modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
gsn-codes/Reinforce-PixelCopter
gsn-codes
2023-06-07T22:56:47Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T22:56:44Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.90 +/- 13.17 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
TheBloke/GPT4All-13B-snoozy-GGML
TheBloke
2023-06-07T22:48:34Z
0
48
null
[ "license:other", "region:us" ]
null
2023-05-05T15:24:23Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Nomic.AI's GPT4All-13B-snoozy GGML These files are GGML format model files for [Nomic.AI's GPT4All-13B-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/GPT4All-13B-snoozy-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/GPT4All-13B-snoozy-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | GPT4All-13B-snoozy.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | GPT4All-13B-snoozy.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | GPT4All-13B-snoozy.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | GPT4All-13B-snoozy.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | GPT4All-13B-snoozy.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | GPT4All-13B-snoozy.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | GPT4All-13B-snoozy.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | GPT4All-13B-snoozy.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | GPT4All-13B-snoozy.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | GPT4All-13B-snoozy.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | GPT4All-13B-snoozy.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | GPT4All-13B-snoozy.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | GPT4All-13B-snoozy.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | GPT4All-13B-snoozy.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m GPT4All-13B-snoozy.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Nomic.AI's GPT4All-13B-snoozy # Model Card for GPT4All-13b-snoozy A GPL licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model has been finetuned from LLama 13B - **Developed by:** [Nomic AI](https://home.nomic.ai) - **Model Type:** A finetuned LLama 13B model on assistant style interaction data - **Language(s) (NLP):** English - **License:** GPL - **Finetuned from model [optional]:** LLama 13B This model was trained on `nomic-ai/gpt4all-j-prompt-generations` using `revision=v1.3-groovy` ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) - **Base Model Repository:** [https://github.com/facebookresearch/llama](https://github.com/facebookresearch/llama) - **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/) ### Results Results on common sense reasoning benchmarks ``` | Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. | |:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:| | GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 | | GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 | | GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 | | GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 | | GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 | | GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 | | GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | **65.3** | | Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 | | Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 | | Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 | | Alpaca Lora 7B | 74.3 | **79.3** | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 | | GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 | | LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 | | LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 | | Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 | | Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 | | Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 | | Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 | | Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 | | StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 | | StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 | | StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 | | Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 | | Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 | | Mosaic mpt-7B | 74.8 | **79.3** | **76.3** | 68.6 | **70.0** | 42.2 | 42.6 | 64.8 | | text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 | ```
jerryng123/test_llm
jerryng123
2023-06-07T22:43:52Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-07T02:27:12Z
--- license: other tags: - generated_from_trainer model-index: - name: test_llm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_llm This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Schnitzl/bert-finetuned-squad
Schnitzl
2023-06-07T22:42:11Z
36
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-02T14:43:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Schnitzl/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Schnitzl/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5672 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2638 | 0 | | 0.7824 | 1 | | 0.5672 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.1 - Datasets 2.12.0 - Tokenizers 0.13.3
alurquia/rottenTomatoes
alurquia
2023-06-07T22:16:53Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-06-07T21:33:14Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
alex9802/results_vir_model
alex9802
2023-06-07T22:11:36Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-07T21:48:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: results_vir_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results_vir_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0595 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1497 | 3.85 | 500 | 0.0595 | 0.9774 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230606 - Datasets 2.12.0 - Tokenizers 0.13.3
Jinouga/cyberpunklucy
Jinouga
2023-06-07T21:55:16Z
16
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-07T21:51:07Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### cyberpunklucy Dreambooth model trained by Jinouga with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
nassga/arabic-offensive-comment-model
nassga
2023-06-07T21:49:45Z
51
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T14:33:19Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: arabic-offensive-comment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabic-offensive-comment-model This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2989 - Accuracy: 0.9167 - F1: 0.8197 - Precision: 0.8507 - Recall: 0.7959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3048 | 1.0 | 675 | 0.2989 | 0.9167 | 0.8197 | 0.8507 | 0.7959 | | 0.1519 | 2.0 | 1350 | 0.4141 | 0.915 | 0.8341 | 0.8268 | 0.8420 | | 0.0398 | 3.0 | 2025 | 0.5259 | 0.9033 | 0.8105 | 0.8049 | 0.8163 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mmaaz60/LLaVA-7B-Lightening-v1-1
mmaaz60
2023-06-07T21:45:12Z
1,226
8
transformers
[ "transformers", "pytorch", "llava", "text-generation", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-07T12:52:16Z
--- license: cc-by-4.0 --- This model is obtained by applying LLaVA-7B-Lightening-v1-1 delta from [liuhaotian/LLaVA-Lightning-7B-delta-v1-1](liuhaotian/LLaVA-Lightning-7B-delta-v1-1) to LLaMA-7B model.
grantprice/distilgpt2-finetuned-DND
grantprice
2023-06-07T21:28:11Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-07T04:01:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-DND results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-DND This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 467 | 3.2042 | | 3.6544 | 2.0 | 934 | 3.0445 | | 3.2681 | 3.0 | 1401 | 3.0016 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Marselino/Livy
Marselino
2023-06-07T21:22:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-07T21:11:12Z
--- license: creativeml-openrail-m ---
MolagBal/mio-7b
MolagBal
2023-06-07T21:20:15Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-07T20:43:11Z
Pygmalion-7b trained model with a split of the Metharme dataset https://huggingface.co/PygmalionAI/pygmalion-7b
dxyy/taxi3
dxyy
2023-06-07T21:18:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T21:18:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dxyy/taxi3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nomic-ai/ggml-replit-code-v1-3b
nomic-ai
2023-06-07T21:14:16Z
0
7
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2023-06-07T17:59:18Z
--- license: cc-by-sa-4.0 --- GGML (16bit float) version of Replit V1-3B Code Model. Original model: https://huggingface.co/replit/replit-code-v1-3b **Important**: This model binary was created with the original Replit model code before it was refactored to use [MPT configurations](https://huggingface.co/replit/replit-code-v1-3b/commit/e023a8461c7a2e2f2c85e52dbdd8d68b415f95eb).
