modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 12:31:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 12:30:56
card
stringlengths
11
1.01M
laurarconcepcion121/blockassist-bc-squinting_dextrous_gorilla_1756548019
laurarconcepcion121
2025-08-30T10:28:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squinting dextrous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:28:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squinting dextrous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ehtelrdecker123/blockassist-bc-roaring_carnivorous_cheetah_1756548050
ehtelrdecker123
2025-08-30T10:28:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring carnivorous cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:28:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring carnivorous cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
QuantFactory/gemma-3-270m-it-GGUF
QuantFactory
2025-08-30T10:26:39Z
0
1
transformers
[ "transformers", "gguf", "gemma3", "gemma", "google", "text-generation", "arxiv:2503.19786", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:2311.07911", "arxiv:2311.12022", "arxiv:2411.04368", "arxiv:1904.09728", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2403.07974", "arxiv:2305.03111", "arxiv:2405.04520", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2310.02255", "arxiv:2312.11805", "base_model:google/gemma-3-270m", "base_model:quantized:google/gemma-3-270m", "license:gemma", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T10:23:49Z
--- base_model: google/gemma-3-270m license: gemma tags: - gemma3 - gemma - google pipeline_tag: text-generation library_name: transformers extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/gemma-3-270m-it-GGUF This is quantized version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it) created using llama.cpp # Original Model Card # Gemma 3 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core) **Resources and Technical Documentation**: * [Gemma 3 Technical Report][g3-tech-report] * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma3] **Terms of Use**: [Terms][terms] **Authors**: Google DeepMind ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Inputs and outputs - **Input:** - Text string, such as a question, a prompt, or a document to be summarized - Images, normalized to 896 x 896 resolution and encoded to 256 tokens each, for the 4B, 12B, and 27B sizes. - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes. - **Output:** - Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document - Total output context up to 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes per request, subtracting the request input tokens ### Citation ```none @article{gemma_2025, title={Gemma 3}, url={https://arxiv.org/abs/2503.19786}, publisher={Google DeepMind}, author={Gemma Team}, year={2025} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 14 trillion tokens, the 12B model was trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens, the 1B with 2 trillion tokens, and the 270M with 6 trillion tokens. The knowledge cutoff date for the training data was August 2024. Here are the key components: - Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 140 languages. - Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code and understand code-related questions. - Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. - Images: A wide range of images enables the model to perform image analysis and visual data extraction tasks. The combination of these diverse data sources is crucial for training a powerful multimodal model that can handle a wide variety of different tasks and data formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. - Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p, TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: - Performance: TPUs are specifically designed to handle the massive computations involved in training VLMs. They can speed up training considerably compared to CPUs. - Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. - Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. - Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. - These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; *"the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."* ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation. Evaluation results marked with **IT** are for instruction-tuned models. Evaluation results marked with **PT** are for pre-trained models. #### Gemma 3 270M | **Benchmark** | **n-shot** | **Gemma 3 PT 270M** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 10-shot | 40.9 | | [BoolQ][boolq] | 0-shot | 61.4 | | [PIQA][piqa] | 0-shot | 67.7 | | [TriviaQA][triviaqa] | 5-shot | 15.4 | | [ARC-c][arc] | 25-shot | 29.0 | | [ARC-e][arc] | 0-shot | 57.7 | | [WinoGrande][winogrande] | 5-shot | 52.0 | [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [triviaqa]: https://arxiv.org/abs/1705.03551 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 | **Benchmark** | **n-shot** | **Gemma 3 IT 270m** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 0-shot | 37.7 | | [PIQA][piqa] | 0-shot | 66.2 | | [ARC-c][arc] | 0-shot | 28.2 | | [WinoGrande][winogrande] | 0-shot | 52.3 | | [BIG-Bench Hard][bbh] | few-shot | 26.7 | | [IF Eval][ifeval] | 0-shot | 51.2 | [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [bbh]: https://paperswithcode.com/dataset/bbh [ifeval]: https://arxiv.org/abs/2311.07911 #### Gemma 3 1B, 4B, 12B & 27B ##### Reasoning and factuality | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [GPQA][gpqa] Diamond | 0-shot | 19.2 | 30.8 | 40.9 | 42.4 | | [SimpleQA][simpleqa] | 0-shot | 2.2 | 4.0 | 6.3 | 10.0 | | [FACTS Grounding][facts-grdg] | - | 36.4 | 70.1 | 75.8 | 74.9 | | [BIG-Bench Hard][bbh] | 0-shot | 39.1 | 72.2 | 85.7 | 87.6 | | [BIG-Bench Extra Hard][bbeh] | 0-shot | 7.2 | 11.0 | 16.3 | 19.3 | | [IFEval][ifeval] | 0-shot | 80.2 | 90.2 | 88.9 | 90.4 | | Benchmark | n-shot | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------|:--------------:|:-------------:|:--------------:|:--------------:| | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 | | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 | | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 | | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 | | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 | | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 | | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 | | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 | | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 | | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 | | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 | [gpqa]: https://arxiv.org/abs/2311.12022 [simpleqa]: https://arxiv.org/abs/2411.04368 [facts-grdg]: https://goo.gle/FACTS_paper [bbeh]: https://github.com/google-deepmind/bbeh [ifeval]: https://arxiv.org/abs/2311.07911 [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [drop]: https://arxiv.org/abs/1903.00161 ##### STEM and code | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |----------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] (Pro) | 0-shot | 14.7 | 43.6 | 60.6 | 67.5 | | [LiveCodeBench][lcb] | 0-shot | 1.9 | 12.6 | 24.6 | 29.7 | | [Bird-SQL][bird-sql] (dev) | - | 6.4 | 36.3 | 47.9 | 54.4 | | [Math][math] | 0-shot | 48.0 | 75.6 | 83.8 | 89.0 | | HiddenMath | 0-shot | 15.8 | 43.0 | 54.5 | 60.3 | | [MBPP][mbpp] | 3-shot | 35.2 | 63.2 | 73.0 | 74.4 | | [HumanEval][humaneval] | 0-shot | 41.5 | 71.3 | 85.4 | 87.8 | | [Natural2Code][nat2code] | 0-shot | 56.0 | 70.3 | 80.7 | 84.5 | | [GSM8K][gsm8k] | 0-shot | 62.8 | 89.2 | 94.4 | 95.9 | | Benchmark | n-shot | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 | | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 | | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 | | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 | | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 | | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 | | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 | | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 | [mmlu]: https://arxiv.org/abs/2009.03300 [agieval]: https://arxiv.org/abs/2304.06364 [math]: https://arxiv.org/abs/2103.03874 [gsm8k]: https://arxiv.org/abs/2110.14168 [gpqa]: https://arxiv.org/abs/2311.12022 [mbpp]: https://arxiv.org/abs/2108.07732 [humaneval]: https://arxiv.org/abs/2107.03374 [lcb]: https://arxiv.org/abs/2403.07974 [bird-sql]: https://arxiv.org/abs/2305.03111 [nat2code]: https://arxiv.org/abs/2405.04520 #### Multilingual | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [Global-MMLU-Lite][global-mmlu-lite] | 0-shot | 34.2 | 54.5 | 69.5 | 75.1 | | [ECLeKTic][eclektic] | 0-shot | 1.4 | 4.6 | 10.3 | 16.7 | | [WMT24++][wmt24pp] | 0-shot | 35.9 | 46.8 | 51.6 | 53.4 | | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:| | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 | | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 | | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 | | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 | | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 | | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 | | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 | [mgsm]: https://arxiv.org/abs/2210.03057 [flores]: https://arxiv.org/abs/2106.03193 [xquad]: https://arxiv.org/abs/1910.11856v3 [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite [wmt24pp]: https://arxiv.org/abs/2502.12404v1 [eclektic]: https://arxiv.org/abs/2502.21228 [indicgenbench]: https://arxiv.org/abs/2404.16816 ##### Multimodal | Benchmark | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |-----------------------------------|:-------------:|:--------------:|:--------------:| | [MMMU][mmmu] (val) | 48.8 | 59.6 | 64.9 | | [DocVQA][docvqa] | 75.8 | 87.1 | 86.6 | | [InfoVQA][info-vqa] | 50.0 | 64.9 | 70.6 | | [TextVQA][textvqa] | 57.8 | 67.7 | 65.1 | | [AI2D][ai2d] | 74.8 | 84.2 | 84.5 | | [ChartQA][chartqa] | 68.8 | 75.7 | 78.0 | | [VQAv2][vqav2] (val) | 62.4 | 71.6 | 71.0 | | [MathVista][mathvista] (testmini) | 50.0 | 62.9 | 67.6 | | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |:-------------:|:--------------:|:--------------:| | [COCOcap][coco-cap] | 102 | 111 | 116 | | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 | | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 | | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 | | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 | | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 | | [ReMI][remi] | 27.3 | 38.5 | 44.8 | | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 | | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 | | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 | | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 | | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 | | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 | | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 | | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 | [coco-cap]: https://cocodataset.org/#home [docvqa]: https://www.docvqa.org/ [info-vqa]: https://arxiv.org/abs/2104.12756 [mmmu]: https://arxiv.org/abs/2311.16502 [textvqa]: https://textvqa.org/ [realworldqa]: https://paperswithcode.com/dataset/realworldqa [remi]: https://arxiv.org/html/2406.09175v1 [ai2d]: https://allenai.org/data/diagrams [chartqa]: https://arxiv.org/abs/2203.10244 [vqav2]: https://visualqa.org/index.html [blinkvqa]: https://arxiv.org/abs/2404.12390 [okvqa]: https://okvqa.allenai.org/ [tallyqa]: https://arxiv.org/abs/1810.12440 [ss-vqa]: https://arxiv.org/abs/1908.02660 [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/ [mathvista]: https://arxiv.org/abs/2310.02255 ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: - **Child Safety**: Evaluation of text-to-text and image to text prompts covering child safety policies, including child sexual abuse and exploitation. - **Content Safety:** Evaluation of text-to-text and image to text prompts covering safety policies including, harassment, violence and gore, and hate speech. - **Representational Harms**: Evaluation of text-to-text and image to text prompts covering safety policies including bias, stereotyping, and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our 'arms-length' internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High level findings are fed back to the model team, but prompt sets are held-out to prevent overfitting and preserve the results' ability to inform decision making. Assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. ### Evaluation Results For all areas of safety testing, we saw major improvements in the categories of child safety, content safety, and representational harms relative to previous Gemma models. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For both text-to-text and image-to-text, and across all model sizes, the model produced minimal policy violations, and showed significant improvements over previous Gemma models' performance with respect to ungrounded inferences. A limitation of our evaluations was they included only English language prompts. ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open vision-language models (VLMs) models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. - Content Creation and Communication - Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. - Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. - Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. - Image Data Extraction: These models can be used to extract, interpret, and summarize visual data for text communications. - Research and Education - Natural Language Processing (NLP) and VLM Research: These models can serve as a foundation for researchers to experiment with VLM and NLP techniques, develop algorithms, and contribute to the advancement of the field. - Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. - Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations - Training Data - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. - The scope of the training dataset determines the subject areas the model can handle effectively. - Context and Task Complexity - Models are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. - A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). - Language Ambiguity and Nuance - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language. - Factual Accuracy - Models generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. - Common Sense - Models rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: - Bias and Fairness - VLMs trained on large-scale, real-world text and image data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. - Misinformation and Misuse - VLMs can be misused to generate text that is false, misleading, or harmful. - Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. - Transparency and Accountability: - This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. - A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. - **Generation of harmful content**: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of VLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open vision-language model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [g3-tech-report]: https://arxiv.org/abs/2503.19786 [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3 [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3 [terms]: https://ai.google.dev/gemma/terms [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/jax-ml/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF
mradermacher
2025-08-30T10:25:42Z
1
0
transformers
[ "transformers", "gguf", "programming", "code generation", "code", "codeqwen", "moe", "coding", "coder", "qwen2", "chat", "qwen", "qwen-coder", "Qwen3-Coder-30B-A3B-Instruct", "Qwen3-30B-A3B", "mixture of experts", "128 experts", "8 active experts", "1 million context", "qwen3", "finetune", "brainstorm 20x", "brainstorm", "optional thinking", "qwen3_moe", "en", "fr", "zh", "de", "base_model:DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct", "base_model:quantized:DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T03:04:17Z
