modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 00:47:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 00:46:57
card
stringlengths
11
1.01M
HillZhang/real_learner_bart_CGEC
HillZhang
2023-05-27T04:43:13Z
488
4
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "Chinese", "seq2seq", "grammar", "zh", "arxiv:2305.16023", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-24T15:28:50Z
--- tags: - text2text-generation - Chinese - seq2seq - grammar language: zh license: apache-2.0 --- # Pseudo-Native-BART-CGEC This model is a cutting-edge CGEC model based on [Chinese BART-large](https://huggingface.co/fnlp/bart-large-chinese). It is trained with HSK and Lang8 learner CGEC data (about 1.3M). More details can be found in our [Github](https://github.com/HillZhang1999/NaSGEC) and the [paper](https://arxiv.org/pdf/2305.16023.pdf). ## Usage pip install transformers ``` from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline tokenizer = BertTokenizer.from_pretrained("HillZhang/real_learner_bart_CGEC") model = BartForConditionalGeneration.from_pretrained("HillZhang/real_learner_bart_CGEC") encoded_input = tokenizer(["北京是中国的都。", "他说:”我最爱的运动是打蓝球“", "我每天大约喝5次水左右。", "今天,我非常开开心。"], return_tensors="pt", padding=True, truncation=True) if "token_type_ids" in encoded_input: del encoded_input["token_type_ids"] output = model.generate(**encoded_input) print(tokenizer.batch_decode(output, skip_special_tokens=True)) ``` ## Citation ``` @inproceedings{zhang-etal-2023-nasgec, title = "{Na}{SGEC}: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts", author = "Zhang, Yue and Zhang, Bo and Jiang, Haochen and Li, Zhenghua and Li, Chen and Huang, Fei and Zhang, Min" booktitle = "Findings of ACL", year = "2023" } ```
HillZhang/real_learner_bart_CGEC_exam
HillZhang
2023-05-27T04:43:02Z
120
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "Chinese", "seq2seq", "grammar", "zh", "arxiv:2305.16023", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-24T15:28:28Z
--- tags: - text2text-generation - Chinese - seq2seq - grammar language: zh license: apache-2.0 --- # Pseudo-Native-BART-CGEC This model is a cutting-edge CGEC model based on [Chinese BART-large](https://huggingface.co/fnlp/bart-large-chinese). It is trained with HSK and Lang8 learner CGEC data (about 1.3M) and human-annotated training data for the exam domain. More details can be found in our [Github](https://github.com/HillZhang1999/NaSGEC) and the [paper](https://arxiv.org/pdf/2305.16023.pdf). ## Usage pip install transformers ``` from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline tokenizer = BertTokenizer.from_pretrained("HillZhang/real_learner_bart_CGEC_exam") model = BartForConditionalGeneration.from_pretrained("HillZhang/real_learner_bart_CGEC_exam") encoded_input = tokenizer(["北京是中国的都。", "他说:”我最爱的运动是打蓝球“", "我每天大约喝5次水左右。", "今天,我非常开开心。"], return_tensors="pt", padding=True, truncation=True) if "token_type_ids" in encoded_input: del encoded_input["token_type_ids"] output = model.generate(**encoded_input) print(tokenizer.batch_decode(output, skip_special_tokens=True)) ``` ## Citation ``` @inproceedings{zhang-etal-2023-nasgec, title = "{Na}{SGEC}: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts", author = "Zhang, Yue and Zhang, Bo and Jiang, Haochen and Li, Zhenghua and Li, Chen and Huang, Fei and Zhang, Min" booktitle = "Findings of ACL", year = "2023" } ```
HillZhang/pseudo_native_bart_CGEC
HillZhang
2023-05-27T04:39:23Z
304
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "Chinese", "seq2seq", "grammar", "zh", "arxiv:2305.16023", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-24T15:19:59Z
--- tags: - text2text-generation - Chinese - seq2seq - grammar language: zh license: apache-2.0 --- # Pseudo-Native-BART-CGEC This model is a cutting-edge CGEC model based on [Chinese BART-large](https://huggingface.co/fnlp/bart-large-chinese). It is trained with about 100M pseudo native speaker CGEC training data generated by heuristic rules. More details can be found in our [Github](https://github.com/HillZhang1999/NaSGEC) and the [paper](https://arxiv.org/pdf/2305.16023.pdf). ## Usage pip install transformers ``` from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline tokenizer = BertTokenizer.from_pretrained("HillZhang/pseudo_native_bart_CGEC") model = BartForConditionalGeneration.from_pretrained("HillZhang/pseudo_native_bart_CGEC") encoded_input = tokenizer(["北京是中国的都。", "他说:”我最爱的运动是打蓝球“", "我每天大约喝5次水左右。", "今天,我非常开开心。"], return_tensors="pt", padding=True, truncation=True) if "token_type_ids" in encoded_input: del encoded_input["token_type_ids"] output = model.generate(**encoded_input) print(tokenizer.batch_decode(output, skip_special_tokens=True)) ``` ## Citation ``` @inproceedings{zhang-etal-2023-nasgec, title = "{Na}{SGEC}: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts", author = "Zhang, Yue and Zhang, Bo and Jiang, Haochen and Li, Zhenghua and Li, Chen and Huang, Fei and Zhang, Min" booktitle = "Findings of ACL", year = "2023" } ```
YakovElm/Hyperledger10Classic_64
YakovElm
2023-05-27T04:27:49Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T04:27:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger10Classic_64 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger10Classic_64 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2869 - Train Accuracy: 0.8865 - Validation Loss: 0.4772 - Validation Accuracy: 0.8600 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3638 | 0.8831 | 0.3750 | 0.8600 | 0 | | 0.3325 | 0.8838 | 0.3629 | 0.8600 | 1 | | 0.2869 | 0.8865 | 0.4772 | 0.8600 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Jira20Classic_256
YakovElm
2023-05-27T04:22:30Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T04:21:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira20Classic_256 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira20Classic_256 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2410 - Train Accuracy: 0.8972 - Validation Loss: 0.2703 - Validation Accuracy: 0.9338 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3731 | 0.8562 | 0.2694 | 0.9338 | 0 | | 0.3110 | 0.8772 | 0.2464 | 0.9338 | 1 | | 0.2410 | 0.8972 | 0.2703 | 0.9338 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Varaprabha/Qtable_taxi
Varaprabha
2023-05-27T04:13:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-27T04:13:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Qtable_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Varaprbha/Qtable_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Varaprabha/q-FrozenLake-v1-4x4-noSlippery
Varaprabha
2023-05-27T04:08:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-27T04:08:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Varaprbha/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YakovElm/Hyperledger5Classic_64
YakovElm
2023-05-27T04:03:05Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T04:02:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger5Classic_64 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger5Classic_64 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3683 - Train Accuracy: 0.8561 - Validation Loss: 0.4172 - Validation Accuracy: 0.8351 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4207 | 0.8481 | 0.4357 | 0.8361 | 0 | | 0.3940 | 0.8547 | 0.4199 | 0.8361 | 1 | | 0.3683 | 0.8561 | 0.4172 | 0.8351 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
BALAKA/wav2vec2-large-xlsr-53-th-swear-words
BALAKA
2023-05-27T03:59:54Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-25T09:32:51Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xlsr-53-th-main results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: th split: validation args: th metrics: - name: Wer type: wer value: 0.4686162624821683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-th-main This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1340 - Wer: 0.4686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2524 | 3.23 | 100 | 3.3222 | 1.0 | | 3.2913 | 6.45 | 200 | 3.1818 | 1.0 | | 2.222 | 9.68 | 300 | 1.2497 | 0.5335 | | 1.1558 | 12.9 | 400 | 1.0792 | 0.5214 | | 0.934 | 16.13 | 500 | 1.0663 | 0.4986 | | 0.8023 | 19.35 | 600 | 1.0331 | 0.4893 | | 0.7041 | 22.58 | 700 | 1.0801 | 0.4800 | | 0.6576 | 25.81 | 800 | 1.1123 | 0.4886 | | 0.6061 | 29.03 | 900 | 1.0748 | 0.4829 | | 0.5649 | 32.26 | 1000 | 1.1187 | 0.4679 | | 0.5717 | 35.48 | 1100 | 1.1267 | 0.4715 | | 0.5267 | 38.71 | 1200 | 1.1340 | 0.4686 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
YakovElm/Hyperledger20Classic_32
YakovElm
2023-05-27T03:34:15Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T03:33:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger20Classic_32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger20Classic_32 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2565 - Train Accuracy: 0.9149 - Validation Loss: 0.3101 - Validation Accuracy: 0.8983 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3031 | 0.9059 | 0.3074 | 0.8983 | 0 | | 0.2700 | 0.9149 | 0.2988 | 0.8983 | 1 | | 0.2565 | 0.9149 | 0.3101 | 0.8983 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Hyperledger15Classic_32
YakovElm
2023-05-27T03:18:38Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T03:17:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger15Classic_32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger15Classic_32 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2991 - Train Accuracy: 0.9028 - Validation Loss: 0.3422 - Validation Accuracy: 0.8807 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3396 | 0.8914 | 0.3557 | 0.8807 | 0 | | 0.3083 | 0.9035 | 0.3524 | 0.8807 | 1 | | 0.2991 | 0.9028 | 0.3422 | 0.8807 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Apache20Classic_64
YakovElm
2023-05-27T02:30:58Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T02:30:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache20Classic_64 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache20Classic_64 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1374 - Train Accuracy: 0.9624 - Validation Loss: 0.3081 - Validation Accuracy: 0.9055 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1664 | 0.9620 | 0.3171 | 0.9055 | 0 | | 0.1522 | 0.9624 | 0.2966 | 0.9055 | 1 | | 0.1374 | 0.9624 | 0.3081 | 0.9055 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Ryosuke/an2-stable-diffusion
Ryosuke
2023-05-27T01:21:44Z
31
3
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-27T04:46:50Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### an2-stable-diffusion Dreambooth model trained by Ryosuke with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: 00074-3537062306-portrait ![00074-3537062306-portrait 0](https://huggingface.co/Ryosuke/an2-stable-diffusion/resolve/main/sample_images/00074-3537062306-portrait_of_head_shot_of_handsome_AtsuhikoNakata,_by_greg_rutkowski,_brom,_james_gurney,_mignola,_craig_mullins,_artstation,_and.png)
YakovElm/Jira10Classic_256
YakovElm
2023-05-27T01:19:24Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-27T01:18:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira10Classic_256 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira10Classic_256 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3342 - Train Accuracy: 0.8405 - Validation Loss: 0.7061 - Validation Accuracy: 0.6088 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5118 | 0.7817 | 0.8080 | 0.4921 | 0 | | 0.4265 | 0.7849 | 0.8772 | 0.4921 | 1 | | 0.3342 | 0.8405 | 0.7061 | 0.6088 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
DelusionalDreams/q-FrozenLake-v1-4x4-noSlippery
DelusionalDreams
2023-05-27T01:11:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-27T01:11:22Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DelusionalDreams/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
stevbach/a2c-PandaReachDense-v2
stevbach
2023-05-27T01:10:22Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T23:49:28Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.06 +/- 0.17 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sambalsquad/loraku
sambalsquad
2023-05-27T00:48:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-27T00:33:54Z
--- license: creativeml-openrail-m ---
theprocess-21/xlm-roberta-base-finetuned-panx-de
theprocess-21
2023-05-27T00:34:35Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "generated_from_trainer", "dataset:xtreme", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-05-26T23:55:09Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1584 | 0.8233 | | 0.1252 | 2.0 | 1050 | 0.1384 | 0.8491 | | 0.0811 | 3.0 | 1575 | 0.1400 | 0.8609 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
minosu/godot_dodo_4x_60k_starcoder_15b_1ep
minosu
2023-05-27T00:32:26Z
8
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-26T20:59:57Z
# godot_dodo_4x_60k_starcoder_15b_1ep ## Model details Trained in May 2023. Godot-Dodo models are instruction-following models finetuned from open-source base models. Please refer to the README of the [GitHub repository](https://github.com/minosvasilias/godot-dodo) for detailed information. ### Evaluation datasets The model was evaluated using code instruction prompts. More details in the [GitHub repository](https://github.com/minosvasilias/godot-dodo). ### Training dataset The model was trained on a 60k rows instruction following dataset, which is released in the [Github repository](https://github.com/minosvasilias/godot-dodo). ### Training parameters For exact parameters used, please refer to [this page](https://github.com/minosvasilias/godot-dodo/tree/main/models/godot_dodo_4x_60k_starcoder_15b_1ep) in the GitHub repository.
