modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 18:26:50
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 18:26:48
card
stringlengths
11
1.01M
japuralo/futurama
japuralo
2023-05-05T00:39:37Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-05-05T00:39:32Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Soulaimen/resnet-50-shortSleeveCleanedData
Soulaimen
2023-05-04T23:59:05Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-04T21:29:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-shortSleeveCleanedData results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9781420765027322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-shortSleeveCleanedData This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1103 - Accuracy: 0.9781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 7 - total_train_batch_size: 56 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.973 | 1.0 | 147 | 0.9371 | 0.7268 | | 0.6565 | 2.0 | 294 | 0.5520 | 0.8710 | | 0.4609 | 3.0 | 441 | 0.2983 | 0.9279 | | 0.3937 | 4.0 | 588 | 0.2051 | 0.9486 | | 0.3723 | 5.0 | 735 | 0.1521 | 0.9727 | | 0.3926 | 6.0 | 882 | 0.1490 | 0.9672 | | 0.3326 | 7.0 | 1029 | 0.1367 | 0.9650 | | 0.3166 | 8.0 | 1176 | 0.1109 | 0.9738 | | 0.3492 | 9.0 | 1323 | 0.1108 | 0.9760 | | 0.3228 | 10.0 | 1470 | 0.1103 | 0.9781 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
chribeiro/reinforce-CartPole-v1
chribeiro
2023-05-04T23:37:49Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T22:46:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
huggingtweets/tstorm106
huggingtweets
2023-05-04T23:31:47Z
140
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-04T23:31:39Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1411783471228461058/NACe_2Kf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TStorm</div> <div style="text-align: center; font-size: 14px;">@tstorm106</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TStorm. | Data | TStorm | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 171 | | Short tweets | 900 | | Tweets kept | 2149 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cxkqs7up/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tstorm106's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/72bi3ylz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/72bi3ylz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tstorm106') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
leonong84/roberta-tuned
leonong84
2023-05-04T23:16:26Z
63
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-30T01:23:06Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: roberta-tuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-tuned This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamW', 'weight_decay': 0.001, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
salticidae-research/oasst-sft-6-llama-30b-4bit-128g
salticidae-research
2023-05-04T23:00:33Z
5
0
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-04T18:41:36Z
Converted using https://github.com/oobabooga/GPTQ-for-LLaMa, commit 57a2629 --- license: other ---
uisikdag/ayla_ozetler300_bertuncased
uisikdag
2023-05-04T23:00:04Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T21:43:45Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ayla_ozetler300_bertuncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ayla_ozetler300_bertuncased This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1056 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 8 | 1.5103 | 0.48 | | 1.5956 | 1.94 | 16 | 0.8089 | 0.7911 | | 0.9875 | 2.91 | 24 | 0.3019 | 0.9289 | | 0.3379 | 4.0 | 33 | 0.1606 | 0.9556 | | 0.1349 | 4.97 | 41 | 0.1423 | 0.96 | | 0.1349 | 5.94 | 49 | 0.1177 | 0.9667 | | 0.0697 | 6.91 | 57 | 0.1122 | 0.9689 | | 0.0434 | 8.0 | 66 | 0.1065 | 0.9756 | | 0.0238 | 8.97 | 74 | 0.1060 | 0.9756 | | 0.0288 | 9.7 | 80 | 0.1056 | 0.9756 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.11.0
odeshays/dqn-SpaceInvadersNoFrameskip-v4
odeshays
2023-05-04T22:54:24Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T22:53:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 588.50 +/- 158.00 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga odeshays -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga odeshays -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga odeshays ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
nvidia/GPT-2B-001
nvidia
2023-05-04T22:48:32Z
64
192
nemo
[ "nemo", "text generation", "pytorch", "causal-lm", "en", "ru", "de", "es", "fr", "ja", "it", "vi", "nl", "pl", "pt", "id", "fa", "ar", "el", "tr", "cs", "zh", "ro", "sv", "hu", "uk", "bg", "no", "hi", "fi", "da", "sk", "ko", "hr", "ca", "he", "bn", "lt", "ta", "sr", "sl", "et", "lv", "ne", "mr", "ka", "ml", "mk", "ur", "sq", "kk", "te", "hy", "az", "is", "gl", "kn", "arxiv:1909.08053", "arxiv:2002.05202", "arxiv:2104.09864", "license:cc-by-4.0", "region:us" ]
null
2023-04-10T21:28:33Z
--- language: - en - ru - de - es - fr - ja - it - vi - nl - pl - pt - id - fa - ar - el - tr - cs - zh - ro - sv - hu - uk - bg - no - hi - fi - da - sk - ko - hr - ca - he - bn - lt - ta - sr - sl - et - lv - ne - mr - ka - ml - mk - ur - sq - kk - te - hy - az - is - gl - kn library_name: nemo tags: - text generation - pytorch - causal-lm license: cc-by-4.0 --- # GPT-2B-001 <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-2B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets) ## Model Description GPT-2B-001 is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 2B refers to the total trainable parameter count (2 Billion) [1, 2]. This model was trained on 1.1T tokens with [NeMo](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html). ## Model Architecture improvements - The model uses the SwiGLU activation function [4] - Rotary positional embeddings (RoPE) [5] - Maximum sequence length of 4,096 compared to 2,048 in https://huggingface.co/nvidia/nemo-megatron-gpt-20B. - No dropout. - No bias terms in all linear layers. - Untied embedding and output layers. ## Getting started Note: You will need NVIDIA Ampere or Hopper GPUs to work with this model. ### Step 1: Install NeMo and dependencies You will need to install NVIDIA Apex and NeMo. ``` git clone https://github.com/NVIDIA/apex.git cd apex git checkout 03c9d80ed54c0eaa5b581bf42ceca3162f085327 pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./ ``` ``` pip install nemo_toolkit['nlp']==1.17.0 ``` Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed. ### Step 2: Launch eval server **Note.** The example below launches a model variant with Tensor Parallelism (TP) of 1 and Pipeline Parallelism (PP) of 1 on 1 GPU. ``` git clone https://github.com/NVIDIA/NeMo.git cd NeMo/examples/nlp/language_modeling git checkout v1.17.0 python megatron_gpt_eval.py gpt_model_file=nemo_2b_bf16_tp1.nemo trainer.precision=bf16 server=True tensor_model_parallel_size=1 trainer.devices=1 ``` ### Step 3: Send prompts to your model! ```python import json import requests port_num = 5555 headers = {"Content-Type": "application/json"} def request_data(data): resp = requests.put('http://localhost:{}/generate'.format(port_num), data=json.dumps(data), headers=headers) sentences = resp.json()['sentences'] return sentences data = { "sentences": ["It was a warm summer morning when"]*1, "tokens_to_generate": 50, "temperature": 1.0, "add_BOS": False, "top_k": 0, "top_p": 0.9, "greedy": False, "all_probs": False, "repetition_penalty": 1.2, "min_tokens_to_generate": 2, } sentences = request_data(data) print(sentences) ``` ## Training Data The model was trained on 1.1T tokens obtained from publicly available data sources. The dataset comprises 53 languages and code. ## Evaluation results *Zero-shot performance.* Evaluated using [LM Evaluation Test Suite from AI21](https://github.com/AI21Labs/lm-evaluation) | ARC-Challenge | ARC-Easy | RACE-middle |Winogrande | RTE | BoolQA | HellaSwag | PiQA | | ------------- | -------- | ----------- | ----------| --- | ------ | --------- | ---- | | 0.3558 | 0.45300 | 0.3997 | 0.5801 | 0.556 | 0.5979 | 0.592 | 0.7437 | ## Limitations The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. We did not perform any bias/toxicity removal or model alignment on this checkpoint. ## References [1] [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) [2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202) [5] [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
seviladiguzel/355a590
seviladiguzel
2023-05-04T22:45:18Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-05-04T22:44:41Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 4.999999873689376e-05 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | mixed_float16 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
diyclassics/la_dep_cltk_md
diyclassics
2023-05-04T22:19:55Z
0
0
spacy
[ "spacy", "cltk", "latin", "la", "license:mit", "region:us" ]
null
2023-03-12T23:03:21Z
--- license: mit language: - la tags: - cltk - latin library_name: spacy --- # Model Card for la_dep_cltk_md DEPRECATED — PLEASE USE [la_core_web_md](https://huggingface.co/latincy/la_core_web_lg) md Latin model for spaCy trained on UD treebanks for tagging, parsing and lemmatization
GoldfieldGeek/ppo-Huggy
GoldfieldGeek
2023-05-04T22:17:52Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-04T22:17:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: GoldfieldGeek/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mattjmattj/HF-RL-unit5-ppo-SnowballTarget
mattjmattj
2023-05-04T22:05:53Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-04T22:05:48Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: mattjmattj/HF-RL-unit5-ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
zhendongw/prompt-diffusion
zhendongw
2023-05-04T22:05:05Z
0
3
null
[ "arxiv:2305.01115", "arxiv:2206.02262", "region:us" ]
null
2023-05-04T20:36:13Z
## Prompt-Diffusion: In-Context Learning Unlocked for Diffusion Models [Project Page](https://zhendong-wang.github.io/prompt-diffusion.github.io/) | [Paper](https://arxiv.org/abs/2305.01115) | [GitHub](https://github.com/Zhendong-Wang/Prompt-Diffusion) ![Illustration](./assets/teaser_img.png) **In-Context Learning Unlocked for Diffusion Models**<br> Zhendong Wang, Yifan Jiang, Yadong Lu, Yelong Shen, Pengcheng He, Weizhu Chen, Zhangyang Wang and Mingyuan Zhou <br> [//]: # (https://arxiv.org/abs/2206.02262 <br>) Abstract: *We present Prompt Diffusion, a framework for enabling in-context learning in diffusion-based generative models. Given a pair of task-specific example images, such as depth from/to image and scribble from/to image, and a text guidance, our model automatically understands the underlying task and performs the same task on a new query image following the text guidance. To achieve this, we propose a vision-language prompt that can model a wide range of vision-language tasks and a diffusion model that takes it as input. The diffusion model is trained jointly on six different tasks using these prompts. The resulting Prompt Diffusion model becomes the first diffusion-based vision-language foundation model capable of in-context learning. It demonstrates high-quality in-context generation for the trained tasks and effectively generalizes to new, unseen vision tasks using their respective prompts. Our model also shows compelling text-guided image editing results. Our framework aims to facilitate research into in-context learning for computer vision, with code publicly available here.* ![Illustration](./assets/illustration.png) ## Note We have made our pretrained model checkpoints available here. For more information on how to use them, please visit our GitHub page at https://github.com/Zhendong-Wang/Prompt-Diffusion. ## Citation ``` @article{wang2023promptdiffusion, title = {In-Context Learning Unlocked for Diffusion Models}, author = {Wang, Zhendong and Jiang, Yifan and Lu, Yadong and Shen, Yelong and He, Pengcheng and Chen, Weizhu and Wang, Zhangyang and Zhou, Mingyuan}, journal = {arXiv preprint arXiv:2305.01115}, year = {2023}, url = {https://arxiv.org/abs/2305.01115} } ``` ## Acknowledgements We thank [Brooks et al.](https://github.com/timothybrooks/instruct-pix2pix) for sharing the dataset for finetuning Stable Diffusion. We also thank [Lvmin Zhang and Maneesh Agrawala ](https://github.com/lllyasviel/ControlNet) for providing the awesome code base ControlNet.