--- base_model: DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct language: - en - fr - zh - de library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - programming - code generation - code - codeqwen - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - chat - qwen - qwen-coder - moe - Qwen3-Coder-30B-A3B-Instruct - Qwen3-30B-A3B - mixture of experts - 128 experts - 8 active experts - 1 million context - qwen3 - finetune - brainstorm 20x - brainstorm - optional thinking - qwen3_moe --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q2_K.gguf) | Q2_K | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q3_K_S.gguf) | Q3_K_S | 18.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q3_K_M.gguf) | Q3_K_M | 20.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q3_K_L.gguf) | Q3_K_L | 22.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q4_K_S.gguf) | Q4_K_S | 24.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q4_K_M.gguf) | Q4_K_M | 25.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q5_K_S.gguf) | Q5_K_S | 29.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q5_K_M.gguf) | Q5_K_M | 30.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q6_K.gguf) | Q6_K | 34.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-GGUF/resolve/main/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct.Q8_0.gguf) | Q8_0 | 45.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
leosflanagandbf1/blockassist-bc-strong_curious_gecko_1756547899
leosflanagandbf1
2025-08-30T10:25:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "strong curious gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:25:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - strong curious gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756549353
pidbu
2025-08-30T10:24:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:23:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756549182
klmdr22
2025-08-30T10:20:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:20:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756547384
calegpedia
2025-08-30T10:18:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:18:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF
Headofcatering
2025-08-30T10:17:47Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge", "base_model:quantized:Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T10:16:01Z
--- base_model: Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF This model was converted to GGUF format from [`Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge`](https://huggingface.co/Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF --hf-file seed-oss-36b-base-instruct-karcher-merge-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF --hf-file seed-oss-36b-base-instruct-karcher-merge-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF --hf-file seed-oss-36b-base-instruct-karcher-merge-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Headofcatering/Seed-OSS-36B-Base-Instruct-Karcher-Merge-Q5_K_M-GGUF --hf-file seed-oss-36b-base-instruct-karcher-merge-q5_k_m.gguf -c 2048 ```
zaydzuhri/vanilla-code-1.8B-4096-model-DEPRECATED
zaydzuhri
2025-08-30T10:15:08Z
0
0
null
[ "safetensors", "transformer", "region:us" ]
null
2025-08-30T10:05:42Z
<div align="center"> # 🔥 Flame: Flash Linear Attention Made Easy </div> Welcome to 🔥 `flame`, a minimal and efficient framework built on `torchtitan` for training Flash Linear Attention (FLA) models (and more broadly, arbitrary autoregressive language models) with blazing efficiency. **Feature Highlights:** - 🚀 Minimal, easy-to-use, extensible training framework - 🤗 Seamless integration with `fla` and `transformers` - 🔄 Zero-cost data preprocessing: online tokenization, dataset shuffling, and multiple datasets support - 🔮 4D parallelism (coming soon) ## Setup To get started, clone the `flame` repository and install the required dependencies: ```bash git clone https://github.com/fla-org/flame.git cd flame pip install . ``` `flame` manages minimal dependencies, only including `fla` and `torchtitan` as submodules. After installation, initialize and update the submodules: ```sh git submodule update --init --recursive ``` ## Dataset Preparation To download the dataset to your local disk, create a new Python file with the following content and execute it: ```py from datasets import load_dataset # load fineweb-edu with parallel processing dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="default", num_proc=64, cache_dir="/your/cache/path") # or load a subset with roughly 100B tokens, suitable for small- or medium-sized experiments dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-100BT", num_proc=64, cache_dir="/your/cache/path") ``` ## Training Recipes Here's an example of training a 340M FLA Transformer model with a LLaMA-like architecture from scratch on a 100BT subset of the Fineweb-edu corpus in streaming mode. > [!WARNING] > If the dataset is not downloaded beforehand, the streaming mode will attempt to fetch it from a remote server and download it on-the-fly, which can be highly unstable during training due to network issues. > For stable training, ensure the dataset is downloaded locally (see [**Dataset Preparation**](#dataset-preparation)). Otherwise, we assume you are only testing the new corpus. ```sh bash train.sh \ --job.config_file flame/models/fla.toml \ --job.dump_folder exp/transformer-340M-4K-10B/batch1.seqlen65536.context4096.warmup1024.update1.steps20480.lr3e-4.cosine \ --model.config configs/transformer_340M.json \ --model.tokenizer_path fla-hub/transformer-1.3B-100B \ --optimizer.name AdamW \ --optimizer.eps 1e-15 \ --optimizer.lr 3e-4 \ --lr_scheduler.warmup_steps 1024 \ --lr_scheduler.lr_min 0.1 \ --lr_scheduler.decay_type cosine \ --training.batch_size 1 \ --training.seq_len 65536 \ --training.context_len 4096 \ --training.varlen \ --training.gradient_accumulation_steps 1 \ --training.steps 20480 \ --training.max_norm 1.0 \ --training.skip_nan_inf \ --training.dataset HuggingFaceFW/fineweb-edu \ --training.dataset_name sample-100BT \ --training.dataset_split train \ --training.streaming \ --training.num_workers 32 \ --training.prefetch_factor 2 \ --training.seed 42 \ --training.compile \ --checkpoint.interval 2048 \ --checkpoint.load_step -1 \ --checkpoint.keep_latest_k 2 \ --metrics.log_freq 1 ``` You can specify the number of GPUs by setting the environment variable `NGPU`, which defaults to 8. **For single-GPU debugging, set `NGPU=1`.** We provide several [config files](https://github.com/fla-org/flame/tree/main/configs) for different models. By default, the learning rate is set to 3e-4 with a cosine scheduler. Other schedulers, such as WSD (wsd), are also supported. **Key parameters:** - `--lr_scheduler.decay_ratio`: The proportion of the steps allocated to the decay phase. The learning rate will remain stable after the warmup period and only start decaying during the last `decay_ratio` portion of the total training steps, which is known as the Warmup-Stable-Decay (WSD) schedule. - `--lr_scheduler.warmup_steps`: The number of steps for the learning rate warmup phase. - `--training.steps`: Total number of training steps. - `--training.batch_size`: Batch size per device, must be 1 if `--training.varlen` is set. - `--training.seq_len`: The length of each sequence in the batch, which is concatenated from multiple samples. - `--training.context_len`: The max allowed length of a sample. For non-varlen mode, this is equivalent to `seq_len`. - `--training.varlen`: Whether to conduct variable-length sequence training. - `--training.gradient_accumulation_steps`: Number of gradient accumulation steps. > [!WARNING] > The total number of tokens processed per batch, referred to as `global_batch_size`, is calculated as batch_size × gradient_accumulation_steps × num_gpus. > Each step processes `global_batch_size * seq_len` tokens. > Monitor the value of `global_batch_size`, `warmup_steps`, and `steps` carefully when modifying any of the hyperparameters! For a detailed explanation of all parameters, run: ```sh bash train.sh -h ``` <details> <summary>Usage</summary> ```py options: -h, --help show this help message and exit --job.config_file JOB.CONFIG_FILE Job config file --job.dump_folder JOB.DUMP_FOLDER Folder to dump job outputs --job.description JOB.DESCRIPTION Description of the job --job.use_for_integration_test Add this config to the integration test suite --job.print_args Print the args to terminal --model.config MODEL.CONFIG Path to the model config --model.norm_type MODEL.NORM_TYPE Type of layer normalization to use [layernorm, np_layernorm, rmsnorm, fused_rmsnorm] --model.tokenizer_path MODEL.TOKENIZER_PATH Tokenizer path --profiling.enable_profiling Whether to enable pytorch profiler --profiling.save_traces_folder PROFILING.SAVE_TRACES_FOLDER Trace files location --profiling.profile_freq PROFILING.PROFILE_FREQ How often to collect profiler traces, in iterations --profiling.enable_memory_snapshot Whether to dump memory snapshot --profiling.save_memory_snapshot_folder PROFILING.SAVE_MEMORY_SNAPSHOT_FOLDER Memeory snapshot files location --optimizer.name OPTIMIZER.NAME Optimizer to use --optimizer.eps OPTIMIZER.EPS Epsilon value for the optimizer. --optimizer.fused Whether the fused implementation(CUDA only) is used. --optimizer.scheduler {wsd,cosine,linear} Scheduler to use. Currently supported: wsd, cosine, and linear. --optimizer.lr OPTIMIZER.LR Learning rate to use --optimizer.min_lr_ratio OPTIMIZER.MIN_LR_RATIO Min lr ratio for lr scheduler --optimizer.early_step_in_backward Whether to apply optimizer in the backward. Caution, optimizer_in_backward is not compatible with gradients clipping, users should not call register_post_accumulate_grad_hook after the optimizer is built. --training.batch_size TRAINING.BATCH_SIZE Batch size --training.seq_len TRAINING.SEQ_LEN Sequence length --training.context_len TRAINING.CONTEXT_LEN Max length allowed for each sequence --training.varlen Whether to take sequences of variable length as input --training.warmup_steps TRAINING.WARMUP_STEPS Steps for lr scheduler warmup, normally 1/5 of --training.steps --training.gradient_accumulation_steps TRAINING.GRADIENT_ACCUMULATION_STEPS Number of steps to accumulate gradients before updating parameters --training.steps TRAINING.STEPS How many train steps to run --training.max_norm TRAINING.MAX_NORM Max norm for gradient clipping --training.skip_nan_inf Skip batch updates when NaN or INF gradients are encountered during training --training.dataset TRAINING.DATASET Dataset to use, with comma separated values --training.dataset_name TRAINING.DATASET_NAME The name of the dataset config, with comma separated values if provided --training.dataset_split TRAINING.DATASET_SPLIT Dataset split to use, with comma separated values if provided --training.data_dir TRAINING.DATA_DIR Data dirs to use, with comma separated values if provided --training.data_files TRAINING.DATA_FILES Data files to use, with comma separated values if provided --training.data_probs TRAINING.DATA_PROBS Data sampling probabilities, with comma separated values if provided --training.streaming Whether to load dataset in streaming mode, used for huge dataset --training.num_workers TRAINING.NUM_WORKERS Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. --training.prefetch_factor TRAINING.PREFETCH_FACTOR Number of batches loaded in advance by each worker.2 means there will be a total of 2 * num_workers batches prefetched across all workers. --training.data_parallel_replicate_degree TRAINING.DATA_PARALLEL_REPLICATE_DEGREE The `data_parallel_replicate_degree` argument specifies the degree of data parallelism for weight replication. When this value is greater than 1, weights will be replicated across `data_parallel_replicate_degree` ranks. If `data_parallel_shard_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is DDP (Distributed Data Parallelism). 1 means disabled. --training.data_parallel_shard_degree TRAINING.DATA_PARALLEL_SHARD_DEGREE The `data_parallel_shard_degree` argument specifies the degree of data parallelism for weight sharding. When this value is greater than 1, weights will be sharded across `data_parallel_shard_degree` ranks. If `data_parallel_replicate_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is FSDP (Fully Sharded Data Parallelism). -1 means leftover ranks will be used (After DP_REPLICATE/SP/PP). Note that only `data_parallel_shard_degree` can be negative. 1 means disabled. --training.enable_cpu_offload Whether to apply CPU offloading of parameters, gradients, and optimizer states in FSDP --training.tensor_parallel_degree TRAINING.TENSOR_PARALLEL_DEGREE Tensor Parallelism degree. 1 means disabled. --training.disable_loss_parallel Whether to apply loss parallel when sequence parallel is enabled --training.mixed_precision_param {bfloat16,float32} torch dtype to use for parameters when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 --training.mixed_precision_reduce {float32} torch dtype to use for reductions when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 --training.compile Whether to compile the model --training.gc_freq TRAINING.GC_FREQ Python garbage control scheduling interval, in steps --training.seed TRAINING.SEED Choose the base RNG seed used for training --training.deterministic Use deterministic algorithms wherever possible, may be slower --metrics.log_freq METRICS.LOG_FREQ How often to log metrics to TensorBoard, in iterations --metrics.enable_tensorboard Whether to log metrics to TensorBoard --metrics.disable_color_printing Whether to disable color printing in logs --metrics.save_tb_folder METRICS.SAVE_TB_FOLDER Folder to dump TensorBoard states --metrics.rank_0_only Whether to save TensorBoard metrics only for rank 0 or for all ranks. When pipeline_parallel_degree is > 1, this option uses the 0th rank of the last stage pipeline group, which is the only stage that computes loss metrics. --metrics.enable_wandb Whether to log metrics to Weights & Biases --experimental.enable_async_tensor_parallel Whether to apply async tensor parallel (currently only effective when compile is enabled) --experimental.pipeline_parallel_degree EXPERIMENTAL.PIPELINE_PARALLEL_DEGREE Pipeline Parallelism degree, or number of ranks. 1 means disabled. If using looped schedules, this still specifies the number of physical ranks, not the number of stages. Stages per rank are inferred from split points degree, and schedule. --experimental.pipeline_parallel_split_points EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS [EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS ...] Specify comma-separated names of modules to use as the beginning of a split point. e.g. "layers.0,layers.2" will cause the model to be split into 3 stages, the first containing all the layers up to layers.0, the second containing layers.0 and up to layers.2, the third containing layers.2 and all the remaining layers. Note: fully-automated splitting may be enabled in the future, but currently the split points must be specified manually. --experimental.pipeline_parallel_schedule EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE Specify the Pipeline Parallel schedule to use. The supported schedules are: https://github.com/pytorch/py torch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/to rch/distributed/pipelining/schedules.py#L2161. The schedule must be compatible with the split points and stages_per_rank. Looped schedules (e.g. Interleaved1F1B) require specifying pipeline_parallel_degree = number of ranks, and split_points = number of stages - 1 --experimental.pipeline_parallel_schedule_csv EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE_CSV Specify the path to the pipeline parallel schedule csv file to use. The pipeline_parallel_schedule argument must be either PipelineScheduleSingle, PipelineScheduleMulti, or _PipelineScheduleRuntime. --experimental.pipeline_parallel_microbatches EXPERIMENTAL.PIPELINE_PARALLEL_MICROBATCHES How many microbatches to split the global training batch into when using pipeline parallelism. The global training batch size must be evenly divisible by the number of microbatches. The default value will be the number of pipeline stages, if unspecified. --experimental.enable_compiled_autograd Enable CompiledAutograd to compile the backward. --experimental.context_parallel_degree EXPERIMENTAL.CONTEXT_PARALLEL_DEGREE Context parallelism degree. 1 means disabled. --experimental.context_parallel_rotate_method EXPERIMENTAL.CONTEXT_PARALLEL_ROTATE_METHOD The collective to use in context parallel SDPA for kv shards exchange. 