aalonso-developer/vit-base-clothing-leafs-example
aalonso-developer
2023-05-27T00:26:33Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-21T21:39:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-clothing-leafs-example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-clothing-leafs-example This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 6.1420 - Accuracy: 0.0448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 8.6059 | 0.14 | 1000 | 8.5844 | 0.0002 | | 8.5506 | 0.28 | 2000 | 8.5189 | 0.0010 | | 8.4931 | 0.41 | 3000 | 8.4641 | 0.0012 | | 8.4223 | 0.55 | 4000 | 8.3495 | 0.0016 | | 8.3144 | 0.69 | 5000 | 8.2552 | 0.0021 | | 8.1936 | 0.83 | 6000 | 8.1385 | 0.0024 | | 8.0638 | 0.97 | 7000 | 7.9924 | 0.0028 | | 7.8485 | 1.11 | 8000 | 7.8366 | 0.0036 | | 7.6933 | 1.24 | 9000 | 7.6595 | 0.0045 | | 7.5808 | 1.38 | 10000 | 7.5232 | 0.0062 | | 7.4352 | 1.52 | 11000 | 7.3816 | 0.0070 | | 7.3279 | 1.66 | 12000 | 7.2853 | 0.0084 | | 7.2141 | 1.8 | 13000 | 7.1553 | 0.0105 | | 7.151 | 1.94 | 14000 | 7.0853 | 0.0119 | | 6.9695 | 2.07 | 15000 | 7.0088 | 0.0134 | | 6.8563 | 2.21 | 16000 | 6.9409 | 0.0139 | | 6.8019 | 2.35 | 17000 | 6.8634 | 0.0158 | | 6.7372 | 2.49 | 18000 | 6.8001 | 0.0175 | | 6.6903 | 2.63 | 19000 | 6.7323 | 0.0191 | | 6.6482 | 2.77 | 20000 | 6.6638 | 0.0207 | | 6.5669 | 2.9 | 21000 | 6.6090 | 0.0239 | | 6.4484 | 3.04 | 22000 | 6.5441 | 0.0240 | | 6.2568 | 3.18 | 23000 | 6.5015 | 0.0273 | | 6.2452 | 3.32 | 24000 | 6.4589 | 0.0304 | | 6.2002 | 3.46 | 25000 | 6.4312 | 0.0310 | | 6.1699 | 3.6 | 26000 | 6.3723 | 0.0319 | | 6.1284 | 3.73 | 27000 | 6.3324 | 0.0343 | | 6.1186 | 3.87 | 28000 | 6.3029 | 0.0350 | | 6.0611 | 4.01 | 29000 | 6.2723 | 0.0381 | | 5.7883 | 4.15 | 30000 | 6.2527 | 0.0383 | | 5.7684 | 4.29 | 31000 | 6.2186 | 0.0392 | | 5.7701 | 4.43 | 32000 | 6.2031 | 0.0403 | | 5.7473 | 4.56 | 33000 | 6.1777 | 0.0430 | | 5.735 | 4.7 | 34000 | 6.1634 | 0.0442 | | 5.7324 | 4.84 | 35000 | 6.1494 | 0.0443 | | 5.6949 | 4.98 | 36000 | 6.1420 | 0.0448 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
jackoyoungblood/pegasus-samsum
jackoyoungblood
2023-05-27T00:23:07Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-25T14:45:35Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7116 | 0.54 | 500 | 1.4856 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1 - Datasets 1.16.1 - Tokenizers 0.10.3
xzuyn/Alpacino-13B-GGML
xzuyn
2023-05-27T00:01:38Z
0
2
null
[ "llama", "alpaca", "region:us" ]
null
2023-05-22T22:34:38Z
--- tags: - llama - alpaca --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/digitous/Alpacino13b
maharishiva/ppo-LunarLander-v2
maharishiva
2023-05-26T23:51:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T23:50:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.63 +/- 14.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YakovElm/Jira5Classic_256
YakovElm
2023-05-26T23:47:50Z
64
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T23:47:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira5Classic_256 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira5Classic_256 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4111 - Train Accuracy: 0.8090 - Validation Loss: 1.1085 - Validation Accuracy: 0.5237 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5551 | 0.7429 | 0.8002 | 0.4858 | 0 | | 0.4860 | 0.7712 | 0.7765 | 0.4890 | 1 | | 0.4111 | 0.8090 | 1.1085 | 0.5237 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
NajiAboo/prognosis-distilbert-base-uncased-finetuned-cardio-qa
NajiAboo
2023-05-26T23:47:29Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-26T17:23:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: NajiAboo/prognosis-distilbert-base-uncased-finetuned-cardio-qa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NajiAboo/prognosis-distilbert-base-uncased-finetuned-cardio-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1314 - Train End Logits Accuracy: 0.9575 - Train Start Logits Accuracy: 0.9591 - Validation Loss: 1.5573 - Validation End Logits Accuracy: 0.7503 - Validation Start Logits Accuracy: 0.7457 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 494400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4969 | 0.6659 | 0.6647 | 1.0266 | 0.7456 | 0.7428 | 0 | | 0.8820 | 0.7667 | 0.7702 | 0.9726 | 0.7573 | 0.7542 | 1 | | 0.6269 | 0.8266 | 0.8287 | 1.0440 | 0.7601 | 0.7528 | 2 | | 0.4406 | 0.8711 | 0.8748 | 1.0837 | 0.7590 | 0.7540 | 3 | | 0.2999 | 0.9087 | 0.9122 | 1.1957 | 0.7572 | 0.7510 | 4 | | 0.2168 | 0.9317 | 0.9347 | 1.4545 | 0.7465 | 0.7428 | 5 | | 0.1623 | 0.9485 | 0.9501 | 1.4684 | 0.7560 | 0.7529 | 6 | | 0.1314 | 0.9575 | 0.9591 | 1.5573 | 0.7503 | 0.7457 | 7 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Apache15Classic_32
YakovElm
2023-05-26T23:27:43Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T23:27:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache15Classic_32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache15Classic_32 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1627 - Train Accuracy: 0.9533 - Validation Loss: 0.4178 - Validation Accuracy: 0.8924 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1997 | 0.9498 | 0.3502 | 0.8924 | 0 | | 0.1803 | 0.9542 | 0.3673 | 0.8924 | 1 | | 0.1627 | 0.9533 | 0.4178 | 0.8924 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Rodrigopiva/my_awesome_model
Rodrigopiva
2023-05-26T23:09:38Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-15T16:15:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rodrigopiva/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rodrigopiva/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1326 - Train Accuracy: 0.9783 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.3647 | 0.9274 | 0 | | 0.2203 | 0.9632 | 1 | | 0.1326 | 0.9783 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Multi-Domain-Expert-Learning/REDPAJAMA-3B-expert-arxiv
Multi-Domain-Expert-Learning
2023-05-26T22:58:50Z
75
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-26T22:38:55Z
--- tags: - generated_from_trainer datasets: - /pfs/lustrep4/scratch/project_462000259/ajunior/data/arxiv metrics: - accuracy model-index: - name: layer_9,10,11,12,13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layer_9,10,11,12,13 This model is a fine-tuned version of [/pfs/lustrep4/scratch/project_462000259/ajunior/models/rallio3b](https://huggingface.co//pfs/lustrep4/scratch/project_462000259/ajunior/models/rallio3b) on the /pfs/lustrep4/scratch/project_462000259/ajunior/data/arxiv dataset. It achieves the following results on the evaluation set: - Loss: 2.3984 - Accuracy: 0.5176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5584 | 0.05 | 500 | 2.5312 | 0.4997 | | 2.3975 | 0.1 | 1000 | 2.3984 | 0.5176 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+gitcb6c422 - Datasets 2.11.0 - Tokenizers 0.12.1
mfidabel/a2c-PandaReachDense-v2
mfidabel
2023-05-26T22:41:15Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:42:57Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.47 +/- 0.18 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YakovElm/Apache5Classic_32
YakovElm
2023-05-26T22:37:57Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T22:37:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache5Classic_32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache5Classic_32 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2422 - Train Accuracy: 0.9181 - Validation Loss: 0.6553 - Validation Accuracy: 0.8129 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3112 | 0.9049 | 0.4947 | 0.8233 | 0 | | 0.2848 | 0.9120 | 0.4767 | 0.8233 | 1 | | 0.2422 | 0.9181 | 0.6553 | 0.8129 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/InformalToFormalLincoln100Paraphrase
BigSalmon
2023-05-26T22:31:47Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-26T21:35:02Z
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln100Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln100Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` *Note* Of all the masking techniques, this one works the best. ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` essence: when someone's views are keeping within reasonable. refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ). *** essence: when things are worked through in a petty way. refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling. ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` music before bedtime [makes for being able to relax] -> is a recipe for relaxation. ``` ``` [people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway. ``` ``` in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal. *** politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ). ``` ``` Q: What is whistleblower protection? A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer. Q: Why are whistleblower protections important? A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution. Q: Why would an employer engage in retribution? A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing. ``` ``` original: the meritocratic nature of crowdfunding [MASK] into their vision's viability. infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability. ``` ``` Leadership | Lecture 17: Worker Morale What Workers Look for in Companies: • Benefits o Tuition reimbursement o Paid parental leave o 401K matching o Profit sharing o Pension plans o Free meals • Social responsibility o Environmental stewardship o Charitable contributions o Diversity • Work-life balance o Telecommuting o Paid holidays and vacation o Casual dress • Growth opportunities • Job security • Competitive compensation • Recognition o Open-door policies o Whistleblower protection o Employee-of-the-month awards o Positive performance reviews o Bonuses ``` ``` description: business keywords: for-profit, fiduciary duty, monopolistic, bottom line, return on investment, short-term thinking, capital-intensive, self-interested, risk-taking, fiduciary duty, merger, speculation, profiteering, oversight, capitalism, diversification ``` ``` 3. In this task, you are given a company name and you need to find its industry. McDonalds -- Restaurant Facebook -- Social Network IKEA -- Furniture American Express -- Credit Services Nokia -- Telecom Nintendo -- Entertainment 4. In this task, you are given a Month and you need to convert it to its corresponding season April -- Spring December -- Winter July -- Summer October -- Fall February -- Winter 5. In this task, you are given a sentence with a missing word and you need to predict the correct word. Managers should set an _____ for their employees. -- example Some people spend more than four _____ in the gym. -- hours The police were on the _____ of arresting the suspect. -- verge They were looking for _____ on how to solve the problem. -- guidance What is the _____ of the coffee? -- price 6. In this task, you are given a paragraph and you need to reorder it to make it logical. It was first proposed in 1987. The total length of the bridge is 1,828 meters. The idea of a bridge connects Hong Kong