modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
asure22/dbert_qa_model_070623
asure22
2023-06-08T12:58:15Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-08T02:38:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: dbert_qa_model_070623 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dbert_qa_model_070623 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.5076 | | 2.746 | 2.0 | 500 | 1.8158 | | 2.746 | 3.0 | 750 | 1.7495 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
necrashter/SaShiMi-796
necrashter
2023-06-08T12:57:01Z
0
1
pytorch
[ "pytorch", "arxiv:2202.09729", "license:mit", "region:us" ]
null
2023-06-07T15:42:35Z
--- license: mit library_name: pytorch --- # SaShiMi-796 This repository contains pre-trained models for [SaShiMi-796](https://github.com/necrashter/SaShiMi-796), a replication of the paper ["It's Raw! Audio Generation with State-Space Models"](https://arxiv.org/abs/2202.09729) from scratch in PyTorch. It was developed as a part of the course [METU CENG 796 Deep Generative Models](https://user.ceng.metu.edu.tr/~gcinbis/courses/Spring23/CENG796/index.html) in Spring 2023. See the following links for more information: - [GitHub repository of the code](https://github.com/necrashter/SaShiMi-796) - [Webpage containing the generated samples](https://necrashter.github.io/sashimi-796) - [Mirror](https://user.ceng.metu.edu.tr/~ilker/sashimi/) The models and the dataset in this repository will be automatically downloaded and extracted by `download_data.sh` script in the [GitHub repository](https://github.com/necrashter/SaShiMi-796). In addition, there's a also a zip file containing the [Youtube Mix dataset](https://huggingface.co/datasets/krandiash/youtubemix). The only difference in our version of the dataset is that it's split into train-validation-test sets as described in the README file of the dataset. We had to upload our own version of this dataset because it's not possible to download it from the official repository using `wget` due to authorization issues. _Please note that the Youtube Mix dataset is not our own work ([original Youtube video](https://www.youtube.com/watch?v=EhO_MrRfftU)), hence is not covered under the same license as the model. The dataset is provided for academic and research purposes only, and it should be used as such in order to constitute fair use under the US copyright law. We take no responsibility for any copyright infringements that may take place by users who download and use this dataset._ ## Reproduction Results With an 8-layer SaShiMi model, we managed to achieve an NLL of **1.325** (in base 2) after 160 epochs. For comparison, the result reported in the paper is **1.294**. Although our result is slightly higher, the model in the paper was trained longer (600K steps on page 19, which would be about 400 epochs in our setup). We believe it's reasonable to expect that our model can achieve the same or better NLL value with longer training and/or better hyperparameter choices. Furthermore, [our generated samples](https://necrashter.github.io/sashimi-796) are similar to [the ones provided by the authors](https://hazyresearch.stanford.edu/sashimi-examples/). Therefore, we think that we've successfully reproduced the paper.
paladinarbalest/ppo-LunarLander-v2
paladinarbalest
2023-06-08T12:55:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T12:54:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.17 +/- 24.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wykonos/a2c-AntBulletEnv-v0
wykonos
2023-06-08T12:41:53Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T21:37:23Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1158.41 +/- 308.27 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
P3ps/bert-finetuned-cross-ner-v3
P3ps
2023-06-08T12:40:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T11:20:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-cross-ner-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-cross-ner-v3 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1790 - Precision: 0.8305 - Recall: 0.8629 - F1: 0.8464 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2023 | 1.0 | 2607 | 0.1921 | 0.7785 | 0.8197 | 0.7985 | 0.9468 | | 0.1244 | 2.0 | 5214 | 0.1740 | 0.8211 | 0.8541 | 0.8373 | 0.9547 | | 0.0792 | 3.0 | 7821 | 0.1790 | 0.8305 | 0.8629 | 0.8464 | 0.9559 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
tmpusr/ppo-SnowballTarget
tmpusr
2023-06-08T12:39:38Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-08T11:47:43Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tmpusr/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sadFaceEmoji/gpt-neo-1.3B-poem
sadFaceEmoji
2023-06-08T12:33:12Z
8
0
peft
[ "peft", "text-generation", "en", "dataset:sadFaceEmoji/english-poems", "region:us" ]
text-generation
2023-06-08T12:32:13Z
--- library_name: peft datasets: - sadFaceEmoji/english-poems language: - en pipeline_tag: text-generation ---
Yhyu13/CAMEL-13B-Combined-Data-gptq-4bit
Yhyu13
2023-06-08T12:26:19Z
5
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T12:21:10Z
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Original weight : https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data
ighina/roberta_topseg_mean_wikicity
ighina
2023-06-08T12:16:22Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-08T12:13:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11254 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
davanstrien/blbooksgenre_topics
davanstrien
2023-06-08T12:14:16Z
4
0
bertopic
[ "bertopic", "text-classification", "en", "dataset:blbooksgenre", "license:mit", "region:us" ]
text-classification
2023-06-08T12:10:35Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification license: mit datasets: - blbooksgenre language: - en --- # blbooksgenre_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("davanstrien/blbooksgenre_topics") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 57 * Number of training documents: 43752 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | poems - novel - poem - prose - book | 11 | -1_poems_novel_poem_prose | | 0 | poems - poem - poetry - poets - poetical | 18624 | 0_poems_poem_poetry_poets | | 1 | novel - author - poem - heir - tales | 4698 | 1_novel_author_poem_heir | | 2 | ireland - dublin - scotland - irish - edinburgh | 3576 | 2_ireland_dublin_scotland_irish | | 3 | geography - geographical - maps - map - history | 3104 | 3_geography_geographical_maps_map | | 4 | shakespeare - acts - prose - comedy - theatre | 1377 | 4_shakespeare_acts_prose_comedy | | 5 | county - counties - pennsylvania - hampshire - history | 1089 | 5_county_counties_pennsylvania_hampshire | | 6 | france - spain - europe - pyrenees - paris | 990 | 6_france_spain_europe_pyrenees | | 7 | sailing - nautical - maritime - boat - voyages | 986 | 7_sailing_nautical_maritime_boat | | 8 | antiquity - greeks - rome - romans - greece | 744 | 8_antiquity_greeks_rome_romans | | 9 | illustrations - drawings - pencil - drawn - sketches | 631 | 9_illustrations_drawings_pencil_drawn | | 10 | africa - transvaal - cape - zululand - african | 610 | 10_africa_transvaal_cape_zululand | | 11 | egypt - egyptians - cairo - sinai - egyptian | 610 | 11_egypt_egyptians_cairo_sinai | | 12 | england - britain - british - george - english | 570 | 12_england_britain_british_george | | 13 | california - alaska - regions - tour - states | 546 | 13_california_alaska_regions_tour | | 14 | italia - italy - sicily - italian - italians | 491 | 14_italia_italy_sicily_italian | | 15 | crimean - crimea - turkey - turks - russia | 481 | 15_crimean_crimea_turkey_turks | | 16 | mexico - rio - honduras - colombia - panama | 433 | 16_mexico_rio_honduras_colombia | | 17 | wales - maoriland - otago - zealand - auckland | 423 | 17_wales_maoriland_otago_zealand | | 18 | waterloo - poem - battle - napoleon - battles | 405 | 18_waterloo_poem_battle_napoleon | | 19 | mining - mineralogy - minerals - metallurgy - metals | 396 | 19_mining_mineralogy_minerals_metallurgy | | 20 | history - america - states - historical - american | 377 | 20_history_america_states_historical | | 21 | geology - geological - geologists - cambrian - fossils | 305 | 21_geology_geological_geologists_cambrian | | 22 | quebec - scotia - canadas - ontario - province | 204 | 22_quebec_scotia_canadas_ontario | | 23 | rambles - ramble - south - lands - scrambles | 194 | 23_rambles_ramble_south_lands | | 24 | edition - second - series - third - revised | 159 | 24_edition_second_series_third | | 25 | rudge - barnaby - hutton - rivers - osborne | 149 | 25_rudge_barnaby_hutton_rivers | | 26 | memorials - anniversary - memorial - london - address | 134 | 26_memorials_anniversary_memorial_london | | 27 | railway - railways - railroad - railroads - railroadiana | 115 | 27_railway_railways_railroad_railroads | | 28 | forest - foresters - woods - trees - forestalled | 112 | 28_forest_foresters_woods_trees | | 29 | philosophy - humanity - philosophie - moralities - conscience | 97 | 29_philosophy_humanity_philosophie_moralities | | 30 | gazetteer - geography - geographical - dictionary - topographical | 96 | 30_gazetteer_geography_geographical_dictionary | | 31 | goldsmith - goldsmiths - novel - writings - epistle | 93 | 31_goldsmith_goldsmiths_novel_writings | | 32 | regulations - members - committees - rules - committee | 89 | 32_regulations_members_committees_rules | | 33 | odes - poems - poem - ode - hymno | 87 | 33_odes_poems_poem_ode | | 34 | doctor - doctors - physician - patients - physicians | 79 | 34_doctor_doctors_physician_patients | | 35 | geography - schools - longmans - colleges - school | 77 | 35_geography_schools_longmans_colleges | | 36 | juan - juana - sequel - carlos - genista | 63 | 36_juan_juana_sequel_carlos | | 37 | sporting - sports - sport - sportsmans - rugby | 56 | 37_sporting_sports_sport_sportsmans | | 38 | detective - detectives - crime - policeman - city | 52 | 38_detective_detectives_crime_policeman | | 39 | blanc - mont - blanche - montserrat - montacute | 47 | 39_blanc_mont_blanche_montserrat | | 40 | jack - jacks - jackdaw - house - author | 46 | 40_jack_jacks_jackdaw_house | | 41 | dutch - netherlands - holland - dutchman - dutchesse | 43 | 41_dutch_netherlands_holland_dutchman | | 42 | spider - spiders - adventure - web - webs | 35 | 42_spider_spiders_adventure_web | | 43 | madrasiana - madras - malabar - mysore - district | 31 | 43_madrasiana_madras_malabar_mysore | | 44 | doncaster - 1835 - gazette - 1862 - 1868 | 31 | 44_doncaster_1835_gazette_1862 | | 45 | lays - lay - land - empire - sea | 28 | 45_lays_lay_land_empire | | 46 | cyprus - syria - palestine - island - asia | 28 | 46_cyprus_syria_palestine_island | | 47 | gipsies - gipsy - snakes - encyclopaedia - bunyan | 20 | 47_gipsies_gipsy_snakes_encyclopaedia | | 48 | abydos - bride - turkish - marriage - euphrosyne | 18 | 48_abydos_bride_turkish_marriage | | 49 | derby - castleton - buxton - matlock - nottingham | 16 | 49_derby_castleton_buxton_matlock | | 50 | corsair - tale - carlo - mystery - monte | 16 | 50_corsair_tale_carlo_mystery | | 51 | bushman - bushranger - bushrangers - australian - novel | 13 | 51_bushman_bushranger_bushrangers_australian | | 52 | months - italy - weeks - six - france | 12 | 52_months_italy_weeks_six | | 53 | kitty - kittys - catspaw - catriona - father | 12 | 53_kitty_kittys_catspaw_catriona | | 54 | lighthouses - lighthouse - beacons - lights - lighting | 12 | 54_lighthouses_lighthouse_beacons_lights | | 55 | balfour - kidnapped - balfouriana - memoirs - adventures | 11 | 55_balfour_kidnapped_balfouriana_memoirs | </details> ## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: 57 * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11