kingji89/imjzz
kingji89
2023-05-04T21:55:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-04T21:52:34Z
--- license: creativeml-openrail-m ---
kucharskipj/rl_course_vizdoom_health_gathering_supreme
kucharskipj
2023-05-04T21:54:24Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T21:43:08Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.96 +/- 6.81 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r kucharskipj/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Mehmet01/Caner
Mehmet01
2023-05-04T21:44:58Z
0
0
null
[ "region:us" ]
null
2023-05-04T21:42:16Z
avukat Caner Öner mhp milletvekili adayı elinde bozkurt gökte hilal gece gök yildizlar ile dolu
marshaltt/kimi
marshaltt
2023-05-04T21:32:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-04T21:29:34Z
--- license: creativeml-openrail-m ---
Ar4ikov/wav2vec2_bert_fusion_iemocap_4
Ar4ikov
2023-05-04T21:29:54Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "feature-extraction", "generated_from_trainer", "custom_code", "region:us" ]
feature-extraction
2023-05-04T07:45:00Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2_bert_fusion_iemocap_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_bert_fusion_iemocap_4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2
yuceelege/bert-base-uncased-finetuned-cola
yuceelege
2023-05-04T21:19:25Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T16:15:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.4913288678758369 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4656 - Matthews Correlation: 0.4913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4939 | 1.0 | 535 | 0.4656 | 0.4913 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
hannahbillo/distilbert-base-uncased-finetuned-ner
hannahbillo
2023-05-04T20:30:35Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-21T11:58:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9264624571491762 - name: Recall type: recall value: 0.9372413021590782 - name: F1 type: f1 value: 0.9318207095984874 - name: Accuracy type: accuracy value: 0.9840024147298521 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0621 - Precision: 0.9265 - Recall: 0.9372 - F1: 0.9318 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0751 | 0.8976 | 0.9103 | 0.9039 | 0.9789 | | 0.219 | 2.0 | 878 | 0.0626 | 0.9130 | 0.9284 | 0.9206 | 0.9817 | | 0.0558 | 3.0 | 1317 | 0.0623 | 0.9195 | 0.9332 | 0.9263 | 0.9826 | | 0.0321 | 4.0 | 1756 | 0.0610 | 0.9251 | 0.9359 | 0.9305 | 0.9835 | | 0.0228 | 5.0 | 2195 | 0.0621 | 0.9265 | 0.9372 | 0.9318 | 0.9840 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gus07ven/distilbert-base-multilingual-cased-distilled-jd
gus07ven
2023-05-04T19:52:11Z
104
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-18T13:56:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-multilingual-cased-distilled-jd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-distilled-jd This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1316 - Accuracy: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4909 | 1.0 | 464 | 0.2007 | 0.8531 | | 0.1345 | 2.0 | 928 | 0.1814 | 0.8650 | | 0.0888 | 3.0 | 1392 | 0.1670 | 0.8639 | | 0.0757 | 4.0 | 1856 | 0.1484 | 0.8726 | | 0.0637 | 5.0 | 2320 | 0.1394 | 0.8683 | | 0.0577 | 6.0 | 2784 | 0.1379 | 0.8737 | | 0.0513 | 7.0 | 3248 | 0.1431 | 0.8704 | | 0.0464 | 8.0 | 3712 | 0.1329 | 0.8704 | | 0.0449 | 9.0 | 4176 | 0.1316 | 0.8715 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0 - Datasets 1.16.1 - Tokenizers 0.10.3
jainr3/t5-finetuned-meetings
jainr3
2023-05-04T19:52:09Z
117
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-22T00:26:25Z
--- license: apache-2.0 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the [knkarthick/AMI](https://huggingface.co/datasets/knkarthick/AMI), [knkarthick/dialogsum](https://huggingface.co/datasets/knkarthick/dialogsum), and [samsum](https://huggingface.co/datasets/samsum) datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-4 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - summary_len: 150 - max_len: 512 - num_epochs: <1 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
parallelq/ppo-LunarLander-v2
parallelq
2023-05-04T19:37:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T17:09:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.45 +/- 20.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
abdullahalzubaer/llama-7b-lora-sst2
abdullahalzubaer
2023-05-04T19:30:15Z
0
0
null
[ "region:us" ]
null
2023-05-02T15:29:45Z
This is where you write how to use? Test! Okay it works :) ## TODO * [ ] Minimal working code * [ ] Dataset description
reginaboateng/umls_relational_extraction_adapter_clinical_bert
reginaboateng
2023-05-04T19:25:54Z
1
1
adapter-transformers
[ "adapter-transformers", "adapterhub:umls", "bert", "dataset:umls", "region:us" ]
null
2023-05-04T19:25:48Z
--- tags: - adapterhub:umls - adapter-transformers - bert datasets: - umls --- # Adapter `reginaboateng/umls_relational_extraction_adapter_clinical_bert` for emilyalsentzer/Bio_ClinicalBERT An [adapter](https://adapterhub.ml) for the `emilyalsentzer/Bio_ClinicalBERT` model that was trained on the [umls](https://adapterhub.ml/explore/umls/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") adapter_name = model.load_adapter("reginaboateng/umls_relational_extraction_adapter_clinical_bert", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
ageng-anugrah/indobert-large-p2-finetuned-ner
ageng-anugrah
2023-05-04T19:09:10Z
163
3
transformers
[ "transformers", "pytorch", "bert", "token-classification", "indobert", "indobenchmark", "id", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-05T09:00:46Z
--- language: id tags: - indobert - indobenchmark --- ## How to use ### Load model and tokenizer ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner") ``` ### Extract NER Tag ```python import torch def predict(model, tokenizer, sentence): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = tokenizer(sentence.split(), is_split_into_words = True, return_offsets_mapping=True, return_tensors="pt", padding='max_length', truncation=True, max_length=512) model.to(device) # move to gpu ids = inputs["input_ids"].to(device) mask = inputs["attention_mask"].to(device) # forward pass outputs = model(ids, attention_mask=mask) logits = outputs[0] active_logits = logits.view(-1, model.num_labels) # shape (batch_size * seq_len, num_labels) flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size*seq_len,) - predictions at the token level tokens = tokenizer.convert_ids_to_tokens(ids.squeeze().tolist()) token_predictions = [model.config.id2label[i] for i in flattened_predictions.cpu().numpy()] wp_preds = list(zip(tokens, token_predictions)) # list of tuples. Each tuple = (wordpiece, prediction) prediction = [] for token_pred, mapping in zip(wp_preds, inputs["offset_mapping"].squeeze().tolist()): #only predictions on first word pieces are important if mapping[0] == 0 and mapping[1] != 0: prediction.append(token_pred[1]) else: continue return sentence.split(), prediction sentence = "BJ Habibie adalah Presiden Indonesia ke-3" words, labels = predict(model, tokenizer, sentence) ```
lllyasviel/control_v11u_sd15_tile
lllyasviel
2023-05-04T18:54:59Z
3
1
null
[ "region:us" ]
null
2023-04-14T19:25:52Z
## This model has been deleted as it was incorrectly uploaded. The corrected model can be find under [**this link**](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile).
Sjdan/sw_low_hp1_2
Sjdan
2023-05-04T18:53:28Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-04T11:28:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sw_low_hp1_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sw_low_hp1_2 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
TehVenom/Pygmalion-7b-Merged-Safetensors
TehVenom
2023-05-04T18:53:28Z
15
12
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text generation", "conversational", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-30T02:38:19Z
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details: Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Applying the XORs This models has the XOR files pre-applied out of the box. Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
TehVenom/Pygmalion_AlpacaLora-7b
TehVenom
2023-05-04T18:53:07Z
1,520
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-30T22:52:52Z
The LLaMA based Pygmalion-7b model: https://huggingface.co/PygmalionAI/pygmalion-7b Merged alongside Tloen's Alpaca LoRA: https://huggingface.co/tloen/alpaca-lora-7b This was done to test whether LoRAs trained for other LLaMA fine tunes worked for Pygmalion, and to have it available on inference backends that do not support LoRAs just yet. Treat this as a normal HF Transformers model.
TehVenom/Metharme-7b-4bit-GPTQ-Safetensors
TehVenom
2023-05-04T18:52:51Z
8
4
transformers
[ "transformers", "llama", "text-generation", "text generation", "instruct", "en", "autotrain_compatible", "region:us" ]
text-generation
2023-04-30T09:41:35Z
--- language: - en thumbnail: null tags: - text generation - instruct pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Metharme 7B</h1> <h2 style="text-align: center">An instruction-tuned LLaMA biased towards fiction writing and conversation.</h2> ## Model Details: This models has the XOR files pre-applied out of the box. Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/Metharme-7b It has also been quantized down to 4Bit using the GPTQ library available here: https://github.com/0cc4m/GPTQ-for-LLaMa ``` python llama.py .\Metharme-7b-Merged-Safetensors c4 --wbits 4 --act-order --save_safetensors Metharme-7B-GPTQ-4bit.act-order.safetensors ``` This is the best eval i could get after trying many argument combinations, by converting the model from bf16 to fp32, before quantizing down to 4bit with `--act-order` as the sole argument. - Wikitext 2: 6.2369050979614 - PTB-New: 47.5177230834960 - C4-New: 7.9044938087463 --- Metharme 7B is an instruct model based on Meta's LLaMA-7B. This is an experiment to try and get a model that is usable for conversation, roleplaying and storywriting, but which can be guided using natural language like other instruct models. See the [prompting](#prompting) section below for examples. It was trained by doing supervised fine-tuning over a mixture of regular instruction data alongside roleplay, fictional stories and conversations with synthetically generated instructions attached. ## Prompting The current model version has been trained on prompts using three different roles, which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`. The `<|system|>` prompt can be used to inject out-of-channel information behind the scenes, while the `<|user|>` prompt should be used to indicate user input. The `<|model|>` token should then be used to indicate that the model should generate a response. These tokens can happen multiple times and be chained up to form a conversation history. ### Prompting example Here's a concrete example. Let's say you have the following system prompt: > This is a text adventure game. Describe the scenario to the user and give him three options to pick from on each turn. And the user has typed in the following message: > Start! To perform inference against the model, the prompt should be formatted like this: ``` <|system|>This is a text adventure game. Describe the scenario to the user and give him three options to pick from on each turn.<|user|>Start!<|model|> ``` The model might generate something like: > You are standing in front of an old, abandoned house. The windows are boarded up, and there's no sign of life around it. As you approach, you notice a strange feeling emanating from within. Suddenly, you hear a voice calling out to you... 'Come inside!' > > - Go inside the house. > - Ignore the call and move away. > - Run as fast as you can. It will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. Pretend then that the user has replied with `go inside`. The next prompt should then be: ``` <|system|>This is a text adventure game. Describe the scenario to the user and give him three options to pick from on each turn.<|user|>Start!<|model|>You are standing in front of an old, abandoned house. The windows are boarded up, and there's no sign of life around it. As you approach, you notice a strange feeling emanating from within. Suddenly, you hear a voice calling out to you... 'Come inside!' - Go inside the house. - Ignore the call and move away. - Run as fast as you can.<|user|>go inside<|model|> ``` Which might generate something like: > You enter the house, and immediately, a wave of unsettling energy washes over you. Your senses seem heightened, but your mind feels foggy. A figure appears before you - a tall man with piercing eyes. He speaks to you in a language you don't understand. > > - Ask him what he wants. > - Attack him. > - Run away. Same process applies. Usually, it is best to do a sliding window over the user and model turns, but keep the system prompt fixed at the start of the context window. ## Limitations and biases The intended use-case for this model is fictional writing for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
lllyasviel/control_v11p_sd15_scribble
lllyasviel
2023-05-04T18:50:48Z
7,753
25
diffusers
[ "diffusers", "safetensors", "art", "controlnet", "stable-diffusion", "controlnet-v1-1", "image-to-image", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail", "region:us" ]
image-to-image
2023-04-14T19:26:12Z