to Macau. -- The idea of bridge connecting Hong Kong and Macau was first proposed in 1987. The total length of the bridge is 1,828 meters. It is a movie about a brave and noble policeman. The film was produced by Americans. They were Kevin Lima and Chris Buck. They are directors. The movie is called Tarzan. -- Produced by Americans Kevin Lima and Chris Buck, Tarzan is a movie about a brave and noble policeman. It was first discovered in the mountains of India. The active ingredients in this plant can stimulate hair growth. The plant is called "Hair Plus." -- First discovered in the mountains of India, Hair Plus is a plant whose active ingredients can stimulate hair growth. ``` ``` trivia: What is the population of South Korea? response: 51 million. *** trivia: What is the minimum voting age in the US? response: 18. *** trivia: What are the first ten amendments of the US constitution called? response: Bill of Rights. ``` ``` ideas: in modern-day america, it is customary for the commander-in-chief to conduct regular press conferences related keywords: transparency, check and balance, sacrosanct, public accountability, adversarial, unscripted, direct access, open government, watchdog, healthy democracy, institutional integrity, right to know, direct line of communication, behind closed doors, updates, track progress, instill confidence, reassure, humanize, leadership style, day-to-day, forthcoming, demystify, ask hard questions *** ideas: i know this one guy who retired so young, attesting to how careful they were with money. related keywords: money management, resourceful, penny-pinching, live below their means, frugal, financial discipline, financial independence, conservative, long-term vision, discretionary spending, deferred gratification, preparedness, self-control, cushion ``` ``` less specific: actors and musicians should ( support democracy ). clarifies: actors and musicians should ( wield their celebrity to amplify pro-democracy messaging / marshal their considerable influence in the service of the democratic cause ). *** less specific: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( be careful ). clarifies: amid a contemporary culture that thrives on profligacy, the discipline necessary to retire early is a vanishing quality. rather than yielding to the lure of indulgence, the aspiring retiree must ( master their desires / exercise self-restraint / embrace frugality / restrain their appetite for splendor ). ``` ``` dull: clean emotional heft: spotless, immaculate, pristine *** dull: hot emotional heft: scorching, searing, blistering *** dull: happy emotional heft: euphoric ``` ``` text: {guide: vividly describe the premise of the show "seinfield"} -> set in the heart of bustling new york city, the sitcom "seinfield" follows the everyday {restrict: term that implies they get into trouble but in a comical way} -> misadventures of four neurotic friends. on any given episode, one can find them quarreling over their favorite diner's latest menu change, haggling over the division of household expenses, or contriving a scheme to spy on the apartment's newest resident. mundane as their exploits may be, they never fail to elicit a hearty laugh. {guide: mention how larry david is responsible} -> behind the show's witty, incisive dialogue lies the sharp pen of larry david, who co-created the show with jerry seinfeld. {guide: mention how larry david came up with the most recognizable lines} -> it is his genius that conjured such instantly {restrict: term that imply everybody knows them} -> recognizable quips as "no soup for you!" and "not that there's anything wrong with that!". {guide: mention how humanity should revel in having such good comedians these days} -> as this list of laugh-out-loud lines attests, the world is fortunate to ( count such a sharp comedic mind among its ranks / have such a talented humorist in its midst / have such comedic talent gracing its airwaves ). ``` ``` system: i'm not sure i agree with your assessment of the situation. user: replace "assessment" with a more casual term. chatbot: ( take / read / view ). system: i've been feeling really busy lately, trying to balance work and family responsibilities. user: replace "busy" with a more intense word that conveys it is too much. chatbot: overwhelmed. system: the candidate's stance on immigration is quite nebulous, and it's difficult to discern exactly what they would do if elected. user: replace "nebulous" with a word that conveys a lack of detail. chatbot: ( vague / ambiguous ). ``` ``` user: exorbitant in price, scholarly journals unconscionably define the breadth of one's knowledge awareness by the contents of their wallet. [replace “knowledge awareness” with a more natural expression] chatbot: intellectual horizons. user: can you do another alternative to “intellectual horizons” that has more relation to “scholarly journals”? chatbot: academic enlightenment. ``` ``` key: calculate. syn: estimate, consider, weigh, number, count, apportion, proportion, investigate, reckon, rate, compute. ant: guess, conjecture, hit, chance, risk, stake, miscalculate. ``` ``` description: more forceful version of curious that is less forceful than nosy answer: inquisitive description: more forceful version of hopeful that is less forceful than overconfident answer: optimistic ``` ``` key: inquisitive positive: curious, interested negative: nosy, prying *** key: witty positive: clever, humorous negative: sarcastic, caustic *** key: influential positive: impactful, powerful negative: overbearing, domineering ```
goodacheez/q-Taxi-v3
goodacheez
2023-05-26T21:54:46Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:52:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="goodacheez/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
optimopium/ppo-LunarLander-v2
optimopium
2023-05-26T21:46:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:46:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.30 +/- 18.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
goodacheez/q-FrozenLake-v1-4x4-noSlippery
goodacheez
2023-05-26T21:43:42Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:43:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="goodacheez/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
orepin/Reinforce-Pixelcopter-35000iter
orepin
2023-05-26T21:31:39Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:31:34Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-35000iter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.80 +/- 19.19 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mfidabel/a2c-AntBulletEnv-v0
mfidabel
2023-05-26T21:10:48Z
5
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T21:10:05Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1058.68 +/- 401.07 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/Takamine_Takane
LarryAIDraw
2023-05-26T21:02:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-26T20:52:03Z
--- license: creativeml-openrail-m --- https://civitai.com/models/74350/takamine-takane-haite-kudasai-takamine-san
LarryAIDraw/honjo_nia_v1
LarryAIDraw
2023-05-26T21:01:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-26T20:50:44Z
--- license: creativeml-openrail-m --- https://civitai.com/models/74261/honjou-nia-date-a-live
JCTN/pygmalion-13b-4bit-128g
JCTN
2023-05-26T20:57:57Z
8
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-26T19:58:05Z
--- language: en license: other commercial: no inference: false --- # pygmalion-13b-4bit-128g ## Model description **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** Quantized from the decoded pygmalion-13b xor format. **https://huggingface.co/PygmalionAI/pygmalion-13b** In safetensor format. ### Quantization Information GPTQ CUDA quantized with: https://github.com/0cc4m/GPTQ-for-LLaMa ``` python llama.py --wbits 4 models/pygmalion-13b c4 --true-sequential --groupsize 128 --save_safetensors models/pygmalion-13b/4bit-128g.safetensors ```
tmilushev/Reinforce-U8-LunarLander-v2
tmilushev
2023-05-26T20:42:49Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T20:21:28Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -182.44 +/- 110.69 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
joshmazen/ppo-LunarLander-v2
joshmazen
2023-05-26T20:28:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T20:28:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.88 +/- 42.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sagnikrayc/bert-large-cased-fever
sagnikrayc
2023-05-26T20:14:34Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:copenlu/fever_gold_evidence", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T20:01:44Z
--- license: afl-3.0 datasets: - copenlu/fever_gold_evidence language: - en metrics: - precision - recall - f1 --- ``` wandb: eval/f1 0.87196 wandb: eval/loss 0.73371 wandb: eval/p 0.87077 wandb: eval/r 0.8753 ``` **Note**: 1. `[evidence_text][SEP][claim]` 2. Only trained/validated on instances length <= 512 tokens.
sagnikrayc/roberta-large-fever
sagnikrayc
2023-05-26T20:12:44Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:copenlu/fever_gold_evidence", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T19:52:33Z
--- license: afl-3.0 datasets: - copenlu/fever_gold_evidence language: - en metrics: - precision - recall - f1 --- ``` wandb: eval/f1 0.88556 wandb: eval/loss 0.62762 wandb: eval/p 0.88384 wandb: eval/r 0.8891 ``` **Note**: 1. `[evidence_text][SEP][claim]` 2. Only trained/validated on instances length <= 512 tokens.
laurenmit/pegasus-project_7_V2
laurenmit
2023-05-26T20:05:38Z
103
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-26T19:49:52Z
--- tags: - generated_from_trainer model-index: - name: pegasus-project_7_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-project_7_V2 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Ziyu23/poca-SoccerTwos
Ziyu23
2023-05-26T19:41:27Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-05-26T19:41:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Ziyu23/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
minosu/godot_dodo_4x_60k_starcoder_15b_3ep
minosu
2023-05-26T19:34:02Z
12
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-22T12:10:20Z
# godot_dodo_4x_60k_starcoder_15b_3ep ## Model details Trained in May 2023. Godot-Dodo models are instruction-following models finetuned from open-source base models. Please refer to the README of the [GitHub repository](https://github.com/minosvasilias/godot-dodo) for detailed information. ### Evaluation datasets The model was evaluated using code instruction prompts. More details in the [GitHub repository](https://github.com/minosvasilias/godot-dodo). ### Training dataset The model was trained on a 60k rows instruction following dataset, which is released in the [Github repository](https://github.com/minosvasilias/godot-dodo). ### Training parameters For exact parameters used, please refer to [this page](https://github.com/minosvasilias/godot-dodo/tree/main/models/godot_dodo_4x_60k_starcoder_15b_3ep) in the GitHub repository.