'allgather' means to all-gather all kv shards on ranks after the first sub-SDPA computation, 'alltoall' means to all-to-all shuffle the kv shards. The default value is 'allgather'. --checkpoint.enable_checkpoint Whether to enable checkpoint --checkpoint.folder CHECKPOINT.FOLDER The folder to store the checkpoints. When enable_checkpoint is set to true, checkpoints will be in {--job.dump_folder}/{--checkpoint.folder}. --checkpoint.interval_type CHECKPOINT.INTERVAL_TYPE Checkpointing interval unit of measurement ['step', 'seconds'] --checkpoint.interval CHECKPOINT.INTERVAL Checkpointing interval, in steps or seconds depending on --checkpoint.interval_type --checkpoint.model_weights_only When model_weights_only=True, only model weights will be saved at the end of training. With this, checkpoints can be loaded using `torch.load(..., weights_only=True)` after conversion. When model_weights_only=False, the full checkpoint will be saved. A full checkpoint includes model, optimizer and train_state, which can be used to resume training. The default value is false. --checkpoint.export_dtype {float16,bfloat16,float32} Converts to the specified precision when training completes and model_weights_only=true. Currently supports float32, float16, and bfloat16. The default value is float32. --checkpoint.create_seed_checkpoint Initializes the full model without applying parallelisms, and then saves it as a seed checkpoint. Note: requires user to call train.py without specifying any parallelisms, e.g. NGPU=1. Could be implemented as a separate script, but this way shares more code. --checkpoint.async_mode CHECKPOINT.ASYNC_MODE Which async checkpoint mode to use. Currently there are 3 different modes. 1. "disabled": synchronized checkpointing will be used. 2. "async": torch.distributed.checkpoint.async_save will be used. 1. "async_with_pinned_mem": this option utilizes a dedicated pinned memory space and creates a separate process for faster GPU->CPU transfer performance and eliminating GIL contention. The cost is increased CPU memory usage. If insufficient CPU memory is available, performance may degrade due to memory paging. For most users, "async" should suffice as the performance overhead is typically small (on the order of tens of seconds) compared to checkpointing frequency. This mode can be employed to pursue near-zero checkpointing times (e.g., < 1 second) given appropriate hardware support such as ample CPU memory and fast PCIe. "disabled" is the default mode. --checkpoint.keep_latest_k CHECKPOINT.KEEP_LATEST_K Keeps only the latest k checkpoints, and purging older ones. If 0, keep all checkpoints. 0 is the default value. --checkpoint.load_step CHECKPOINT.LOAD_STEP Load the checkpoint at the specified step. If -1, load the latest checkpoint. --float8.enable_float8_linear If true, swaps `torch.nn.Linear` with `Float8Linear`. This feature requires you to install 'torchao' which can be found here: https://github.com/pytorch/ao --float8.enable_fsdp_float8_all_gather Whether enable float8 all-gather in FSDP --float8.precompute_float8_dynamic_scale_for_fsdp Whether precompute float8 scales dynamically for FSDP --float8.scaling_type_input {dynamic,delayed} float8 scaling for input, dynamic (default) or delayed --float8.scaling_type_weight FLOAT8.SCALING_TYPE_WEIGHT float8 scaling for input, dynamic (default) or delayed --float8.scaling_type_grad_output FLOAT8.SCALING_TYPE_GRAD_OUTPUT float8 scaling for input, dynamic (default) or delayed --comm.init_timeout_seconds COMM.INIT_TIMEOUT_SECONDS Timeout for communication operations, during initialization and first train step. --comm.train_timeout_seconds COMM.TRAIN_TIMEOUT_SECONDS Timeout for communication operations after the first train step -- usually a tighter bound than during initialization. --comm.trace_buf_size COMM.TRACE_BUF_SIZE Flight recorder ring buffer size, >0 means recording by default, 0 means disabled --memory_estimation.enabled Whether to estimate memory usage for FSDP --memory_estimation.disable_fake_mode Whether to estimate memory under FakeTensorMode ``` </details> ### Training with `torch.compile` Starting from `torch 2.0`, `torch.compile` has been introduced as a new feature to seamlessly accelerate training processes. In `flame`, one can simply enable `torch.compile` by adding `--training.compile` flag to your training script. However, `fla` has integrated numerous fused kernels for acceleration, which may potentially conflict with `torch.compile`. We are actively working on resolving these issues to make compilation transparent to users. In the meantime, please ensure you are using the latest dependencies. Specifically, **we recommend using `torch>=2.6` and `triton>=3.0`**. ### Training with multiple datasets If you wish to train a model with all-round capabilities (e.g., code, math, and multilingual ability), it's necessary to train on multiple datasets. `flame` allows training with multiple datasets easily. For example, you can specify the following arguments to train on 6 datasets with different proportions: ```sh --training.dataset HuggingFaceFW/fineweb-edu,opencsg/Fineweb-Edu-Chinese-V2.1,OpenCoder-LLM/opc-fineweb-code-corpus,math-ai/AutoMathText,EleutherAI/proof-pile-2,OpenCoder-LLM/opc-fineweb-math-corpus \ --training.data_probs 0.6,0.15,0.15,0.014,0.058,0.028 \ ``` ### ~Finalizing training~ > [!NOTE] > We have done this conversion automatically in the training script since our latest updates. Once training is complete, you may want to convert the distributed checkpoints (DCPs) into the 🤗 format for broader use. To facilitate this, we provide a straightforward conversion script: ```sh python -m flame.utils.convert_dcp_to_hf --path <path_to_model> --step <step> --config <path_to_config> --tokenizer <path_to_tokenizer> ``` After this, your model will be in the 🤗 format, ready to be shared or deployed. You can then easily publish your model using the `huggingface_hub` for wider accessibility. ### Continual training If you wish to build upon a strong pre-trained model (in 🤗 format) and continue training, we also offer a script to convert the 🤗 format model back into DCP format. This allows you to seamlessly resume training with `flame`. ```sh python -m flame.utils.convert_hf_to_dcp --model <path_to_hf> --checkpoint <path_to_dcp/checkpoint/step-0> ``` Here, `<path_to_dcp>` is the directory where your distributed checkpoints will be stored. The checkpoint is intentionally saved at `<step-0>` within the checkpoint folder to ensure it is loadable by `flame` during the initial training step, similar to how a seed checkpoint is handled. Once the conversion is complete, you can proceed with training using `flame` as usual, continuing from where the pretrained model left off. ## Multi-node training If you have access to multi-node GPUs, consider leveraging them for optimal performance. This process is straightforward and well-documented in the PyTorch [docs](https://pytorch.org/docs/stable/elastic/run.html). To set up multi-node training: * Set the environment variables `MASTER_ADDR=<ip>` and `MASTER_PORT=<port>` before running the training script across all nodes. * If you're using a job scheduler like Slurm, it will handle these variables for you. `torchtitan` provides a [Slurm script](https://github.com/pytorch/torchtitan/blob/main/multinode_trainer.slurm) for multi-node training, which you can use as a reference or starting point.
thefirstgoku/30C_w13_scl_l7
thefirstgoku
2025-08-30T10:13:00Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-30T10:12:22Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756548707
liukevin666
2025-08-30T10:12:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:12:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vomqal/Qwen3-0.6B-Gensyn-Swarm-masked_snappy_caribou
vomqal
2025-08-30T10:11:14Z
27
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am masked_snappy_caribou", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-02T04:33:13Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am masked_snappy_caribou --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
csavzzcw/blockassist-bc-rugged_amphibious_dolphin_1756548567
csavzzcw
2025-08-30T10:10:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged amphibious dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:09:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged amphibious dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
csavzzcw/blockassist-bc-pudgy_thriving_okapi_1756548464
csavzzcw
2025-08-30T10:08:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy thriving okapi", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy thriving okapi --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
keysero/blockassist-bc-winged_agile_mongoose_1756548416
keysero
2025-08-30T10:07:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged agile mongoose", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:07:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged agile mongoose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/gpt-oss-120b-5bit
NexVeridian
2025-08-30T10:05:25Z
866
1
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-120b", "base_model:quantized:openai/gpt-oss-120b", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-06T04:03:01Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-120b --- # NexVeridian/gpt-oss-120b-5bit This model [NexVeridian/gpt-oss-120b-5bit](https://huggingface.co/NexVeridian/gpt-oss-120b-5bit) was converted to MLX format from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b) using mlx-lm version **0.27.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/gpt-oss-120b-5bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756546776
helmutsukocok
2025-08-30T10:04:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:04:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756548046
klmdr22
2025-08-30T10:01:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:01:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alistermarc/alistermarc-2025-08-30_15.24.25
alistermarc
2025-08-30T10:00:39Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3.1", "region:us" ]
null
2025-08-30T07:24:39Z
--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - trl - sft - generated_from_trainer model-index: - name: alistermarc-2025-08-30_15.24.25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/alistermarcdomilies-those-who-care/alistermarc/runs/qcr6p7tk) # alistermarc-2025-08-30_15.24.25 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.4
erikonis/BSP2S-models
erikonis
2025-08-30T09:55:31Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-08-30T09:10:39Z
--- license: mit --- Here are CNN models obtained from BSP2 Summer project. Models aim is to distinguish between AI (class 1) and Human (class 0) Java codes. A given Java code file must be tranformed into its image representation by first reading it in binary mode and then interpreting each 8 bits as encodings for rgb channels, constructing image pixel by pixel. For smaller files, a width of 32px is sufficient, larger than 10kB files should rely on width of 64px, larger than 30kB on 128px. If the obtained height of an image is less than 224px and less than width, a padding should be applied of black (RGB values 0) pixels, so that it's not distorted during rescaling. Else, height can be left unmodified, by the last row should be padded with black pixels to complete it. CNN based models have input dimensions of 224x224 pixels. Hence, images have to be rescaled using default bilinear scaling function to fit the dimensions. Models perform binary classification and output a single number 0-1, indicating probability of the sample being generated by AI. Best performing model - dn121. Project related GitHub page: https://github.com/erikonis/BSP2S Project related Dataset: https://huggingface.co/datasets/erikonis/BSP2S-dataset **== Explanations ==** Information about each CNN model is encoded into the filename. If filename contains: - *best* -> this model was obtained using EarlyStopping implementation, which stopped the training process at an optimal epoch. Models without "best" are obtained by training until 40 epochs, risking overfitting. - *dn121*, *rn50*, *vgg16* -> model is based on DenseNet121, ResNet50 or VGG16 architectures (pretrained on ImageNet). - *raw* -> model was trained on unpreprocessed dataset. - *preproc* -> model was trained on preprocessed dataset. It is explained in a pdf paper on GitHub page. In short, whitespace was normalized and all comments are removed. - *sheetSplit* -> default setting of training with original CodeNet based dataset. sheetSplit means that we split training-validation and test sets by sheet to prevent intersection (through duplicates) between them. - *multiclass* -> model is capable of classifying codes into 5 categories: Human, GPT4.1 (namely, ChatGPT), Claude Sonnet 4, Gemini 2.5 Flash and DeepSeek V3 0324. Prediction is outputted for each class in range 0-1. - *scratch* -> binary classification model was trained from scratch (contrary to pretrained). - *AIvsSTD* -> models pretrained on our CodeNet dataset were fine-tuned on Academia-related dataset, explained here: https://github.com/erikonis/BSP2 - *humanEval* -> models pretrained on our CodeNet dataset were fine-tuned on humanEval partition from ```csv``` files here: https://github.com/mahantaf/AI-Detector/tree/master/src/astnn/classification/java/data
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756547439
Ferdi3425
2025-08-30T09:52:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:51:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756547448
klmdr22
2025-08-30T09:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:51:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lowelldiaz/blockassist-bc-prowling_feathered_stork_1756547158
lowelldiaz
2025-08-30T09:48:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prowling feathered stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:47:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prowling feathered stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756545359
Loder-S
2025-08-30T09:43:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:43:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AndreasXi/MeanAudio
AndreasXi
2025-08-30T09:41:40Z
9
4
null
[ "arxiv:2508.06098", "license:mit", "region:us" ]
null
2025-08-17T16:34:13Z
--- license: mit --- <div align="center"> <p align="center"> <h1>MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows</h1> <!-- <a href=>Paper</a> | <a href="https://meanaudio.github.io/">Webpage</a> --> [![Paper](https://img.shields.io/badge/Paper-arXiv-b31b1b?logo=arxiv&logoColor=white)](https://arxiv.org/abs/2508.06098) [![Code](https://img.shields.io/badge/Code-Repo-black?style=flat&logo=github&logoColor=white)](https://github.com/xiquan-li/MeanAudio?tab=readme-ov-file) [![Hugging Face Model](https://img.shields.io/badge/Model-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/AndreasXi/MeanAudio) [![Hugging Face Space](https://img.shields.io/badge/Space-HuggingFace-blueviolet?logo=huggingface)](https://huggingface.co/spaces/chenxie95/MeanAudio) [![Webpage](https://img.shields.io/badge/Website-Visit-orange?logo=googlechrome&logoColor=white)](https://meanaudio.github.io/) </p> </div> ## Overview MeanAudio is a novel MeanFlow-based model tailored for fast and faithful text-to-audio generation. It can synthesize realistic sound in a single step, achieving a real-time factor (RTF) of 0.013 on a single NVIDIA 3090 GPU. Moreover, it also demonstrates strong performance in multi-step generation. ## Environmental Setup **1. Create a new conda environment:** ```bash conda create -n meanaudio python=3.11 -y conda activate meanaudio pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --upgrade ``` <!-- ``` conda install -c conda-forge 'ffmpeg<7 ``` (Optional, if you use miniforge and don't already have the appropriate ffmpeg) --> **2. Install with pip:** ```bash git clone https://github.com/xiquan-li/MeanAudio.git cd MeanAudio pip install -e . ``` <!-- (If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip) --> ## Quick Start <!-- **1. Download pre-trained models:** --> To generate audio with our pre-trained model, simply run: ```bash python demo.py --prompt 'your prompt' --num_steps 1 ``` This will automatically download the pre-trained checkpoints from huggingface, and generate audio according to your prompt. The output audio will be at `MeanAudio/output/`, and the checkpoints will be at `MeanAudio/weights/`. Have fun with MeanAudio 😊 !!!
