7009044885635376, 0.7354075908660889, 0.6788778305053711, 0.6523096561431885, 0.6869735717773438, 0.6263010501861572, 0.6256016492843628, 0.6423155069351196, 0.6860323548316956, 0.6310012340545654, 0.6260640621185303, 0.6788778305053711, 0.6427903771400452, 0.6636099815368652, 0.6568259596824646, 0.6437113881111145, 0.6226024627685547, 0.6720809936523438, 0.6328999996185303, 0.699752926826477, 0.636201798915863, 0.644474446773529, 0.6302847862243652, 0.6292503476142883, 0.6662095785140991, 0.7015441060066223, 0.7038581371307373, 0.7442997694015503, 0.6347897052764893, 0.6376725435256958, 0.6901686191558838, 0.695481538772583, 0.6469976902008057, 0.6211618185043335, 0.6566475033760071, 0.6544449329376221, 0.6582697629928589, 0.6453942656517029, 0.670850932598114, 0.655735969543457, 0.6552658081054688, 0.6520406603813171, 0.678108274936676, 0.7265080213546753, 0.6506229639053345, 0.6752663850784302, 0.6709432601928711, 0.6129387021064758, 0.6714939475059509, 0.6591033935546875, 0.634405791759491, 0.6656297445297241, 0.6381163001060486, 0.6431194543838501, 0.6446937322616577, 0.6875370740890503, 0.6325691938400269, 0.6431194543838501, 0.6313208341598511, 0.6314756870269775, 0.7084503769874573, 0.7146296501159668, 0.6485159993171692, 0.6599531173706055, 0.6230310797691345, 0.6420427560806274, 0.6593505144119263, 0.6284155249595642, 0.6823000907897949, 0.5802127122879028, 0.5710383057594299, 0.5828155279159546, 0.6076115369796753, 0.6196562051773071, 0.6699979901313782, 0.6352205276489258, 0.6752637624740601, 0.6526370644569397, 0.6168854236602783, 0.69868004322052, 0.7261859178543091, 0.5989089012145996, 0.7012088298797607, 0.5866293907165527, 0.7031817436218262, 0.6830926537513733, 0.6432316303253174, 0.6219719648361206, 0.6903827786445618, 0.6756868362426758, 0.6180089712142944, 0.6410292387008667, 0.689997673034668, 0.5841130614280701, 0.6860305070877075, 0.6241101026535034, 0.6314756870269775, 0.6247932314872742, 0.697077214717865, 0.6323742270469666, 0.6652247905731201, 0.6622908115386963, 0.6254100203514099, 0.7815357446670532, 0.6599846482276917, 0.6917272806167603, 0.6358695030212402, 0.6401605010032654, 0.6963860392570496, 0.5883089900016785, 0.6543786525726318, 0.6658977270126343, 0.7610270977020264, 0.6357758045196533, 0.6123616099357605, 0.698261022567749, 0.6122673749923706, 0.6471544504165649, 0.6635059118270874, 0.6274517178535461, 0.6202007532119751, 0.6825913190841675, 0.680517315864563, 0.6648703813552856, 0.6754068732261658, 0.6989795565605164, 0.6868336200714111, 0.6108724474906921, 0.651779055595398, 0.6650040149688721, 0.7022161483764648, 0.6511324644088745, 0.616610050201416, 0.6444504261016846, 0.6764492988586426, 0.6493207216262817, 0.6018832921981812, 0.6349364519119263, 0.6164268851280212, 0.618169367313385, 0.6206363439559937, 0.6173461079597473, 0.589404821395874, 0.5812571048736572, 0.7162613868713379, 0.6146183013916016, 0.677343487739563, 0.7096463441848755, 0.6018832921981812, 0.6628992557525635, 0.6039726734161377, 0.6497476100921631, 0.6936290264129639, 0.7000452280044556, 0.5954415798187256, 0.6570545434951782, 0.6340285539627075, 0.6425281763076782, 0.6396463513374329, 0.6707313656806946, 0.6983391046524048, 0.6416543126106262, 0.7060319185256958, 0.6359407305717468] | [0.6786146759986877, 0.6203799843788147, 0.6399376392364502, 0.6588203310966492, 0.6446098685264587, 0.697110652923584, 0.6840102076530457, 0.6395367383956909, 0.587650716304779, 0.6627532243728638, 0.7124311327934265, 0.7754532694816589, 0.6940386295318604, 0.6525439620018005, 0.660601794719696, 0.632102370262146, 0.7082876563072205, 0.6271407008171082, 0.6191221475601196, 0.6460278034210205, 0.6741988658905029, 0.6299137473106384, 0.6587540507316589, 0.6535558700561523, 0.6566615700721741, 0.7470703125, 0.6526504158973694, 0.722645103931427, 0.0, 0.6769284009933472, 0.6397237181663513, 0.6382951140403748, 0.6300655007362366, 0.663674533367157, 0.6848276853561401, 0.6500040292739868, 0.6910523176193237, 0.6453608870506287, 0.6853667497634888, 0.5614755749702454, 0.7109813690185547, 0.6823344230651855, 0.5961512327194214, 0.6760584115982056, 0.617463231086731, 0.6380019783973694, 0.7444761991500854, 0.6397220492362976, 0.6989168524742126, 0.7521547675132751, 0.6208827495574951, 0.6652146577835083, 0.6700727939605713, 0.659292459487915, 0.7057793140411377, 0.6383203864097595, 0.6837741732597351, 0.6671833992004395, 