orepin/Reinforce-Pixelcopter-20000iter
orepin
2023-05-26T19:34:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T19:33:58Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-20000iter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.70 +/- 49.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ambientocclusion/foodmanpaul-lora-1.5
ambientocclusion
2023-05-26T19:26:58Z
0
0
null
[ "region:us" ]
null
2023-05-26T19:21:37Z
The foodman paul model we've all been waiting for Use "_foodmanpaul_" to summon the foodman ![foodman 0](https://huggingface.co/ambientocclusion/foodmanpaul-lora-1.5/resolve/main/sample_5100-0.png) ![foodman 1](https://huggingface.co/ambientocclusion/foodmanpaul-lora-1.5/resolve/main/sample_5100-1.png) ![foodman 2](https://huggingface.co/ambientocclusion/foodmanpaul-lora-1.5/resolve/main/sample_5100-2.png) ![foodman 3](https://huggingface.co/ambientocclusion/foodmanpaul-lora-1.5/resolve/main/sample_5100-3.png)
Zeta611/easyword-model-peft-distilled-1.3B
Zeta611
2023-05-26T19:22:35Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:cc-by-nc-4.0", "region:us" ]
null
2023-05-26T18:40:19Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: easyword-model-peft-distilled-1.3B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # easyword-model-peft-distilled-1.3B This model is a fine-tuned version of [facebook/nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1607 - Bleu: 0.0 - Gen Len: 5.9876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 31 | 4.9650 | 0.0 | 9.3975 | | No log | 2.0 | 62 | 4.4353 | 0.1522 | 8.6957 | | No log | 3.0 | 93 | 3.8967 | 1.2792 | 6.8137 | | No log | 4.0 | 124 | 3.6053 | 2.6004 | 6.0062 | | No log | 5.0 | 155 | 3.5239 | 2.9339 | 5.8571 | | No log | 6.0 | 186 | 3.4692 | 2.6031 | 5.8261 | | No log | 7.0 | 217 | 3.4244 | 2.6536 | 5.795 | | No log | 8.0 | 248 | 3.3865 | 2.6445 | 5.8509 | | No log | 9.0 | 279 | 3.3555 | 2.5482 | 5.9193 | | No log | 10.0 | 310 | 3.3325 | 3.087 | 5.913 | | No log | 11.0 | 341 | 3.3141 | 3.3511 | 5.9006 | | No log | 12.0 | 372 | 3.2986 | 3.3511 | 5.8944 | | No log | 13.0 | 403 | 3.2871 | 3.9871 | 5.8758 | | No log | 14.0 | 434 | 3.2787 | 3.3083 | 5.882 | | No log | 15.0 | 465 | 3.2738 | 3.3083 | 5.882 | | No log | 16.0 | 496 | 3.2720 | 3.3083 | 5.882 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
orepin/Reinforce-Pixelcopter-15000iter
orepin
2023-05-26T19:03:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T19:03:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-15000iter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.10 +/- 34.44 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Monero/WizardLM-OpenAssistant-30b-Uncensored-4bit
Monero
2023-05-26T18:58:48Z
10
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-26T06:15:01Z
WizardLM 30b Native merged 50%/50% with Open Assistant 30b Native # Use: Add ```### Certainly!``` to the end of your prompt for uncensored output
cotran2/my_awesome_qa_model
cotran2
2023-05-26T18:32:01Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-17T16:40:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.3128 | | 2.7075 | 2.0 | 500 | 1.7293 | | 2.7075 | 3.0 | 750 | 1.6628 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1 - Datasets 2.12.0 - Tokenizers 0.13.3
darthrevenge/a2c-PandaReachDense-v2
darthrevenge
2023-05-26T18:21:47Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T18:18:59Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.54 +/- 0.62 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CodyKilpatrick/q-taxi-v3
CodyKilpatrick
2023-05-26T18:07:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T18:07:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="CodyKilpatrick/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jobeid1/q-FrozenLake-v1-4x4-noSlippery
jobeid1
2023-05-26T18:06:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T18:06:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jobeid1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CodyKilpatrick/q-FrozenLake-v1-4x4-noSlippery
CodyKilpatrick
2023-05-26T18:04:32Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T18:04:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CodyKilpatrick/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
orepin/Reinforce-Pixelcopter-5000iter
orepin
2023-05-26T18:04:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T18:04:25Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-5000iter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 32.10 +/- 27.97 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
YakovElm/IntelDAOS5Classic_256
YakovElm
2023-05-26T17:28:21Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T17:27:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: IntelDAOS5Classic_256 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # IntelDAOS5Classic_256 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3729 - Train Accuracy: 0.8740 - Validation Loss: 0.4307 - Validation Accuracy: 0.8438 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4026 | 0.8740 | 0.4333 | 0.8438 | 0 | | 0.3844 | 0.8740 | 0.4434 | 0.8438 | 1 | | 0.3729 | 0.8740 | 0.4307 | 0.8438 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Apache15Classic_512
YakovElm
2023-05-26T17:04:32Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T17:03:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache15Classic_512 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache15Classic_512 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1701 - Train Accuracy: 0.9542 - Validation Loss: 0.3117 - Validation Accuracy: 0.8924 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1982 | 0.9540 | 0.3463 | 0.8924 | 0 | | 0.1791 | 0.9542 | 0.3394 | 0.8924 | 1 | | 0.1701 | 0.9542 | 0.3117 | 0.8924 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
nixtasy/diaster_distilbert_base_uncased
nixtasy
2023-05-26T17:02:42Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T16:46:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: diaster_distilbert_base_uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # diaster_distilbert_base_uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0345 - Accuracy: 0.8076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 381 | 0.3926 | 0.8372 | | 0.4214 | 2.0 | 762 | 0.4764 | 0.8234 | | 0.3014 | 3.0 | 1143 | 0.4208 | 0.8352 | | 0.2051 | 4.0 | 1524 | 0.5139 | 0.8280 | | 0.2051 | 5.0 | 1905 | 0.8480 | 0.7840 | | 0.1424 | 6.0 | 2286 | 0.8045 | 0.8155 | | 0.1042 | 7.0 | 2667 | 0.9295 | 0.8188 | | 0.075 | 8.0 | 3048 | 0.9241 | 0.8142 | | 0.075 | 9.0 | 3429 | 1.0063 | 0.8083 | | 0.0614 | 10.0 | 3810 | 1.0345 | 0.8076 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
raghvendramall/esm2_t6_8M_UR50D-localization-mc-finetuned-localization
raghvendramall
2023-05-26T17:00:35Z
112
0
transformers
[ "transformers", "pytorch", "esm", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T12:40:30Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: esm2_t6_8M_UR50D-localization-mc-finetuned-localization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t6_8M_UR50D-localization-mc-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5055 - F1: 0.7776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9359 | 1.0 | 1411 | 0.8535 | 0.7208 | | 0.7693 | 2.0 | 2822 | 0.7625 | 0.7293 | | 0.619 | 3.0 | 4233 | 0.7689 | 0.7555 | | 0.4961 | 4.0 | 5644 | 0.8251 | 0.7592 | | 0.3477 | 5.0 | 7055 | 0.9720 | 0.7717 | | 0.219 | 6.0 | 8466 | 1.0984 | 0.7800 | | 0.1293 | 7.0 | 9877 | 1.2810 | 0.7781 | | 0.068 | 8.0 | 11288 | 1.4495 | 0.7752 | | 0.0318 | 9.0 | 12699 | 1.5142 | 0.7771 | | 0.0178 | 10.0 | 14110 | 1.5055 | 0.7776 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
rahular/varta-bert
rahular
2023-05-26T16:29:46Z
126
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "as", "bh", "bn", "en", "gu", "hi", "kn", "ml", "mr", "ne", "or", "pa", "ta", "te", "ur", "dataset:rahular/varta", "arxiv:2305.05858", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-11T17:11:16Z
--- license: apache-2.0 datasets: - rahular/varta language: - as - bh - bn - en - gu - hi - kn - ml - mr - ne - or - pa - ta - te - ur --- # Varta-BERT <!-- Provide a quick summary of what the model is/does. --> ### Model Description <!-- Provide a longer summary of what this model is. --> Varta-BERT is a model pre-trained on the `full` training set of [Varta](https://huggingface.co/datasets/rahular/varta) in 14 Indic languages (Assamese, Bhojpuri, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Nepali, Oriya, Punjabi, Tamil, Telugu, and Urdu) and English, using a masked language modeling (MLM) objective. [Varta](https://huggingface.co/datasets/rahular/varta) is a large-scale news corpus for Indic languages, including 41.8 million news articles in 14 different Indic languages (and English), which come from a variety of high-quality sources. The dataset and the model are introduced in [this paper](https://arxiv.org/abs/2305.05858). The code is released in [this repository](https://github.com/rahular/varta). ## Uses You can use the raw model for masked language modeling, but it is mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at our [Varta-T5](https://huggingface.co/rahular/varta-t5) model. ## Bias, Risks, and Limitations This work is mainly dedicated to the curation of a new multilingual dataset for Indic languages, many of which are low-resource languages. During data collection, we face several limitations that can potentially result in ethical concerns. Some of the important ones are mentioned below: <br> - Our dataset contains only those articles written by DailyHunt's partner publishers. This has the potential to result in a bias towards a particular narrative or ideology that can affect the representativeness and diversity of the dataset. - Another limitation is the languages represented in Varta. Out of 22 languages with official status in India, our dataset has only 13. There are 122 major languages spoken by at least 10,000 people and 159 other languages which are extremely low-resourced. None of these languages are represented in our dataset. - We do not perform any kind of debiasing on Varta. This means that societal and cultural biases may exist in the dataset, which can adversely affect the fairness and inclusivity of the models trained on it. ## How to Get Started with the Model You can use this model directly for masked language modeling. ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rahular/varta-bert") model = AutoModelForMaskedLM.from_pretrained("rahular/varta-bert") ``` ## Training Details ### Training Data Varta contains 41.8 million high-quality news articles in 14 Indic languages and English. With 34.5 million non-English article-headline pairs, it is the largest document-level dataset of its kind. ### Pretraining - We pretrain the Varta-BERT model using the standard BERT-Base architecture with 12 encoder layers. - We train with a maximum sequence length of 512 tokens with an embedding dimension of 768. - We use 12 attention heads with feed-forward width of 3072. - To support all the 15 languages in dataset we use a wordpiece vocabulary of size 128K. - In total, the model has 184M parameters. The model is trained with AdamW optimizer with alpha=0.9 and beta=0.98. - We use an initial learning rate of 1e-4 with a warm-up of 10K steps and linearly decay the learning rate till the end of training. - We train the model for a total of 1M steps which takes 10 days to finish. - We use an effective batch size of 4096 and train the model on TPU v3-128 chips. Since data sizes across languages in Varta vary from 1.5K (Bhojpuri) to 14.4M articles (Hindi), we use standard temperature-based sampling to upsample data when necessary. ### Evaluation Results Please see [the paper](https://arxiv.org/pdf/2305.05858.pdf). ## Citation ``` @misc{aralikatte2023varta, title={V\=arta: A Large-Scale Headline-Generation Dataset for Indic Languages}, author={Rahul Aralikatte and Ziling Cheng and Sumanth Doddapaneni and Jackie Chi Kit Cheung}, year={2023}, eprint={2305.05858}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hosst/FridgeLLM
hosst
2023-05-26T16:15:55Z
0
1
adapter-transformers
[ "adapter-transformers", "technicians", "appliances", "manufacturers", "troubleshooting", "conversational", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "region:us" ]
text-generation
2023-05-26T15:44:41Z
--- license: apache-2.0 library_name: adapter-transformers pipeline_tag: conversational tags: - technicians - appliances - manufacturers - troubleshooting datasets: - OpenAssistant/oasst1 ---
Benned/Milkbreast
Benned
2023-05-26T16:12:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-26T16:10:27Z
--- license: creativeml-openrail-m ---
alendra1945/tes-alpaca-lora7b
alendra1945
2023-05-26T16:03:18Z
0
0
null
[ "dataset:yahma/alpaca-cleaned", "license:mit", "region:us" ]
null
2023-05-20T20:08:34Z
--- license: mit datasets: - yahma/alpaca-cleaned ---
Evuv/bart_base
Evuv
2023-05-26T15:55:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-19T10:07:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5401 - Rouge1: 0.2403 - Rouge2: 0.0714 - Rougel: 0.1924 - Rougelsum: 0.1922 - Gen Len: 18.1163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 99 | 2.5104 | 0.189 | 0.053 | 0.154 | 0.1535 | 13.3023 | | No log | 2.0 | 198 | 2.4941 | 0.2498 | 0.0781 | 0.1972 | 0.197 | 18.2326 | | No log | 3.0 | 297 | 2.5144 | 0.2394 | 0.0652 | 0.1914 | 0.192 | 18.4419 | | No log | 4.0 | 396 | 2.5401 | 0.2403 | 0.0714 | 0.1924 | 0.1922 | 18.1163 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BlazingFringe/mpnet-mnr-v2-fine-tuned
BlazingFringe
2023-05-26T15:49:56Z
3
2
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "dataset:anli", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-05-23T11:43:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - anli - glue --- # Mpnet-v2-MNR-Fine-Tuned This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('BlazingFringe/mpnet-mnr-v2-fine-tuned') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BlazingFringe/mpnet-mnr-v2-fine-tuned') model = AutoModel.from_pretrained('BlazingFringe/mpnet-mnr-v2-fine-tuned') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1009 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GGunjan/ppo-LunarLander
GGunjan
2023-05-26T15:43:29Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T15:43:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 289.05 +/- 14.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ShayDuane/distilbert-base-uncased_emotion_ft_0526
ShayDuane
2023-05-26T15:27:38Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T14:57:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_emotion_ft_0526 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9375 - name: F1 type: f1 value: 0.937552703246777 - name: Precision type: precision value: 0.9169515578018389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_emotion_ft_0526 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2275 - Accuracy: 0.9375 - F1: 0.9376 - Precision: 0.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.2131 | 1.0 | 2000 | 0.2301 | 0.93 | 0.9305 | 0.9008 | | 0.1881 | 2.0 | 4000 | 0.1854 | 0.9385 | 0.9388 | 0.9080 | | 0.1012 | 3.0 | 6000 | 0.2200 | 0.935 | 0.9353 | 0.9066 | | 0.0642 | 4.0 | 8000 | 0.2275 | 0.9375 | 0.9376 | 0.9170 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
temnoed/Dandelions
temnoed
2023-05-26T15:12:51Z
0
0
null
[ "en", "ru", "dataset:temnoed/Dandelions", "license:openrail", "region:us" ]
null
2023-05-25T21:44:46Z
--- license: openrail datasets: - temnoed/Dandelions language: - en - ru ---
jonastokoliu/token_classification_finetune
jonastokoliu
2023-05-26T15:08:52Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-26T15:03:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: token_classification_finetune results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5759878419452887 - name: Recall type: recall value: 0.35125115848007415 - name: F1 type: f1 value: 0.436384571099597 - name: Accuracy type: accuracy value: 0.9444206926036768 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # token_classification_finetune This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2489 - Precision: 0.5760 - Recall: 0.3513 - F1: 0.4364 - Accuracy: 0.9444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.2573 | 0.6011 | 0.3003 | 0.4005 | 0.9409 | | No log | 2.0 | 214 | 0.2489 | 0.5760 | 0.3513 | 0.4364 | 0.9444 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Mizuiro-sakura/deberta-v2-base-juman-finetuned-commonsenseqa
Mizuiro-sakura
2023-05-26T15:07:53Z
103
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "deberta", "commonsenseqa", "commonsense_qa", "commonsense-qa", "CommonsenseQA", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:oscar", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-02-03T04:49:19Z
--- license: mit language: ja library_name: transformers tags: - pytorch - deberta - deberta-v2 - commonsenseqa - commonsense_qa - commonsense-qa - CommonsenseQA datasets: - wikipedia - cc100 - oscar metrics: - accuracy --- # このモデルはdeberta-v2-base-japaneseをファインチューニングしてCommonsenseQA(選択式の質問)に用いれるようにしたものです。 このモデルはdeberta-v2-base-japaneseをyahoo japan/JGLUEのJCommonsenseQA( https://github.com/yahoojapan/JGLUE ) を用いてファインチューニングしたものです。 形態素解析のためにJumanを用いるバージョンです。 このモデルを利用する際はJumanをインストールしてください。 JUMANのインストール方法は( https://qiita.com/Helmet/items/b76ae8abc47186e24401 )を参考にしてください。 # This model is fine-tuned model for CommonsenseQA which is based on deberta-v2-base-japanese This model is fine-tuned by using JGLUE/JCommonsenseQA dataset. You could use this model for CommonsenseQA tasks. You need to install Juman. So, please check out this site ( https://qiita.com/Helmet/items/b76ae8abc47186e24401 ) to install Juman # How to use 使い方 transformersおよびpytorch、knp、pyknp、Juman、textspanをインストールしてください。 以下のコードを実行することで、CommonsenseQAタスクを解かせることができます。 please execute this code. ```python from transformers import AutoModelForMultipleChoice import torch import json import numpy as np # 初回はこちらを実行してください #model=AutoModelForMultipleChoice.from_pretrained('Mizuiro-sakura/deberta-v2-base-juman-finetuned-commonsenseqa') # 二回目以降はこちらを実行してください # modelフォルダをダウンロードしたパスを入力してください。defaultだとC:\Users\[ユーザー名]\.cache\huggingface\hubにあります。 model=AutoModelForMultipleChoice.from_pretrained('C:\\Users\\.cache\\huggingface\\hub\\models--Mizuiro-sakura--deberta-v2-base-juman-finetuned-commonsenseqa') from transformers import DebertaV2TokenizerFast tkz=DebertaV2TokenizerFast.from_pretrained("Mizuiro-sakura/deberta-v2-base-juman-finetuned-commonsenseqa") tkz.__class__.__name__="JumanppDebertaV2TokenizerFast" tkz.init_kwargs["auto_map"]={"AutoTokenizer":[None,"tokenizer.JumanppDebertaV2TokenizerFast"]} tkz.save_pretrained("Mizuiro-sakura/deberta-v2-base-juman-finetuned-commonsenseqa") from transformers.models.bert_japanese.tokenization_bert_japanese import JumanppTokenizer class JumanppPreTokenizer(JumanppTokenizer): def jumanpp_split(self,i,normalized_string): import textspan t=str(normalized_string) k=self.tokenize(t) return [normalized_string[s:e] for c in textspan.get_original_spans(k,t) for s,e in c] def pre_tokenize(self,pretok): pretok.split(self.jumanpp_split) class JumanppDebertaV2TokenizerFast(DebertaV2TokenizerFast): def __init__(self,**kwargs): from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence super().__init__(**kwargs) self._tokenizer.pre_tokenizer=Sequence([PreTokenizer.custom(JumanppPreTokenizer()),Metaspace()]) def save_pretrained(self,save_directory,**kwargs): import os import shutil from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence self._auto_map={"AutoTokenizer":[None,"tokenizer.JumanppDebertaV2TokenizerFast"]} self._tokenizer.pre_tokenizer=Metaspace() super().save_pretrained(save_directory,**kwargs) self._tokenizer.pre_tokenizer=Sequence([PreTokenizer.custom(JumanppPreTokenizer()),Metaspace()]) shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"tokenizer.py")) question ="主に子ども向けのもので、イラストのついた物語が書かれているものはどれ?" choice1 = "世界" choice2 = "写真集" choice3 = "絵本" choice4 = "論文" choice5 = "図鑑" x1=tkz([question,question,question,question,question],[choice1,choice2,choice3,choice4,choice5], max_length=64, truncation=True, padding=True) leng=len(x1['input_ids'][0]) leng2=len(x1['attention_mask'][0]) # モデルに入力するための前処理 X1 = np.empty(shape=(1, 5, leng)) X2 = np.empty(shape=(1, 5, leng)) X1[0, :, :] = x1['input_ids'] X2[0, :, :] = x1['attention_mask'] # モデルにトークンを入力し、最も確率が高い選択肢を抽出する results = model(torch.tensor(X1).to(torch.int64),torch.tensor(X2).to(torch.int64)) print(torch.argmax(results.logits)+1) ``` # モデルの精度 accuracy of model eval_accuracy = 86.51 (日本語baseモデルとしては最高の精度) eval_loss = 0.5917 (参考 BERT : 72.0, XLM RoBERTa base : 68.7, LUKE : 80.0) # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 またコードを作成するにあたり、KoichiYasuokaさんの日記( https://srad.jp/~yasuoka/journal/659881/ )を参考にさせて頂きました。 深く感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University. And I would like to thank KoichiYasuoka.