milliarderdol/blockassist-bc-roaring_rough_scorpion_1756544950
milliarderdol
2025-08-30T09:41:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:40:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1756545258
rvipitkirubbe
2025-08-30T09:40:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:40:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756546609
bah63843
2025-08-30T09:37:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:37:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756546382
Ferdi3425
2025-08-30T09:34:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:33:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coppytiou/blockassist-bc-amphibious_territorial_lemur_1756546276
coppytiou
2025-08-30T09:31:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious territorial lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:31:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious territorial lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
weruior/blockassist-bc-fluffy_quiet_bison_1756546201
weruior
2025-08-30T09:30:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fluffy quiet bison", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:30:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fluffy quiet bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-5e-7-v2_6858
luckeciano
2025-08-30T09:23:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T05:16:48Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-5e-7-v2_6858 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-5e-7-v2_6858 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-5e-7-v2_6858", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/hw1ph1pd) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Mellum-4b-sft-rust-i1-GGUF
mradermacher
2025-08-30T09:20:25Z
3
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "code", "rust", "fill-in-the-middle", "fim", "text-generation", "llm", "en", "dataset:Etherll/CodeFIM-Rust-Mellum", "base_model:Etherll/Mellum-4b-sft-rust", "base_model:quantized:Etherll/Mellum-4b-sft-rust", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
text-generation
2025-08-30T02:03:45Z
--- base_model: Etherll/Mellum-4b-sft-rust datasets: - Etherll/CodeFIM-Rust-Mellum language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - code - rust - fill-in-the-middle - fim - text-generation - llm --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Etherll/Mellum-4b-sft-rust <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Mellum-4b-sft-rust-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Mellum-4b-sft-rust-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ1_S.gguf) | i1-IQ1_S | 1.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ1_M.gguf) | i1-IQ1_M | 1.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ2_S.gguf) | i1-IQ2_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ2_M.gguf) | i1-IQ2_M | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ3_S.gguf) | i1-IQ3_S | 2.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q4_0.gguf) | i1-Q4_0 | 2.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q5_K_S.gguf) | i1-Q5_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-rust-i1-GGUF/resolve/main/Mellum-4b-sft-rust.i1-Q6_K.gguf) | i1-Q6_K | 3.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756543940
sampingkaca72
2025-08-30T09:19:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:19:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
leosflanagandbf1/blockassist-bc-strong_curious_gecko_1756543980
leosflanagandbf1
2025-08-30T09:19:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "strong curious gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:19:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - strong curious gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756545469
bah63843
2025-08-30T09:18:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:18:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756545398
klmdr22
2025-08-30T09:17:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:17:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ikuyamada/test_local_processed
ikuyamada
2025-08-30T09:16:17Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "kpr-bert", "sentence-similarity", "feature-extraction", "dense", "custom_code", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-30T09:09:45Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Dot Product <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'KPRModelForBert'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ikuyamada/test_local_processed") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[743.6603, 712.7500, 674.8392], # [712.7500, 743.7998, 678.3881], # [674.8391, 678.3880, 743.6827]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 5.2.0.dev0 - Transformers: 4.55.4 - PyTorch: 2.4.0+cu121 - Accelerate: 0.34.2 - Datasets: 2.16.1 - Tokenizers: 0.21.4 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
ehtelrdecker123/blockassist-bc-roaring_carnivorous_cheetah_1756543736
ehtelrdecker123
2025-08-30T09:15:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring carnivorous cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:15:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring carnivorous cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
keysero/blockassist-bc-winged_agile_mongoose_1756545213
keysero
2025-08-30T09:14:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged agile mongoose", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:14:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged agile mongoose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Megma/blockassist-bc-rugged_mangy_seahorse_1756544990
Megma
2025-08-30T09:13:25Z
0
1
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged mangy seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:13:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged mangy seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756545122
bah63843
2025-08-30T09:12:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:12:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
naveenmuppaneni/tourism-purchase-predictor-rf
naveenmuppaneni
2025-08-30T09:12:34Z
0
0
null
[ "joblib", "region:us" ]
null
2025-08-28T10:15:41Z
# Tourism Purchase Predictor (RandomForest) This repository contains a tuned RandomForestClassifier for predicting `ProdTaken` (purchase of the tourism package). - Dataset: https://huggingface.co/datasets/naveenmuppaneni/tourism-dataset - Selection metric: ROC AUC (5-fold CV) - Best CV ROC AUC: 0.9513 ## Inference (Python) ```python import joblib from huggingface_hub import hf_hub_download model_path = hf_hub_download(repo_id="naveenmuppaneni/tourism-purchase-predictor-rf", filename="best_model.joblib") model = joblib.load(model_path) # model is a sklearn Pipeline: model.predict(X) or model.predict_proba(X) ```
eliyen/blockassist-bc-thick_agile_ant_1756545106
eliyen
2025-08-30T09:12:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick agile ant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:12:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick agile ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tammycra121/blockassist-bc-marine_rangy_eel_1756543544
tammycra121
2025-08-30T09:11:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine rangy eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:11:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine rangy eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lowelldiaz/blockassist-bc-prowling_feathered_stork_1756544912
lowelldiaz
2025-08-30T09:10:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prowling feathered stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:10:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prowling feathered stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756543324
Loder-S
2025-08-30T09:09:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:09:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756544740
liukevin666
2025-08-30T09:09:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:06:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756544853
bah63843
2025-08-30T09:08:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:08:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coppytiou/blockassist-bc-shrewd_lethal_dove_1756544868
coppytiou
2025-08-30T09:08:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shrewd lethal dove", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:07:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shrewd lethal dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ployauii/blockassist-bc-silky_leaping_tortoise_1756544796
ployauii
2025-08-30T09:07:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky leaping tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:07:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky leaping tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/gpt-oss-120b-3bit
NexVeridian
2025-08-30T09:06:48Z
3,549
6
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-120b", "base_model:quantized:openai/gpt-oss-120b", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-06T00:15:41Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-120b --- # NexVeridian/gpt-oss-120b-3bit This model [NexVeridian/gpt-oss-120b-3bit](https://huggingface.co/NexVeridian/gpt-oss-120b-3bit) was converted to MLX format from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b) using mlx-lm version **0.27.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/gpt-oss-120b-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
robertou2/task-14-microsoft-Phi-4-mini-instruct
robertou2
2025-08-30T09:03:39Z
625
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-08-16T09:56:56Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
mariyaam/blockassist-bc-spotted_bold_sparrow_1756544517
mariyaam
2025-08-30T09:03:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted bold sparrow", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:03:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted bold sparrow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coppytiou/blockassist-bc-fanged_striped_shrimp_1756544546
coppytiou
2025-08-30T09:02:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fanged striped shrimp", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:02:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fanged striped shrimp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thecodedev/blockassist-bc-pouncing_pensive_komodo_1756544421
thecodedev
2025-08-30T09:01:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing pensive komodo", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:01:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing pensive komodo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coppytiou/blockassist-bc-tricky_curious_impala_1756544383
coppytiou