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion - controlnet-v1-1 - image-to-image duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_scribble --- # Controlnet - v1.1 - *Scribble Version* **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet) and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel). This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_scribble.pth) into `diffusers` format. It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet). ControlNet is a neural network structure to control diffusion models by adding extra conditions. ![img](./sd.png) This checkpoint corresponds to the ControlNet conditioned on **Scribble images** ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below: 1. Install https://github.com/patrickvonplaten/controlnet_aux ```sh $ pip install controlnet_aux==0.3.0 ``` 2. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers accelerate ``` 3. Run code: ```python import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from controlnet_aux import PidiNetDetector, HEDdetector from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "lllyasviel/control_v11p_sd15_scribble" image = load_image( "https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/input.png" ) prompt = "royal chamber with fancy bed" processor = HEDdetector.from_pretrained('lllyasviel/Annotators') control_image = processor(image, scribble=True) control_image.save("./images/control.png") controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0] image.save('images/image_out.png') ``` ![bird](./images/input.png) ![bird_canny](./images/control.png) ![bird_canny_out](./images/image_out.png) ## Other released checkpoints v1-1 The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example | |---|---|---|---|---| |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>| |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>| ## Improvements in Scribble 1.1: - The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases. - We find out that users sometimes like to draw very thick scribbles. Because of that, we used more aggressive random morphological transforms to synthesize scribbles. This model should work well even when the scribbles are relatively thick (the maximum width of training data is 24-pixel-width scribble in a 512 canvas, but it seems to work well even for a bit wider scribbles; the minimum width is 1 pixel). - Resumed from Scribble 1.0, continued with 200 GPU hours of A100 80G. ## More information For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
frankjoshua/control_v11f1p_sd15_depth
frankjoshua
2023-05-04T18:49:15Z
106
1
diffusers
[ "diffusers", "safetensors", "art", "controlnet", "stable-diffusion", "controlnet-v1-1", "image-to-image", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail", "region:us" ]
image-to-image
2023-07-27T23:38:26Z
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion - controlnet-v1-1 - image-to-image duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_depth --- # Controlnet - v1.1 - *depth Version* **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet) and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel). This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11f1p_sd15_depth.pth) into `diffusers` format. It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet). ControlNet is a neural network structure to control diffusion models by adding extra conditions. ![img](./sd.png) This checkpoint corresponds to the ControlNet conditioned on **depth images**. ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, depthmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below: 1. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers accelerate ``` 3. Run code: ```python import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from transformers import pipeline from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "lllyasviel/control_v11p_sd15_depth" image = load_image( "https://huggingface.co/lllyasviel/control_v11p_sd15_depth/resolve/main/images/input.png" ) prompt = "Stormtrooper's lecture in beautiful lecture hall" depth_estimator = pipeline('depth-estimation') image = depth_estimator(image)['depth'] image = np.array(image) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("./images/control.png") controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0] image.save('images/image_out.png') ``` ![bird](./images/input.png) ![bird_canny](./images/control.png) ![bird_canny_out](./images/image_out.png) ## Other released checkpoints v1-1 The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example | |---|---|---|---|---| |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>| |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>| ## Improvements in Depth 1.1: - The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases. - The new depth model is a relatively unbiased model. It is not trained with some specific type of depth by some specific depth estimation method. It is not over-fitted to one preprocessor. This means this model will work better with different depth estimation, different preprocessor resolutions, or even with real depth created by 3D engines. - Some reasonable data augmentations are applied to training, like random left-right flipping. - The model is resumed from depth 1.0, and it should work well in all cases where depth 1.0 works well. If not, please open an issue with image, and we will take a look at your case. Depth 1.1 works well in many failure cases of depth 1.0. - If you use Midas depth (the "depth" in webui plugin) with 384 preprocessor resolution, the difference between depth 1.0 and 1.1 should be minimal. However, if you try other preprocessor resolutions or other preprocessors (like leres and zoe), the depth 1.1 is expected to be a bit better than 1.0. ## More information For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
lllyasviel/control_v11f1p_sd15_depth
lllyasviel
2023-05-04T18:49:15Z
13,860
49
diffusers
[ "diffusers", "safetensors", "art", "controlnet", "stable-diffusion", "controlnet-v1-1", "image-to-image", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail", "region:us" ]
image-to-image
2023-04-16T14:13:02Z
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion - controlnet-v1-1 - image-to-image duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_depth --- # Controlnet - v1.1 - *depth Version* **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet) and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel). This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11f1p_sd15_depth.pth) into `diffusers` format. It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet). ControlNet is a neural network structure to control diffusion models by adding extra conditions. ![img](./sd.png) This checkpoint corresponds to the ControlNet conditioned on **depth images**. ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, depthmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below: 1. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers accelerate ``` 3. Run code: ```python import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from transformers import pipeline from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "lllyasviel/control_v11p_sd15_depth" image = load_image( "https://huggingface.co/lllyasviel/control_v11p_sd15_depth/resolve/main/images/input.png" ) prompt = "Stormtrooper's lecture in beautiful lecture hall" depth_estimator = pipeline('depth-estimation') image = depth_estimator(image)['depth'] image = np.array(image) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("./images/control.png") controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0] image.save('images/image_out.png') ``` ![bird](./images/input.png) ![bird_canny](./images/control.png) ![bird_canny_out](./images/image_out.png) ## Other released checkpoints v1-1 The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example | |---|---|---|---|---| |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>| |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>| ## Improvements in Depth 1.1: - The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases. - The new depth model is a relatively unbiased model. It is not trained with some specific type of depth by some specific depth estimation method. It is not over-fitted to one preprocessor. This means this model will work better with different depth estimation, different preprocessor resolutions, or even with real depth created by 3D engines. - Some reasonable data augmentations are applied to training, like random left-right flipping. - The model is resumed from depth 1.0, and it should work well in all cases where depth 1.0 works well. If not, please open an issue with image, and we will take a look at your case. Depth 1.1 works well in many failure cases of depth 1.0. - If you use Midas depth (the "depth" in webui plugin) with 384 preprocessor resolution, the difference between depth 1.0 and 1.1 should be minimal. However, if you try other preprocessor resolutions or other preprocessors (like leres and zoe), the depth 1.1 is expected to be a bit better than 1.0. ## More information For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
ControlNet-1-1-preview/control_v11f1e_sd15_tile
ControlNet-1-1-preview
2023-05-04T18:37:33Z
89
11
diffusers
[ "diffusers", "art", "controlnet", "stable-diffusion", "controlnet-v1-1", "image-to-image", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail", "region:us" ]
image-to-image
2023-05-04T17:56:56Z
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion - controlnet-v1-1 - image-to-image duplicated_from: ControlNet-1-1-preview/control_v11f1e_sd15_tile --- # Controlnet - v1.1 - *Tile Version* **Controlnet v1.1** was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel). This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11f1e_sd15_tile.pth) into `diffusers` format. It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet). ControlNet is a neural network structure to control diffusion models by adding extra conditions. ![img](./sd.png) This checkpoint corresponds to the ControlNet conditioned on **tiled image**. Conceptually, it is similar to a super-resolution model, but its usage is not limited to that. It is also possible to generate details at the same size as the input (conditione) image. **This model was contributed by [*takuma104*](https://huggingface.co/takuma104)** ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. 1. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers accelerate ``` 2. Run code: ```python import torch from PIL import Image from diffusers import ControlNetModel, DiffusionPipeline from diffusers.utils import load_image def resize_for_condition_image(input_image: Image, resolution: int): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) return img controlnet = ControlNetModel.from_pretrained('lllyasviel/control_v11f1e_sd15_tile', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_controlnet_img2img", controlnet=controlnet, torch_dtype=torch.float16).to('cuda') pipe.enable_xformers_memory_efficient_attention() source_image = load_image('https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png') condition_image = resize_for_condition_image(source_image, 1024) image = pipe(prompt="best quality", negative_prompt="blur, lowres, bad anatomy, bad hands, cropped, worst quality", image=condition_image, controlnet_conditioning_image=condition_image, width=condition_image.size[0], height=condition_image.size[1], strength=1.0, generator=torch.manual_seed(0), num_inference_steps=32, ).images[0] image.save('output.png') ``` ![original](./images/original.png) ![tile_output](./images/output.png) ## Other released checkpoints v1-1 The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Control Image Example | Generated Image Example | |---|---|---|---| |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>| |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> Trained with image tiling | The base image for drawing details.|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/output.png"/></a>| ## More information For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
saiyoung/Amandathv
saiyoung
2023-05-04T18:25:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-04T18:00:25Z
--- license: creativeml-openrail-m ---
skierdude/pizza_parallel
skierdude
2023-05-04T18:21:48Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-04T18:21:42Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pizza_parallel results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6222222447395325 --- # pizza_parallel Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### skiiing skis pizza ![skiiing skis pizza](images/skiiing_skis_pizza.jpg) #### skiing skis parallel ![skiing skis parallel](images/skiing_skis_parallel.jpg)
marianodo/labels-per-job-title-fine-tune
marianodo
2023-05-04T18:20:06Z
11
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-05-04T17:55:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1368 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1368, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cansurav/bert-base-uncased-finetuned-cola-learning_rate-2e-05
cansurav
2023-05-04T18:06:56Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-03T18:58:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-learning_rate-2e-05 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5892439733711194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-learning_rate-2e-05 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4480 - Matthews Correlation: 0.5892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5052 | 1.0 | 535 | 0.5532 | 0.5030 | | 0.3006 | 2.0 | 1070 | 0.4480 | 0.5892 | | 0.1918 | 3.0 | 1605 | 0.7164 | 0.5340 | | 0.138 | 4.0 | 2140 | 0.8575 | 0.5570 | | 0.0866 | 5.0 | 2675 | 1.1483 | 0.5211 | | 0.0652 | 6.0 | 3210 | 0.9938 | 0.5816 | | 0.046 | 7.0 | 3745 | 1.1453 | 0.5739 | | 0.0314 | 8.0 | 4280 | 1.3524 | 0.5573 | | 0.0212 | 9.0 | 4815 | 1.4664 | 0.5573 | | 0.0203 | 10.0 | 5350 | 1.4505 | 0.5679 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