angshineee/pokemon-lora
angshineee
2023-06-08T12:08:15Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-08T06:04:38Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - angshineee/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
kejolong/nanashe
kejolong
2023-06-08T12:02:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T12:01:05Z
--- license: creativeml-openrail-m ---
TheBloke/selfee-7B-GGML
TheBloke
2023-06-08T11:56:53Z
0
5
null
[ "license:other", "region:us" ]
null
2023-06-08T11:24:03Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Kaist AI's Selfee 7B GGML These files are GGML format model files for [Kaist AI's Selfee 7B](https://huggingface.co/kaist-ai/selfee-7b-delta). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/selfee-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/selfee-7B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/selfee-7B-fp16) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | selfee-7B.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB | 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | selfee-7B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB | 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | selfee-7B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB | 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | selfee-7B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB | 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | selfee-7B.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. | | selfee-7B.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | selfee-7B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB | 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | selfee-7B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB | 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | selfee-7B.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | selfee-7B.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | selfee-7B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB | 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | selfee-7B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB | 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | selfee-7B.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | selfee-7B.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m selfee-7B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaist AI's Selfee 7B
ruwan/open-llama-sharded-1GB-7B-alpaca-vmware
ruwan
2023-06-08T11:43:36Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T09:49:12Z
--- license: apache-2.0 --- note : use original open llama tokenizer model_path = 'ruwan/open-llama-sharded-1GB-7B-alpaca-vmware' tokenizer = LlamaTokenizer.from_pretrained("openlm-research/open_llama_7b") model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto' )
NYTK/PULI-BERT-Large
NYTK
2023-06-08T11:39:36Z
299
3
transformers
[ "transformers", "pytorch", "megatron-bert", "fill-mask", "puli", "hu", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-09T14:51:30Z
--- language: - hu tags: - fill-mask - puli license: cc-by-nc-4.0 widget: - text: Mesélek egy [MASK] az oroszlánról. --- # PULI BERT-Large For further details, see [our demo site](https://juniper.nytud.hu/demo/nlp). - Hungarian BERT large model (MegatronBERT) - Trained with Megatron-DeepSpeed [github](https://github.com/microsoft/Megatron-DeepSpeed) - Dataset: 36.3 billion words - Checkpoint: 1 500 000 steps ## Limitations - max_seq_length = 1024 ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-puli, title = {Jönnek a nagyok! BERT-Large, GPT-2 és GPT-3 nyelvmodellek magyar nyelvre}, booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)}, year = {2023}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Hungary}, author = {Yang, Zijian Győző and Dodé, Réka and Ferenczi, Gergő and Héja, Enikő and Jelencsik-Mátyus, Kinga and Kőrös, Ádám and Laki, László János and Ligeti-Nagy, Noémi and Vadász, Noémi and Váradi, Tamás}, pages = {247--262} } ``` ## Usage ```python from transformers import BertTokenizer, MegatronBertModel tokenizer = BertTokenizer.from_pretrained('NYTK/PULI-BERT-Large') model = MegatronBertModel.from_pretrained('NYTK/PULI-BERT-Large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt', do_lower_case=False) output = model(**encoded_input) ```
Domo123/tanya-mama-ner
Domo123
2023-06-08T11:32:26Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T10:17:52Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tanya-mama-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tanya-mama-ner This model is a fine-tuned version of [cahya/xlm-roberta-base-indonesian-NER](https://huggingface.co/cahya/xlm-roberta-base-indonesian-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1480 - Precision: 0.8193 - Recall: 0.8765 - F1: 0.8470 - Accuracy: 0.9521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.1731 | 0.7970 | 0.8644 | 0.8294 | 0.9441 | | No log | 2.0 | 240 | 0.1480 | 0.8193 | 0.8765 | 0.8470 | 0.9521 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rshvetsov/ggml-quantized
rshvetsov
2023-06-08T11:24:05Z
0
0
null
[ "region:us" ]
null
2023-06-08T08:34:07Z
llama.cpp converted models by llama.cpp `ffb06a3` --- license: other License Non-commercial bespoke license Where to send questions or comments about the model Questions and comments about LLaMA can be sent via the GitHub repository of the project , by opening an issue. ---
BrainTheos/whisper-base-ln
BrainTheos
2023-06-08T11:17:20Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ln", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T19:27:37Z
--- language: - ln license: apache-2.0 tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Lingala - BrainTheos results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Fleurs type: google/fleurs config: ln_cd split: validation args: ln_cd metrics: - name: Wer type: wer value: 25.050916496945007 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Lingala - BrainTheos This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.7265 - Wer: 25.0509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0081 | 21.0 | 1000 | 0.6218 | 29.8710 | | 0.0016 | 42.01 | 2000 | 0.6865 | 25.1188 | | 0.0009 | 63.01 | 3000 | 0.7152 | 24.9151 | | 0.0007 | 85.0 | 4000 | 0.7265 | 25.0509 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.12.1.dev0 - Tokenizers 0.13.3
shashankjat10/lunar-lander
shashankjat10
2023-06-08T11:13:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T11:13:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.08 +/- 15.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Hyeoli/BERT2BERT_Model
Hyeoli
2023-06-08T11:07:00Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T10:54:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: BERT2BERT_Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT2BERT_Model This model is a fine-tuned version of [patrickvonplaten/bert2bert_cnn_daily_mail](https://huggingface.co/patrickvonplaten/bert2bert_cnn_daily_mail) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 63 | 1.9514 | | No log | 2.0 | 126 | 1.9279 | | No log | 3.0 | 189 | 1.9223 | | No log | 4.0 | 252 | 1.9217 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
lll-yuh-lll/YuhMix
lll-yuh-lll
2023-06-08T10:55:15Z
0
28
null
[ "stable-diffusion", "text-to-image", "ja", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-24T01:39:47Z
--- license: creativeml-openrail-m language: - ja pipeline_tag: text-to-image tags: - stable-diffusion --- ## 【概要】 『YuhMix』は『Counterfeit』をベースにして他のモデルを 階層マージしたモデルです。 『Counterfeit』の優れた構図、ポーズといった表現力を活かして **絵柄のみを変更**。他の部分は極力影響が出ないよう調整しました。 ネガティブTIの推奨は『EasyNegativeV2』です。 VAE、Steps、CGF Scale、Sampler、Upscalerの推奨はありません。 各自お好みで設定して下さい。 **マージ元モデルの作者様に多大なる感謝を**。 このモデルとマージして欲しいという要望があれば**追加を検討**します。 Twitter: [@lll_yuh_lll](https://twitter.com/lll_yuh_lll) *** ## 【マージ元モデル】 **YuhMix_A1:アニメ塗り** Counterfeit-V3.0 + ambientmix **YuhMix_P1:ややアニメ塗り** Counterfeit-V3.0 + Pika's New Generation v2.0 **YuhMix_L1:フラット** Counterfeit-V3.0 + 7th_anime_v3_B **YuhMix_C1:フラット+可愛い** Counterfeit-V3.0 + CuteYukiMix v3.0 *** ## 【YuhMix_A1】 ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/A1-1-2530832888.png) ``` 2D, 1 girl, flying in the sky, wide shot Negative prompt: EasyNegativeV2, 3D, watermark, wing, feather, airplane, aircraft, bird Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2530832888, Size: 512x768, Model hash: 5b0478a78a, Model: YuhMix_A1_fp16, Denoising strength: 0.5, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/A1-2-1229935043.png) ``` 1 girl, adventurer, has weapon, action Negative prompt: EasyNegativeV2, watermark Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 1229935043, Size: 512x768, Model hash: 5b0478a78a, Model: YuhMix_A1_fp16, Denoising strength: 0.45, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 20, Hires upscaler: 4x-AnimeSharp ``` ## 【YuhMix_P1】 ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/P1-1-3471603083.png) ``` 2D, 1 girl, flying in the sky, wide shot Negative prompt: EasyNegativeV2, 3D, watermark, wing, feather, airplane, aircraft, bird Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 3471603083, Size: 512x768, Model hash: a8c732dd6d, Model: YuhMix_P1_fp16, Denoising strength: 0.5, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/P1-2-1799350649.png) ``` 2D, 1 girl, smile, school uniform, shinjuku, night scene, magic circle, action Negative prompt: EasyNegativeV2, 3D, watermark Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 1799350649, Size: 512x768, Model hash: a8c732dd6d, Model: YuhMix_P1_fp16, Denoising strength: 0.5, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ## 【YuhMix_L1】 ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/L1-1-835610278.png) ``` 2D, 1 girl, flying in the sky, wide shot Negative prompt: EasyNegativeV2, 3D, watermark, wing, feather, airplane, aircraft, bird Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 835610278, Size: 512x768, Model hash: 23eb8adb20, Model: YuhMix_L1_fp16, Denoising strength: 0.5, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/L1-2-1192103882.png) ``` 2D, 1 girl, smile, idol costume, shouting into a microphone, dancing, wide shot Negative prompt: EasyNegativeV2, 3D, watermark Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 1192103882, Size: 512x768, Model hash: 23eb8adb20, Model: YuhMix_L1_fp16, Denoising strength: 0.55, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ## 【YuhMix_C1】 ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/C1-1-986981883.png) ``` 2D, 1 girl, flying in the sky, wide shot Negative prompt: EasyNegativeV2, 3D, watermark, wing, feather, airplane, aircraft, bird Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 986981883, Size: 512x768, Model hash: 9daf68fee9, Model: YuhMix_C1_fp16, Denoising strength: 0.5, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp ``` ![](https://huggingface.co/lll-yuh-lll/YuhMix/resolve/main/samples/C1-2-2760921822.png) ``` holy sword, cute girl Negative prompt: EasyNegativeV2, 3D, watermark, animal ears Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2760921822, Size: 512x768, Model hash: 9daf68fee9, Model: YuhMix_C1_fp16, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-AnimeSharp, Version: v1.3.2 ```
MJa6/bert-base-cased-wikitext2