dian34323/marsha
dian34323
2023-05-26T15:06:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-26T15:04:32Z
--- license: creativeml-openrail-m ---
Mizuiro-sakura/deberta-v2-japanese-base-finetuned-commonsenseqa
Mizuiro-sakura
2023-05-26T15:05:18Z
109
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "deberta", "commonsenseqa", "commonsense_qa", "commonsense-qa", "CommonsenseQA", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:oscar", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-02-01T01:02:44Z
--- license: mit language: ja library_name: transformers tags: - pytorch - deberta - deberta-v2 - commonsenseqa - commonsense_qa - commonsense-qa - CommonsenseQA datasets: - wikipedia - cc100 - oscar metrics: - accuracy --- # このモデルはdeberta-v2-base-japaneseをファインチューニングしてCommonsenseQA(選択式の質問)に用いれるようにしたものです。 このモデルはdeberta-v2-base-japaneseをyahoo japan/JGLUEのJCommonsenseQA( https://github.com/yahoojapan/JGLUE ) を用いてファインチューニングしたものです。 # This model is fine-tuned model for CommonsenseQA which is based on deberta-v2-base-japanese This model is fine-tuned by using JGLUE/JCommonsenseQA dataset. You could use this model for CommonsenseQA tasks. # How to use 使い方 transformersおよびpytorch、sentencepiece、Juman++をインストールしてください。 以下のコードを実行することで、CommonsenseQAタスクを解かせることができます。 please execute this code. ```python from transformers import AutoTokenizer, AutoModelForMultipleChoice import torch import numpy as np # modelのロード tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/deberta-v2-japanese-base-finetuned-commonsenseqa') model = AutoModelForMultipleChoice.from_pretrained('Mizuiro-sakura/deberta-v2-japanese-base-finetuned-commonsenseqa') # 質問と選択肢の代入 question = '電子機器で使用される最も主要な電子回路基板の事をなんと言う?' choice1 = '掲示板' choice2 = 'パソコン' choice3 = 'マザーボード' choice4 = 'ハードディスク' choice5 = 'まな板' # トークン化(エンコーディング・形態素解析)する token = tokenizer([question,question,question,question,question],[choice1,choice2,choice3,choice4,choice5],return_tensors='pt',padding=True) leng=len(token['input_ids'][0]) # modelに入力するための下準備 X1 = np.empty(shape=(1, 5, leng)) X2 = np.empty(shape=(1, 5, leng)) X1[0, :, :] = token['input_ids'] X2[0, :, :] = token['attention_mask'] # modelにトークンを入力する results = model(torch.tensor(X1).to(torch.int64),torch.tensor(X2).to(torch.int64)) # 最も高い値のインデックスを取得する max_result=torch.argmax(results.logits) print(max_result+1) ``` # モデルの精度 accuracy of model 79.80339588918764 (参考 BERT : 72.0, XLM RoBERTa base : 68.7, LUKE : 80.0) # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University.
Mizuiro-sakura/deberta-v2-japanese-tiny-finetuned-commonsenseqa
Mizuiro-sakura
2023-05-26T15:01:57Z
101
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "deberta", "commonsenseqa", "commonsense_qa", "commonsense-qa", "CommonsenseQA", "ja", "dataset:wikipedia", "dataset:cc100", "dataset:oscar", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-05-11T10:28:33Z
--- license: mit language: ja library_name: transformers tags: - pytorch - deberta - deberta-v2 - commonsenseqa - commonsense_qa - commonsense-qa - CommonsenseQA datasets: - wikipedia - cc100 - oscar metrics: - accuracy --- # このモデルはdeberta-v2-tiny-japaneseをファインチューニングしてCommonsenseQA(選択式の質問)に用いれるようにしたものです。 このモデルはdeberta-v2-tiny-japaneseをyahoo japan/JGLUEのJCommonsenseQA( https://github.com/yahoojapan/JGLUE ) を用いてファインチューニングしたものです。 # This model is fine-tuned model for CommonsenseQA which is based on deberta-v2-tiny-japanese This model is fine-tuned by using JGLUE/JCommonsenseQA dataset. You could use this model for CommonsenseQA tasks. # How to use 使い方 transformersおよびpytorchをインストールしてください。 以下のコードを実行することで、CommonsenseQAタスクを解かせることができます。 please execute this code. ```python from transformers import AutoTokenizer, AutoModelForMultipleChoice import torch import numpy as np # modelのロード tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/deberta-v2-japanese-tiny-finetuned-commonsenseqa') model = AutoModelForMultipleChoice.from_pretrained('Mizuiro-sakura/deberta-v2-japanese-tiny-finetuned-commonsenseqa') # 質問と選択肢の代入 question = '電子機器で使用される最も主要な電子回路基板の事をなんと言う?' choice1 = '掲示板' choice2 = 'パソコン' choice3 = 'マザーボード' choice4 = 'ハードディスク' choice5 = 'まな板' # トークン化(エンコーディング・形態素解析)する token = tokenizer([question,question,question,question,question],[choice1,choice2,choice3,choice4,choice5],return_tensors='pt',padding=True) leng=len(token['input_ids'][0]) # modelに入力するための下準備 X1 = np.empty(shape=(1, 5, leng)) X2 = np.empty(shape=(1, 5, leng)) X1[0, :, :] = token['input_ids'] X2[0, :, :] = token['attention_mask'] # modelにトークンを入力する results = model(torch.tensor(X1).to(torch.int64),torch.tensor(X2).to(torch.int64)) # 最も高い値のインデックスを取得する max_result=torch.argmax(results.logits) print(max_result+1) ``` # モデルの精度 accuracy of model 51.1 (参考 BERT : 72.0, XLM RoBERTa base : 68.7, LUKE : 80.0) # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University.
hny17/finetune_ner
hny17
2023-05-26T14:58:53Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-08T07:37:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetune_ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_ner This model is a fine-tuned version of [deprem-ml/deprem-ner](https://huggingface.co/deprem-ml/deprem-ner) on a custom private dataset. It achieves the following results on the evaluation set: - Loss: 0.2600 - Precision: 0.6071 - Recall: 0.68 - F1: 0.6415 - Accuracy: 0.9055 ## Training procedure ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 0.3447 | 0.4828 | 0.56 | 0.5185 | 0.8740 | | No log | 2.0 | 4 | 0.3079 | 0.4688 | 0.6 | 0.5263 | 0.9055 | | No log | 3.0 | 6 | 0.2849 | 0.5312 | 0.68 | 0.5965 | 0.9055 | | No log | 4.0 | 8 | 0.2796 | 0.5484 | 0.68 | 0.6071 | 0.8976 | | No log | 5.0 | 10 | 0.2741 | 0.6071 | 0.68 | 0.6415 | 0.9055 | | No log | 6.0 | 12 | 0.2705 | 0.6071 | 0.68 | 0.6415 | 0.9055 | | No log | 7.0 | 14 | 0.2685 | 0.5862 | 0.68 | 0.6296 | 0.9055 | | No log | 8.0 | 16 | 0.2636 | 0.6071 | 0.68 | 0.6415 | 0.9055 | | No log | 9.0 | 18 | 0.2611 | 0.6071 | 0.68 | 0.6415 | 0.9055 | | No log | 10.0 | 20 | 0.2600 | 0.6071 | 0.68 | 0.6415 | 0.9055 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
tmilushev/Reinforce-Pixelcopter-PLE-v1
tmilushev
2023-05-26T14:45:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T13:49:28Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 27.40 +/- 34.49 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mfaiq2307/faiq-wav2vec2-large-xlsr-indo-demo-a100-runpod-wandb
mfaiq2307
2023-05-26T14:34:03Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-26T12:26:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: faiq-wav2vec2-large-xlsr-indo-demo-a100-runpod-wandb results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.4316088210663441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # faiq-wav2vec2-large-xlsr-indo-demo-a100-runpod-wandb This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4018 - Wer: 0.4316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1582 | 2.92 | 400 | 2.8179 | 1.0 | | 1.529 | 5.84 | 800 | 0.4891 | 0.6339 | | 0.4003 | 8.76 | 1200 | 0.4013 | 0.5365 | | 0.2715 | 11.68 | 1600 | 0.3853 | 0.4893 | | 0.2153 | 14.6 | 2000 | 0.3898 | 0.4738 | | 0.1704 | 17.52 | 2400 | 0.4153 | 0.4593 | | 0.1545 | 20.44 | 2800 | 0.4112 | 0.4515 | | 0.1317 | 23.36 | 3200 | 0.3920 | 0.4460 | | 0.1199 | 26.28 | 3600 | 0.4068 | 0.4347 | | 0.1073 | 29.2 | 4000 | 0.4018 | 0.4316 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.3
wakakaka/first-lunar-landing
wakakaka
2023-05-26T14:29:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T14:29:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.68 +/- 19.52 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sambalsquad/xxxxx
sambalsquad
2023-05-26T14:28:17Z
0
0
null
[ "safetensors", "license:creativeml-openrail-m", "region:us" ]
null
2023-05-26T14:26:32Z
--- license: creativeml-openrail-m ---
jeysshon/Pajaros-PIB-parcial69
jeysshon
2023-05-26T14:27:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-05-26T14:20:37Z
--- title: Bird Classification emoji: ⚡ colorFrom: yellow colorTo: gray sdk: gradio sdk_version: 3.14.0 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
AustinCarthy/Onlyphish_10K_fromB_BFall_40KGen_topP_0.75_noaddedB
AustinCarthy
2023-05-26T14:22:32Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-25T23:18:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Onlyphish_10K_fromB_BFall_40KGen_topP_0.75_noaddedB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Onlyphish_10K_fromB_BFall_40KGen_topP_0.75_noaddedB This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0500 - Accuracy: 0.9943 - F1: 0.9371 - Precision: 0.9955 - Recall: 0.8852 - Roc Auc Score: 0.9425 - Tpr At Fpr 0.01: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0145 | 1.0 | 7813 | 0.0237 | 0.9946 | 0.9415 | 0.9760 | 0.9094 | 0.9541 | 0.8006 | | 0.007 | 2.0 | 15626 | 0.0356 | 0.9943 | 0.9365 | 0.9953 | 0.8842 | 0.9420 | 0.8444 | | 0.0023 | 3.0 | 23439 | 0.0402 | 0.9949 | 0.9435 | 0.9927 | 0.899 | 0.9493 | 0.8434 | | 0.0019 | 4.0 | 31252 | 0.0453 | 0.9947 | 0.9412 | 0.9955 | 0.8924 | 0.9461 | 0.8592 | | 0.0 | 5.0 | 39065 | 0.0500 | 0.9943 | 0.9371 | 0.9955 | 0.8852 | 0.9425 | 0.8404 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
yanezh/twiiter_try15_fold4
yanezh