blackeys/ppo-Huggy
blackeys
2023-05-04T17:58:36Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-04T17:58:29Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: blackeys/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingtweets/raspberryl0ver
huggingtweets
2023-05-04T17:52:15Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T18:26:40Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1647023471749111810/G5s5jf4-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🌞</div> <div style="text-align: center; font-size: 14px;">@raspberryl0ver</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🌞. | Data | 🌞 | | --- | --- | | Tweets downloaded | 2241 | | Retweets | 457 | | Short tweets | 291 | | Tweets kept | 1493 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/btps6b16/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @raspberryl0ver's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dojoofh6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dojoofh6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/raspberryl0ver') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DmitriyVasiliev/autotrain-mbart-dia-55472129249
DmitriyVasiliev
2023-05-04T17:46:37Z
122
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:DmitriyVasiliev/autotrain-data-mbart-dia", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-05-04T17:35:35Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DmitriyVasiliev/autotrain-data-mbart-dia co2_eq_emissions: emissions: 5.176017928528579 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 55472129249 - CO2 Emissions (in grams): 5.1760 ## Validation Metrics - Loss: 1.577 - Rouge1: 4.668 - Rouge2: 1.833 - RougeL: 4.650 - RougeLsum: 4.667 - Gen Len: 33.162 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/DmitriyVasiliev/autotrain-mbart-dia-55472129249 ```
TehVenom/Dolly_Shygmalion-6b
TehVenom
2023-05-04T17:14:13Z
1,520
14
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T01:52:15Z
#TODO card. Mix of (GPT-J-6B-Shinen + GPT-J-Dolly LoRA) + Pygmalion-6b At a ratio of GPT-J-6B-Shinen - 20% GPT-J-Dolly LoRA - 20% Pygmalion-6b - 60%
DmitriyVasiliev/autotrain-mbart-rua-sent-dia-55462129227
DmitriyVasiliev
2023-05-04T17:10:53Z
124
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:DmitriyVasiliev/autotrain-data-mbart-rua-sent-dia", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-05-04T16:59:54Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DmitriyVasiliev/autotrain-data-mbart-rua-sent-dia co2_eq_emissions: emissions: 4.360921475605774 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 55462129227 - CO2 Emissions (in grams): 4.3609 ## Validation Metrics - Loss: 1.615 - Rouge1: 5.000 - Rouge2: 1.917 - RougeL: 5.035 - RougeLsum: 4.980 - Gen Len: 32.397 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/DmitriyVasiliev/autotrain-mbart-rua-sent-dia-55462129227 ```
leonardosaveri/DSChallenge_Roberta_Base_Parameters
leonardosaveri
2023-05-04T17:06:12Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T15:34:59Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: DSChallenge_Roberta_Base_Parameters results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DSChallenge_Roberta_Base_Parameters This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3702 - Accuracy: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3735 | 1.0 | 3169 | 0.4367 | 0.9204 | | 0.3029 | 2.0 | 6338 | 0.3719 | 0.9374 | | 0.2616 | 3.0 | 9507 | 0.3662 | 0.9388 | | 0.2785 | 4.0 | 12676 | 0.3702 | 0.9392 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ambientocclusion/freddiefoodieking-2-1
ambientocclusion
2023-05-04T17:02:28Z
32
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-04T16:59:59Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: freddiefoodieking --- ### freddiefoodieking_2.1 Dreambooth model trained by ambientocclusion with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: freddiefoodieking (use that on your prompt) ![freddiefoodieking 0](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%281%29.jpg)![freddiefoodieking 1](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%282%29.jpg)![freddiefoodieking 2](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%283%29.jpg)![freddiefoodieking 3](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%284%29.jpg)![freddiefoodieking 4](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%285%29.jpg)![freddiefoodieking 5](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%286%29.jpg)![freddiefoodieking 6](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%287%29.jpg)![freddiefoodieking 7](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%288%29.jpg)![freddiefoodieking 8](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%289%29.jpg)![freddiefoodieking 9](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%2810%29.jpg)![freddiefoodieking 10](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%2811%29.jpg)![freddiefoodieking 11](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%2812%29.jpg)![freddiefoodieking 12](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%2813%29.jpg)![freddiefoodieking 13](https://huggingface.co/ambientocclusion/freddiefoodieking-2-1/resolve/main/concept_images/freddiefoodieking_%2814%29.jpg)
jasbir/dog_model
jasbir
2023-05-04T16:59:22Z
32
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-03T12:09:57Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - jasbir/dog_model This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
meltemtatli/bert-base-uncased-finetuned-cola-part2
meltemtatli
2023-05-04T16:23:45Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T16:00:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-part2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5726999708077573 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-part2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5136 - Matthews Correlation: 0.5727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.966102391464137e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.4343 | 0.5343 | | 0.4076 | 2.0 | 536 | 0.4104 | 0.5934 | | 0.4076 | 3.0 | 804 | 0.5136 | 0.5727 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
aisquared/chopt-research-2_7b
aisquared
2023-05-04T16:20:34Z
168
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "dataset:tatsu-lab/alpaca", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-24T19:41:29Z
--- license: other datasets: - tatsu-lab/alpaca language: - en library_name: transformers --- # Model Card for `chopt-research-2_7b` <!-- Provide a quick summary of what the model is/does. --> AI Squared's `chopt-research-2_7b` is a large language model which is derived from Meta AI's Open Pre-trained Transformer language modelsand fine-tuned on a single GPU on a corpus of 50k records ([Stanford Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html)) to help it exhibit chat-based capabilities. The ChOPT family of models from AI Squared are licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. While `chopt-research-2_7b` is **not a state-of-the-art model**, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply is important to showcase, as it continues to demonstrate that creating powerful AI capabilities may be much more accessible than previously thought. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** AI Squared, Inc. - **Shared by:** AI Squared, Inc. - **Model type:** Large Language Model - **Language(s) (NLP):** EN - **License:** Other - **Finetuned from model:** OPT ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> **`chopt-research-2_7b` is not a state-of-the-art language model.** `chopt-research-2_7b` is an experimental technology and is not designed for use in any environment other than for research purposes. Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include, but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations. Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology. ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed. From your terminal, run: ```python pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2" ``` The instruction following pipeline can be loaded using the `pipeline` function as shown below. This loads a custom `InstructionTextGenerationPipeline` found in the model repo [here](https://huggingface.co/aisquared/chopt-research-2_7b/blob/main/instruct_pipeline.py), which is why `trust_remote_code=True` is required. Including `torch_dtype=torch.bfloat16` is generally recommended if this type is supported in order to reduce memory usage. It does not appear to impact output quality. It is also fine to remove it if there is sufficient memory. ```python from transformers import pipeline import torch generate_text = pipeline(model="aisquared/chopt-research-2_7b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") ``` You can then use the pipeline to answer instructions: ```python res = generate_text("Who was George Washington?") print(res) ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/aisquared/chopt-research-2_7b/blob/main/instruct_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python from instruct_pipeline import InstructionTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("aisquared/chopt-research-2_7b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("aisquared/chopt-research-2_7b", device_map="auto", torch_dtype=torch.bfloat16) generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer) ``` ### Model Performance Metrics We present the results from various model benchmarks on the EleutherAI LLM Evaluation Harness for all models in the DLite family. Model results are sorted by mean score, ascending, to provide an ordering. These metrics serve to further show that none of the DLite models are state of the art, but rather further show that chat-like behaviors in LLMs can be trained almost independent of model size. | Model | openbookqa | arc_easy | winogrande | hellaswag | arc_challenge | piqa | boolq | |:--------------------|-------------:|-----------:|-------------:|------------:|----------------:|---------:|---------:| | chopt-125m | 0.178 | 0.443182 | 0.501973 | 0.294165 | 0.197099 | 0.630577 | 0.476758 | | chopt-research-125m | 0.17 | 0.436027 | 0.503552 | 0.294762 | 0.205631 | 0.62568 | 0.48685 | | opt-125m | 0.166 | 0.435606 | 0.501973 | 0.291775 | 0.190273 | 0.6284 | 0.554434 | | chopt-350m | 0.178 | 0.450758 | 0.508287 | 0.325334 | 0.21843 | 0.650707 | 0.559633 | | opt_350m | 0.176 | 0.441077 | 0.52644 | 0.320056 | 0.207338 | 0.645267 | 0.57737 | | chopt-research-350m | 0.172 | 0.462542 | 0.514601 | 0.327524 | 0.235495 | 0.643634 | 0.589908 | | opt-1.3b | 0.234 | 0.569865 | 0.596685 | 0.414957 | 0.232935 | 0.718172 | 0.577676 | | chopt-research-1_3b | 0.232 | 0.564815 | 0.59116 | 0.424716 | 0.276451 | 0.713275 | 0.634557 | | chopt-1_3b | 0.236 | 0.569444 | 0.584057 | 0.42621 | 0.268771 | 0.723069 | 0.658104 | | opt-2.7b | 0.25 | 0.608165 | 0.608524 | 0.458176 | 0.267918 | 0.738303 | 0.603058 | | chopt-2_7b | 0.276 | 0.616582 | 0.601421 | 0.472615 | 0.288396 | 0.75136 | 0.552294 | | chopt-research-2_7b | 0.262 | 0.610269 | 0.625099 | 0.458176 | 0.295222 | 0.742111 | 0.636697 |
aisquared/chopt-research-1_3b
aisquared
2023-05-04T16:18:44Z
141
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "dataset:tatsu-lab/alpaca", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-20T15:22:45Z