MJa6
2023-06-08T10:46:52Z
194
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-08T10:45:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 9.1420 - eval_runtime: 18.4655 - eval_samples_per_second: 108.798 - eval_steps_per_second: 13.647 - epoch: 0.01 - step: 27 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
MJa6/gpt2-wikitext2
MJa6
2023-06-08T10:41:53Z
177
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T10:39:11Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 7.5813 - eval_runtime: 21.0482 - eval_samples_per_second: 91.884 - eval_steps_per_second: 11.497 - epoch: 0.08 - step: 184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
fatimas/gpt2-wikitext2
fatimas
2023-06-08T10:41:45Z
177
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T10:37:41Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 7.0633 - eval_runtime: 20.711 - eval_samples_per_second: 93.38 - eval_steps_per_second: 11.685 - epoch: 0.22 - step: 488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Khushnur/t5-small-end2end-questions-generation_squad_aug_
Khushnur
2023-06-08T10:37:27Z
159
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-08T09:55:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-end2end-questions-generation_squad_aug_ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-end2end-questions-generation_squad_aug_ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
haddadalwi/bert-large-uncased-whole-word-masking-squad2-finetuned-islamic-squad
haddadalwi
2023-06-08T10:32:51Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-27T13:49:20Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-whole-word-masking-squad2-finetuned-islamic-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-finetuned-islamic-squad This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.3 | 100 | 0.3653 | | No log | 2.6 | 200 | 0.4152 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
PT-10/flan-t5-small-samsum
PT-10
2023-06-08T10:24:52Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-08T09:57:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: flan-t5-small-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-samsum This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
DebeshSahoo/text2sql-finetune
DebeshSahoo
2023-06-08T10:23:38Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "code", "text-classification", "dataset:wikisql", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T07:10:18Z
--- datasets: - wikisql metrics: - accuracy pipeline_tag: text-classification tags: - code --- Base Model:t5-small #Training Result [17610/17610 1:32:31, Epoch 9/10] Step Training Loss Validation Loss 1000 2.682400 0.829368 2000 0.914000 0.568155 3000 0.707700 0.465733 4000 0.613500 0.408758 5000 0.557300 0.374811 6000 0.515800 0.350752 7000 0.487000 0.331517 8000 0.466100 0.319071 9000 0.449400 0.309488 10000 0.438800 0.301829 11000 0.430000 0.296482 12000 0.420200 0.292672 13000 0.418200 0.290445 14000 0.413400 0.288662 15000 0.410100 0.287757 16000 0.412600 0.287280 17000 0.410000 0.287134 question: what is id with name jui and age equal 25 table: ['id', 'name', 'age'] SELECT ID FROM table WHEREname = jui AND age equal 25 #Copy below piece of code to your notebook to use the model from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("DebeshSahoo/text2sql-finetune") # Load the model model = AutoModelForSeq2SeqLM.from_pretrained("DebeshSahoo/text2sql-finetune") # Rest of the code for preparing input, generating predictions, and decoding the output... from typing import List table_prefix = "table:" question_prefix = "question:" def prepare_input(question: str, table: List[str]): print("question:", question) print("table:", table) join_table = ",".join(table) inputs = f"{question_prefix} {question} {table_prefix} {join_table}" input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result test_id = 1000 print("model result:", inference(dataset["test"][test_id]["question"], dataset["test"][test_id]["table"]["header"])) print("real result:", dataset["test"][test_id]["sql"]["human_readable"]) inference("what is id with name jui and age equal 25", ["id","name", "age"])
Den4ikAI/FRED-T5-XL_instructor_chitchat
Den4ikAI
2023-06-08T10:14:23Z
114
2
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-04T11:16:56Z
--- license: mit language: - ru pipeline_tag: text2text-generation widget: - text: '<SC6>Человек: Ответь на вопрос. Почему трава зеленая?\nБот: <extra_id_0>' - text: '<SC1>Тебя зовут Анфиса. Тебе интересно машинное обучение.\nСобеседник сказал: Привет\nТы ответил: <extra_id_0>' - text: '<SC6>Тебя зовут Анфиса. Тебе интересно машинное обучение.\nСобеседник сказал: Что делать, если шалят нервишки?\nТы ответил: <extra_id_0>' --- # Den4ikAI/FRED-T5-XL_instructor_chitchat Инструкционная модель на FRED-T5-XL. Обратите внимание на промпты в примере чит-чата. # Пример использования [Instruct] ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig import torch use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") tokenizer = AutoTokenizer.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat") model = AutoModelForSeq2SeqLM.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat", torch_dtype=torch.float16).to(device) model.eval() generation_config = GenerationConfig.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat") def generate(prompt): data = tokenizer(f"<SC6>Человек: {prompt}\nБот: <extra_id_0>", return_tensors="pt").to(model.device) output_ids = model.generate( **data, generation_config=generation_config )[0] print(tokenizer.decode(data["input_ids"][0].tolist())) out = tokenizer.decode(output_ids.tolist()) return out while 1: generate(input(":> ")) ``` # Пример использования [Chitchat] ```python import torch import transformers use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") t5_tokenizer = transformers.GPT2Tokenizer.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat") t5_model = transformers.T5ForConditionalGeneration.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat") generation_config = transformers.GenerationConfig.from_pretrained("Den4ikAI/FRED-T5-XL_instructor_chitchat") while True: print('-'*80) dialog = [] while True: msg = input('H:> ').strip() if len(msg) == 0: break msg = msg[0].upper() + msg[1:] dialog.append('Собеседник сказал: ' + msg) # Данный пример промпта позволяет вести диалог и писать инструкции. # prompt = '<SC6>Тебя зовут Анфиса. Тебе интересно машинное обучение.' + '\n'.join(dialog) + '\nТы ответил: <extra_id_0>' # Второй пример - промпт просто для диалогов. В таком режиме не будет глюков, когда модель кидает кусок промпта в ответ. prompt = '<SC1>Тебя зовут Анфиса. Тебе интересно машинное обучение.' + '\n'.join(dialog) + '\nТы ответил: <extra_id_0>' input_ids = t5_tokenizer(prompt, return_tensors='pt').input_ids out_ids = t5_model.generate(input_ids=input_ids.to(device), generation_config=generation_config) t5_output = t5_tokenizer.decode(out_ids[0][1:]) if '</s>' in t5_output: t5_output = t5_output[:t5_output.find('</s>')].strip() t5_output = t5_output.replace('<extra_id_0>', '').strip() t5_output = t5_output.split('Собеседник')[0].strip() print('B:> {}'.format(t5_output)) dialog.append('Ты ответил: ' + t5_output) ``` # Citation ``` @MISC{Den4ikAI/FRED-T5-XL_instructor_chitchat, author = {Denis Petrov}, title = {Russian Instruct and Chitchat model}, url = {https://huggingface.co/Den4ikAI/FRED-T5-XL_instructor_chitchat/}, year = 2023 } ```
VaianiLorenzo/ViPER-VTF
VaianiLorenzo
2023-06-08T10:06:49Z
0
1
null
[ "region:us" ]
null
2023-06-08T09:21:46Z
# ViPER-VTF ## (Vision Text FAU) This repository contains the checkpoints for the ViPER model. It is a Perceiver-based model finetuned on the concatenation of visual, textual and FAU-related features. For more information on how to use this model please refer to the following [repository](https://github.com/VaianiLorenzo/ViPER) If you find this useful please cite: ``` @inproceedings{vaiani2022viper, title={ViPER: Video-based Perceiver for Emotion Recognition}, author={Vaiani, Lorenzo and La Quatra, Moreno and Cagliero, Luca and Garza, Paolo}, booktitle={Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge}, pages={67--73}, year={2022} } ``` For any other question feel free to contact me at lorenzo.vaiani@polito.it
VaianiLorenzo/ViPER-VAT
VaianiLorenzo
2023-06-08T09:59:52Z
0
0
null
[ "region:us" ]
null
2023-06-08T09:21:07Z
# ViPER-VAT ## (Vision Audio Text) This repository contains the checkpoints for the ViPER model. It is a Perceiver-based model finetuned on the concatenation of visual, acoustic and textual features. For more information on how to use this model please refer to the following [repository](https://github.com/VaianiLorenzo/ViPER) If you find this useful please cite: ``` @inproceedings{vaiani2022viper, title={ViPER: Video-based Perceiver for Emotion Recognition}, author={Vaiani, Lorenzo and La Quatra, Moreno and Cagliero, Luca and Garza, Paolo}, booktitle={Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge}, pages={67--73}, year={2022} } ``` For any other question feel free to contact me at lorenzo.vaiani@polito.it
mfaiq2307/faiq-wav2vec2-large-xlsr-indo-demo-v100-batch64
mfaiq2307
2023-06-08T09:50:38Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-08T08:01:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: faiq-wav2vec2-large-xlsr-indo-demo-v100-batch64 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.43878832999860407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # faiq-wav2vec2-large-xlsr-indo-demo-v100-batch64 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3267 - Wer: 0.4388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2549 | 11.59 | 400 | 0.6715 | 0.7735 | | 0.3726 | 23.19 | 800 | 0.3267 | 0.4388 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.6.1 - Tokenizers 0.13.3
mun33b/ppo-LunarLander-v2
mun33b
2023-06-08T09:27:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T09:27:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.13 +/- 15.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nodissasemble/7CTOs-document-title-generator
nodissasemble
2023-06-08T09:04:47Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T07:55:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: 7CTOs-document-title-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 7CTOs-document-title-generator This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9983 - Rouge1: 64.6108 - Rouge2: 54.9793 - Rougel: 62.1078 - Rougelsum: 62.1233 - Gen Len: 13.916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.1616 | 1.0 | 625 | 1.0083 | 54.7061 | 43.4916 | 51.3187 | 51.3902 | 13.814 | | 0.9933 | 2.0 | 1250 | 0.9913 | 63.5024 | 53.9145 | 60.941 | 60.9901 | 13.623 | | 0.8891 | 3.0 | 1875 | 0.9960 | 64.8014 | 55.1159 | 62.1757 | 62.1882 | 13.839 | | 0.7913 | 4.0 | 2500 | 0.9983 | 64.6108 | 54.9793 | 62.1078 | 62.1233 | 13.916 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
felixtran/layoutlmv3-rvl-cdip-small
felixtran
2023-06-08T09:03:18Z
76
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T04:27:28Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv3-rvl-cdip-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-rvl-cdip-small This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
TheBloke/MPT-7B-Instruct-GGML
TheBloke
2023-06-08T08:59:52Z
53
29
transformers
[ "transformers", "mpt", "Composer", "MosaicML", "llm-foundry", "dataset:mosaicml/dolly_hhrlhf", "arxiv:2205.14135", "arxiv:2108.12409", "arxiv:2010.04245", "license:cc-by-sa-3.0", "region:us" ]