0.7008020281791687, 0.616143524646759, 0.6532465815544128, 0.657339870929718, 0.7363139986991882, 0.6468941569328308, 0.6117860078811646, 0.5990237593650818, 0.6783191561698914, 0.6360528469085693, 0.6345322728157043, 0.6865234375, 0.6400372385978699, 0.6243235468864441, 0.6462892889976501, 0.6512463092803955, 0.6553274989128113, 0.6602928638458252, 0.7491059303283691, 0.6503258943557739, 0.7057384848594666, 0.6953710913658142, 0.6812817454338074, 0.6994805932044983, 0.6590659022331238, 0.6421510577201843, 0.6694273352622986, 0.6144805550575256, 0.6249997615814209, 0.6602135300636292, 0.6522939801216125, 0.6585564613342285, 0.6429365277290344, 0.7184564471244812, 0.6807112097740173, 0.6856848001480103, 0.6876852512359619, 0.6568189859390259, 0.6676694750785828, 0.5917350649833679, 0.6702190041542053, 0.7044232487678528, 0.7227626442909241, 0.6759572625160217, 0.6460278034210205, 0.7068462371826172, 0.6295360922813416, 0.6319908499717712, 0.6349478960037231, 0.690367579460144, 0.6340779066085815, 0.6432715654373169, 0.6759572625160217, 0.667309045791626, 0.6793810129165649, 0.6515007019042969, 0.6575543284416199, 0.6283260583877563, 0.6649893522262573, 0.6285700798034668, 0.6976316571235657, 0.6548735499382019, 0.6350835561752319, 0.6312580704689026, 0.6339262127876282, 0.6649426817893982, 0.701200008392334, 0.711179792881012, 0.7433462738990784, 0.6131902933120728, 0.6490651369094849, 0.6879072189331055, 0.7091970443725586, 0.6543079614639282, 0.6348268389701843, 0.6568189859390259, 0.6599550247192383, 0.6751139760017395, 0.6549826264381409, 0.6822446584701538, 0.6608454585075378, 0.6644446849822998, 0.653449535369873, 0.6766218543052673, 0.7312255501747131, 0.6570013761520386, 0.6751335859298706, 0.6673609614372253, 0.625342607498169, 0.6877955198287964, 0.6510226726531982, 0.6567124128341675, 0.6588916182518005, 0.6465886235237122, 0.6526815891265869, 0.6464427709579468, 0.665854275226593, 0.6418589949607849, 0.6526815891265869, 0.6293405890464783, 0.6458804607391357, 0.704334020614624, 0.7020584940910339, 0.6525671482086182, 0.6728265285491943, 0.6189823150634766, 0.6480981707572937, 0.6558048129081726, 0.632102370262146, 0.6796478629112244, 0.5949907898902893, 0.5832234025001526, 0.5910975933074951, 0.6269012093544006, 0.6343388557434082, 0.6761629581451416, 0.643068790435791, 0.6715250611305237, 0.6612242460250854, 0.6183096766471863, 0.6878883242607117, 0.7372968792915344, 0.5917409062385559, 0.7148704528808594, 0.6104210019111633, 0.6924881935119629, 0.6787004470825195, 0.6303306818008423, 0.6234156489372253, 0.6946374177932739, 0.7002120018005371, 0.6193532943725586, 0.6463236212730408, 0.6885539293289185, 0.6015020608901978, 0.729037344455719, 0.6252518892288208, 0.6458804607391357, 0.6330650448799133, 0.698819637298584, 0.6444602012634277, 0.6684170365333557, 0.6688165664672852, 0.6404922008514404, 0.7640447020530701, 0.6557332873344421, 0.695990264415741, 0.6428983807563782, 0.6558851003646851, 0.708078920841217, 0.5945144295692444, 0.6606470942497253, 0.6691640615463257, 0.7559133172035217, 0.6410924792289734, 0.6145898699760437, 0.6838846802711487, 0.6178339123725891, 0.6455137133598328, 0.6528797745704651, 0.6244031190872192, 0.6291185617446899, 0.689092755317688, 0.6677843332290649, 0.6806347966194153, 0.6878015995025635, 0.7185097336769104, 0.6791268587112427, 0.6180363297462463, 0.6522939801216125, 0.6729865670204163, 0.7151459455490112, 0.6553012132644653, 0.6036092042922974, 0.6549221873283386, 0.6728427410125732, 0.6413303017616272, 0.6082441806793213, 0.6366252899169922, 0.6094024777412415, 0.6196913719177246, 0.6174681782722473, 0.6258797645568848, 0.6011547446250916, 0.5765968561172485, 0.7124311327934265, 0.6176320314407349, 0.6894940733909607, 0.6821589469909668, 0.6082441806793213, 0.6693901419639587, 0.6298602223396301, 0.6472539305686951, 0.6924416422843933, 0.7000283002853394, 0.6052583456039429, 0.6488882899284363, 0.6533717513084412, 0.6488266587257385, 0.6400451064109802, 0.6687440276145935, 0.6856399774551392, 0.6462348103523254, 0.7328572273254395, 0.6413873434066772] | bert-base-multilingual-cased_L9_no-idf_version=0.3.12(hug_trans=4.40.1) | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
DesignITlab/Llama_Brutalism_eng
DesignITlab
2024-05-08T12:55:47Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-08T10:59:19Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]