--- license: other datasets: - tatsu-lab/alpaca language: - en library_name: transformers --- # Model Card for `chopt-research-1_3b` <!-- Provide a quick summary of what the model is/does. --> AI Squared's `chopt-research-1_3b` is a large language model which is derived from Meta AI's Open Pre-trained Transformer language modelsand fine-tuned on a single GPU on a corpus of 50k records ([Stanford Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html)) to help it exhibit chat-based capabilities. The ChOPT family of models from AI Squared are licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. While `chopt-research-1_3b` is **not a state-of-the-art model**, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply is important to showcase, as it continues to demonstrate that creating powerful AI capabilities may be much more accessible than previously thought. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** AI Squared, Inc. - **Shared by:** AI Squared, Inc. - **Model type:** Large Language Model - **Language(s) (NLP):** EN - **License:** Other - **Finetuned from model:** OPT ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> **`chopt-research-1_3b` is not a state-of-the-art language model.** `chopt-research-1_3b` is an experimental technology and is not designed for use in any environment other than for research purposes. Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include, but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations. Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology. ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed. From your terminal, run: ```python pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2" ``` The instruction following pipeline can be loaded using the `pipeline` function as shown below. This loads a custom `InstructionTextGenerationPipeline` found in the model repo [here](https://huggingface.co/aisquared/chopt-research-1_3b/blob/main/instruct_pipeline.py), which is why `trust_remote_code=True` is required. Including `torch_dtype=torch.bfloat16` is generally recommended if this type is supported in order to reduce memory usage. It does not appear to impact output quality. It is also fine to remove it if there is sufficient memory. ```python from transformers import pipeline import torch generate_text = pipeline(model="aisquared/chopt-research-1_3b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") ``` You can then use the pipeline to answer instructions: ```python res = generate_text("Who was George Washington?") print(res) ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/aisquared/chopt-research-1_3b/blob/main/instruct_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python from instruct_pipeline import InstructionTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("aisquared/chopt-research-1_3b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("aisquared/chopt-research-1_3b", device_map="auto", torch_dtype=torch.bfloat16) generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer) ``` ### Model Performance Metrics We present the results from various model benchmarks on the EleutherAI LLM Evaluation Harness for all models in the DLite family. Model results are sorted by mean score, ascending, to provide an ordering. These metrics serve to further show that none of the DLite models are state of the art, but rather further show that chat-like behaviors in LLMs can be trained almost independent of model size. | Model | openbookqa | arc_easy | winogrande | hellaswag | arc_challenge | piqa | boolq | |:--------------------|-------------:|-----------:|-------------:|------------:|----------------:|---------:|---------:| | chopt-125m | 0.178 | 0.443182 | 0.501973 | 0.294165 | 0.197099 | 0.630577 | 0.476758 | | chopt-research-125m | 0.17 | 0.436027 | 0.503552 | 0.294762 | 0.205631 | 0.62568 | 0.48685 | | opt-125m | 0.166 | 0.435606 | 0.501973 | 0.291775 | 0.190273 | 0.6284 | 0.554434 | | chopt-350m | 0.178 | 0.450758 | 0.508287 | 0.325334 | 0.21843 | 0.650707 | 0.559633 | | opt_350m | 0.176 | 0.441077 | 0.52644 | 0.320056 | 0.207338 | 0.645267 | 0.57737 | | chopt-research-350m | 0.172 | 0.462542 | 0.514601 | 0.327524 | 0.235495 | 0.643634 | 0.589908 | | opt-1.3b | 0.234 | 0.569865 | 0.596685 | 0.414957 | 0.232935 | 0.718172 | 0.577676 | | chopt-research-1_3b | 0.232 | 0.564815 | 0.59116 | 0.424716 | 0.276451 | 0.713275 | 0.634557 | | chopt-1_3b | 0.236 | 0.569444 | 0.584057 | 0.42621 | 0.268771 | 0.723069 | 0.658104 | | opt-2.7b | 0.25 | 0.608165 | 0.608524 | 0.458176 | 0.267918 | 0.738303 | 0.603058 | | chopt-2_7b | 0.276 | 0.616582 | 0.601421 | 0.472615 | 0.288396 | 0.75136 | 0.552294 | | chopt-research-2_7b | 0.262 | 0.610269 | 0.625099 | 0.458176 | 0.295222 | 0.742111 | 0.636697 |
HilbertS/Reinforce-PixelCopter5
HilbertS
2023-05-04T16:15:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T13:20:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 36.10 +/- 26.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Sleoruiz/roberta-bne-fine-tuned-text-classification-SL-data-augmentation-dss
Sleoruiz
2023-05-04T16:11:54Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T15:43:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - recall - accuracy - precision model-index: - name: roberta-bne-fine-tuned-text-classification-SL-data-augmentation-dss results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-bne-fine-tuned-text-classification-SL-data-augmentation-dss This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3544 - F1: 0.4643 - Recall: 0.4629 - Accuracy: 0.4629 - Precision: 0.4880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| | 3.3244 | 1.0 | 562 | 2.7345 | 0.3306 | 0.3939 | 0.3939 | 0.3500 | | 2.4396 | 2.0 | 1124 | 2.4186 | 0.4061 | 0.4468 | 0.4468 | 0.4349 | | 1.8841 | 3.0 | 1686 | 2.2738 | 0.4453 | 0.4702 | 0.4702 | 0.4583 | | 1.4409 | 4.0 | 2248 | 2.2984 | 0.4500 | 0.4582 | 0.4582 | 0.4625 | | 1.0328 | 5.0 | 2810 | 2.3544 | 0.4643 | 0.4629 | 0.4629 | 0.4880 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Python-proje/mymodel
Python-proje
2023-05-04T16:05:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-03T20:59:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mymodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mymodel This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3705 - Rouge1: 1.762 - Rouge2: 1.4938 - Rougel: 1.7366 - Rougelsum: 1.7385 - Gen Len: 19.7335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.446 | 1.0 | 12500 | 1.3705 | 1.762 | 1.4938 | 1.7366 | 1.7385 | 19.7335 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
meghanaanil/bert-base-uncased-retrained-squad
meghanaanil
2023-05-04T15:43:03Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-05-03T15:13:51Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-retrained-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-retrained-squad This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 127 | 2.8619 | | No log | 2.0 | 254 | 2.8528 | | No log | 3.0 | 381 | 3.0415 | | 0.671 | 4.0 | 508 | 3.3311 | | 0.671 | 5.0 | 635 | 3.3139 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
muhammadfraz/policy_gradient-0
muhammadfraz
2023-05-04T15:34:43Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T15:34:32Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: policy_gradient-0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
irow/atari-deep-q
irow
2023-05-04T15:29:28Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T15:28:47Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 729.00 +/- 250.11 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga irow -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga irow -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga irow ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Sleoruiz/bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-dss
Sleoruiz
2023-05-04T15:28:09Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T14:21:28Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - f1 - recall - accuracy - precision model-index: - name: bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-dss results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-dss This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3050 - F1: 0.4713 - Recall: 0.4797 - Accuracy: 0.4797 - Precision: 0.4820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| | No log | 1.0 | 359 | 3.4261 | 0.2636 | 0.3268 | 0.3268 | 0.2780 | | 3.7358 | 2.0 | 718 | 2.7048 | 0.3631 | 0.4179 | 0.4179 | 0.3773 | | 2.4772 | 3.0 | 1077 | 2.4578 | 0.4072 | 0.4407 | 0.4407 | 0.4095 | | 2.4772 | 4.0 | 1436 | 2.3357 | 0.4403 | 0.4545 | 0.4545 | 0.4815 | | 1.6075 | 5.0 | 1795 | 2.3050 | 0.4713 | 0.4797 | 0.4797 | 0.4820 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
crumb/distilpythia-cl
crumb
2023-05-04T14:56:35Z
152
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "dataset:EleutherAI/pile", "arxiv:1706.03762", "arxiv:1503.02531", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-04T00:43:31Z
--- license: apache-2.0 datasets: - EleutherAI/pile language: - en --- # Warm-Starting Knowledge Distillation for Transformer-based Language Models *by GPT-4 & Crumb* ### Introduction Transformer models have become a popular choice for natural language processing (NLP) tasks due to their ability to handle long-range dependencies and their superior performance on various NLP benchmarks. The transformer model architecture was introduced in 2017 by [Vaswani et al](https://arxiv.org/abs/1706.03762). and has since been used in many state-of-the-art models such as BERT and GPT. The decoder-only transformer model is a variant of the transformer model that has is commonly used for generative tasks in NLP. It uses masked self-attention to predict the next token in a sequence and has been shown to be powerful at predicting sequences of text. Distillation \[[Bucila et al., 2006](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf), [Hinton et al., 2015](https://arxiv.org/abs/1503.02531)\] is a technique used in machine learning to compress a large model into a smaller one that can be used on devices with limited computational resources. In this technique, a smaller model is trained to mimic the behavior of a larger model by learning from its predictions. The smaller model is trained on a smaller dataset than the larger model, which makes it faster and more efficient. This technique has been used to compress models like BERT and GPT-2 into smaller models like DistilBERT and DistilGPT-2, respectively. In this project we apply the technique of knowledge distillation to the second smallest [Pythia](https://arxiv.org/pdf/2304.01373.pdf) model on the [Pile](https://arxiv.org/abs/2101.00027) dataset. ### Method We follow the work of [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531) for a distillation loss over the soft target probabilities `L_ce`. We utilize the distillation loss in our loss function as a linear combination of the distillation loss `L_ce` with the supervised training loss `L_clm`. Our combined loss function is `L_ce*(1-a) + L_clm*a` where `a` is set to 0.5 and the `T`emperature parameter for the distillation loss is set to 2. In an effort to maximize VRAM utilization, to reach a combined batch size of 4096 samples we use a device batch size of 2 with 2048 gradient accumulation steps and a context length of 2048 tokens with both the teacher and student model in bf16 precision. This allowed us to utilize around 98.94% of the 12 gigabytes of VRAM that the RTX3060 card has during training. It also means our training set totals to approximately 537 million training tokens, as our model trained for 64 steps. All training samples were taken from [The Pile](https://arxiv.org/abs/2101.00027). A learning rate of 1e-4 was used in this study, with no learning rate schedule. ### Evaluation [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) suggests a student around 40% of the size of it's teacher can achieve similar performance in encoder models when training from scratch with suprivision. We warm-start our model from a smaller checkpoint than the teacher that maintains a similar ratio with a student that is 43.75% the size of it's teacher. | model | piqa acc | winogrande acc | lambada ppl | lambada acc | arc acc | sciq acc | wsc acc | notes | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | pythia-70m (student base) | 59.85 | 51.22 | 140.81 | 21.40 | 17.15 | 65.00 | 36.53 | | pythia-160m (teacher) | 62.68 | 51.07 | 30.03 | 36.76 | 19.62 | 76.20 | 36.58 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | distilpythia (student) | 59.74 | **51.62** | 420.70 | 15.82 | **17.15** | 61.30 | **36.54** | trained on padded/truncated examples | distilpythia-cl (student) | 59.30 | 50.75 | 403.78 | 15.16 | 16.98 | 59.20 | **36.54** | trained on a constant-length dataset <center> <i>Table 1.</i> The student before finetuning, teacher, and student after finetuning and their results on various benchmarks. Numbers in bold are where the student after finetuning matches or outperforms the student before finetuning. </center> The table provides a comparison of performance between the base student model (pythia-70m), the teacher model (pythia-160m), and the finetuned student model (distilpythia) across various benchmarks. The goal is to assess whether the distilpythia model can achieve similar or better performance than its base while being smaller in size. From the table, we can observe the following: 1. The pythia-160m (teacher) model outperforms pythia-70m (student base) in most benchmarks, except for Winogrande accuracy, where the student base has a slightly better performance (51.22% vs. 51.07%). 2. The distilpythia (student) model, after finetuning, outperforms the pythia-70m (student base) on two benchmarks: Winogrande accuracy (51.62% vs. 51.22%) and WSC accuracy (36.54% vs. 36.53%). The improvements in these metrics indicate that the finetuning process may be effective in transferring knowledge from the teacher model to the student model. ### Conclusion it might have worked idk, maybe training from scratch or for longer would give more performance gains, also look at the lambada perplexity what happened there even
nastorian/finetuning-sentiment-model-3000-samples
nastorian
2023-05-04T14:51:02Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T13:36:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6886 - eval_accuracy: 0.5 - eval_f1: 0.0 - eval_runtime: 292.5232 - eval_samples_per_second: 1.026 - eval_steps_per_second: 0.065 - epoch: 0.04 - step: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dgalik/distilbert-finetuning-hate-speech-score-3000-samples-dropout005-epochs-10
dgalik
2023-05-04T14:47:52Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-05-04T10:20:09Z
--- tags: - generated_from_trainer model-index: - name: distilbert-finetuning-hate-speech-score-3000-samples-dropout005-epochs-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuning-hate-speech-score-3000-samples-dropout005-epochs-10 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5491 - Mse: 1.5491 - Rmse: 1.2446 - Mae: 0.8043 - R2: 0.7225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
kishoreb4/distilbert-base-uncased-finetuned-emotion
kishoreb4