2023-05-26T14:14:19Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T13:41:31Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: twiiter_try15_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twiiter_try15_fold4 This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1791 - F1: 0.9805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2113 | 1.0 | 500 | 0.1149 | 0.9642 | | 0.0638 | 2.0 | 1000 | 0.1456 | 0.9646 | | 0.0179 | 3.0 | 1500 | 0.1507 | 0.9737 | | 0.0171 | 4.0 | 2000 | 0.1835 | 0.9737 | | 0.0096 | 5.0 | 2500 | 0.2713 | 0.9613 | | 0.0072 | 6.0 | 3000 | 0.2221 | 0.9695 | | 0.0073 | 7.0 | 3500 | 0.1639 | 0.9775 | | 0.0049 | 8.0 | 4000 | 0.2184 | 0.9737 | | 0.0018 | 9.0 | 4500 | 0.2568 | 0.9723 | | 0.0062 | 10.0 | 5000 | 0.2106 | 0.9753 | | 0.0001 | 11.0 | 5500 | 0.2204 | 0.9763 | | 0.0 | 12.0 | 6000 | 0.2195 | 0.9761 | | 0.0015 | 13.0 | 6500 | 0.1732 | 0.9795 | | 0.0 | 14.0 | 7000 | 0.1739 | 0.9810 | | 0.0011 | 15.0 | 7500 | 0.1791 | 0.9805 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AustinCarthy/Onlyphish_10K_fromB_BFall_20KGen_topP_0.75_noaddedB
AustinCarthy
2023-05-26T14:09:19Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-25T20:57:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Onlyphish_10K_fromB_BFall_20KGen_topP_0.75_noaddedB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Onlyphish_10K_fromB_BFall_20KGen_topP_0.75_noaddedB This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0515 - Accuracy: 0.9951 - F1: 0.9454 - Precision: 0.9973 - Recall: 0.8986 - Roc Auc Score: 0.9492 - Tpr At Fpr 0.01: 0.8868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0132 | 1.0 | 7188 | 0.0420 | 0.9915 | 0.9029 | 0.9945 | 0.8268 | 0.9133 | 0.7952 | | 0.0034 | 2.0 | 14376 | 0.0398 | 0.9939 | 0.9322 | 0.9950 | 0.8768 | 0.9383 | 0.8162 | | 0.0022 | 3.0 | 21564 | 0.0348 | 0.9955 | 0.9512 | 0.9937 | 0.9122 | 0.9560 | 0.886 | | 0.0 | 4.0 | 28752 | 0.0360 | 0.9955 | 0.9507 | 0.9840 | 0.9196 | 0.9594 | 0.0 | | 0.0 | 5.0 | 35940 | 0.0515 | 0.9951 | 0.9454 | 0.9973 | 0.8986 | 0.9492 | 0.8868 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
davidwtan/my_food_model
davidwtan
2023-05-26T13:55:14Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-26T13:20:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.915 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.5005 - Accuracy: 0.915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2078 | 0.99 | 62 | 2.9572 | 0.787 | | 1.7221 | 2.0 | 125 | 1.6469 | 0.861 | | 1.2109 | 2.99 | 187 | 1.1555 | 0.894 | | 0.81 | 4.0 | 250 | 0.8631 | 0.91 | | 0.6486 | 4.99 | 312 | 0.7190 | 0.908 | | 0.5162 | 6.0 | 375 | 0.6194 | 0.91 | | 0.4567 | 6.99 | 437 | 0.5399 | 0.924 | | 0.43 | 8.0 | 500 | 0.5146 | 0.922 | | 0.3723 | 8.99 | 562 | 0.4914 | 0.922 | | 0.3938 | 9.92 | 620 | 0.5005 | 0.915 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
teasan/endlessMix
teasan
2023-05-26T13:50:08Z
4
68
diffusers
[ "diffusers", "art", "stable-diffusion", "ja", "license:creativeml-openrail-m", "region:us" ]
null
2023-04-01T15:34:02Z
--- license: creativeml-openrail-m language: - ja tags: - art - stable-diffusion library_name: diffusers --- # ■endlessMixシリーズについて ![](image/logo.png) ## 概要 このモデルはDefactaをベースにした階層マージモデルです。 モデル作者である私が勉強用と自分使用目的に制作しました。 なお、VAEは導入されていないので別途DLしてください。 ## 使い方 モデルをcloneもしくはDLした後、以下に格納してください。 ``` webui\models\Stable-diffusion\ ``` ### 推奨設定(作者の設定) #### V9シリーズ - Sampler: DPM++ 2M Karras - Step: 20 ~ 50 - CFG scale: 7~15 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 or 0 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> #### V8シリーズ - Sampler: DPM++ 2M Karras - Step: 20 ~ 50 - CFG scale: 7~15 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 or 0 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> #### V7 - Sampler: DPM++ 2M Karras - Step: 20 ~ 50 - CFG scale: 7~15 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 or 0 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> #### V6 - Sampler: DPM++ 2M Karras - Step: 20 ~ 50 - CFG scale: 7~15 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 or 0 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> #### V3 - Sampler: DPM++ 2M Karras - Step: 20 ~ 30 - CFG scale: 7~15 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 or 0 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> #### V2 - Sampler: DPM++ 2M Karras - Step: 20 ~ 30 - CFG scale: 11 - Denoising strength: 0.55 ~ 0.6 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 ~ 13 - Hires upscaler: Latent (nearest) or R-ESRGAN 4x+ - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> or <a href="https://huggingface.co/sp8999/test_VAE/blob/main/mse840000_klf8anime_klf8anime2.vae.pt" target="_blank">mse840000_klf8anime_klf8anime2</a> #### V1 - Sampler: DPM++ 2M Karras - Step: 30 - CFG scale: 11 - Denoising strength: 0.55 - Clip skip: 2 - Hires upscale: 2 - Hires steps: 10 - Hires upscaler: Latent (nearest) - VAE: <a href="https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae" target="_blank">kl-f8-anime2</a> ### 出力サンプル <details> <summary>endlessMixV9</summary> <div> ALL ![](image/v9/grid.png) 2dMix ![](image/v9/01.png) realMix ![](image/v9/02.png) oldFix ![](image/v9/03.png) ``` ▲プロンプト absurdres, highres, 1girl, Negative prompt: EasyNegative, [ :(negative_hand-neg:1.2):15 ], (worst quality, low quality:1.4), text, monochrome, nsfw ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV8</summary> <div> 通常版 ![](image/v8/img01.png) kawaii_fix ![](image/v8/img02.png) oldFix ![](image/v8/img03.png) ``` ▲プロンプト absurdres, highres, (1girl, solo), big eyes, townscape, (Water Effects, Light Effects, Fluttering Feathers:1.2), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` 通常版 ![](image/v8/img04.png) ``` ▲プロンプト absurdres, highres, (official art, beautiful and aesthetic:1.2), (1girl:1.45), (fractal art:1.3), zentangle, kaleidoscope, (colorfield painting:1.15), (flower effects:0.8), wild style art, Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` kawaii_fix ![](image/v8/img05.png) ``` ▲プロンプト absurdres, highres, (1girl, solo), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` 通常版 ![](image/v8/img06.png) ``` ▲プロンプト absurdres, highres, 1girl, big eyes, high ponytail,☺, [ red | orange ] hair, Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV7</summary> <div> ![](image/v7/img01.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo), big eyes, kawaii, toddler, loli, townscape, (Water Effects, Light Effects, Fluttering Feathers:1.2), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v7/img02.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo:1.2), 🥰, (colorfield painting:1.3), (zentangle:1.3), flower effects, (fractal art:1.15), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v7/img03.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo:1.2), 🥰, (colorfield painting:1.3), (zentangle:1.3), flower effects, (fractal art:1.15), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v7/img04.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, 1gir, artist style, (Fashion Magazine Cover:1.2), (zentangle:1.3), material effects, Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV6</summary> <div> ![](image/v6/img01.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo), (kawaii:1.2), ([ water effects | Light Effects | Feathers effects ]:1.3), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v6/img02.png) ``` ▲プロンプト absurdres, highres, ultra detailed, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo:1.2), 🥰, (colorfield painting:1.3), (zentangle:1.3), flower effects, (fractal art:1.15), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` ![](image/v6/img03.png) ``` ▲プロンプト absurdres, highres, ultra detailed, 1girl, full body, big eye, (toddler, loli, kawaii, expressionless face, cute girl, ( [blue | shining] eye ), small face:1.2), Ruffled Dresses, BREAK cel shading, (bold outlines):1.2, flat colors, sharp shadows, graphic style, manga influence, clean Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` ![](image/v6/img04.png) ``` ▲プロンプト absurdres, highres, ultra detailed, 1girl, full body, big eye, (toddler, loli, kawaii, expressionless face, cute girl, ( [blue | shining] eye ), small face:1.2), Ruffled Dresses, BREAK cel shading, (bold outlines):1.2, flat colors, sharp shadows, graphic style, manga influence, clean Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV3.5</summary> <div> ![](image/v3/img01.png) ``` ▲プロンプト absurdres, highres, ultra detailed, Ultra-precise depiction, Ultra-detailed depiction, (ultra-detailed background, detailed background), extremly detailed, 1gir, solo, zentangle, (Fashion Magazine Cover:1.4), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, text, grid view, nsfw, ``` ![](image/v3/img02.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, 1gir, artist style, (Fashion Magazine Cover:1.5), (zentangle:1.3), material effects, Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v3/img03.