null
2023-05-18T16:41:36Z
--- license: cc-by-sa-3.0 datasets: - mosaicml/dolly_hhrlhf tags: - Composer - MosaicML - llm-foundry inference: false --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # MPT-7B-Instruct GGML This is GGML format quantised 4-bit, 5-bit and 8-bit GGML models of [MosaicML's MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct). This repo is the result of converting to GGML and quantising. Please note that these MPT GGMLs are **not compatbile with llama.cpp**. Please see below for a list of tools known to work with these model files. ## Repositories available * [MPT-7B: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-GGML). * [MPT-7B-Instruct: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-Instruct-GGML). * [MPT-7B-Storywriter: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-Storywriter-GGML). ## Provided files | Name | Quant method | Bits | Size | RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | `mpt7b-instruct.ggmlv3.q4_0.bin` | q4_0 | 4bit | 4.16GB | 6.2GB | 4-bit. | `mpt7b-instruct.ggmlv3.q4_1.bin` | q4_0 | 4bit | 4.99GB | 7.2GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | `mpt7b-instruct.ggmlv3.q5_0.bin` | q5_0 | 5bit | 4.57GB | 6.8GB | 5-bit. Higher accuracy, higher resource usage and slower inference. | `mpt7b-instruct.ggmlv3.q5_1.bin` | q5_1 | 5bit | 4.99GB | 7.2GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. | `mpt7b-instruct.ggmlv3.q8_0.bin` | q8_0 | 8bit | 7.48GB | 9.7GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. | `mpt7b-instruct.ggmlv3.fp16.bin` | fp16 | 16bit | 13.30GB | 16GB | Full 16-bit. | ## Compatibilty These files are **not** compatible with llama.cpp. Currently they can be used with: * KoboldCpp, a powerful inference engine based on llama.cpp, with good UI: [KoboldCpp](https://github.com/LostRuins/koboldcpp) * The ctransformers Python library, which includes LangChain support: [ctransformers](https://github.com/marella/ctransformers) * The GPT4All-UI which uses ctransformers: [GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [rustformers' llm](https://github.com/rustformers/llm) * The example `mpt` binary provided with [ggml](https://github.com/ggerganov/ggml) As other options become available I will endeavour to update them here (do let me know in the Community tab if I've missed something!) ## Tutorial for using GPT4All-UI * [Text tutorial, written by **Lucas3DCG**](https://huggingface.co/TheBloke/MPT-7B-Storywriter-GGML/discussions/2#6475d914e9b57ce0caa68888) * [Video tutorial, by GPT4All-UI's author **ParisNeo**](https://www.youtube.com/watch?v=ds_U0TDzbzI) <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. Thank you to all my generous patrons and donaters! <!-- footer end --> # MPT-7B-Instruct MPT-7B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-7B](https://huggingface.co/spaces/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. * License: _CC-By-SA-3.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://join.slack.com/t/mosaicml-community/shared_invite/zt-1btms90mc-GipE2ufuPkKY0QBrmF3LSA)! ### Example Question/Instruction **Longboi24**: > What is a quoll? **MPT-7B-Instruct**: >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`: ```python config = transformers.AutoConfig.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) config.attn_config['attn_impl'] = 'triton' model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', config=config, torch_dtype=torch.bfloat16, trust_remote_code=True ) model.to(device='cuda:0') ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python config = transformers.AutoConfig.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) config.update({"max_seq_len": 4096}) model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
zeyneppktemm/flan-t5-base-imdb-text-classification
zeyneppktemm
2023-06-08T08:50:56Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T16:03:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-imdb-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-imdb-text-classification This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - F1: 95.084 - Gen Len: 2.4976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dosai/bert-sud
dosai
2023-06-08T08:49:53Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-08T04:10:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dosai/bert-sud results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dosai/bert-sud This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1151 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 103650, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.3012 | 0 | | 0.1827 | 1 | | 0.1587 | 2 | | 0.1458 | 3 | | 0.1339 | 4 | | 0.1275 | 5 | | 0.1202 | 6 | | 0.1151 | 7 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Domo123/shopee-ner
Domo123
2023-06-08T08:30:26Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T07:51:40Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: shopee-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shopee-ner This model is a fine-tuned version of [cahya/xlm-roberta-base-indonesian-NER](https://huggingface.co/cahya/xlm-roberta-base-indonesian-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0924 - Precision: 0.7557 - Recall: 0.8382 - F1: 0.7948 - Accuracy: 0.9696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.1103 | 0.7127 | 0.8130 | 0.7596 | 0.9641 | | No log | 2.0 | 240 | 0.0924 | 0.7557 | 0.8382 | 0.7948 | 0.9696 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
diallomama/wav2vec2_xlsr
diallomama
2023-06-08T08:04:41Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-05T23:38:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_xlsr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_xlsr This model is a fine-tuned version of [diallomama/wav2vec2_xlsr](https://huggingface.co/diallomama/wav2vec2_xlsr) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2204 - eval_wer: 0.9719 - eval_runtime: 923.0808 - eval_samples_per_second: 16.346 - eval_steps_per_second: 2.044 - epoch: 1.66 - step: 8400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
seanghay/bookmebus-sentiment-analysis
seanghay
2023-06-08T07:44:59Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T06:15:42Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bookmebus-roberta-2 results: [] widget: - text: អ្នកបើកឡានមិនគោរពច្បាប់ - text: រហ័សទាន់ចិត្ត --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bookmebus-roberta-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1144 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 249 | 1.2029 | 0.4931 | | No log | 2.0 | 498 | 1.3241 | 0.5347 | | 0.9919 | 3.0 | 747 | 1.3590 | 0.5 | | 0.9919 | 4.0 | 996 | 1.4430 | 0.5139 | | 0.7674 | 5.0 | 1245 | 1.5039 | 0.5486 | | 0.7674 | 6.0 | 1494 | 1.6894 | 0.5208 | | 0.5381 | 7.0 | 1743 | 1.9312 | 0.4861 | | 0.5381 | 8.0 | 1992 | 1.9636 | 0.5208 | | 0.3594 | 9.0 | 2241 | 2.0836 | 0.5 | | 0.3594 | 10.0 | 2490 | 2.1144 | 0.5 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
rohitp1/subh_w2lm_base_distill_noisy_teacher_mozilla_epochs_50_batch_16
rohitp1
2023-06-08T07:36:21Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-30T18:11:03Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: subh_w2lm_base_distill_noisy_teacher_mozilla_epochs_50_batch_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # subh_w2lm_base_distill_noisy_teacher_mozilla_epochs_50_batch_16 This model is a fine-tuned version of [rohitp1/ws_w2lm_base_plus_finetune_teacher_noise_mozilla_100_epochs_batch_8](https://huggingface.co/rohitp1/ws_w2lm_base_plus_finetune_teacher_noise_mozilla_100_epochs_batch_8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4070 - Wer: 0.3226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 4096 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1283 | 7.31 | 250 | 0.3295 | 0.3266 | | 0.1111 | 14.63 | 500 | 0.3444 | 0.3236 | | 0.0939 | 21.94 | 750 | 0.3664 | 0.3236 | | 0.0826 | 29.26 | 1000 | 0.3828 | 0.3224 | | 0.0751 | 36.57 | 1250 | 0.3977 | 0.3223 | | 0.0703 | 43.89 | 1500 | 0.4070 | 0.3226 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
leonardPKU/PPO_Lunar
leonardPKU
2023-06-08T07:32:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T07:31:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.03 +/- 13.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
angshineee/dogs
angshineee
2023-06-08T07:25:00Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-08T07:18:16Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - angshineee/dogs These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
casque/hipoly_3dcg_v7-epoch-000012
casque
2023-06-08T07:21:29Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T07:20:39Z
--- license: creativeml-openrail-m ---
sunil18p31a0101/q-FrozenLake-v1-4x4-noSlippery
sunil18p31a0101
2023-06-08T07:18:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T07:18:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sunil18p31a0101/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Jinouga/harunosakurav3
Jinouga
2023-06-08T06:59:15Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-08T06:55:54Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### HarunoSakuraV3 Dreambooth model trained by Jinouga with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Jagannath/phishNet
Jagannath
2023-06-08T06:58:06Z
67
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T06:50:18Z
--- tags: - generated_from_keras_callback model-index: - name: phishNet results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # phishNet This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
casque/alstroemeriaMix_v10
casque
2023-06-08T06:56:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T06:38:41Z
--- license: creativeml-openrail-m ---
Jagannath/my_model
Jagannath
2023-06-08T06:54:19Z
65
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T06:54:01Z
--- tags: - generated_from_keras_callback model-index: - name: my_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my_model This model is a fine-tuned version of [./my_model](https://huggingface.co/./my_model) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Xoyo/ppo-CartPole-v1
Xoyo
2023-06-08T06:32:07Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T06:30:56Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 185.00 +/- 55.89 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'PPO-test' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Xoyo/ppo-CartPole-v1' 'f': '/root/.local/share/jupyter/runtime/kernel-4750a57a-4905-43ff-90d9-c956385a49c7.json' 'batch_size': 512 'minibatch_size': 128} ```
eunyounglee/pegasus-samsum
eunyounglee
2023-06-08T06:31:03Z
95
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-08T05:36:46Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6909 | 0.54 | 500 | 1.4848 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
junwai7159/ppo-LunarLander-v2
junwai7159
2023-06-08T06:26:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T06:26:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 229.94 +/- 35.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YzZ-George/DeepSpeed-Chat-OPT-1.3B-3-3-3datasets
YzZ-George
2023-06-08T06:25:27Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2023-06-08T03:31:10Z
--- license: apache-2.0 --- We train OPT-1.3B using three datasets: Dahoas/rm-static, Dahoas/full-hh-rlhf, and yitingxie/rlhf-reward-datasets. Dahoas/synthetic-instruct-gptj-pairwise is not used because of the adsence of test dataset.