2023-05-04T14:33:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T14:11:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.919 - name: F1 type: f1 value: 0.9190477193383318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2268 - Accuracy: 0.919 - F1: 0.9190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8412 | 1.0 | 250 | 0.3320 | 0.9005 | 0.8966 | | 0.26 | 2.0 | 500 | 0.2268 | 0.919 | 0.9190 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
soumi-maiti/libri3mix_eend_ss
soumi-maiti
2023-05-04T14:28:57Z
1
0
espnet
[ "espnet", "audio", "diarization", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2023-05-04T13:55:47Z
--- tags: - espnet - audio - diarization language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `soumi-maiti/libri3mix_eend_ss` This model was trained by soumimaiti using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout d837c97c88f13ffe655a30bcff93d814f212b225 pip install -e . cd egs2/librimix/enh_diar1_2 ./run.sh --skip_data_prep false --skip_train true --download_model soumi-maiti/libri3mix_eend_ss ``` ## DIAR config <details><summary>expand</summary> ``` config: conf/tuning/train_diar_enh_convtasnet_2.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_enh_train_diar_enh_convtasnet_2_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 50 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss_enh - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 4 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_enh_stats_8k/train/speech_shape - exp/diar_enh_stats_8k/train/text_shape - exp/diar_enh_stats_8k/train/speech_ref1_shape - exp/diar_enh_stats_8k/train/speech_ref2_shape - exp/diar_enh_stats_8k/train/speech_ref3_shape - exp/diar_enh_stats_8k/train/noise_ref1_shape valid_shape_file: - exp/diar_enh_stats_8k/valid/speech_shape - exp/diar_enh_stats_8k/valid/text_shape - exp/diar_enh_stats_8k/valid/speech_ref1_shape - exp/diar_enh_stats_8k/valid/speech_ref2_shape - exp/diar_enh_stats_8k/valid/speech_ref3_shape - exp/diar_enh_stats_8k/valid/noise_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 800 - 80000 - 80000 - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 24000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/espnet_rttm - text - rttm - - dump/raw/train/spk1.scp - speech_ref1 - sound - - dump/raw/train/spk2.scp - speech_ref2 - sound - - dump/raw/train/spk3.scp - speech_ref3 - sound - - dump/raw/train/noise1.scp - noise_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/espnet_rttm - text - rttm - - dump/raw/dev/spk1.scp - speech_ref1 - sound - - dump/raw/dev/spk2.scp - speech_ref2 - sound - - dump/raw/dev/spk3.scp - speech_ref3 - sound - - dump/raw/dev/noise1.scp - noise_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-07 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 token_list: null src_token_list: null init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true enh_criterions: - name: si_snr conf: eps: 1.0e-07 wrapper: pit wrapper_conf: weight: 1.0 independent_perm: true diar_num_spk: 3 diar_input_size: 128 enh_model_conf: loss_type: si_snr asr_model_conf: ctc_weight: 0.5 interctc_weight: 0.0 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true st_model_conf: stft_consistency: false loss_type: mask_mse mask_type: null diar_model_conf: diar_weight: 0.2 attractor_weight: 0.2 subtask_series: - enh - diar model_conf: calc_enh_loss: true bypass_enh_prob: 0 use_preprocessor: true token_type: bpe bpemodel: null src_token_type: bpe src_bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null enh_encoder: conv enh_encoder_conf: channel: 512 kernel_size: 16 stride: 8 enh_separator: tcn_nomask enh_separator_conf: layer: 8 stack: 3 bottleneck_dim: 128 hidden_dim: 512 kernel: 3 causal: false norm_type: gLN enh_decoder: conv enh_decoder_conf: channel: 512 kernel_size: 16 stride: 8 enh_mask_module: multi_mask enh_mask_module_conf: max_num_spk: 3 mask_nonlinear: relu bottleneck_dim: 128 frontend: null frontend_conf: {} specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} asr_preencoder: null asr_preencoder_conf: {} asr_encoder: rnn asr_encoder_conf: {} asr_postencoder: null asr_postencoder_conf: {} asr_decoder: rnn asr_decoder_conf: {} st_preencoder: null st_preencoder_conf: {} st_encoder: rnn st_encoder_conf: {} st_postencoder: null st_postencoder_conf: {} st_decoder: rnn st_decoder_conf: {} st_extra_asr_decoder: rnn st_extra_asr_decoder_conf: {} st_extra_mt_decoder: rnn st_extra_mt_decoder_conf: {} diar_frontend: null diar_frontend_conf: {} diar_specaug: null diar_specaug_conf: {} diar_normalize: utterance_mvn diar_normalize_conf: {} diar_encoder: transformer diar_encoder_conf: input_layer: conv2d8 num_blocks: 4 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.1 diar_decoder: linear diar_decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: win_length: 256 hop_length: 64 diar_attractor: rnn diar_attractor_conf: unit: 256 layer: 1 dropout: 0.0 attractor_grad: true required: - output_dir version: '202205' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
brusooo/flowers_classification
brusooo
2023-05-04T14:28:38Z
4
0
keras
[ "keras", "tf-keras", "image-classification", "region:us" ]
image-classification
2023-05-04T06:46:02Z
--- library_name: keras inference: false tags: - image-classification --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Harshavardhan155/distilbert-base-uncased-finetuned-imdb
Harshavardhan155
2023-05-04T14:25:54Z
78
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-05-04T13:54:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Harshavardhan155/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Harshavardhan155/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6317 - Validation Loss: 5.1948 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6317 | 5.1948 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
zerohell/rag-bart-bleu_error
zerohell
2023-05-04T14:24:27Z
117
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "text-generation-inference", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-04T13:34:31Z
--- language: - zh metrics: - bleu tags: - text-generation-inference --- ## 模型介绍 用于问答的预训练模型。提供的是一个bart-base-zh模型。 ## 模型细节 采用dureader-zhidao训练的模型。 ## 快速开始 输入为:问题。上下文。 输出为:答案。
JoBuettner/Reinforce-Pixelcopter-v2
JoBuettner
2023-05-04T14:22:15Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T14:22:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.70 +/- 27.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Mizuiro-sakura/luke-japanese-large-finetuned-QA
Mizuiro-sakura
2023-05-04T14:19:28Z
159
2
transformers
[ "transformers", "pytorch", "safetensors", "luke", "question-answering", "squad", "question answering", "ja", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-01-17T09:07:23Z
--- license: mit language: ja tags: - luke - question-answering - squad - pytorch - transformers - question answering --- # このモデルはluke-japanese-large-liteをファインチューニングして、Question-Answeringに用いれるようにしたものです。 このモデルはluke-japanese-large-liteを運転ドメインQAデータセット(DDQA)( https://nlp.ist.i.kyoto-u.ac.jp/index.php?Driving%20domain%20QA%20datasets )を用いてファインチューニングしたものです。 Question-Answeringタスク(SQuAD)に用いることができます。 # This model is fine-tuned model for Question-Answering which is based on luke-japanese-large-lite This model is fine-tuned by using DDQA dataset. You could use this model for Question-Answering tasks. # モデルの精度 accuracy of model 'em(厳密一致)': 0.8631578947368421, 'f1': 0.9302271135164113 # How to use 使い方 sentencepieceとtransformersをインストールして (pip install sentencepiece , pip install transformers) 以下のコードを実行することで、Question-Answeringタスクを解かせることができます。 please execute this code. ```python import torch from transformers import AutoTokenizer, LukeForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/luke-japanese-large-finetuned-QA') model=LukeForQuestionAnswering.from_pretrained('Mizuiro-sakura/luke-japanese-large-finetuned-QA') # 学習済みモデルの読み込み text={ 'context':'私の名前はEIMIです。好きな食べ物は苺です。 趣味は皆さんと会話することです。', 'question' :'好きな食べ物は何ですか' } input_ids=tokenizer.encode(text['question'],text['context']) # tokenizerで形態素解析しつつコードに変換する output= model(torch.tensor([input_ids])) # 学習済みモデルを用いて解析 prediction = tokenizer.decode(input_ids[torch.argmax(output.start_logits): torch.argmax(output.end_logits)]) # 答えに該当する部分を抜き取る print(prediction) ``` # what is Luke? Lukeとは?[1] LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。 # Acknowledgments 謝辞 Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia. # Citation [1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} }
Sleoruiz/bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-ds
Sleoruiz
2023-05-04T14:15:42Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T13:21:03Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertin-roberta-fine-tuned-text-classification-SL-data-augmentation-ds This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.9552 - eval_f1: 0.6062 - eval_recall: 0.5982 - eval_accuracy: 0.5982 - eval_precision: 0.6312 - eval_runtime: 15.886 - eval_samples_per_second: 99.647 - eval_steps_per_second: 6.232 - epoch: 6.0 - step: 2772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
JoBuettner/Reinforce-Pixelcopter
JoBuettner
2023-05-04T14:10:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-03T14:30:31Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 27.50 +/- 26.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Narsil/gpt3
Narsil
2023-05-04T14:04:56Z
232
1
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-04T14:04:55Z
--- language: en tags: - exbert license: mit pipeline_tag: text-generation duplicated_from: Narsil/gpt2 --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\\'m a language model, not a language model"\ \ The concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> \t<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
adrienJeg/rl_course_vizdoom_health_gathering_supreme
adrienJeg
2023-05-04T13:53:50Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T13:53:39Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.50 +/- 4.84 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r adrienJeg/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
5w4n/super-lora
5w4n
2023-05-04T13:36:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-04T13:34:26Z
--- license: creativeml-openrail-m ---
RiccardoGvn/distilbert-base-uncased-finetuned-provenances-finetuned-provenances
RiccardoGvn
2023-05-04T13:32:46Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-05-04T13:22:21Z
--- tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-provenances-finetuned-provenances results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-provenances-finetuned-provenances This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4101 | 1.0 | 94 | 2.2010 | | 2.2495 | 2.0 | 188 | 2.0898 | | 2.1192 | 3.0 | 282 | 2.0020 | | 2.0862 | 4.0 | 376 | 1.9896 | | 2.0405 | 5.0 | 470 | 1.9949 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Witchpot/CitySilhouette_Evening
Witchpot
2023-05-04T13:23:02Z
0
0
null
[ "Stable-Diffusion", "lora", "en", "ja", "license:creativeml-openrail-m", "region:us" ]
null
2023-05-04T13:14:28Z
--- license: creativeml-openrail-m language: - en - ja tags: - Stable-Diffusion - lora --- # 【LoRA】witchpot-citysilhouette-sd-1-5 LoRA for 2D game city silhouette evening stage All training data is generated by Midjourney ## Trigger - citysilhouette ## Sample Prompts - citysilhouette, jump game level design, house and buildings, evening ## Sample Images ![sample1](https://huggingface.co/Witchpot/CitySilhouette_Evening/resolve/main/CitySilhouette_Evening_Depth2Image.png) ## Model Description - Model type: [LoRA] - Base Model: Model trained with runwayml/stable-diffusion-v1-5/v1-5-pruned.ckpt (https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.ckpt) ## Recommendations This LoRA model has been trained to generate game stages made of silhouette city at evening, based on specific patterns. By combining it with Depth2Image, you can create consistent game stages. This LoRA is supposed to use with [stable-diffusion-for-unity](https://docs.witchpot.com/) ## Information - https://twitter.com/Witchpot_
foilfoilfoil/GGBDiscord-LORA-LLAMA-10Epoch
foilfoilfoil
2023-05-04T13:21:55Z
0
0
null
[ "license:other", "region:us" ]
null
2023-05-04T13:17:25Z
--- license: other --- This was trained on 10 epoch with the settings on https://huggingface.co/TehVenom/Pygmalion-Vicuna-1.1-7b
RiccardoGvn/distilbert-base-uncased-finetuned-provenances
RiccardoGvn
2023-05-04T13:14:55Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-05-04T13:07:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-provenances results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-provenances This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 47 | 2.5506 | | 2.7876 | 2.0 | 94 | 2.5225 | | 2.7876 | 3.0 | 141 | 2.3152 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Blaxzter/LaBSE-sentence-embeddings
Blaxzter
2023-05-04T13:14:17Z
110
19
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "feature-extraction", "sentence_embedding", "multilingual", "google", "sentence-similarity", "af", "am", "ar", "as", "az", "be", "bg", "bn", "bo", "bs", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "he", "hi", "hmn", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "or", "pa", "pl", "pt", "ro", "ru", "rw", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tk", "tl", "tr", "tt", "ug", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu", "dataset:CommonCrawl", "dataset:Wikipedia", "arxiv:2007.01852", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-04-30T12:58:54Z