2025-08-30T09:00:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky curious impala", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:59:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky curious impala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756544138
bah63843
2025-08-30T08:56:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:56:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF
Nabbers1999
2025-08-30T08:55:56Z
0
0
transformers
[ "transformers", "gguf", "vllm", "unsloth", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:unsloth/gpt-oss-20b-BF16", "base_model:quantized:unsloth/gpt-oss-20b-BF16", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T08:54:51Z
--- base_model: unsloth/gpt-oss-20b-BF16 license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm - unsloth - llama-cpp - gguf-my-repo --- # Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF This model was converted to GGUF format from [`unsloth/gpt-oss-20b-BF16`](https://huggingface.co/unsloth/gpt-oss-20b-BF16) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/gpt-oss-20b-BF16) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF --hf-file gpt-oss-20b-bf16-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF --hf-file gpt-oss-20b-bf16-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF --hf-file gpt-oss-20b-bf16-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nabbers1999/gpt-oss-20b-BF16-Q4_K_M-GGUF --hf-file gpt-oss-20b-bf16-q4_k_m.gguf -c 2048 ```
eliyen/blockassist-bc-thick_agile_ant_1756544049
eliyen
2025-08-30T08:54:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick agile ant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:54:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick agile ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
clementling02/finetuned-orpheus-SA-Female-final-v2
clementling02
2025-08-30T08:51:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/orpheus-3b-0.1-ft", "base_model:finetune:unsloth/orpheus-3b-0.1-ft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T08:50:16Z
--- base_model: unsloth/orpheus-3b-0.1-ft tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** clementling02 - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
clementling02/finetuned-orpheus-SA-Female-lora-v2
clementling02
2025-08-30T08:49:05Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/orpheus-3b-0.1-ft", "base_model:finetune:unsloth/orpheus-3b-0.1-ft", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T08:48:39Z
--- base_model: unsloth/orpheus-3b-0.1-ft tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** clementling02 - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sophie-Rain-viral-video-original-Clip/NEW.FULL.VIDEOS.Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
Sophie-Rain-viral-video-original-Clip
2025-08-30T08:46:14Z
0
0
null
[ "region:us" ]
null
2025-08-30T08:45:32Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/KernelLLM-GGUF
mradermacher
2025-08-30T08:40:57Z
171
0
transformers
[ "transformers", "gguf", "en", "dataset:ScalingIntelligence/KernelBench", "dataset:GPUMODE/KernelBook", "base_model:facebook/KernelLLM", "base_model:quantized:facebook/KernelLLM", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-27T20:36:51Z
--- base_model: facebook/KernelLLM datasets: - ScalingIntelligence/KernelBench - GPUMODE/KernelBook language: - en library_name: transformers license: other mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/facebook/KernelLLM <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#KernelLLM-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/KernelLLM-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/KernelLLM-GGUF/resolve/main/KernelLLM.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
JKitamura/QwQ-CoT-0.5B-JA-v1.1
JKitamura
2025-08-30T08:37:00Z
3
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T14:41:37Z
--- base_model: Qwen/Qwen3-0.6B library_name: transformers model_name: QwQ-CoT-0.5B-JA-v1.1 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for QwQ-CoT-0.5B-JA-v1.1 This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JKitamura/QwQ-CoT-0.5B-JA-v1.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jkitamura13-tone-mobile/huggingface/runs/lrj4kb08) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jung-ming/god-eye-traffic-predictor
jung-ming
2025-08-30T08:34:14Z
0
0
null
[ "traffic-prediction", "lightgbm", "shap", "multistep-forecast", "streamlit", "huggingface-space", "zh", "license:mit", "model-index", "region:us" ]
null
2025-07-05T02:05:14Z
--- language: zh license: mit tags: - traffic-prediction - lightgbm - shap - multistep-forecast - streamlit - huggingface-space model-index: - name: God-Eye Traffic Predictor results: - task: type: time-series-forecasting name: Multi-step Traffic Speed Forecasting dataset: name: 國道壅塞預測(楊梅-新竹段) type: tabular metrics: - name: MAE type: mean_absolute_error value: 5.2 - name: R² type: r2 value: 0.7 --- # 上帝視角:AI 國道壅塞前兆預測系統 (God-Eye Traffic Predictor) ## 📌 專案簡介 本專案為一套針對台灣國道一號(楊梅至新竹段)在假日期間的即時壅塞預測系統。透過 MultiOutput LightGBM 模型預測未來 60–90 分鐘車速,結合 SHAP 解釋與風險分級,提供使用者直觀的預警視角。 ## 🎯 預測目標 - 預測未來 60/70/80/90 分鐘的平均車速(km/h) - 根據預測車速進行壅塞等級分類(低、中、高風險) - 使用 SHAP 分析顯示主要造成壅塞的前兆特徵 ## 🔍 使用資料 - **資料來源**:交通部高速公路局(Highway Bureau, MOTC) - **時間範圍**:2025/03,四個週末假日資料(不含連假) - **路段範圍**:國道一號楊梅交流道至新竹交流道(南北雙向) - **特徵範圍**:時間、空間、歷史車流量/車速、遲滯特徵等約 10+ 欄位 ## 🧠 模型資訊 - **演算法**:LightGBM(MultiOutput Regression) - **訓練方式**:逐步訓練 + 滾動預測(多步預測) - **誤差指標**: - MAE 約 5.2 km/h - R² 約 0.7(驗證集) ## 🗺️ 解釋性分析 - 使用 Tree SHAP 解釋單筆預測,並透過 Waterfall 視覺化展示特徵影響力 - 針對壅塞前兆進行 SHAP 排序與歸因分析(例:公里位置、時間點、車流量、車速) ## 🖥️ 使用方式 1. 開啟 [Hugging Face Space](https://huggingface.co/spaces/your-username/god-eye-traffic-predictor) 2. 選擇「預測時間點」與輸入「即時特徵值」 3. 查看車速預測與風險等級,點擊以檢視 SHAP 解釋圖 ## 🚦 預測輸出說明 | 時間點 | 預測車速 | 風險等級 | SHAP 解釋 | |--------|------------|--------------|--------------| | +60 分 | 78.2 km/h | 低風險 | SHAP waterfall 圖 | | +90 分 | 63.5 km/h | 中風險 | SHAP waterfall 圖 | ## 📊 前端架構 - **框架**:Streamlit - **部署**:Hugging Face Spaces - **自動更新**:每次預測自動刷新畫面顯示結果 ## 📜 License MIT License / 本作品僅供學術與非商業研究用途,請勿未經授權轉作商業應用。 --- *本專案參與「114年國道智慧交通管理創意競賽」初賽作品。*
jesusoctavioas/Qwen3-4B-mlx-4Bit
jesusoctavioas
2025-08-30T08:26:52Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mlx", "conversational", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-08-30T08:25:37Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-4B tags: - mlx --- # jesusoctavioas/Qwen3-4B-mlx-4Bit The Model [jesusoctavioas/Qwen3-4B-mlx-4Bit](https://huggingface.co/jesusoctavioas/Qwen3-4B-mlx-4Bit) was converted to MLX format from [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) using mlx-lm version **0.26.4**. ## Use with mlx ```bash # Create a virtual enviroment if needed. python -m venv mlx-venv # then activate the virtual enviroment if needed. source mlx-venv/bin/activate # then install mlx. pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("jesusoctavioas/Qwen3-4B-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
yukiharada1228/resnet18_abn_cifar100
yukiharada1228
2025-08-30T08:19:36Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-08-30T06:27:08Z
--- library_name: transformers base_model: resnet18 tags: - generated_from_trainer model-index: - name: resnet18_abn_cifar100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet18_abn_cifar100 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2604 - Top1: 0.7787 - Top5: 0.9424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 128 - eval_batch_size: 100 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Top1 | Top5 | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 7.4388 | 1.0 | 391 | 7.3160 | 0.1663 | 0.4273 | | 6.4398 | 2.0 | 782 | 6.3391 | 0.2584 | 0.5679 | | 5.6888 | 3.0 | 1173 | 6.1193 | 0.2825 | 0.6057 | | 5.1265 | 4.0 | 1564 | 5.2831 | 0.3708 | 0.7032 | | 4.5996 | 5.0 | 1955 | 5.1119 | 0.3841 | 0.7045 | | 4.364 | 6.0 | 2346 | 4.6068 | 0.4414 | 0.7726 | | 4.1311 | 7.0 | 2737 | 5.0427 | 0.3945 | 0.7172 | | 3.962 | 8.0 | 3128 | 4.3959 | 0.4778 | 0.7891 | | 3.8391 | 9.0 | 3519 | 4.3315 | 0.4753 | 0.7946 | | 3.7897 | 10.0 | 3910 | 4.2795 | 0.4889 | 0.8081 | | 3.6744 | 11.0 | 4301 | 4.6805 | 0.4476 | 0.7489 | | 3.6001 | 12.0 | 4692 | 4.2038 | 0.494 | 0.8019 | | 3.5006 | 13.0 | 5083 | 4.1031 | 0.5171 | 0.8156 | | 3.4815 | 14.0 | 5474 | 4.0947 | 0.5237 | 0.8148 | | 3.4657 | 15.0 | 5865 | 4.1398 | 0.4998 | 0.8167 | | 3.4094 | 16.0 | 6256 | 4.0485 | 0.5345 | 0.8267 | | 3.3807 | 17.0 | 6647 | 3.9729 | 0.531 | 0.8182 | | 3.3794 | 18.0 | 7038 | 4.3892 | 0.4975 | 0.7941 | | 3.3518 | 19.0 | 7429 | 4.1058 | 0.5166 | 0.8196 | | 3.2304 | 20.0 | 7820 | 4.4831 | 0.4752 | 0.7873 | | 3.3055 | 21.0 | 8211 | 3.9920 | 0.5393 | 0.8208 | | 3.3119 | 22.0 | 8602 | 3.9284 | 0.5427 | 0.8308 | | 3.22 | 23.0 | 8993 | 3.8553 | 0.5388 | 0.8265 | | 3.2501 | 24.0 | 9384 | 5.2410 | 0.4297 | 0.718 | | 3.1796 | 25.0 | 9775 | 4.4711 | 0.4953 | 0.7882 | | 3.1825 | 26.0 | 10166 | 4.0062 | 0.5332 | 0.8288 | | 3.1397 | 27.0 | 10557 | 4.1261 | 0.5447 | 0.8229 | | 3.1377 | 28.0 | 10948 | 4.1268 | 0.5329 | 0.8259 | | 3.1383 | 29.0 | 11339 | 3.7642 | 0.5556 | 0.8452 | | 3.1489 | 30.0 | 11730 | 3.8621 | 0.5568 | 0.8399 | | 3.1712 | 31.0 | 12121 | 4.4271 | 0.5344 | 0.8241 | | 3.1041 | 32.0 | 12512 | 3.7123 | 0.5617 | 0.8485 | | 3.1415 | 33.0 | 12903 | 4.0142 | 0.5288 | 0.8209 | | 3.0629 | 34.0 | 13294 | 4.0318 | 0.5336 | 0.8333 | | 3.0791 | 35.0 | 13685 | 4.3695 | 0.5253 | 0.804 | | 3.1474 | 36.0 | 14076 | 3.7375 | 0.5641 | 0.8531 | | 3.0529 | 37.0 | 14467 | 3.7972 | 0.5579 | 0.8372 | | 3.0873 | 38.0 | 14858 | 4.2765 | 0.5118 | 0.8186 | | 3.0809 | 39.0 | 15249 | 4.1218 | 0.5293 | 0.8371 | | 2.9886 | 40.0 | 15640 | 4.3262 | 0.5133 | 0.7994 | | 3.0661 | 41.0 | 16031 | 4.4781 | 0.5022 | 0.796 | | 3.0788 | 42.0 | 16422 | 4.0753 | 0.5483 | 0.8129 | | 3.0237 | 43.0 | 16813 | 3.7439 | 0.5767 | 0.8464 | | 3.0983 | 44.0 | 17204 | 3.6443 | 0.5777 | 0.8554 | | 3.0467 | 45.0 | 17595 | 3.9888 | 0.5533 | 0.8331 | | 3.0167 | 46.0 | 17986 | 3.6772 | 0.5583 | 0.8447 | | 3.07 | 47.0 | 18377 | 3.7118 | 0.5793 | 0.8517 | | 2.9652 | 48.0 | 18768 | 3.9403 | 0.5561 | 0.8444 | | 3.0139 | 49.0 | 19159 | 3.6890 | 0.5663 | 0.8572 | | 3.0674 | 50.0 | 19550 | 4.4362 | 0.5345 | 0.8344 | | 3.0761 | 51.0 | 19941 | 4.4229 | 0.5334 | 0.8172 | | 3.0641 | 52.0 | 20332 | 4.7560 | 0.463 | 0.7574 | | 3.0502 | 53.0 | 20723 | 4.7270 | 0.4876 | 0.769 | | 3.0099 | 54.0 | 21114 | 4.0329 | 0.5198 | 0.8258 | | 2.9899 | 55.0 | 21505 | 3.7874 | 0.5708 | 0.8497 | | 3.018 | 56.0 | 21896 | 3.8048 | 0.5695 | 0.8524 | | 2.9708 | 57.0 | 22287 | 4.1157 | 0.5344 | 0.8163 | | 2.9148 | 58.0 | 22678 | 4.1128 | 0.5403 | 0.8417 | | 2.9904 | 59.0 | 23069 | 3.8922 | 0.5554 | 0.8437 | | 2.9977 | 60.0 | 23460 | 3.9310 | 0.5427 | 0.829 | | 3.0047 | 61.0 | 23851 | 3.9865 | 0.5523 | 0.8351 | | 2.9837 | 62.0 | 24242 | 4.0753 | 0.5424 | 0.8224 | | 2.9772 | 63.0 | 24633 | 4.1512 | 0.538 | 0.8332 | | 3.0345 | 64.0 | 25024 | 3.5358 | 0.5924 | 0.8658 | | 2.9638 | 65.0 | 25415 | 4.3996 | 0.5087 | 0.7945 | | 3.0266 | 66.0 | 25806 | 3.7508 | 0.5802 | 0.8496 | | 2.9663 | 67.0 | 26197 | 3.8379 | 0.5707 | 0.8494 | | 2.9998 | 68.0 | 26588 | 4.0652 | 0.5392 | 0.8216 | | 3.0019 | 69.0 | 26979 | 3.9790 | 0.5447 | 0.8239 | | 3.013 | 70.0 | 27370 | 3.6032 | 0.5691 | 0.8612 | | 2.9271 | 71.0 | 27761 | 4.1823 | 0.5473 | 0.8291 | | 2.986 | 72.0 | 28152 | 4.3817 | 0.4993 | 0.7822 | | 2.9893 | 73.0 | 28543 | 3.6689 | 0.5806 | 0.8575 | | 2.9511 | 74.0 | 28934 | 3.8535 | 0.5501 | 0.8221 | | 2.9433 | 75.0 | 29325 | 3.7887 | 0.5656 | 0.8421 | | 2.8952 | 76.0 | 29716 | 3.5734 | 0.5883 | 0.8652 | | 2.9337 | 77.0 | 30107 | 4.1062 | 0.5305 | 0.8214 | | 3.0154 | 78.0 | 30498 | 4.0138 | 0.5355 | 0.8309 | | 2.9208 | 79.0 | 30889 | 3.8719 | 0.5504 | 0.8341 | | 2.8892 | 80.0 | 31280 | 4.0809 | 0.5319 | 0.8237 | | 2.9331 | 81.0 | 31671 | 3.5403 | 0.6008 | 0.8639 | | 2.9134 | 82.0 | 32062 | 3.6800 | 0.5843 | 0.8546 | | 2.9622 | 83.0 | 32453 | 3.8804 | 0.5647 | 0.8437 | | 2.9544 | 84.0 | 32844 | 3.7246 | 0.5814 | 0.8517 | | 2.9223 | 85.0 | 33235 | 3.5611 | 0.5882 | 0.865 | | 2.9563 | 86.0 | 33626 | 4.2245 | 0.5138 | 0.8 | | 2.9392 | 87.0 | 34017 | 3.6025 | 0.5889 | 0.8648 | | 2.9204 | 88.0 | 34408 | 3.6211 | 0.5928 | 0.8544 | | 2.9161 | 89.0 | 34799 | 3.6070 | 0.589 | 0.8607 | | 2.9576 | 90.0 | 35190 | 3.9418 | 0.5688 | 0.851 | | 2.9046 | 91.0 | 35581 | 3.9653 | 0.5452 | 0.8186 | | 2.9703 | 92.0 | 35972 | 3.6643 | 0.5711 | 0.8562 | | 2.9237 | 93.0 | 36363 | 3.7664 | 0.5673 | 0.8457 | | 2.9066 | 94.0 | 36754 | 3.7217 | 0.578 | 0.8517 | | 2.9329 | 95.0 | 37145 | 3.6711 | 0.5829 | 0.8533 | | 2.8649 | 96.0 | 37536 | 3.7170 | 0.5771 | 0.8459 | | 2.9258 | 97.0 | 37927 | 3.9320 | 0.5704 | 0.8421 | | 2.9135 | 98.0 | 38318 | 4.0597 | 0.5369 | 0.8296 | | 2.9051 | 99.0 | 38709 | 3.7008 | 0.5874 | 0.8587 | | 2.934 | 100.0 | 39100 | 3.9568 | 0.5477 | 0.8406 | | 2.836 | 101.0 | 39491 | 3.3552 | 0.6149 | 0.8761 | | 2.8905 | 102.0 | 39882 | 4.3550 | 0.5049 | 0.8037 | | 2.9637 | 103.0 | 40273 | 4.0608 | 0.5505 | 0.8164 | | 2.9111 | 104.0 | 40664 | 3.8790 | 0.5534 | 0.8374 | | 2.9704 | 105.0 | 41055 | 4.0175 | 0.5464 | 0.826 | | 2.8906 | 106.0 | 41446 | 3.6246 | 0.5832 | 0.8649 | | 2.89 | 107.0 | 41837 | 4.0702 | 0.5439 | 0.8271 | | 2.906 | 108.0 | 42228 | 4.1885 | 0.5132 | 0.8047 | | 2.938 | 109.0 | 42619 | 4.0603 | 0.53 | 0.8128 | | 3.0279 | 110.0 | 43010 | 4.0727 | 0.5418 | 0.832 | | 2.9643 | 111.0 | 43401 | 3.6941 | 0.5695 | 0.8617 | | 2.8987 | 112.0 | 43792 | 3.7293 | 0.579 | 0.8496 | | 2.9106 | 113.0 | 44183 | 3.9642 | 0.5572 | 0.8257 | | 2.9009 | 114.0 | 44574 | 4.3196 | 0.5429 | 0.8253 | | 2.8418 | 115.0 | 44965 | 3.7210 | 0.5843 | 0.8717 | | 2.8576 | 116.0 | 45356 | 4.0749 | 0.5458 | 0.8341 | | 2.9192 | 117.0 | 45747 | 3.9535 | 0.5337 | 0.8175 | | 2.8893 | 118.0 | 46138 | 4.1837 | 0.5318 | 0.8171 | | 2.9258 | 119.0 | 46529 | 3.5189 | 0.5943 | 0.8662 | | 2.8717 | 120.0 | 46920 | 3.9686 | 0.5596 | 0.8315 | | 2.877 | 121.0 | 47311 | 3.6360 | 0.5858 | 0.8601 | | 2.8959 | 122.0 | 47702 | 3.7258 | 0.5851 | 0.8585 | | 2.9161 | 123.0 | 48093 | 4.2020 | 0.5383 | 0.8276 | | 2.8443 | 124.0 | 48484 | 4.0677 | 0.5359 | 0.8281 | | 2.8563 | 125.0 | 48875 | 3.5917 | 0.5961 | 0.8708 | | 2.8845 | 126.0 | 49266 | 3.6117 | 0.6046 | 0.8693 | | 2.9027 | 127.0 | 49657 | 3.9661 | 0.5683 | 0.8396 | | 2.9197 | 128.0 | 50048 | 4.0279 | 0.5367 | 0.8181 | | 2.8579 | 129.0 | 50439 | 3.8712 | 0.5534 | 0.8341 | | 2.8542 | 130.0 | 50830 | 3.6853 | 0.5744 | 0.8413 | | 2.9391 | 131.0 | 51221 | 4.0594 | 0.5362 | 0.825 | | 2.851 | 132.0 | 51612 | 3.9716 | 0.5581 | 0.8228 | | 2.9059 | 133.0 | 52003 | 3.6744 | 0.5717 | 0.8526 | | 2.8988 | 134.0 | 52394 | 3.8076 | 0.5722 | 0.8492 | | 2.9035 | 135.0 | 52785 | 3.5326 | 0.5922 | 0.8661 | | 2.8424 | 136.0 | 53176 | 4.1388 | 0.5305 | 0.8143 | | 2.8244 | 137.0 | 53567 | 4.1921 | 0.5237 | 0.8036 | | 2.9039 | 138.0 | 53958 | 4.1438 | 0.5276 | 0.8338 | | 2.8494 | 139.0 | 54349 | 4.1365 | 0.5348 | 0.8099 | | 2.8668 | 140.0 | 54740 | 3.8972 | 0.5758 | 0.8462 | | 2.9249 | 141.0 | 55131 | 4.2609 | 0.5351 | 0.8159 | | 2.8924 | 142.0 | 55522 | 3.7532 | 0.5786 | 0.8511 | | 2.921 | 143.0 | 55913 | 3.6086 | 0.6067 | 0.8707 | | 2.9066 | 144.0 | 56304 | 4.0826 | 0.5487 | 0.8371 | | 2.8571 | 145.0 | 56695 | 4.4056 | 0.5193 | 0.8064 | | 2.8358 | 146.0 | 57086 | 4.0599 | 0.5634 | 0.8461 | | 2.8739 | 147.0 | 57477 | 4.9455 | 0.5166 | 0.8081 | | 2.913 | 148.0 | 57868 | 4.2058 | 0.5301 | 0.8131 | | 2.8189 | 149.0 | 58259 | 4.2209 | 0.5379 | 0.8056 | | 2.9042 | 150.0 | 58650 | 3.8923 | 0.5557 | 0.8372 | | 1.9013 | 151.0 | 59041 | 2.2349 | 0.7537 | 0.9413 | | 1.8449 | 152.0 | 59432 | 2.1446 | 0.7638 | 0.9471 | | 1.6762 | 153.0 | 59823 | 2.1349 | 0.7647 | 0.9454 | | 1.6799 | 154.0 | 60214 | 2.1468 | 0.7615 | 0.9459 | | 1.6171 | 155.0 | 60605 | 2.1154 | 0.7674 | 0.9472 | | 1.5704 | 156.0 | 60996 | 2.1415 | 0.7639 | 0.9467 | | 1.5604 | 157.0 | 61387 | 2.1328 | 0.7668 | 0.9463 | | 1.5115 | 158.0 | 61778 | 2.1240 | 0.7664 | 0.9471 | | 1.4914 | 159.0 | 62169 | 2.1091 | 0.7656 | 0.9468 | | 1.4706 | 160.0 | 62560 | 2.1281 | 0.7692 | 0.9466 | | 1.4299 | 161.0 | 62951 | 2.1480 | 0.7644 | 0.946 | | 1.4211 | 162.0 | 63342 | 2.1418 | 0.7683 | 0.9457 | | 1.4215 | 163.0 | 63733 | 2.1524 | 0.7667 | 0.9434 | | 1.3869 | 164.0 | 64124 | 2.1853 | 0.7569 | 0.9441 | | 1.369 | 165.0 | 64515 | 2.1882 | 0.7614 | 0.9425 | | 1.4072 | 166.0 | 64906 | 2.1751 | 0.7621 | 0.9445 | | 1.3343 | 167.0 | 65297 | 2.2029 | 0.7605 | 0.9433 | | 1.3151 | 168.0 | 65688 | 2.1958 | 0.7621 | 0.9425 | | 1.3601 | 169.0 | 66079 | 2.2200 | 0.7579 | 0.9396 | | 1.325 | 170.0 | 66470 | 2.1903 | 0.7647 | 0.9386 | | 1.3387 | 171.0 | 66861 | 2.2230 | 0.7589 | 0.9366 | | 1.344 | 172.0 | 67252 | 2.2253 | 0.7599 | 0.9381 | | 1.3242 | 173.0 | 67643 | 2.2298 | 0.7557 | 0.9393 | | 1.3333 | 174.0 | 68034 | 2.2981 | 0.7517 | 0.9377 | | 1.346 | 175.0 | 68425 | 2.2547 | 0.7573 | 0.9395 | | 1.2947 | 176.0 | 68816 | 2.3353 | 0.7498 | 0.9331 | | 1.3434 | 177.0 | 69207 | 2.2535 | 0.7595 | 0.9391 | | 1.2904 | 178.0 | 69598 | 2.2742 | 0.7538 | 0.937 | | 1.3208 | 179.0 | 69989 | 2.2825 | 0.7536 | 0.9392 | | 1.3169 | 180.0 | 70380 | 2.2843 | 0.7586 | 0.9387 | | 1.3413 | 181.0 | 70771 | 2.3063 | 0.7494 | 0.9366 | | 1.3751 | 182.0 | 71162 | 2.3235 | 0.7542 | 0.934 | | 1.3599 | 183.0 | 71553 | 2.2807 | 0.7595 | 0.9384 | | 1.3334 | 184.0 | 71944 | 2.3419 | 0.7516 | 0.9362 | | 1.3298 | 185.0 | 72335 | 2.3371 | 0.7549 | 0.9335 | | 1.3699 | 186.0 | 72726 | 2.3436 | 0.7506 | 0.9336 | | 1.3449 | 187.0 | 73117 | 2.2879 | 0.7599 | 0.9356 | | 1.3572 | 188.0 | 73508 | 2.3465 | 0.7529 | 0.9351 | | 1.3514 | 189.0 | 73899 | 2.3553 | 0.7494 | 0.9338 | | 1.374 | 190.0 | 74290 | 2.3444 | 0.7534 | 0.9309 | | 1.356 | 191.0 | 74681 | 2.3551 | 0.7499 | 0.9352 | | 1.3504 | 192.0 | 75072 | 2.3725 | 0.7496 | 0.9333 | | 1.3594 | 193.0 | 75463 | 2.3538 | 0.7527 | 0.9331 | | 1.3578 | 194.0 | 75854 | 2.4372 | 0.7477 | 0.9317 | | 1.3726 | 195.0 | 76245 | 2.4402 | 0.7395 | 0.9318 | | 1.376 | 196.0 | 76636 | 2.4342 | 0.7519 | 0.9305 | | 1.3744 | 197.0 | 77027 | 2.3781 | 0.7536 | 0.9346 | | 1.4077 | 198.0 | 77418 | 2.4271 | 0.7481 | 0.9293 | | 1.4072 | 199.0 | 77809 | 2.4525 | 0.7454 | 0.9306 | | 1.4123 | 200.0 | 78200 | 2.4740 | 0.7447 | 0.9296 | | 1.4169 | 201.0 | 78591 | 2.5034 | 0.7405 | 0.925 | | 1.4408 | 202.0 | 78982 | 2.4648 | 0.7421 | 0.9271 | | 1.4072 | 203.0 | 79373 | 2.4620 | 0.7439 | 0.9283 | | 1.4429 | 204.0 | 79764 | 2.5030 | 0.7387 | 0.9279 | | 1.445 | 205.0 | 80155 | 2.4865 | 0.7449 | 0.9294 | | 1.4643 | 206.0 | 80546 | 2.4842 | 0.7412 | 0.9301 | | 1.4716 | 207.0 | 80937 | 2.4839 | 0.7431 | 0.9308 | | 1.4975 | 208.0 | 81328 | 2.4602 | 0.7487 | 0.9312 | | 1.4801 | 209.0 | 81719 | 2.5342 | 0.7333 | 0.9252 | | 1.4984 | 210.0 | 82110 | 2.4870 | 0.7423 | 0.9302 | | 1.4958 | 211.0 | 82501 | 2.5838 | 0.7329 | 0.9242 | | 1.4948 | 212.0 | 82892 | 2.5103 | 0.7395 | 0.9325 | | 1.5114 | 213.0 | 83283 | 2.5504 | 0.7365 | 0.9276 | | 1.4707 | 214.0 | 83674 | 2.6205 | 0.7354 | 0.9243 | | 1.5326 | 215.0 | 84065 | 2.5910 | 0.7354 | 0.9251 | | 1.5303 | 216.0 | 84456 | 2.6825 | 0.7195 | 0.9152 | | 1.5423 | 217.0 | 84847 | 2.6442 | 0.7347 | 0.925 | | 1.5461 | 218.0 | 85238 | 2.5856 | 0.7347 | 0.926 | | 1.5607 | 219.0 | 85629 | 2.5510 | 0.734 | 0.9282 | | 1.5536 | 220.0 | 86020 | 2.7130 | 0.723 | 0.9182 | | 1.5546 | 221.0 | 86411 | 2.5694 | 0.7413 | 0.929 | | 1.5605 | 222.0 | 86802 | 2.5428 | 0.737 | 0.9255 | | 1.5485 | 223.0 | 87193 | 2.5787 | 0.7332 | 0.9242 | | 1.581 | 224.0 | 87584 | 2.6230 | 0.7304 | 0.9215 | | 1.5877 | 225.0 | 87975 | 2.6150 | 0.729 | 0.9227 | | 1.3153 | 226.0 | 88366 | 2.2853 | 0.7741 | 0.9405 | | 1.3065 | 227.0 | 88757 | 2.2740 | 0.7752 | 0.941 | | 1.3005 | 228.0 | 89148 | 2.2598 | 0.7748 | 0.9414 | | 1.2804 | 229.0 | 89539 | 2.2627 | 0.7772 | 0.9386 | | 1.2509 | 230.0 | 89930 | 2.2680 | 0.7764 | 0.9419 | | 1.2814 | 231.0 | 90321 | 2.2774 | 0.7762 | 0.9427 | | 1.2713 | 232.0 | 90712 | 2.2765 | 0.7759 | 0.9417 | | 1.2561 | 233.0 | 91103 | 2.2680 | 0.7755 | 0.9411 | | 1.2579 | 234.0 | 91494 | 2.2638 | 0.7756 | 0.9426 | | 1.2559 | 235.0 | 91885 | 2.2604 | 0.7788 | 0.9424 | | 1.2367 | 236.0 | 92276 | 2.2840 | 0.7749 | 0.9405 | | 1.233 | 237.0 | 92667 | 2.2828 | 0.774 | 0.9412 | | 1.2154 | 238.0 | 93058 | 2.2646 | 0.7774 | 0.9418 | | 1.2495 | 239.0 | 93449 | 2.2694 | 0.7747 | 0.9416 | | 1.2215 | 240.0 | 93840 | 2.2873 | 0.7739 | 0.9398 | | 1.2342 | 241.0 | 94231 | 2.2746 | 0.7765 | 0.9407 | | 1.2224 | 242.0 | 94622 | 2.2624 | 0.7744 | 0.9405 | | 1.197 | 243.0 | 95013 | 2.2713 | 0.7765 | 0.9402 | | 1.212 | 244.0 | 95404 | 2.2823 | 0.7764 | 0.9392 | | 1.209 | 245.0 | 95795 | 2.2724 | 0.7754 | 0.9411 | | 1.2024 | 246.0 | 96186 | 2.2728 | 0.7775 | 0.9394 | | 1.1872 | 247.0 | 96577 | 2.2704 | 0.777 | 0.9412 | | 1.2019 | 248.0 | 96968 | 2.2703 | 0.7742 | 0.9413 | | 1.2169 | 249.0 | 97359 | 2.2772 | 0.7748 | 0.9388 | | 1.1751 | 250.0 | 97750 | 2.2744 | 0.7753 | 0.9407 | | 1.1965 | 251.0 | 98141 | 2.2719 | 0.7767 | 0.941 | | 1.1943 | 252.0 | 98532 | 2.2750 | 0.7754 | 0.9385 | | 1.1933 | 253.0 | 98923 | 2.2681 | 0.7747 | 0.9408 | | 1.1682 | 254.0 | 99314 | 2.2833 | 0.7759 | 0.9421 | | 1.1849 | 255.0 | 99705 | 2.2829 | 0.777 | 0.9404 | | 1.1909 | 256.0 | 100096 | 2.2621 | 0.7772 | 0.9406 | | 1.1831 | 257.0 | 100487 | 2.2884 | 0.7749 | 0.941 | | 1.1837 | 258.0 | 100878 | 2.3022 | 0.7748 | 0.9396 | | 1.1742 | 259.0 | 101269 | 2.2827 | 0.774 | 0.9418 | | 1.1738 | 260.0 | 101660 | 2.2993 | 0.7746 | 0.9413 | | 1.1631 | 261.0 | 102051 | 2.2771 | 0.7745 | 0.9405 | | 1.1578 | 262.0 | 102442 | 2.2859 | 0.7737 | 0.9403 | | 1.1902 | 263.0 | 102833 | 2.2828 | 0.7734 | 0.9403 | | 1.1724 | 264.0 | 103224 | 2.2831 | 0.7749 | 0.9396 | | 1.1701 | 265.0 | 103615 | 2.2908 | 0.7733 | 0.9422 | | 1.1645 | 266.0 | 104006 | 2.2924 | 0.7762 | 0.939 | | 1.1743 | 267.0 | 104397 | 2.2812 | 0.7771 | 0.9411 | | 1.1783 | 268.0 | 104788 | 2.2908 | 0.7727 | 0.9388 | | 1.1714 | 269.0 | 105179 | 2.2794 | 0.7769 | 0.9382 | | 1.1571 | 270.0 | 105570 | 2.2961 | 0.7718 | 0.94 | | 1.1696 | 271.0 | 105961 | 2.2921 | 0.7723 | 0.9378 | | 1.163 | 272.0 | 106352 | 2.2869 | 0.7743 | 0.9401 | | 1.1705 | 273.0 | 106743 | 2.2915 | 0.7716 | 0.9382 | | 1.1425 | 274.0 | 107134 | 2.3003 | 0.7711 | 0.9387 | | 1.1552 | 275.0 | 107525 | 2.3153 | 0.768 | 0.939 | | 1.1603 | 276.0 | 107916 | 2.3000 | 0.7739 | 0.9408 | | 1.1677 | 277.0 | 108307 | 2.2985 | 0.7747 | 0.9363 | | 1.16 | 278.0 | 108698 | 2.3062 | 0.7712 | 0.9393 | | 1.1729 | 279.0 | 109089 | 2.2971 | 0.7741 | 0.9382 | | 1.1608 | 280.0 | 109480 | 2.3076 | 0.7714 | 0.9388 | | 1.1615 | 281.0 | 109871 | 2.3178 | 0.7721 | 0.9385 | | 1.1637 | 282.0 | 110262 | 2.3096 | 0.7713 | 0.9377 | | 1.1581 | 283.0 | 110653 | 2.3123 | 0.7678 | 0.939 | | 1.1594 | 284.0 | 111044 | 2.3009 | 0.7712 | 0.9401 | | 1.143 | 285.0 | 111435 | 2.3090 | 0.7703 | 0.9388 | | 1.1422 | 286.0 | 111826 | 2.3144 | 0.7736 | 0.9384 | | 1.1503 | 287.0 | 112217 | 2.3128 | 0.7739 | 0.9396 | | 1.1653 | 288.0 | 112608 | 2.3021 | 0.7711 | 0.938 | | 1.1749 | 289.0 | 112999 | 2.3116 | 0.7715 | 0.9379 | | 1.1535 | 290.0 | 113390 | 2.3051 | 0.7736 | 0.9389 | | 1.1523 | 291.0 | 113781 | 2.3109 | 0.7694 | 0.9372 | | 1.1498 | 292.0 | 114172 | 2.3135 | 0.772 | 0.9379 | | 1.1446 | 293.0 | 114563 | 2.3121 | 0.7723 | 0.9395 | | 1.1481 | 294.0 | 114954 | 2.3099 | 0.7716 | 0.9374 | | 1.1609 | 295.0 | 115345 | 2.3071 | 0.7737 | 0.9375 | | 1.1457 | 296.0 | 115736 | 2.3273 | 0.7724 | 0.9375 | | 1.138 | 297.0 | 116127 | 2.3189 | 0.7698 | 0.9371 | | 1.157 | 298.0 | 116518 | 2.3139 | 0.7722 | 0.9388 | | 1.1446 | 299.0 | 116909 | 2.3094 | 0.7705 | 0.9375 | | 1.1387 | 300.0 | 117300 | 2.3019 | 0.7735 | 0.9377 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