seanghay/bookmebus-roberta
seanghay
2023-06-08T06:13:53Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T06:05:21Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bookmebus-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bookmebus-roberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1487 - Accuracy: 0.5121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 463 | 1.2076 | 0.4587 | | 1.2869 | 2.0 | 926 | 1.1487 | 0.5121 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
njuju/22
njuju
2023-06-08T06:05:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T06:03:47Z
--- license: creativeml-openrail-m ---
Broszkit/Syazwina
Broszkit
2023-06-08T05:47:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T05:46:43Z
--- license: creativeml-openrail-m ---
openaccess-ai-collective/minotaur-mpt-7b
openaccess-ai-collective
2023-06-08T05:44:02Z
16
7
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "OpenAccess AI Collective", "MPT", "axolotl", "custom_code", "dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered", "dataset:QingyiSi/Alpaca-CoT", "dataset:teknium/GPTeacher-General-Instruct", "dataset:metaeval/ScienceQA_text_only", "dataset:hellaswag", "dataset:openai/summarize_from_feedback", "dataset:riddle_sense", "dataset:gsm8k", "dataset:camel-ai/math", "dataset:camel-ai/biology", "dataset:camel-ai/physics", "dataset:camel-ai/chemistry", "dataset:winglian/evals", "arxiv:2108.12409", "arxiv:2302.13971", "arxiv:2205.14135", "arxiv:2010.04245", "arxiv:1909.08053", "arxiv:2302.06675", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-06T04:09:31Z
--- license: apache-2.0 tags: - OpenAccess AI Collective - MPT - axolotl datasets: - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered - QingyiSi/Alpaca-CoT - teknium/GPTeacher-General-Instruct - metaeval/ScienceQA_text_only - hellaswag - openai/summarize_from_feedback - riddle_sense - gsm8k - camel-ai/math - camel-ai/biology - camel-ai/physics - camel-ai/chemistry - winglian/evals inference: false --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!** # Minotaur MPT 7B Minotaur 7B is an instruct fine-tuned model on top of MPT-7B. Minotaur 7B is fine-tuned **on only completely open datasets** making this model reproducible by anyone. Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org) # Prompts Chat only style prompts using `USER:`,`ASSISTANT:`. # Training Datasets Minotaur 7B model is fine-tuned on the following datasets: - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered) - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT) - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct) - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization - [camel-ai/math](https://huggingface.co/datasets/camel-ai/math) - [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics) - [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry) - [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology) - [winglian/evals](https://huggingface.co/datasets/winglian/evals) - custom sysnthetic datasets around misconceptions, in-context qa, jokes, N-tasks problems, and context-insensitivity - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the `train` split - [hellaswag](https://huggingface.co/datasets/hellaswag) - 30K+ rows of instruct augmented for detailed explanations w 30K+ rows, derived from the `train` split - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented # Shoutouts Special thanks to Nanobit for helping with Axolotl and TheBloke for quantizing these models are more accessible to all. # Demo HF Demo in Spaces coming soon. ## Release Notes - https://wandb.ai/wing-lian/mpt-7b-4k-minotaur/runs/i4zib0j4 ## Build Minotaur was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 7xA100 80GB - 3 epochs taking approximately 6 hours ## Bias, Risks, and Limitations Minotaur has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). Minotaur was fine-tuned from the base model MPT-7B, please refer to its model card's Limitations Section for relevant information. (included below) ## Examples - results may vary based on temperature and other settings ``` USER: your have 3 apples. you eat 2 pears. how many apples do you have left? ASSISTANT:To find the quantity of apples, we can subtract the number of pears from the number of apples. In this case, there are 3 apples and 2 pears. This means there are 3 apples left. ``` wut? ``` USER: your have 3 apples. you eat 2 pears. how many apples do you have left? ASSISTANT:You don't have any apples left. You had 3 and after eating 2 pears, it is 2. You ate the other apple. ``` 🤣 ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: your have 3 apples. you eat 2 pears. how many apples do you have left? Use multi-step reasoning. ASSISTANT: I understand. You have three apples, two pears, and you ate two of the pears. You have three apples left. ``` 👌 looks like you need the system prompt ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Solve for x: 5x = 3x + 10 ASSISTANT: To find the value of x, you can solve this equation by first adding both sides of the equation, as follows: 5x = 3x + 10 Now, simplify the equation to get: x = 2.5 ``` yup, it still sucks at math ``` USER: tell me a joke. then explain why it's funny. ASSISTANT: What did the blind man say to the man eating steak? He said, "Is that a cow or a sandwich?" ``` ``` USER: write a sonnet about doves ASSISTANT:Doves are a beautiful bird, and you can write a sonnet about them to express your love for them. This sonnet can include imagery of doves, including the sound of their wings as they fly, the softness of their feathers, and the peacefulness they bring to their surroundings. The structure of this sonnet can be similar to the Shakespearean sonnets, with 14 lines divided into three groups of rhyming couplets. In the first stanza, you can express your love for doves as they are a symbol of peace and tranquility. The second stanza can describe the beauty of the dove's plumage and the softness of their feathers. The third stanza can be about the peacefulness that they bring to their surroundings, such as in a garden or park. You can end the sonnet with a final line that encapsulates your feelings about doves. Here is the sonnet for your reference: > Doves are a symbol of peace and tranquility, > A gentle song that soothes the soul. > Their soft feathers and sweet voices bring a sense of warmth and calm to their surroundings, > And they are a welcome sight in any landscape. > > Their grace and beauty are a reminder of the simple pleasures in life, > And their peaceful presence is a welcome respite from the stresses of everyday life. > > Doves are a symbol of love and friendship, > And their companionship is a gift we can all cherish. > > Let us embrace the beauty and serenity of doves, > And let us cherish the gift of their presence in our lives. > > May we always find beauty and serenity in the simple pleasures of life, > And may we cherish the gift of friendship and love. > > Doves are a symbol of peace and tranquility, > A gentle song that soothes the soul. > Their soft feathers and sweet voices bring a sense of warmth and calm to their surroundings, > And they are a welcome sight in any landscape. > > Their grace and beauty are a reminder of the simple pleasures in life, > And their peaceful presence is a welcome respite from the stresses of everyday life. > > Doves are a symbol of love and friendship, > And their companionship is a gift we can all cherish. > > Let us embrace the beauty and serenity of doves, > And let us cherish the gift of their presence in our lives. > > May we always find beauty and serenity in the simple pleasures of life, > And may we cherish the gift of friendship and love. ``` # MPT-7B MPT-7B is a decoder-style transformer pretrained from scratch on 1T tokens of English text and code. This model was trained by [MosaicML](https://www.mosaicml.com). MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)). Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence. MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer). This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference. ### How is this model different? MPT-7B is * **Licensed for the possibility of commercial use** (unlike [LLaMA](https://arxiv.org/abs/2302.13971)). * **Trained on a large amount of data** (1T tokens like [LLaMA](https://arxiv.org/abs/2302.13971) vs. 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)). * **Prepared to handle extremely long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409) (we finetuned [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter) on up to 65k inputs and can handle up to 84k vs. 2k-4k for other open source models). * **Capable of fast training and inference** (via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)) * **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry) ### Models finetuned off MPT-7B: The following models are finetuned on MPT-7B: * [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter): a model designed to read and write fictional stories with super long context lengths. Built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3). At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens. We demonstrate generations as long as 80k tokens on a single A100-80GB GPU in our [blogpost](www.mosaicml.com/blog/mpt-7b). * License: Apache 2.0 * [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following. Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. * License: _CC-By-SA-3.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) * [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation. Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3), [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets. * License: _CC-By-NC-SA-4.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-chat) ## Model Date May 5, 2023 ## Model License Apache-2.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ## How to Use This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') ``` ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## Training Data ### Streaming Datasets Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training. StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset. ### Data Mix The model was trained for 1T tokens (with batch size 1760 and sequence length 2048). It was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs | |-------------|----------------------------|------------|----------------------------|--------| | mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 | | C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 | | RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 | | The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 | | RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 | | The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 | | S2ORC | 48.85 B | 0.033 | 33 B | 0.68 | | RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 | | RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 | | RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 | Samples for each batch were selected from one of the datasets with the probability specified above. The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length. The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics, most of which are relevant for tokenizing code: (1) It was trained on a diverse mix of data that includes code (The Pile) (2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces (3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters. The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points. ### Training Configuration This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B (Base) is **not** intended for deployment without finetuning. It should not be used for human-facing interactions without further guardrails and user consent. MPT-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, ly Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
saikatkumardey/LaMini-Flan-T5-77M-jerry_seinfeld_dialogues
saikatkumardey
2023-06-08T05:39:26Z
165
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-01T16:40:00Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: LaMini-Flan-T5-77M-jerry_seinfeld_dialogues results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> --- WORK IN PROGRESS --- # LaMini-Flan-T5-77M-jerry_seinfeld_dialogues This model is a fine-tuned version of [MBZUAI/LaMini-Flan-T5-77M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-77M) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.5 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
saikatkumardey/lamini-flan-t5-783m_int8_float16
saikatkumardey
2023-06-08T05:37:42Z
1
0
transformers
[ "transformers", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2023-05-30T03:35:18Z
--- license: cc-by-nc-4.0 --- This is quantized version of the model [MBZUAI/LaMini-Flan-T5-783M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-783M). It was quantized using [CTranslate2](https://opennmt.net/CTranslate2/guides/transformers.html): ``` ct2-transformers-converter --model MBZUAI/LaMini-Flan-T5-783M --output_dir lamini-flan-t5-783m-int8_float16 --quantization int8_float16 ``` # How to use it? ## Clone the model ``` git lfs install git clone git@hf.co:saikatkumardey/lamini-flan-t5-783m_int8_float16 ``` ## Code example ```python import ctranslate2 import transformers model_dir = "lamini-flan-t5-783m_int8_float16" translator = ctranslate2.Translator( model_dir, compute_type="auto", inter_threads=4, intra_threads=4 ) tokenizer = transformers.AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-783M") input_prompt = """ instruction: Restrict the answer based on the context only. Be verbose. context: <P>This is an introduction to pandas categorical data type, including a short comparison with R’s factor. Categoricals are a pandas data type corresponding to categorical variables in statistics. A categorical variable takes on a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood type, country affiliation, observation time or rating via Likert scales. In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, …) are not possible. All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array. The categorical data type is useful in the following cases: - A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here. - The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here. - As a signal to other Python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).</P> question: In what cases is the categorical data type useful? answer: """ input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_prompt)) results = translator.translate_batch( [input_tokens], beam_size=1, sampling_temperature=0.01, max_decoding_length=1024, batch_type="tokens", max_batch_size=64, ) output_tokens = results[0].hypotheses[0] output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens)) print(output_text) ```
ka13001v1/Taxi-v3
ka13001v1
2023-06-08T05:37:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T05:37:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ka13001v1/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GautamR/mbert_agri_detect
GautamR
2023-06-08T05:37:15Z
0
0
transformers
[ "transformers", "text-classification", "en", "dataset:GautamR/test_agri", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-05-29T12:26:25Z
--- license: apache-2.0 language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification datasets: - GautamR/test_agri ---
Askinkaty/RuT5_GEC
Askinkaty
2023-06-08T05:29:44Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-31T11:39:22Z
--- license: apache-2.0 language: - ru ---
ka13001v1/q-FrozenLake-v1-4x4-noSlippery
ka13001v1
2023-06-08T05:25:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T05:25:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ka13001v1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GautamR/detect_agri
GautamR
2023-06-08T05:24:51Z
59
0
transformers
[ "transformers", "tf", "mobilebert", "text-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-31T05:30:37Z
--- license: apache-2.0 language: - en metrics: - accuracy pipeline_tag: text-classification library_name: transformers ---
Tsuroko/Agustini
Tsuroko
2023-06-08T05:15:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T05:14:50Z
--- license: creativeml-openrail-m ---
Tsuroko/Agustinaa
Tsuroko
2023-06-08T05:14:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T05:14:37Z
--- license: creativeml-openrail-m ---
97jmlr/sd-class-butterflies-32
97jmlr
2023-06-08T05:14:32Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-06-08T05:14:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('97jmlr/sd-class-butterflies-32') image = pipeline().images[0] image ```
hfl/chinese-llama-lora-33b
hfl
2023-06-08T05:13:56Z
0
8
null
[ "zh", "license:apache-2.0", "region:us" ]
null
2023-06-07T09:16:09Z
--- license: apache-2.0 language: - zh --- # Chinese-LLaMA-LoRA-33B This repo contains the tokenizer, Chinese-LLaMA LoRA weights and configs for [Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) Instructions for using the weights can be found at https://github.com/ymcui/Chinese-LLaMA-Alpaca.