--- language: - af - am - ar - as - az - be - bg - bn - bo - bs - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - haw - he - hi - hmn - hr - ht - hu - hy - id - ig - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - or - pa - pl - pt - ro - ru - rw - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - ug - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu tags: - bert - sentence_embedding - multilingual - google - sentence-similarity license: apache-2.0 datasets: - CommonCrawl - Wikipedia --- Copy of setu4993/LaBSE that returns the sentence embeddings (pooler_output) and implements caching Original Model Card: # LaBSE ## Model description Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval. - Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE). - Paper: [arXiv](https://arxiv.org/abs/2007.01852). - Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2). - Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). - Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt). This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/ec3a019159a54ed6493181a64486c2808c01f216/tests/test_conversion.py#L31). ## Usage Using the model: ```python import torch from transformers import BertModel, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE") model = BertModel.from_pretrained("setu4993/LaBSE") model = model.eval() english_sentences = [ "dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.", ] english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) with torch.no_grad(): english_outputs = model(**english_inputs) ``` To get the sentence embeddings, use the pooler output: ```python english_embeddings = english_outputs.pooler_output ``` Output for other languages: ```python italian_sentences = [ "cane", "I cuccioli sono carini.", "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.", ] japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"] italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True) japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True) with torch.no_grad(): italian_outputs = model(**italian_inputs) japanese_outputs = model(**japanese_inputs) italian_embeddings = italian_outputs.pooler_output japanese_embeddings = japanese_outputs.pooler_output ``` For similarity between sentences, an L2-norm is recommended before calculating the similarity: ```python import torch.nn.functional as F def similarity(embeddings_1, embeddings_2): normalized_embeddings_1 = F.normalize(embeddings_1, p=2) normalized_embeddings_2 = F.normalize(embeddings_2, p=2) return torch.matmul( normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) ) print(similarity(english_embeddings, italian_embeddings)) print(similarity(english_embeddings, japanese_embeddings)) print(similarity(italian_embeddings, japanese_embeddings)) ``` ## Details Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852). ### BibTeX entry and citation info ```bibtex @misc{feng2020languageagnostic, title={Language-agnostic BERT Sentence Embedding}, author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang}, year={2020}, eprint={2007.01852}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
HilbertS/Reinforce-CartPole1
HilbertS
2023-05-04T13:11:30Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T13:00:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
climatebert/distilroberta-base-climate-d-s
climatebert
2023-05-04T13:05:02Z
135
3
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "climate", "en", "arxiv:2110.12010", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 tags: - climate --- # Model Card for distilroberta-base-climate-d-s ## Model Description This is the ClimateBERT language model based on the DIV-SELECT and SIM-SELECT sample selection strategy. *Note: We generally recommend choosing the [distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model over this language model (unless you have good reasons not to).* Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pre-trained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010). ## Climate performance model card | distilroberta-base-climate-d-s | | |--------------------------------------------------------------------------|----------------| | 1. Is the resulting model publicly available? | Yes | | 2. How much time does the training of the final model take? | 48 hours | | 3. How much time did all experiments take (incl. hyperparameter search)? | 350 hours | | 4. What was the power of GPU and CPU? | 0.7 kW | | 5. At which geo location were the computations performed? | Germany | | 6. What was the energy mix at the geo location? | 470 gCO2eq/kWh | | 7. How much CO2eq was emitted to train the final model? | 15.79 kg | | 8. How much CO2eq was emitted for all experiments? | 115.15 kg | | 9. What is the average CO2eq emission for the inference of one sample? | 0.62 mg | | 10. Which positive environmental impact can be expected from this work? | This work can be categorized as a building block tools following Jin et al (2021). It supports the training of NLP models in the field of climate change and, thereby, have a positive environmental impact in the future. | | 11. Comments | Block pruning could decrease CO2eq emissions | ## Citation Information ```bibtex @inproceedings{wkbl2022climatebert, title={{ClimateBERT: A Pretrained Language Model for Climate-Related Text}}, author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus}, booktitle={Proceedings of AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges}, year={2022}, doi={https://doi.org/10.48550/arXiv.2212.13631}, } ```
GraydientPlatformAPI/model_136ma
GraydientPlatformAPI
2023-05-04T13:00:42Z
29
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-04T12:48:56Z
Not official! This are diffusers weights for https://civitai.com/models/7371/rev-animated Based on Stable Diffusion v1.5
Theju/switch_low_b1_2
Theju
2023-05-04T12:47:46Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-04T12:45:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: switch_low_b1_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # switch_low_b1_2 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
adrienJeg/ppo-LunarLander-v2-unit8-p1
adrienJeg
2023-05-04T12:26:46Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T12:26:41Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -160.64 +/- 123.33 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'f': '/root/.local/share/jupyter/runtime/kernel-dac0e9f5-784f-4f8d-aef1-b45f763f07da.json' 'exp_name': 'test1' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': True 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'adrienJeg/ppo-LunarLander-v2-unit8-p1' 'batch_size': 512 'minibatch_size': 128} ```
adrienJeg/ppo-LunarLander-v2-unit8
adrienJeg
2023-05-04T12:20:54Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T10:42:30Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -135.88 +/- 72.54 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'f': '/root/.local/share/jupyter/runtime/kernel-dac0e9f5-784f-4f8d-aef1-b45f763f07da.json' 'exp_name': 'test1' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': True 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'adrienJeg/ppo-LunarLander-v2-unit8' 'batch_size': 512 'minibatch_size': 128} ```
steveabecassis/t5-small-finetuned-xsum
steveabecassis
2023-05-04T12:17:44Z
3
0
transformers
[ "transformers", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-28T13:47:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2715 - Rouge1: 0.8783 - Rouge2: 0.8348 - Rougel: 0.8739 - Rougelsum: 0.8746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 21 | 0.6229 | 0.7109 | 0.6524 | 0.7061 | 0.7071 | | No log | 2.0 | 42 | 0.4551 | 0.7062 | 0.6477 | 0.7008 | 0.7017 | | No log | 3.0 | 63 | 0.3653 | 0.7854 | 0.7293 | 0.7818 | 0.7823 | | No log | 4.0 | 84 | 0.3170 | 0.8117 | 0.7606 | 0.8076 | 0.8101 | | No log | 5.0 | 105 | 0.3047 | 0.8384 | 0.7893 | 0.8346 | 0.834 | | No log | 6.0 | 126 | 0.2916 | 0.8489 | 0.8022 | 0.8454 | 0.8454 | | No log | 7.0 | 147 | 0.2852 | 0.8512 | 0.8085 | 0.8479 | 0.8478 | | No log | 8.0 | 168 | 0.2778 | 0.869 | 0.8249 | 0.8645 | 0.8651 | | No log | 9.0 | 189 | 0.2762 | 0.8702 | 0.8258 | 0.8657 | 0.8663 | | No log | 10.0 | 210 | 0.2760 | 0.8734 | 0.8294 | 0.8681 | 0.8693 | | No log | 11.0 | 231 | 0.2749 | 0.8734 | 0.8294 | 0.8681 | 0.8693 | | No log | 12.0 | 252 | 0.2747 | 0.8739 | 0.8303 | 0.8688 | 0.8699 | | No log | 13.0 | 273 | 0.2743 | 0.8735 | 0.8295 | 0.8681 | 0.8694 | | No log | 14.0 | 294 | 0.2747 | 0.8773 | 0.8335 | 0.8726 | 0.8731 | | No log | 15.0 | 315 | 0.2748 | 0.8773 | 0.8335 | 0.8726 | 0.8731 | | No log | 16.0 | 336 | 0.2734 | 0.8779 | 0.8344 | 0.8734 | 0.874 | | No log | 17.0 | 357 | 0.2733 | 0.8779 | 0.8343 | 0.8733 | 0.8739 | | No log | 18.0 | 378 | 0.2729 | 0.8779 | 0.8344 | 0.8734 | 0.874 | | No log | 19.0 | 399 | 0.2718 | 0.8793 | 0.8357 | 0.8745 | 0.875 | | No log | 20.0 | 420 | 0.2716 | 0.8793 | 0.8357 | 0.8745 | 0.875 | | No log | 21.0 | 441 | 0.2721 | 0.8779 | 0.8343 | 0.8733 | 0.8739 | | No log | 22.0 | 462 | 0.2720 | 0.8779 | 0.8343 | 0.8733 | 0.8739 | | No log | 23.0 | 483 | 0.2724 | 0.8779 | 0.8344 | 0.8734 | 0.874 | | 0.2699 | 24.0 | 504 | 0.2725 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 25.0 | 525 | 0.2721 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 26.0 | 546 | 0.2719 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 27.0 | 567 | 0.2716 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 28.0 | 588 | 0.2715 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 29.0 | 609 | 0.2716 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | | 0.2699 | 30.0 | 630 | 0.2715 | 0.8783 | 0.8348 | 0.8739 | 0.8746 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.13.2
steveabecassis/t5-base-finetuned-xsum
steveabecassis
2023-05-04T12:17:44Z
3
0
transformers
[ "transformers", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-29T08:29:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-xsum This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 21 | 0.3747 | 0.7975 | 0.7421 | 0.7924 | 0.7932 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.13.2
steveabecassis/huji_MediQA
steveabecassis
2023-05-04T12:17:44Z
3
0
transformers
[ "transformers", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-12T19:59:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: huji_MediQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huji_MediQA This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6868 - Rouge1: 0.1617 - Rouge2: 0.065 - Rougel: 0.1598 - Rougelsum: 0.1617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 1 | 2.6868 | 0.1617 | 0.065 | 0.1598 | 0.1617 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
steveabecassis/mt5-small-finetuned-xsum
steveabecassis
2023-05-04T12:17:44Z
3
0
transformers
[ "transformers", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-04T10:48:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5196 - Rouge1: 0.3378 - Rouge2: 0.275 - Rougel: 0.3372 - Rougelsum: 0.3367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 21 | 11.8500 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 42 | 11.1279 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 63 | 10.0382 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 84 | 9.1579 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 5.0 | 105 | 8.6827 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 6.0 | 126 | 7.3651 | 0.0028 | 0.0016 | 0.0028 | 0.0028 | | No log | 7.0 | 147 | 6.4400 | 0.019 | 0.0129 | 0.0191 | 0.0197 | | No log | 8.0 | 168 | 5.2631 | 0.0272 | 0.0229 | 0.0288 | 0.0288 | | No log | 9.0 | 189 | 4.5832 | 0.1095 | 0.0688 | 0.1053 | 0.1051 | | No log | 10.0 | 210 | 4.2350 | 0.1263 | 0.0824 | 0.1216 | 0.1235 | | No log | 11.0 | 231 | 3.9249 | 0.1541 | 0.1051 | 0.1513 | 0.1532 | | No log | 12.0 | 252 | 3.5469 | 0.1701 | 0.1156 | 0.1665 | 0.1683 | | No log | 13.0 | 273 | 3.3689 | 0.2672 | 0.2095 | 0.2667 | 0.2659 | | No log | 14.0 | 294 | 3.1733 | 0.3102 | 0.2483 | 0.3103 | 0.3104 | | No log | 15.0 | 315 | 3.0810 | 0.3073 | 0.2457 | 0.3074 | 0.3071 | | No log | 16.0 | 336 | 3.0005 | 0.3071 | 0.2451 | 0.3075 | 0.3069 | | No log | 17.0 | 357 | 2.9663 | 0.3015 | 0.2364 | 0.3022 | 0.3018 | | No log | 18.0 | 378 | 2.8718 | 0.3195 | 0.2583 | 0.3197 | 0.3187 | | No log | 19.0 | 399 | 2.8061 | 0.3159 | 0.2554 | 0.316 | 0.3143 | | No log | 20.0 | 420 | 2.7009 | 0.3351 | 0.273 | 0.3338 | 0.3341 | | No log | 21.0 | 441 | 2.6307 | 0.3384 | 0.2763 | 0.3382 | 0.3381 | | No log | 22.0 | 462 | 2.6006 | 0.3364 | 0.2743 | 0.3362 | 0.3357 | | No log | 23.0 | 483 | 2.5819 | 0.3334 | 0.2712 | 0.3331 | 0.3333 | | 13.1102 | 24.0 | 504 | 2.5606 | 0.3309 | 0.269 | 0.3302 | 0.3305 | | 13.1102 | 25.0 | 525 | 2.5458 | 0.338 | 0.2744 | 0.3369 | 0.3373 | | 13.1102 | 26.0 | 546 | 2.5366 | 0.3361 | 0.2715 | 0.3352 | 0.3352 | | 13.1102 | 27.0 | 567 | 2.5301 | 0.3413 | 0.2787 | 0.3408 | 0.3406 | | 13.1102 | 28.0 | 588 | 2.5236 | 0.341 | 0.2783 | 0.3402 | 0.3401 | | 13.1102 | 29.0 | 609 | 2.5206 | 0.3405 | 0.2779 | 0.3399 | 0.3397 | | 13.1102 | 30.0 | 630 | 2.5196 | 0.3378 | 0.275 | 0.3372 | 0.3367 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.13.2
vovikdrg/ppo-lunar-lander
vovikdrg
2023-05-04T12:10:53Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-02T09:36:05Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -98.64 +/- 69.12 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
majic404/majicMIX
majic404
2023-05-04T11:08:24Z
0
22
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-27T15:49:56Z
--- license: creativeml-openrail-m ---
Foxintohumanbeing/simpson-lora
Foxintohumanbeing
2023-05-04T11:00:03Z
8
3
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "dataset:JerryMo/Modified-Caption-Train-Set", "base_model:Norod78/sd-simpsons-model", "base_model:adapter:Norod78/sd-simpsons-model", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-04-20T14:58:24Z