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo:1.2), 🥰, (colorfield painting:1.3), (zentangle:1.3), flower effects, (fractal art:1.15), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ![](image/v3/img04.png) ``` ▲プロンプト absurdres, highres, (ultra-detailed background, detailed background), extremly detailed, (1girl, solo), big eyes, kawaii, toddler, loli, townscape, (Water Effects, Light Effects, Fluttering Feathers:1.2), Negative prompt: EasyNegative, bad-hands-5, (worst quality:2), Bad Anatomy, crumpled limbs, bad hands, bad fingers, missing fingers, missing arms, missing legs, extra digit, watermark, username, artist name, signature, grid view, nsfw, ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV2シリーズ</summary> <div> ![](image/v2/grid.png) ``` ▲プロンプト (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.2), (1girl, solo), (kawaii:1.2), ([ water effects | Light Effects | Feathers effects ]:1.3), Negative prompt: EasyNegative, bad-hands-5, (worst quality:1.4), (low quality:1.4), text, grid view, nsfw, crumpled limbs, Bad Anatomy, ``` ![](image/v2/grid02.png) ``` ▲プロンプト (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.2), (1girl, solo), Negative prompt: EasyNegative, bad-hands-5, (worst quality:1.4), (low quality:1.4), text, grid view, nsfw, crumpled limbs, Bad Anatomy, ``` ~~~~~~~~~ </div> </details> <details> <summary>endlessMixV1</summary> <div> ![](image/v1/grid.jpg) ~~~~~~~~~ </div> </details> ---- # 免責事項 - SFWおよびNSFW画像の作成は、個々のクリエイターの判断によります。モデル製作者は責任を負いません。 - このモデルは、公共の場などでNSFWコンテンツを公開するために作られたモデルではありません。 --- # 当モデルの使用にあたって 以下の事項守っていただき、<strong>常識の範囲内</strong>でご使用ください。 ✅ 本モデルで生成した画像を商用利用する行為 ✅ 本モデルを使用したマージモデルを使用または再配布する行為 ✅ 本モデルのクレジット表記をせずに使用する行為 ❌ 本モデルを商用の画像生成サービスで利用する行為  ❌ 本モデルや本モデルをマージしたモデルを販売する行為 ❌ 本モデルを使用し意図的に違法な出力をする行為 ❌ 本モデルをマージしたモデルに異なる権限を与える行為 ❌ 本モデルをマージしたモデルを配布または本モデルを再配布した際に同じ使用制限を含め、CreativeML OpenRAIL-M のコピーをすべてのユーザーと共有しない行為 --- # Stable Diffusionのライセンスについて - このモデルはオープンアクセスで誰でも利用可能であり、CreativeML OpenRAIL-Mライセンスでさらに権利と使用方法が規定されています。 - CreativeML OpenRAILライセンスでは、次のように規定されています。 1. このモデルを使用して、違法または有害な出力やコンテンツを意図的に作成したり、共有したりすることはできません。 2. 作者はあなたが生成した出力に対していかなる権利も主張しません。あなたはそれらを自由に使用することができますが、ライセンスで定められた規定を守ってください。利用は自己責任でお願いします。 3. あなたはウェイトを再配布し、モデルを商業的またはサービスとして使用することができます。その場合、ライセンスにあるものと同じ使用制限を含め、CreativeML OpenRAIL-Mのコピーをあなたのすべてのユーザーに共有しなければならないことに注意してください(ライセンスを完全にかつ注意深く読んでください)。 - (ライセンスの全文: [https://huggingface.co/spaces/CompVis/stable-diffusion-license](https://huggingface.co/spaces/CompVis/stable-diffusion-license)) --- # 作者について twitter:<a href="https://twitter.com/wims_Tea" target="_blank"> https://twitter.com/wims_Tea</a> ---
yanezh/twiiter_try15_fold3
yanezh
2023-05-26T13:41:22Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T13:08:34Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: twiiter_try15_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twiiter_try15_fold3 This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1796 - F1: 0.9805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2022 | 1.0 | 500 | 0.1547 | 0.9636 | | 0.0612 | 2.0 | 1000 | 0.2014 | 0.9660 | | 0.0211 | 3.0 | 1500 | 0.1204 | 0.9776 | | 0.0107 | 4.0 | 2000 | 0.1797 | 0.9745 | | 0.0073 | 5.0 | 2500 | 0.1931 | 0.9752 | | 0.0128 | 6.0 | 3000 | 0.1808 | 0.9741 | | 0.0088 | 7.0 | 3500 | 0.1756 | 0.9750 | | 0.0088 | 8.0 | 4000 | 0.1726 | 0.9781 | | 0.0012 | 9.0 | 4500 | 0.1707 | 0.9785 | | 0.0004 | 10.0 | 5000 | 0.1794 | 0.9780 | | 0.0031 | 11.0 | 5500 | 0.2156 | 0.9743 | | 0.0012 | 12.0 | 6000 | 0.2106 | 0.9741 | | 0.0 | 13.0 | 6500 | 0.1925 | 0.9796 | | 0.0 | 14.0 | 7000 | 0.1903 | 0.9789 | | 0.0008 | 15.0 | 7500 | 0.1796 | 0.9805 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Evuv/mt5-base-torch
Evuv
2023-05-26T13:39:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-26T03:38:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-torch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-torch This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0425 - Rouge1: 0.0824 - Rouge2: 0.011 - Rougel: 0.0721 - Rougelsum: 0.0721 - Gen Len: 18.2575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 4.199 | 1.0 | 1600 | 3.1896 | 0.0865 | 0.0116 | 0.0746 | 0.0746 | 18.06 | | 3.8499 | 2.0 | 3200 | 3.1142 | 0.0905 | 0.0109 | 0.0773 | 0.0774 | 18.1925 | | 3.6877 | 3.0 | 4800 | 3.0694 | 0.083 | 0.0113 | 0.0719 | 0.0719 | 18.44 | | 3.571 | 4.0 | 6400 | 3.0425 | 0.0824 | 0.011 | 0.0721 | 0.0721 | 18.2575 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ThomasSimonini/dqn-SpaceInvadersNoFrameskip-v4
ThomasSimonini
2023-05-26T13:03:28Z
48
1
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-07T12:25:18Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 329.00 +/- 157.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ThomasSimonini -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ThomasSimonini -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ThomasSimonini ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
DionnisB/LyCORIS
DionnisB
2023-05-26T12:45:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-09T23:27:56Z
--- license: creativeml-openrail-m ---
yuval6967/rl_course_vizdoom_health_gathering_supreme
yuval6967
2023-05-26T12:34:20Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T12:34:09Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.50 +/- 4.98 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r yuval6967/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
yanezh/twiiter_try15_fold1
yanezh
2023-05-26T12:33:14Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T11:59:47Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: twiiter_try15_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twiiter_try15_fold1 This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1718 - F1: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2154 | 1.0 | 500 | 0.0921 | 0.9763 | | 0.0689 | 2.0 | 1000 | 0.1517 | 0.9646 | | 0.0329 | 3.0 | 1500 | 0.0965 | 0.9821 | | 0.0102 | 4.0 | 2000 | 0.1161 | 0.9819 | | 0.0097 | 5.0 | 2500 | 0.1399 | 0.9784 | | 0.0028 | 6.0 | 3000 | 0.2075 | 0.9725 | | 0.006 | 7.0 | 3500 | 0.1767 | 0.9768 | | 0.0059 | 8.0 | 4000 | 0.1750 | 0.9775 | | 0.0001 | 9.0 | 4500 | 0.2467 | 0.9724 | | 0.0073 | 10.0 | 5000 | 0.1923 | 0.9754 | | 0.0026 | 11.0 | 5500 | 0.1645 | 0.9790 | | 0.002 | 12.0 | 6000 | 0.1862 | 0.9801 | | 0.0008 | 13.0 | 6500 | 0.1643 | 0.98 | | 0.0 | 14.0 | 7000 | 0.1708 | 0.9816 | | 0.0 | 15.0 | 7500 | 0.1718 | 0.9816 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rawkul/ppo-LunarLander-v2
rawkul
2023-05-26T11:53:50Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-26T10:48:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.20 +/- 22.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gsotnikov/ppo-Pyramids
gsotnikov
2023-05-26T11:40:53Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-05-26T11:40:14Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: gsotnikov/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
GraydientPlatformAPI/con-dep
GraydientPlatformAPI
2023-05-26T11:37:07Z
0
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "region:us" ]
text-to-image
2023-05-23T12:03:58Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
zrthxn/vicuna-embedding
zrthxn
2023-05-26T11:32:19Z
0
0
null
[ "embeddings", "en", "license:apache-2.0", "region:us" ]
null
2023-04-18T15:43:56Z
--- license: apache-2.0 language: - en tags: - embeddings --- Word-embedding layer stolen from a LLaMA 13B model. The vocab size is 32K.
YakovElm/Hyperledger15Classic_256
YakovElm
2023-05-26T11:12:44Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-26T11:12:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger15Classic_256 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger15Classic_256 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2409 - Train Accuracy: 0.9097 - Validation Loss: 0.4492 - Validation Accuracy: 0.8766 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3241 | 0.8955 | 0.3393 | 0.8807 | 0 | | 0.2856 | 0.9035 | 0.3414 | 0.8797 | 1 | | 0.2409 | 0.9097 | 0.4492 | 0.8766 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
PeiBolio/bolio_xrz
PeiBolio
2023-05-26T10:31:31Z
0
1
null
[ "cactus", "lora", "region:us" ]
null
2023-05-23T10:35:48Z
--- tags: - cactus - lora --- 这是一个lora模型,使用112张高质量仙人掌图片训练,训练图片尺寸768x512,主要包含:裸萼属、圆盘玉属、极光球属、智利球属、龙爪球属,以及少量乳突属、兜、鱼、顶花、多棱、等。避免使用存在花苞的图片。 调用方式:全部属通用:cactus; 特定属裸萼:bolio_luoe;特定属智利:bolio_zhili;特定属智利:bolio_zhili;特定属兜:bolio_dou;特定属极光:bolio_jiguang; 特定属顶花:bolio_dinghua;特定属圆盘玉:bolio_yuanpan;特定属龙爪:bolio_longzhua;特定属鱼:bolio_yu;特定属多棱:bolio_duoleng; ![1.jpg](https://s3.amazonaws.com/moonup/production/uploads/646c959f54c7a20a99dd5150/fx45Zpm3ctro8nfBswsmc.jpeg) ![2.jpg](https://s3.amazonaws.com/moonup/production/uploads/646c959f54c7a20a99dd5150/itDiX7hV8HDqUfNFtQyhZ.jpeg) ![3.jpg](https://s3.amazonaws.com/moonup/production/uploads/646c959f54c7a20a99dd5150/E0MA8oSos6-T_-wKzAvlh.jpeg) ![6.jpg](https://s3.amazonaws.com/moonup/production/uploads/646c959f54c7a20a99dd5150/BYM7udc6Pv8ZL-MUtTHyV.jpeg) ![5.jpg](https://s3.amazonaws.com/moonup/production/uploads/646c959f54c7a20a99dd5150/2Toe91BDsG33JwxZWbist.jpeg)
sarahpuspdew/DeepRLCourse_Unit5-ppo-Pyramids
sarahpuspdew
2023-05-26T10:20:10Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-05-26T10:20:03Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: sarahpuspdew/DeepRLCourse_Unit5-ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
yash-srivastava19/hindi_udpipe
yash-srivastava19
2023-05-26T10:17:32Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-05-26T10:09:33Z
--- license: mit --- Hindi UDPIPE model based on the data provided by IIIT Hyderabad