dennischui/taxi_v3
dennischui
2023-06-08T04:49:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T04:33:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.65 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dennischui/taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
abbymark/Reinforce-Pixelcopter-PLE-v0
abbymark
2023-06-08T04:30:40Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T01:04:14Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.40 +/- 25.99 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dennischui/q-FrozenLake-v1-4x4-noSlippery
dennischui
2023-06-08T04:28:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T04:28:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dennischui/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mfaiq2307/faiq-wav2vec2-large-xlsr-indo-demo-v100-batch32
mfaiq2307
2023-06-08T04:26:04Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-08T02:11:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: faiq-wav2vec2-large-xlsr-indo-demo-v100-batch32 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.4312037597133684 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # faiq-wav2vec2-large-xlsr-indo-demo-v100-batch32 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3723 - Wer: 0.4312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6761 | 5.84 | 400 | 2.7575 | 1.0 | | 1.044 | 11.68 | 800 | 0.3883 | 0.5253 | | 0.2565 | 17.52 | 1200 | 0.3655 | 0.4591 | | 0.1725 | 23.36 | 1600 | 0.3834 | 0.4430 | | 0.141 | 29.2 | 2000 | 0.3723 | 0.4312 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.6.1 - Tokenizers 0.13.3
wjungvm/distilbert-base-uncased-finetuned-emotion
wjungvm
2023-06-08T04:03:46Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T03:55:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245837586314949 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8124 | 1.0 | 250 | 0.3055 | 0.91 | 0.9079 | | 0.2446 | 2.0 | 500 | 0.2161 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
wiorz/legal_bert_sm_cv_defined_summarized_4
wiorz
2023-06-08T03:52:24Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T03:49:38Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: legal_bert_sm_cv_defined_summarized_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal_bert_sm_cv_defined_summarized_4 This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7595 - Accuracy: 0.811 - Precision: 0.5385 - Recall: 0.2154 - F1: 0.3077 - D-index: 1.5216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | D-index | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | No log | 1.0 | 250 | 0.4882 | 0.805 | 0.0 | 0.0 | 0.0 | 1.4370 | | 0.5662 | 2.0 | 500 | 0.4681 | 0.805 | 0.0 | 0.0 | 0.0 | 1.4370 | | 0.5662 | 3.0 | 750 | 0.4649 | 0.807 | 0.625 | 0.0256 | 0.0493 | 1.4491 | | 0.4397 | 4.0 | 1000 | 0.4675 | 0.819 | 0.7692 | 0.1026 | 0.1810 | 1.4931 | | 0.4397 | 5.0 | 1250 | 0.5234 | 0.816 | 0.7391 | 0.0872 | 0.1560 | 1.4836 | | 0.3492 | 6.0 | 1500 | 0.5137 | 0.825 | 0.6562 | 0.2154 | 0.3243 | 1.5406 | | 0.3492 | 7.0 | 1750 | 0.5490 | 0.81 | 0.5490 | 0.1436 | 0.2276 | 1.4952 | | 0.2409 | 8.0 | 2000 | 0.6896 | 0.82 | 0.5882 | 0.2564 | 0.3571 | 1.5478 | | 0.2409 | 9.0 | 2250 | 0.7600 | 0.808 | 0.5155 | 0.2564 | 0.3425 | 1.5316 | | 0.1506 | 10.0 | 2500 | 1.0232 | 0.813 | 0.5714 | 0.1641 | 0.2550 | 1.5065 | | 0.1506 | 11.0 | 2750 | 1.0855 | 0.823 | 0.6731 | 0.1795 | 0.2834 | 1.5255 | | 0.0851 | 12.0 | 3000 | 1.1956 | 0.797 | 0.4655 | 0.2769 | 0.3473 | 1.5236 | | 0.0851 | 13.0 | 3250 | 1.2379 | 0.808 | 0.5190 | 0.2103 | 0.2993 | 1.5157 | | 0.0538 | 14.0 | 3500 | 1.4613 | 0.807 | 0.5143 | 0.1846 | 0.2717 | 1.5055 | | 0.0538 | 15.0 | 3750 | 1.4960 | 0.815 | 0.5658 | 0.2205 | 0.3173 | 1.5288 | | 0.0334 | 16.0 | 4000 | 1.6423 | 0.806 | 0.5067 | 0.1949 | 0.2815 | 1.5076 | | 0.0334 | 17.0 | 4250 | 1.6386 | 0.804 | 0.4958 | 0.3026 | 0.3758 | 1.5419 | | 0.0364 | 18.0 | 4500 | 1.6520 | 0.797 | 0.45 | 0.1846 | 0.2618 | 1.4917 | | 0.0364 | 19.0 | 4750 | 1.6842 | 0.804 | 0.4953 | 0.2718 | 0.3510 | 1.5314 | | 0.0167 | 20.0 | 5000 | 1.7595 | 0.811 | 0.5385 | 0.2154 | 0.3077 | 1.5216 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
SEVUNX/JOY_DIFFUSION
SEVUNX
2023-06-08T03:46:53Z
0
0
null
[ "art", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-28T13:37:36Z
--- license: creativeml-openrail-m pipeline_tag: text-to-image tags: - art - stable-diffusion --- <center> <b><i><font size="6"><p style="color:red">JOY DIFFUSION CHECKPOINT MERGE</p></font></i></b> <img src="https://64.media.tumblr.com/3c2c6f40b41877ef923150a52705a14a/tumblr_mlnzf9BvWN1qg6rkio1_500.gifv" alt=""> </center>
ontel/Oktaaa
ontel
2023-06-08T03:09:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T03:07:49Z
--- license: creativeml-openrail-m ---
jangmin/whisper-small-ko-normalized-1273h
jangmin
2023-06-08T02:46:40Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-01T10:00:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ko-normalized-1273h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ko-normalized-1273h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1426 - Wer: 0.0671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0726 | 1.0 | 6581 | 0.1490 | 0.0721 | | 0.0368 | 2.0 | 13162 | 0.1405 | 0.0686 | | 0.0317 | 3.0 | 19743 | 0.1426 | 0.0671 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2 - ## Evaluation Result for the dataset `google/fleurs` The trained model is evaluated on the `test` split of subset `ko_kr` from the dataset `google/fleurs`. Please note that the model was not trained on the `train` split from the dataset. |model|Wer| |---|---| |openai/whisper|0.2826| |this model|0.2679|
luffycodes/parallel-roberta-large
luffycodes
2023-06-08T02:43:41Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "en", "arxiv:2305.13297", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-08T01:00:11Z
--- license: apache-2.0 language: - en --- ## Model weights for Parallel Roberta-Large model ## We provide the [weights](https://huggingface.co/luffycodes/Parallel-Roberta-Large) for the Parallel Attention and Feedforward design (PAF) for RoBERTa-Large. To use this model, use the following [paf_modeling_roberta.py](https://github.com/luffycodes/Parallel-Transformers-Pytorch/blob/main/paf_modeling_roberta.py) file. ## Here is how to use this model to get the features of a given text in PyTorch ```python # use paf_modeling_roberta.py instead of modeling_roberta from paf_modeling_roberta import RobertaModel from transformers import RobertaTokenizer model = RobertaModel.from_pretrained('luffycodes/parallel-roberta-large') tokenizer = RobertaTokenizer.from_pretrained('roberta-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Efficient GPU implementation [gpu_paf_modeling_roberta.py](https://github.com/luffycodes/Parallel-Transformers-Pytorch/blob/main/gpu_paf_modeling_roberta.py) provides an efficient gpu implementation of PAF design for pytorch. It clubs the computation of key, query, value, and first feedforward network sub-layer(intermediate) computation into one. ``` self.kqv_ffn1.weight.data = torch.cat((attention.self.key.weight.data, attention.self.query.weight.data, attention.self.value.weight.data, intermediate.dense.weight.data)) ``` However, I could not efficiently optimize the second feedforward network sub-layer computation to run in parallel. ## What is Parallel Attention and Feed-Forward Design? ![pfa (1)](https://github.com/luffycodes/Parallel-Transformers-Pytorch/assets/22951144/e5b76b1c-5fb1-4263-a23b-a61742fe12ae) *On the left is the standard Series Attention and Feed-Forward Net Design (SAF) for transformers models. On the right is the Parallel Attention and Feed-Forward Net Design (PAF) used in transformer models like PaLM (Chowdhery et al., 2022) and Mesh-Transformers (Wang, 2021)* ## Evaluation results of [PAF-RoBERTa-Large](https://huggingface.co/luffycodes/parallel-roberta-large) When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 89.3 | 91.7 | 94.3 | 96.2 | 64.0 | 91.0 | 90.4 | 80.1 | If you use this work, please cite: Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design: https://arxiv.org/abs/2305.13297 ``` @misc{sonkar2023investigating, title={Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design}, author={Shashank Sonkar and Richard G. Baraniuk}, year={2023}, eprint={2305.13297}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
emozilla/mpt-7b-storywriter-fast
emozilla
2023-06-08T02:39:20Z
14
11
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "Composer", "MosaicML", "llm-foundry", "custom_code", "dataset:the_pile_books3", "arxiv:2108.12409", "arxiv:2205.14135", "arxiv:2302.06675", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-31T16:31:13Z
--- license: apache-2.0 tags: - Composer - MosaicML - llm-foundry datasets: - the_pile_books3 inference: false --- The code for this model has been updated to include the adaptions from [Birchlabs/mosaicml-mpt-7b-chat-qlora](https://huggingface.co/Birchlabs/mosaicml-mpt-7b-chat-qlora) which allow MPT models to be loaded with `device_map="auto"` and [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) support (e.g. `load_in_8bit`, `load_in_4bit`). It also has the [latest key-value cache MPT code](https://github.com/mosaicml/llm-foundry/pull/210) to allow for fast inference with `transformers` (thus, `use_cache` is set to `True` in `config.json`). # MPT-7B-StoryWriter-65k+ MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths. It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3). At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens. We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b). * License: Apache 2.0 * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-storywriter) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License Apache 2.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-storywriter', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`: ```python config = transformers.AutoConfig.from_pretrained( 'mosaicml/mpt-7b-storywriter', trust_remote_code=True ) config.attn_config['attn_impl'] = 'triton' model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-storywriter', config=config, torch_dtype=torch.bfloat16, trust_remote_code=True ) model.to(device='cuda:0') ``` Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python config = transformers.AutoConfig.from_pretrained( 'mosaicml/mpt-7b-storywriter', trust_remote_code=True ) config.update({"max_seq_len": 83968}) model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-storywriter', config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` ## Community-Created Resources These were not created by MosaicML, but you may find them useful. These links are not an endorsement of the creators or their content. - [Oobabooga Running MPT-7B-Storywriter](https://youtu.be/QVVb6Md6huA) - [NEW MPT-7B-StoryWriter CRUSHES GPT-4!](https://www.youtube.com/watch?v=O9Y_ZdsuKWQ&t=649s) - Has a long section on running locally using Oobabooga ## Example Epilogue The full text of the _The Great Gatsby_ (67873 tokens) was fed to the model, followed by the text "EPILOGUE" **TheRealFitzgerald233**: > ... > > So we beat on, boats against the current, borne back ceaselessly into the past > > EPILOGUE **MPT-7B-StoryWriter**: >I have lived so long in the shadow of this dream that I may never see the bright sunlight of reality. I may look up some morning and find that I am six feet under, and that Gatsby, who gave me the dream and everything else, will have vanished behind me. > >And so it was. I had hardly crossed the threshold of the old world when my eye caught the headlines of a newspaper, and I knew at once that my dream was over. I knew that Gatsby was dead. > >And I knew that day that I didn't love her. > >That night I took the last train for West Egg, and when I reached home I went directly to my attic and brought down all Gatsby's letters. > >I have sorted them by date and placed them in the order in which they were written. They are very few in number. > >They are dated between April of nineteen eighteen and January of nineteen nineteen, and the last one I have here is the one that told me he was dead. > >There is something in that last letter that frightens me. It is the sense of a finality, of a completeness. I never heard of him after that, and I was glad. > >But a few months ago I read somewhere that he had been seen in New York. He had become a great man. > >And I knew that he had not changed at all. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | **65536** | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-StoryWriter was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Alex Trott and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