--- license: creativeml-openrail-m base_model: Norod78/sd-simpsons-model datasets: - JerryMo/Modified-Caption-Train-Set instance_prompt: The Simpsons tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora --- **Github Repo** The detailed work description and code can be found in https://github.com/foxintohumanbeing/DDA4210_Group_project. The creation of high-quality image content from text descriptions is a challenging yet highly desirable task in the field of artificial intelligence. We focus on the Simpsons, a popular animated series. Based on pretrained SOTA model, we investigate in obtaining high-quality dataset and efficient fine-tuning methods. We explore the options of manually creating the dataset and using different fine-tuning techniques such as simple baseline, LoRA, and Dreambooth. Our approach involves combining the advantages of each option to achieve better results. We propose dataset collection method and fine-tuning model(Simspon Artistic Memory). Moreover, to better illustrating our results, we create two APPs, one for generating images and one for annotating the images (you can find them in github link provided). By improving data collection and fine-tuning techniques on Simpsons, we hope to push the boundaries of what is achievable in the text-to-image synthesis domain and inspire further research in this area. **Prompts Format** "The Simpsons. a [closeup?] of a [emotional expression] [race] [X year old] [man / woman / etc.], with [hair and makeup style], wearing [clothing style] while [doing] near [nearby objects],[outside / inside] with [objects / color ] in the background,in [time period]." **Contact** For any questions, please contact me at 120090438@link.cuhk.edu.cn
VinayakMane47/finetuned-en-to-mar
VinayakMane47
2023-05-04T10:59:22Z
62
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-04T10:34:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: VinayakMane47/finetuned-en-to-mar results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VinayakMane47/finetuned-en-to-mar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mr](https://huggingface.co/Helsinki-NLP/opus-mt-en-mr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5415 - Validation Loss: 1.2289 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4401, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.2978 | 1.5919 | 0 | | 1.7627 | 1.3188 | 1 | | 1.5415 | 1.2289 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
WWWxp/wav2vec2_spoof_dection1
WWWxp
2023-05-04T10:59:02Z
209
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:asvspoof2019", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-04-22T08:34:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - asvspoof2019 model-index: - name: wav2vec2_spoof_dection1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_spoof_dection1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the asvspoof2019 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.12.1
ibm-research/gpt-neo-125m-multiexit
ibm-research
2023-05-04T10:45:23Z
122
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "dataset:cc100", "arxiv:2305.01628", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T11:50:17Z
--- license: mit datasets: - cc100 language: - en pipeline_tag: text-generation --- # GPT-Neo-125M Multi-Exit Pre-trained language model with identical parameters to [gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m), but with additional language modeling heads ("exits") connected to different layers of the model. These 6 additional heads (in layers 2, 4, 6, 8, 10, 12) were trained on the English portion of [CC-100](https://huggingface.co/datasets/cc100) while keeping the original pre-trained model parameters frozen. The model can be used for the _Autocontrastive Decoding_ text generation approach described in [Gera et al. 2023](https://arxiv.org/abs/2305.01628), for _early-exiting_ approaches, or for other algorithms that consider the next-token predictions of different model layers. ## Usage Harnessing the additional language modeling heads requires loading the model using the [auto-contrastive-generation library](https://github.com/IBM/auto-contrastive-generation) (`pip install autocontrastive-gen`). In a nutshell, the user creates a `MultiExitConfiguration` that determines model behavior at training and inference, and then loads the model using the dedicated `AutoMultiExitModel` class. After that, the model can be used with the `transformers` API like any other model. See the [GitHub](https://github.com/IBM/auto-contrastive-generation) for detailed usage instructions. For example, the code below initializes the model to use _Autocontrastive Decoding_, and then performs text generation in this chosen setting: ```python from transformers import AutoTokenizer from autocontrastive_gen.modeling.configuration import MultiExitConfiguration from autocontrastive_gen.modeling.auto_model import AutoMultiExitModel # initialize a pre-trained multi-exit model to use auto-contrast between layer 24 and layer 12 multi_exit_config = MultiExitConfiguration(use_original_head=False, contrast_layer_indices=(24, 12)) model = AutoMultiExitModel.from_pretrained("IBM/gpt-neo-125m-multiexit", multi_exit_config=multi_exit_config) # perform text generation as usual tokenizer = AutoTokenizer.from_pretrained("IBM/gpt-neo-125m-multiexit") prompt = tokenizer("humpty dumpty sat on", return_tensors='pt') generated_ids = model.generate(**prompt, max_new_tokens=15) print(tokenizer.batch_decode(generated_ids)) ``` ## Citation Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder, Noam Slonim and Eyal Shnarch. [The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers](https://arxiv.org/abs/2305.01628). ACL 2023. ```bibtex @inproceedings{gera2023autocontrastive, title={The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers}, author={Gera, Ariel and Friedman, Roni and Arviv, Ofir and Gunasekara, Chulaka and Sznajder, Benjamin and Slonim, Noam and Shnarch, Eyal}, booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month={july}, address={Toronto, Canada}, year={2023} } ```
ibm-research/gpt2-medium-multiexit
ibm-research
2023-05-04T10:41:59Z
203
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "dataset:cc100", "arxiv:2305.01628", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T11:18:31Z
--- license: mit datasets: - cc100 language: - en pipeline_tag: text-generation --- # GPT-2 Medium Multi-Exit Pre-trained language model with identical parameters to [gpt2-medium](https://huggingface.co/gpt2-medium), but with additional language modeling heads ("exits") connected to different layers of the model. These 12 additional heads (in layers 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24) were trained on the English portion of [CC-100](https://huggingface.co/datasets/cc100) while keeping the original pre-trained model parameters frozen. The model can be used for the _Autocontrastive Decoding_ text generation approach described in [Gera et al. 2023](https://arxiv.org/abs/2305.01628), for _early-exiting_ approaches, or for other algorithms that consider the next-token predictions of different model layers. ## Usage Harnessing the additional language modeling heads requires loading the model using the [auto-contrastive-generation library](https://github.com/IBM/auto-contrastive-generation) (`pip install autocontrastive-gen`). In a nutshell, the user creates a `MultiExitConfiguration` that determines model behavior at training and inference, and then loads the model using the dedicated `AutoMultiExitModel` class. After that, the model can be used with the `transformers` API like any other model. See the [GitHub](https://github.com/IBM/auto-contrastive-generation) for detailed usage instructions. For example, the code below initializes the model to use _Autocontrastive Decoding_, and then performs text generation in this chosen setting: ```python from transformers import AutoTokenizer from autocontrastive_gen.modeling.configuration import MultiExitConfiguration from autocontrastive_gen.modeling.auto_model import AutoMultiExitModel # initialize a pre-trained multi-exit model to use auto-contrast between layer 24 and layer 12 multi_exit_config = MultiExitConfiguration(use_original_head=False, contrast_layer_indices=(24, 12)) model = AutoMultiExitModel.from_pretrained("IBM/gpt2-medium-multiexit", multi_exit_config=multi_exit_config) # perform text generation as usual tokenizer = AutoTokenizer.from_pretrained("IBM/gpt2-medium-multiexit") prompt = tokenizer("humpty dumpty sat on", return_tensors='pt') generated_ids = model.generate(**prompt, max_new_tokens=15) print(tokenizer.batch_decode(generated_ids)) ``` ## Citation Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder, Noam Slonim and Eyal Shnarch. [The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers](https://arxiv.org/abs/2305.01628). ACL 2023. ```bibtex @inproceedings{gera2023autocontrastive, title={The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers}, author={Gera, Ariel and Friedman, Roni and Arviv, Ofir and Gunasekara, Chulaka and Sznajder, Benjamin and Slonim, Noam and Shnarch, Eyal}, booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month={july}, address={Toronto, Canada}, year={2023} } ```
salwakr1/Is_there_relation
salwakr1
2023-05-04T10:09:10Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-01T07:17:59Z
--- tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Is_there_relation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Is_there_relation This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1011 - Macro F1: 0.9873 - Precision: 0.9875 - Recall: 0.9873 - Kappa: 0.9708 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 280 | 0.0828 | 0.9746 | 0.9747 | 0.9745 | 0.9413 | 0.9745 | | 0.1162 | 2.0 | 560 | 0.1149 | 0.9684 | 0.9699 | 0.9682 | 0.9278 | 0.9682 | | 0.1162 | 3.0 | 840 | 0.0942 | 0.9852 | 0.9855 | 0.9851 | 0.9659 | 0.9851 | | 0.0231 | 4.0 | 1120 | 0.0749 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0231 | 5.0 | 1400 | 0.1058 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0084 | 6.0 | 1680 | 0.1145 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0084 | 7.0 | 1960 | 0.0813 | 0.9852 | 0.9853 | 0.9851 | 0.9658 | 0.9851 | | 0.0056 | 8.0 | 2240 | 0.1235 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0022 | 9.0 | 2520 | 0.0928 | 0.9894 | 0.9895 | 0.9894 | 0.9756 | 0.9894 | | 0.0022 | 10.0 | 2800 | 0.1079 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0019 | 11.0 | 3080 | 0.0796 | 0.9894 | 0.9895 | 0.9894 | 0.9756 | 0.9894 | | 0.0019 | 12.0 | 3360 | 0.1084 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0004 | 13.0 | 3640 | 0.1099 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0004 | 14.0 | 3920 | 0.1233 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | | 0.0005 | 15.0 | 4200 | 0.1011 | 0.9873 | 0.9875 | 0.9873 | 0.9708 | 0.9873 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
blackeys/ppo-LunarLanderV2
blackeys
2023-05-04T09:59:58Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-04T09:00:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.64 +/- 22.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
botp/GhostMix_V1.1
botp
2023-05-04T09:32:58Z
4
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-04T09:32:57Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true duplicated_from: sakistriker/GhostMix_V1.1 --- This is a safetensors Diffusers conversion of the model: https://civitai.com/models/36520/ghostmix All credit goes to the original model's author.
botp/GhostMix
botp
2023-05-04T09:31:48Z
0
1
null
[ "region:us" ]
null
2023-05-04T09:31:48Z
--- duplicated_from: drnighthan/GhostMix ---
botp/ReVAnimated
botp
2023-05-04T09:23:56Z
0
0
null
[ "license:other", "region:us" ]
null
2023-05-04T09:23:55Z
--- license: other duplicated_from: hanafuusen2001/ReVAnimated --- # 聲明 Disclaimer 本資料夾中的模型不是我所製作,版權歸原作者所有(各模型版權詳見 http://www.civitai.com 所示)。我上傳至本資料夾僅爲方便在綫抽取資源,并非盈利。 The models in this folder are not made by me, and the copyright belongs to the original author (see http://www.civitai.com for details on the copyright of each model). I uploaded to this folder only for the convenience of extracting resources online, not for profit. # 模型列表 List of Models 本資料夾中所有模型詳見下表。 All the models in this folder are detailed in the table below. | 模型名稱 Model Name | Civitai 頁面鏈接 Civitai Page Link | Civitai 下載鏈接 Civitai Download Link | |----------------------|--------------------|--------------------| |revAnimated_v122.safetensors |https://civitai.com/models/7371?modelVersionId=46846 |https://civitai.com/api/download/models/46846 | |revAnimated_v121-inpainting.safetensors |https://civitai.com/models/7371?modelVersionId=43978 |https://civitai.com/api/download/models/43978 | |revAnimated_v121.safetensors |https://civitai.com/models/7371?modelVersionId=40248 |https://civitai.com/api/download/models/40248 | |revAnimated_v11-inpainting.safetensors |https://civitai.com/models/7371?modelVersionId=22258 |https://civitai.com/api/download/models/22258 | |revAnimated_v11.safetensors |https://civitai.com/models/7371?modelVersionId=19575 |https://civitai.com/api/download/models/19575 | |revAnimated_v10-inpainting.safetensors |https://civitai.com/models/7371?modelVersionId=11386 |https://civitai.com/api/download/models/11386 | |revAnimated_v10.safetensors |https://civitai.com/models/7371?modelVersionId=8665 |https://civitai.com/api/download/models/8665 | <img src="" width="512" height="">