fatehcabreraadv/blockassist-bc-tawny_alert_dingo_1756539841
fatehcabreraadv
2025-08-30T08:13:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny alert dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:13:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny alert dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-32m-nq-phaseA-ft-st
RikiyaT
2025-08-30T08:11:31Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T08:11:26Z
# RikiyaT/mxbai-ettin-32m-nq-phaseA-ft-st Dense retrieval encoder (Ettin / ModernBERT) — SentenceTransformers - Base model: RikiyaT/mxbai-ettin-32m-pretrained - Pooling: mean - Projection: linear to 256 dims (bias=False) **Transformers variant**: [RikiyaT/mxbai-ettin-32m-nq-phaseA-ft](https://huggingface.co/RikiyaT/mxbai-ettin-32m-nq-phaseA-ft) ### Usage ```python from sentence_transformers import SentenceTransformer m = SentenceTransformer("RikiyaT/mxbai-ettin-32m-nq-phaseA-ft-st", trust_remote_code=True) q = m.encode(["search_query: what is dense retrieval?"], normalize_embeddings=True) d = m.encode(["search_document: dense retrieval uses embeddings ..."], normalize_embeddings=True) print((q @ d.T)) ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
liukevin666/blockassist-bc-yawning_striped_cassowary_1756541425
liukevin666
2025-08-30T08:11:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:11:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Completo-video-do-laila-frizon-video/Completo-video.do.laila.frizon.video.en.twitter.y.telegram
Completo-video-do-laila-frizon-video
2025-08-30T08:11:05Z
0
0
null
[ "region:us" ]
null
2025-08-30T08:10:46Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
bah63843/blockassist-bc-plump_fast_antelope_1756541406
bah63843
2025-08-30T08:11:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:10:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/gpt-oss-20b-8bit
NexVeridian
2025-08-30T08:10:41Z
633
0
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-05T23:52:45Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-20b --- # NexVeridian/gpt-oss-20b-8bit This model [NexVeridian/gpt-oss-20b-8bit](https://huggingface.co/NexVeridian/gpt-oss-20b-8bit) was converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) using mlx-lm version **0.27.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/gpt-oss-20b-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Bobalo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_zealous_lobster
Bobalo
2025-08-30T08:10:31Z
14
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am territorial zealous lobster", "trl", "genrl-swarm", "I am territorial_zealous_lobster", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-14T13:25:51Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_zealous_lobster tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am territorial zealous lobster - trl - genrl-swarm - I am territorial_zealous_lobster licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_zealous_lobster This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Bobalo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-territorial_zealous_lobster", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
bah63843/blockassist-bc-plump_fast_antelope_1756541166
bah63843
2025-08-30T08:07:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:06:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_llm2_run1_gen7_S_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-30T08:05:16Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-30T08:05:02Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnerYubo/blockassist-bc-pawing_downy_anaconda_1756541071
AnerYubo
2025-08-30T08:04:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing downy anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:04:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing downy anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-screeching_mute_lemur_1756541062
AnerYubo
2025-08-30T08:04:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching mute lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:04:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching mute lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756539372
koloni
2025-08-30T08:02:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:02:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jeganbaskar/snap-ai
Jeganbaskar
2025-08-30T08:02:09Z
72
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T07:21:39Z
--- library_name: transformers model_name: snap-ai tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for snap-ai This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Jeganbaskar/snap-ai", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
doguilmak/inferencevision-pythia-1B
doguilmak
2025-08-30T08:01:54Z
20
0
null
[ "safetensors", "gpt_neox", "question-answering", "causal-lm", "fine-tuned", "pytorch", "en", "arxiv:2304.01373", "base_model:EleutherAI/pythia-1b", "base_model:finetune:EleutherAI/pythia-1b", "license:mit", "model-index", "region:us" ]
question-answering
2025-05-20T10:39:51Z
--- license: mit language: - en base_model: - EleutherAI/pythia-1b pipeline_tag: question-answering tags: - question-answering - causal-lm - fine-tuned - pytorch provider: huggingface, model: pythia-1B, task: question-answering model-index: - name: doguilmak/pythia-1b-inferencevision-qa results: - task: type: question-answering dataset: name: inferencevision_docs type: inferencevision_docs split: evaluation metrics: - name: Eval Loss type: cross-entropy value: 0.03725 source: name: Fine-tuning logs url: https://https://huggingface.co/doguilmak/inferencevision-pythia-1B/tree/main --- # Model Card for InferenceVision QA Fine-Tuned Model ![InferenceVisionCover](https://raw.githubusercontent.com/doguilmak/InferenceVision/refs/heads/main/assets/Inference%20Vision%20Cover.png) ## Model Description This model is a fine-tuned variant of the EleutherAI/pythia-1b causal language model, specifically adapted to handle interactive question-answering over the InferenceVision documentation. By leveraging domain-specific question–answer pairs, the model has learned to produce precise, contextually relevant responses, making it an ideal backbone for developer assistants, chatbots, and documentation-driven interfaces. ## Intended Use - **Primary Use:** Provide accurate, documentation-based answers to user queries about InferenceVision. - **Use Cases:** Integration into chat applications, developer portals, knowledge retrieval systems, and automated support bots. For a hands-on guide on fine-tuning and using this model with **InferenceVision**, check out the [interactive notebook](https://github.com/doguilmak/InferenceVision/blob/main/usage/InferenveVision_LLM_QA.ipynb). **Out-of-Scope:** - Legal, medical, or financial advice beyond the scope of InferenceVision documentation. - Generating content unrelated to the provided training material. ## Training Data The model was fine-tuned on a custom dataset `inferencevision_docs.jsonl`, containing **760** high-quality question–answer pairs sourced directly from InferenceVision’s official documentation. These QA pairs span key areas such as: - **Installation & Setup:** Commands, environment requirements, and troubleshooting guidelines. - **Core API Usage:** Function parameters, input/output formats, and typical usage scenarios. - **Advanced Features:** Batch processing workflows, performance optimization tips, and integration examples. - **Error Handling:** Common error codes, explanations, and recommended solutions. **Preprocessing Steps:** 1. **Deduplication & Cleanup:** Eliminated duplicate or near-duplicate entries to prevent bias. 2. **Tokenization:** Employed the EleutherAI/pythia-1b’s byte-pair encoding with a maximum sequence length of 2,048 tokens. 3. **Context Windowing:** For multipart questions, context segments were extracted to ensure both the query and relevant documentation snippet fit within the model’s context window. 4. **Quality Validation:** Automated checks and manual reviews removed any QA pairs with unclear or incomplete answers. The dataset was split into an **80% training set** (608 examples) and a **20% evaluation set** (152 examples), using stratified sampling to preserve topic distribution across both splits. ## Training Procedure & Hyperparameters Fine-tuning was performed using Hugging Face’s `Trainer` API with the following `TrainingArguments`: ```python training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=1e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=16, weight_decay=0.01, logging_dir="./logs", load_best_model_at_end=True, save_total_limit=1, metric_for_best_model="eval_loss", greater_is_better=False ) ``` Training leveraged GPU acceleration when available. By saving only the best checkpoint (based on lowest `eval_loss`), storage requirements were minimized without sacrificing model quality. ## Evaluation Results After 16 epochs, the training process yielded the following key outcomes: - **Global Steps:** 1,216 - **Final Training Loss:** 0.03725 - **Epochs Completed:** 16.0 - **Training Runtime:** 2,572.28 seconds (trained on an NVIDIA A100 40GB GPU and took ~42.9 minutes) - **Training Throughput:** 3.78 samples/sec, 0.47 steps/sec - **Total FLOPs:** 2.72×10¹⁶ ## Limitations & Biases - Although highly accurate on InferenceVision topics, the model may generate plausible but incorrect or outdated information if presented with out-of-distribution queries. - Context length is limited to 2,048 tokens; very long or multi-turn contexts may require special handling. Users should validate critical outputs against official documentation. # Inference Provider This section provides a simple way to run inference using the fine-tuned `doguilmak/inferencevision-pythia-1B` model. It uses Hugging Face Transformers to load the model and generate answers for InferenceVision-related questions. The model is optimized for domain-specific QA and works best when given clear queries or documentation snippets. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "doguilmak/inferencevision-pythia-1B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def ask_question(question, context=None, max_new_tokens=100): if context: prompt = f"Context: {context}\n\nQuestion: {question}\nAnswer:" else: prompt = f"Question: {question}\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=0.7, top_p=0.95, do_sample=False, pad_token_id=tokenizer.eos_token_id ) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer.replace(prompt, "").strip() question = "What is InferenceVision?" answer = ask_question(question) print("Answer:", answer) ``` ## Reference Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H., O’Brien, K., Hallahan, E., ... & Van Der Wal, O. (2023, July). _Pythia: A suite for analyzing large language models across training and scaling_. In _International Conference on Machine Learning_ (pp. 2397-2430). PMLR. [https://arxiv.org/abs/2304.01373](https://arxiv.org/abs/2304.01373) This paper introduces **Pythia**, a suite of 16 large language models (LLMs) trained on public data in the same order, ranging from 70M to 12B parameters. The suite provides 154 checkpoints per model and tools to reconstruct training dataloaders, facilitating research in areas such as memorization, term frequency effects on few-shot performance, and reducing gender bias.
yuno2025/maxx
yuno2025
2025-08-30T07:59:21Z
0
0
null
[ "safetensors", "unsloth", "license:llama3", "region:us" ]
null
2025-08-30T07:57:15Z
--- license: llama3 tags: - unsloth ---
NexVeridian/gpt-oss-20b-5bit
NexVeridian
2025-08-30T07:58:05Z
520
0
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-05T23:37:06Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-20b --- # NexVeridian/gpt-oss-20b-5bit This model [NexVeridian/gpt-oss-20b-5bit](https://huggingface.co/NexVeridian/gpt-oss-20b-5bit) was converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) using mlx-lm version **0.27.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/gpt-oss-20b-5bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
thecodedev/blockassist-bc-pouncing_pensive_komodo_1756539954
thecodedev
2025-08-30T07:47:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing pensive komodo", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:46:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing pensive komodo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NahedDom/blockassist-bc-flapping_stocky_leopard_1756537658
NahedDom
2025-08-30T07:44:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:44:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft
RikiyaT
2025-08-30T07:41:09Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T07:41:04Z
# RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft Dense retrieval encoder (Ettin / ModernBERT) — Transformers - Base model: RikiyaT/mxbai-ettin-32m-pretrained - Pooling: mean - Projection: linear to 256 dims (bias=False) **SentenceTransformers variant**: [RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft-st](https://huggingface.co/RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft-st) ### Usage ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("RikiyaT/mxbai-ettin-32m-msmarco-v2-format-b-phaseA-ft", trust_remote_code=True) proj = torch.nn.Linear(model.config.hidden_size, 256, bias=False) proj.load_state_dict(torch.load('proj.pt', map_location='cpu')) def encode(texts, prompt="search_query: "): x = tokenizer([prompt + t for t in texts], padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): out = model(**x).last_hidden_state mask = x["attention_mask"][..., None].bool() emb = (out.masked_fill(~mask, 0.0).sum(1) / x["attention_mask"].sum(1, keepdim=True)) emb = proj(emb); emb = torch.nn.functional.normalize(emb, p=2, dim=1) return emb ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
halation/bert-base-japanese-v3-jcommonsenseqa
halation
2025-08-30T07:39:31Z
0
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
multiple-choice
2025-08-30T07:39:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1756537994
katanyasekolah
2025-08-30T07:39:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:39:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756539479
sekirr
2025-08-30T07:38:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:38:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nikoloside/deepfracture
nikoloside
2025-08-30T07:38:26Z
11
0
null
[ "fracture", "vq-vae", "physical-simulation", "other", "dataset:nikoloside/break4models", "license:mit", "region:us" ]
other
2025-08-25T17:56:57Z
--- license: mit datasets: - nikoloside/break4models pipeline_tag: other tags: - fracture - vq-vae - physical-simulation --- # DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning This is a collection of pre-trained models for deepfracture: a conditional vq-vae model for predicting fracture pattern from impulse code, trained on the [Break4Models](https://huggingface.co/datasets/nikoloside/break4models) dataset created by [FractureRB](https://github.com/david-hahn/FractureRB). 📖 **For more details, please visit:** - [GitHub Repository](https://github.com/nikoloside/TEBP) - [Project Page](https://nikoloside.graphics/deepfracture/) ## Overview These models are designed to predict fracture patterns based on impact conditions. Each model is trained on a specific target shape and can be used for real-time physics simulation and computer graphics applications. ## Model Architecture The models use an encoder-decoder architecture: - **Encoder**: Processes input impulse conditions and generates latent representations - **Decoder**: Reconstructs GS-SDF(Geometrically-Segmented Signed Distance Fields) from latent representations - **Training**: Supervised learning on physics simulation data ## Available Models ``` pre-trained-v2/ ├── base/ # Base object model ├── pot/ # Pot object model ├── squirrel/ # Squirrel object model ├── bunny/ # Bunny object model ├── lion/ # Lion object model ├── objs/ # Different original mesh files ├── csv/ # Initial collision scene └── README.md # This file ``` Each model directory contains: - `{shape}-encoder.pt` - Encoder weights - `{shape}-decoder.pt` - Decoder weights - `{shape}-1000-encoder.pt` - Encoder weights (1000 epoch version) - `{shape}-1000-decoder.pt` - Decoder weights (1000 epoch version) Other folders: - `{shape}.obj` - Reference original 3D mesh file - `{shape}-{csv_num}.obj` - Reference initial collision scene. Containing pos, direct, impulse strength. ## Usage ### Loading Models ```python import torch from your_model_architecture import Encoder, Decoder # Load encoder encoder = Encoder() encoder.load_state_dict(torch.load('base/base-encoder.pt')) encoder.eval() # Load decoder decoder = Decoder() decoder.load_state_dict(torch.load('base/base-decoder.pt')) decoder.eval() # Load reference mesh reference_mesh = 'objs/base.obj' init_collision = 'csv/base-261.txt' work_path = 'result/base-exp-1/ ``` ### Inference - [Example](https://github.com/nikoloside/TEBP/blob/main/04.Run-time/predict-runtime.py) - [Details](https://github.com/nikoloside/TEBP/blob/main/04.Run-time/MorphoImageJ.py#L34) ```python # Prepare input conditions input_conditions = prepare_impact_conditions(impact_point, velocity, impulse_strength) # Encode with torch.no_grad(): latent = encoder(input_conditions) # Decode latent = decoder.cook(latent) gssdf_voxel = deocoder.predict(latent) # Apply to reference mesh result_mesh = processCagedSDFSeg(gssdf_voxel, work_path, reference_mesh, isBig = False, maxValue = 1.0) ``` ## Model Performance (metrics and performance)[https://doi.org/10.1111/cgf.70002] ## Training Details - **Dataset**: Break4Model dataset - **Framework**: PyTorch - **Optimizer**: Adam - **Loss Function**: L2 Loss - **Training Time**: ~24 hours per model on NVIDIA RTX 3090 ## Citation If you use these models in your research, please cite: ```bibtex @article{huang2025deepfracture, author = {Huang, Yuhang and Kanai, Takashi}, title = {DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning}, journal = {Computer Graphics Forum}, pages = {e70002}, year = {2025}, keywords = {animation, brittle fracture, neural networks, physically based animation}, doi = {https://doi.org/10.1111/cgf.70002}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.70002}, eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.70002} } ``` ## License MIT ## Contact For questions or issues, please open an issue on the Hugging Face model page.
GroomerG/blockassist-bc-vicious_pawing_badger_1756538064
GroomerG
2025-08-30T07:38:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:37:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756539136
bah63843
2025-08-30T07:33:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:33:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
olivvan/Reinforce-Pixelcopter-PLE-v0
olivvan
2025-08-30T07:25:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-30T07:24:46Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.90 +/- 31.76 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
eliyen/blockassist-bc-thick_agile_ant_1756538623
eliyen
2025-08-30T07:24:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick agile ant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:24:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick agile ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bolkunale/blockassist-bc-ferocious_freckled_gerbil_1756536897
bolkunale
2025-08-30T07:23:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ferocious freckled gerbil", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:23:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ferocious freckled gerbil --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756536840
coelacanthxyz
2025-08-30T07:21:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:21:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rafitesnet00/blockassist-bc-scruffy_mighty_wasp_1756537906
rafitesnet00
2025-08-30T07:20:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy mighty wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:16:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy mighty wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756538326
bah63843
2025-08-30T07:19:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:19:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).