TurboPascal/Chatterbox-LLaMA-zh-base
TurboPascal
2023-06-08T02:28:55Z
129
13
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "zh", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-05T04:13:26Z
--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation --- Llama-zh-base is an open-source project that offers a complete training pipeline for building Chinese large language models, ranging from dataset preparation to tokenization, pre-training, prompt tuning, and the reinforcement learning technique RLHF. This is the Llama-zh-base model trained from scratch using the Chinese pretrain corpus in this project.The amount of parameters is about 0.8B. 使用120G中文语料重头开始预训练的Llama模型,旨在提供可用的中小型基础模型。重新构建了embedding层和tokenizer。目前未经过指令微调。参数量约为0.8B左右。 项目github link [Repo Links](https://github.com/enze5088/Chatterbox/blob/main/docs/model/llama-zh-base.md) ## 简介 LLama-zh-base模型是基于目前llama系列的模型架构,从头重新预训练的LLama模型。 由于llama原模型本身并未在中文语料上单独训练,词表中也并未包括太多的中文字符。 本项目重新构建了Llama的分词工具与词表。并重新初始化了对应的模型,在中文领域上的持续预训练。 ## 模型内容 Chatterbox-Llama-zh系列 | 模型名称 | 模型大小 | 链接 | | ------------------------ | -------- | ----------------------------------------------------------- | | Chatterbox-Llama-zh-base | 0.8B | https://huggingface.co/TurboPascal/Chatterbox-LLaMA-zh-base | | Chatterbox-Llama-zh-2b6 | 2B6 | Coming soon | | | | | Notes: 1. 本模型没有使用原LLaMA的权重,因此无需顾虑LLama权重协议的问题。 ## 数据 预训练阶段使用开源数据与本项目爬取的部分数据。共使用约33G中文预训练数据、MC4-zh、Code数据集。清洗后筛选共120G左右数据训练1 epoch,初始学习率1e-4。未经过指令微调。 ### 中文预训练数据 - 新浪新闻数据(SinaNews),220万条新闻文档数据 - 人民日报数据(People's Daily Datasets),148万条人民日报数据。 - [维基百科(wiki2019zh),100万个结构良好的中文词条](https://github.com/brightmart/nlp_chinese_corpus) - [新闻语料(news2016zh),250万篇新闻,含关键词、描述](https://github.com/brightmart/nlp_chinese_corpus) - [社区问答json版(webtext2019zh),410万个高质量社区问答](https://github.com/brightmart/nlp_chinese_corpus) - [THUCNews数据(THUCNews) ,74万篇新闻文档(2.19 GB)](http://thuctc.thunlp.org/#%E4%B8%AD%E6%96%87%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE%E9%9B%86THUCNews) - [评论数据-语料 (comments2019zh_corpus),240万条评论数据](https://github.com/CLUEbenchmark/CLUECorpus2020) - [社区互动-语料 (webText2019zh_corpus),310W条社区互动数据](https://github.com/CLUEbenchmark/CLUECorpus2020) - [科学文献数据(CSL), 约40W篇中文核心期刊文献摘要](https://github.com/ydli-ai/CSL) - [Belle数据集](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
RadwaH/DreamBoothAgnes2
RadwaH
2023-06-08T02:17:18Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-06T18:55:23Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: sks pixar girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - RadwaH/DreamBoothAgnes2 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on sks pixar girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
dehart20/q-FrozenLake-v1-8x8-Slippery
dehart20
2023-06-08T01:58:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T01:40:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dehart20/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dehart20/q-FrozenLake-v1-4x4-noSlippery
dehart20
2023-06-08T01:32:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T01:32:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dehart20/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Brandulio/dqn-SpaceInvadersNoFrameskip-v4
Brandulio
2023-06-08T01:25:14Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T01:24:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 615.50 +/- 131.94 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Brandulio -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Brandulio -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Brandulio ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
wikingz/mayuyokotarealis
wikingz
2023-06-08T01:21:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-08T01:17:37Z
--- license: creativeml-openrail-m ---
luffycodes/tutorbot-spock-bio-llama-diff
luffycodes
2023-06-08T01:19:14Z
10
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "biology", "chatgpt", "vicuna", "tutorbot", "conversation", "dataset:luffycodes/Tutorbot-Spock-Bio-Dataset", "arxiv:2305.13272", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-31T17:36:07Z
--- datasets: - luffycodes/Tutorbot-Spock-Bio-Dataset license: apache-2.0 tags: - biology - chatgpt - llama - vicuna - tutorbot - conversation --- **NOTE: This "diff model" cannot be used directly.** Users have to apply it on top of the original LLaMA weights to get actual Spock weights. Please find the instructions here: https://github.com/luffycodes/Tutorbot-Spock-Bio. <br> <br> # Spock Model Card ## Github details Please checkout the repo: https://github.com/luffycodes/Tutorbot-Spock-Bio. ## Model details **Model type:** Spock is an open-source educational tutoring chatbot trained by fine-tuning LLaMA and Vicuna model on synthetic student-tutorbot conversations generated using a specialized prompt. **Model date:** Spock was trained between April 2023 and May 2023. **Organizations developing the model:** The Spock team with members from Rice University and OpenStax. ## Training dataset 700 conversations generated using a [specialized prompt](https://github.com/luffycodes/Tutorbot-Spock-Bio/blob/main/prompts/conversation_gen/v3.txt) from GPT-4. Dataset link: https://huggingface.co/datasets/luffycodes/Tutorbot-Spock-Bio-Dataset **Paper or resources for more information:** https://arxiv.org/abs/2305.13272 **Code or resources for more information:** https://github.com/luffycodes/Tutorbot-Spock-Bio **License:** Apache License 2.0 **Where to send questions or comments about the model:** Shashank Sonkar (ss164@rice.edu) If you use this work, please cite: CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles https://arxiv.org/abs/2305.13272 ``` @misc{sonkar2023class, title={CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles}, author={Shashank Sonkar and Lucy Liu and Debshila Basu Mallick and Richard G. Baraniuk}, year={2023}, eprint={2305.13272}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Bharath1121/distilgpt2-finetuned-wikitext2
Bharath1121
2023-06-08T00:58:16Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T00:54:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 3.4444 | | No log | 2.0 | 8 | 3.4067 | | No log | 3.0 | 12 | 3.3935 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
raghvendramall/esm2_t30_150M_UR50D-finetuned-localization
raghvendramall
2023-06-08T00:55:47Z
103
0
transformers
[ "transformers", "pytorch", "esm", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T10:18:15Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: esm2_t30_150M_UR50D-finetuned-localization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t30_150M_UR50D-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8191 - F1: 0.7240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4436 | 1.0 | 7778 | 0.4439 | 0.7285 | | 0.374 | 2.0 | 15556 | 0.4806 | 0.7428 | | 0.2786 | 3.0 | 23334 | 0.8067 | 0.7243 | | 0.1524 | 4.0 | 31112 | 1.3323 | 0.7261 | | 0.1035 | 5.0 | 38890 | 1.3754 | 0.7227 | | 0.0532 | 6.0 | 46668 | 1.4962 | 0.7165 | | 0.0379 | 7.0 | 54446 | 1.5434 | 0.7173 | | 0.0319 | 8.0 | 62224 | 1.6561 | 0.7201 | | 0.0181 | 9.0 | 70002 | 1.7344 | 0.7259 | | 0.0056 | 10.0 | 77780 | 1.8191 | 0.7240 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
wiorz/bert_sm_cv_summarized_4
wiorz
2023-06-08T00:51:37Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T00:47:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert_sm_cv_summarized_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_sm_cv_summarized_4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9996 - Accuracy: 0.802 - Precision: 0.48 - Recall: 0.1846 - F1: 0.2667 - D-index: 1.4986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | D-index | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | No log | 1.0 | 250 | 0.4713 | 0.812 | 0.5814 | 0.1282 | 0.2101 | 1.4926 | | 0.5708 | 2.0 | 500 | 0.4584 | 0.811 | 0.5625 | 0.1385 | 0.2222 | 1.4948 | | 0.5708 | 3.0 | 750 | 0.4557 | 0.813 | 0.5769 | 0.1538 | 0.2429 | 1.5029 | | 0.4231 | 4.0 | 1000 | 0.4700 | 0.81 | 0.5316 | 0.2154 | 0.3066 | 1.5202 | | 0.4231 | 5.0 | 1250 | 0.4979 | 0.812 | 0.5385 | 0.2513 | 0.3427 | 1.5353 | | 0.3292 | 6.0 | 1500 | 0.5337 | 0.816 | 0.5647 | 0.2462 | 0.3429 | 1.5389 | | 0.3292 | 7.0 | 1750 | 0.6282 | 0.797 | 0.4615 | 0.2462 | 0.3211 | 1.5131 | | 0.2218 | 8.0 | 2000 | 0.7182 | 0.805 | 0.5 | 0.2513 | 0.3345 | 1.5257 | | 0.2218 | 9.0 | 2250 | 0.8488 | 0.809 | 0.5208 | 0.2564 | 0.3436 | 1.5329 | | 0.1478 | 10.0 | 2500 | 0.9830 | 0.809 | 0.5294 | 0.1846 | 0.2738 | 1.5082 | | 0.1478 | 11.0 | 2750 | 1.0302 | 0.79 | 0.4419 | 0.2923 | 0.3519 | 1.5193 | | 0.077 | 12.0 | 3000 | 1.0467 | 0.795 | 0.4658 | 0.3487 | 0.3988 | 1.5452 | | 0.077 | 13.0 | 3250 | 1.2609 | 0.803 | 0.4931 | 0.3641 | 0.4189 | 1.5612 | | 0.0328 | 14.0 | 3500 | 1.4127 | 0.806 | 0.5044 | 0.2923 | 0.3701 | 1.5411 | | 0.0328 | 15.0 | 3750 | 1.6626 | 0.802 | 0.4835 | 0.2256 | 0.3077 | 1.5128 | | 0.0189 | 16.0 | 4000 | 1.7062 | 0.81 | 0.5362 | 0.1897 | 0.2803 | 1.5113 | | 0.0189 | 17.0 | 4250 | 1.9225 | 0.809 | 0.54 | 0.1385 | 0.2204 | 1.4921 | | 0.0214 | 18.0 | 4500 | 1.8228 | 0.81 | 0.5269 | 0.2513 | 0.3403 | 1.5325 | | 0.0214 | 19.0 | 4750 | 1.9544 | 0.789 | 0.4355 | 0.2769 | 0.3386 | 1.5127 | | 0.0184 | 20.0 | 5000 | 1.9996 | 0.802 | 0.48 | 0.1846 | 0.2667 | 1.4986 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
yukismd/JapaneseQuizChatbot_v1
yukismd
2023-06-08T00:48:50Z
15
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "ja", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-08T00:25:01Z
--- language: - ja library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: >- https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b) - Training Data: [AI王 〜クイズAI日本一決定戦〜](https://sites.google.com/view/project-aio/dataset) ([Transformed dataset for training by H2O LLM Studio](https://h2oai-jpn-public.s3.amazonaws.com/sample-data/llm/JapaneseQuiz.csv)) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.28.1 pip install accelerate==0.18.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="yukismd/JapaneseQuizChatbot_v1", torch_dtype=torch.float16, trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "日本で一番高い山は富士山ですが、二番目に高い山は?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("日本で一番高い山は富士山ですが、二番目に高い山は?")["prompt_text"]) ``` ```bash <|prompt|>日本で一番高い山は富士山ですが、二番目に高い山は?<|endoftext|><|answer|> ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "yukismd/JapaneseQuizChatbot_v1", use_fast=True, padding_side="left" ) model = AutoModelForCausalLM.from_pretrained( "yukismd/JapaneseQuizChatbot_v1", torch_dtype=torch.float16, device_map={"": "cuda:0"} ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "日本で一番高い山は富士山ですが、二番目に高い山は?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "yukismd/JapaneseQuizChatbot_v1" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>日本で一番高い山は富士山ですが、二番目に高い山は?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(52224, 4096) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=4096, out_features=12288, bias=True) (dense): Linear(in_features=4096, out_features=4096, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True) (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=4096, out_features=52224, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=yukismd/JapaneseQuizChatbot_v1 --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
mmendoza/gpt-j-6B-lora-polite
mmendoza
2023-06-08T00:20:50Z
3
0
peft
[ "peft", "politeness", "paraphrasing", "controlled text", "region:us" ]
null
2023-06-07T15:44:02Z
--- library_name: peft tags: - politeness - paraphrasing - controlled text ---
abbymark/Reinforce-CartPole-v1
abbymark
2023-06-08T00:15:37Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-08T00:15:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 480.60 +/- 58.20 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
edmundmills/dignity-classifier
edmundmills
2023-06-08T00:01:24Z
58
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T23:02:47Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: dignity-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dignity-classifier This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5157 - Accuracy: 0.8678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7722 | 1.0 | 98 | 0.7799 | 0.6897 | | 0.4301 | 2.0 | 196 | 0.4704 | 0.8477 | | 0.2445 | 3.0 | 294 | 0.5107 | 0.8305 | | 0.1626 | 4.0 | 392 | 0.5553 | 0.8477 | | 0.0653 | 5.0 | 490 | 0.5157 | 0.8678 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3
cedj/w2v2-libri-10min
cedj
2023-06-07T23:43:05Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T15:52:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v2-libri-10min results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-libri-10min This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1746 - Wer: 0.5906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.0324 | 125.0 | 250 | 2.9088 | 1.0 | | 0.5241 | 250.0 | 500 | 1.6297 | 0.6030 | | 0.0296 | 375.0 | 750 | 1.8666 | 0.6321 | | 0.0182 | 500.0 | 1000 | 2.0439 | 0.6473 | | 0.0081 | 625.0 | 1250 | 2.0702 | 0.6349 | | 0.0079 | 750.0 | 1500 | 2.1576 | 0.6335 | | 0.0053 | 875.0 | 1750 | 1.9883 | 0.6376 | | 0.0025 | 1000.0 | 2000 | 2.1566 | 0.6072 | | 0.002 | 1125.0 | 2250 | 2.1848 | 0.5975 | | 0.0015 | 1250.0 | 2500 | 2.1746 | 0.5906 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
xekri/wav2vec2-common_voice_13_0-eo-10_1
xekri
2023-06-07T23:39:37Z
9
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_13_0", "generated_from_trainer", "eo", "dataset:common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-06T00:13:16Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_13_0 - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-common_voice_13_0-eo-10_1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 type: common_voice_13_0 config: eo split: validation args: 'Config: eo, Training split: train, Eval split: validation' metrics: - name: Wer type: wer value: 0.05342994850125446 - name: CER type: cer value: 0.0098 --- # wav2vec2-common_voice_13_0-eo-10_1, an Esperanto speech recognizer This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [mozilla-foundation/common_voice_13_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) Esperanto dataset. It achieves the following results on the evaluation set: - Loss: 0.0391 - Cer: 0.0098 - Wer: 0.0534 The first 10 examples in the evaluation set: | Actual<br>Predicted | CER | |:--------------------|:----| | `la orienta parto apud benino kaj niĝerio estis nomita sklavmarbordo`<br>`la orienta parto apud benino kaj niĝerio estis nomita sklafmarbordo` | 0.014925373134328358 | | `en la sekva jaro li ricevis premion`<br>`en la sekva jaro li ricevis premion` | 0.0 | | `ŝi studis historion ĉe la universitato de brita kolumbio`<br>`ŝi studis historion ĉe la universitato de brita kolumbio` | 0.0 | | `larĝaj ŝtupoj kuras al la fasado`<br>`larĝaj ŝtupoj kuras al la fasado` | 0.0 | | `la municipo ĝuas duan epokon de etendo kaj disvolviĝo`<br>`la municipo ĝuas duan epokon de etendo kaj disvolviĝo` | 0.0 | | `li estis ankaŭ katedrestro kaj dekano`<br>`li estis ankaŭ katedresto kaj dekano` | 0.02702702702702703 | | `librovendejo apartenas al la muzeo`<br>`librovendejo apartenas al l muzeo` | 0.029411764705882353 | | `ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵaro de arbaroj`<br>`ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵo de arbaroj` | 0.02702702702702703 | | `unue ili estas ruĝaj poste brunaj`<br>`unue ili estas ruĝaj poste brunaj` | 0.0 | | `la loĝantaro laboras en la proksima ĉefurbo`<br>`la loĝantaro laboras en la proksima ĉefurbo` | 0.0 | The differences in results for the above compared to the previous model ([xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10)) are: * eepokon -> epokon * katedristo -> katedresto * al la muzeo -> al l muzeo ## Model description See [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). This model is a version of [xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10) trained for 5 more epochs. ## Intended uses & limitations Speech recognition for Esperanto. The base model was pretrained and finetuned on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16KHz. The output is all lowercase, no punctuation. ## Training and evaluation data The training split was set to `train` while the eval split was set to `validation`. Some files were filtered out of the train and validation dataset due to bad data; see [xekri/wav2vec2-common_voice_13_0-eo-3](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-3) for a detailed discussion. In summary, I used `xekri/wav2vec2-common_voice_13_0-eo-3` as a detector to detect bad files, then hardcoded those files into the trainer code to be filtered out. ## Training procedure I used a modified version of [`run_speech_recognition_ctc.py`](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) for training. See [`run_speech_recognition_ctc.py`](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10/blob/main/run_speech_recognition_ctc.py) in this repo. The parameters to the trainer are in [train.json](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10/blob/main/train.json) in this repo. The key changes between this training run and `xekri/wav2vec2-common_voice_13_0-eo-3`, aside from the filtering and use of the full training and validation sets are: * Layer drop probability is 20% * Train only for 5 epochs ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - layerdrop: 0.2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.1142 | 0.22 | 1000 | 0.0483 | 0.0126 | 0.0707 | | 0.1049 | 0.44 | 2000 | 0.0474 | 0.0123 | 0.0675 | | 0.0982 | 0.67 | 3000 | 0.0471 | 0.0120 | 0.0664 | | 0.092 | 0.89 | 4000 | 0.0459 | 0.0117 | 0.0640 | | 0.0847 | 1.11 | 5000 | 0.0459 | 0.0115 | 0.0631 | | 0.0837 | 1.33 | 6000 | 0.0453 | 0.0113 | 0.0624 | | 0.0803 | 1.56 | 7000 | 0.0443 | 0.0109 | 0.0598 | | 0.0826 | 1.78 | 8000 | 0.0441 | 0.0110 | 0.0604 | | 0.0809 | 2.0 | 9000 | 0.0437 | 0.0110 | 0.0605 | | 0.0728 | 2.22 | 10000 | 0.0451 | 0.0109 | 0.0597 | | 0.0707 | 2.45 | 11000 | 0.0444 | 0.0108 | 0.0591 | | 0.0698 | 2.67 | 12000 | 0.0442 | 0.0105 | 0.0576 | | 0.0981 | 2.89 | 13000 | 0.0411 | 0.0104 | 0.0572 | | 0.0928 | 3.11 | 14000 | 0.0413 | 0.0102 | 0.0561 | | 0.0927 | 3.34 | 15000 | 0.0410 | 0.0102 | 0.0565 | | 0.0886 | 3.56 | 16000 | 0.0402 | 0.0102 | 0.0558 | | 0.091 | 3.78 | 17000 | 0.0400 | 0.0101 | 0.0553 | | 0.0888 | 4.0 | 18000 | 0.0398 | 0.0100 | 0.0546 | | 0.0885 | 4.23 | 19000 | 0.0395 | 0.0099 | 0.0542 | | 0.0869 | 4.45 | 20000 | 0.0394 | 0.0099 | 0.0540 | | 0.0844 | 4.67 | 21000 | 0.0393 | 0.0098 | 0.0539 | | 0.0882 | 4.89 | 22000 | 0.0391 | 0.0098 | 0.0537 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
andymunoz20/vit-base-patch16-224-finetuned-flower
andymunoz20
2023-06-07T23:16:03Z
82
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-07T23:11:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
LisanneH/whisper-small-nl-Synthetic_2
LisanneH
2023-06-07T23:11:23Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T20:42:52Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - /content/drive/MyDrive/MAAI/Synthetische_data metrics: - wer model-index: - name: Whisper Small nl Synthetic results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: /content/drive/MyDrive/MAAI/Synthetische_data name: Synthetic Speech config: nl split: train metrics: - type: wer value: 20.90 name: WER ---
tingtone/jq_emo_gpt
tingtone
2023-06-07T23:10:32Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "dataset:emotion", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-06-02T05:04:59Z
--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: jq_emo_gpt results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.947 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jq_emo_gpt This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2536 - Accuracy: 0.947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6400 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5109 | 1.0 | 16000 | 0.5014 | 0.929 | | 0.3765 | 2.0 | 32000 | 0.3135 | 0.9385 | | 0.2526 | 3.0 | 48000 | 0.2385 | 0.945 | | 0.1952 | 4.0 | 64000 | 0.2536 | 0.947 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
HasinMDG/Topic_mpnet_L2
HasinMDG
2023-06-07T23:01:08Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-07T23:00:43Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # HasinMDG/Topic_mpnet_L2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("HasinMDG/Topic_mpnet_L2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```