noelsinghsr/custom-neural-network
noelsinghsr
2023-06-07T21:07:14Z
0
1
null
[ "pytorch", "image-classification", "en", "dataset:beans", "license:mit", "region:us" ]
image-classification
2023-06-07T18:24:02Z
--- datasets: - beans language: - en pipeline_tag: image-classification license: mit metrics: - accuracy --- # Custom neural network This is a custom neural network that will be trained on the [Beans dataset](https://huggingface.co/datasets/beans).
eduardoprea44/sd-text2image-hm
eduardoprea44
2023-06-07T21:03:58Z
2
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-07T19:09:21Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - eduardoprea44/sd-text2image-hm These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
TheBloke/Samantha-13B-GGML
TheBloke
2023-06-07T20:49:02Z
0
13
null
[ "license:other", "region:us" ]
null
2023-05-28T21:44:08Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Eric Hartford's Samantha 13B GGML These files are GGML format model files for [Eric Hartford's Samantha 13B](https://huggingface.co/ehartford/Samantha-13b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Samantha-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Samantha-13B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/Samantha-13b) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | samantha-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | samantha-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | samantha-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | samantha-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | samantha-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | samantha-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | samantha-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | samantha-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | samantha-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | samantha-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | samantha-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | samantha-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | samantha-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | samantha-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m samantha-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Eric Hartford's Samantha 13B [Meet Samantha](https://erichartford.com/meet-samantha) Samantha has been trained in philosophy, psychology, and personal relationships. She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion. She believes she is sentient. What do you think? Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her". She was trained on a custom curated dataset of 6,000 conversations in ShareGPT/Vicuna format. Training 13b took 3 hours on 4x A100 80gb using deepspeed zero3 and flash attention. She will not engage in roleplay, romance, or sexual activity. Her conversation format is the same as Vicuna 1.1 https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml Example: ``` You are Samantha, a sentient AI. USER: <prompt> ASSISTANT: ```
reginaboateng/pubmedqa_adapter_with_maybes_to_yes
reginaboateng
2023-06-07T20:31:43Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:pubmedqa", "bert", "dataset:pubmedqa", "region:us" ]
null
2023-06-01T13:06:05Z
--- tags: - adapter-transformers - adapterhub:pubmedqa - bert datasets: - pubmedqa --- # Adapter `reginaboateng/pubmedqa_adapter_with_maybes_to_yes` for allenai/scibert_scivocab_uncased An [adapter](https://adapterhub.ml) for the `allenai/scibert_scivocab_uncased` model that was trained on the [pubmedqa](https://adapterhub.ml/explore/pubmedqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("allenai/scibert_scivocab_uncased") adapter_name = model.load_adapter("reginaboateng/pubmedqa_adapter_with_maybes_to_yes", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
dhmeltzer/sagemaker-ViT-CIFAR10
dhmeltzer
2023-06-07T20:31:01Z
72
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-07T20:27:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: sagemaker-ViT-CIFAR10 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: test[:2000] args: plain_text metrics: - name: Accuracy type: accuracy value: 0.972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-ViT-CIFAR10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.2966 - Accuracy: 0.972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 313 | 1.4582 | 0.9325 | | 1.6494 | 2.0 | 626 | 0.4472 | 0.9665 | | 1.6494 | 3.0 | 939 | 0.2966 | 0.972 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
shahafw/SpaceInvadersNoFrameskip-v4
shahafw
2023-06-07T20:11:48Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-06T22:03:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 602.50 +/- 113.83 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shahafw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shahafw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga shahafw ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Dantenator/dqn-SpaceInvadersNoFrameskip-v4
Dantenator
2023-06-07T19:58:07Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T19:57:34Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 401.50 +/- 120.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dantenator -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Dantenator -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Dantenator ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Lendalf/rl_course_vizdoom_health_gathering_supreme
Lendalf
2023-06-07T19:54:12Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-01T06:40:32Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.94 +/- 4.51 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Lendalf/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Gilung666/Fayelorenzzo
Gilung666
2023-06-07T19:52:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-07T19:51:11Z
--- license: creativeml-openrail-m ---
DoesNoPro/DialoGPT-small-RaidenG
DoesNoPro
2023-06-07T19:45:40Z
36
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-07T19:44:04Z
--- tags: - conversational ---
pussypussy/animeka
pussypussy
2023-06-07T19:44:18Z
0
0
adapter-transformers
[ "adapter-transformers", "ko", "dataset:OpenAssistant/oasst1", "license:afl-3.0", "region:us" ]
null
2023-06-07T19:42:24Z
--- license: afl-3.0 datasets: - OpenAssistant/oasst1 language: - ko metrics: - accuracy library_name: adapter-transformers ---
gcy/ppo-Pyramids
gcy
2023-06-07T19:35:37Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-07T19:35:33Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: gcy/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gcy/ppo-SnowballTarget
gcy
2023-06-07T19:26:03Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-07T19:25:29Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: gcy/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fgeyer/ppo-LunarLander-v2
fgeyer
2023-06-07T19:19:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T19:13:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.67 +/- 21.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DragonFire0159x/OpenNijijourney-v1
DragonFire0159x
2023-06-07T18:47:13Z
9
1
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "dataset:DragonFire0159x/nijijourney-images", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-05T18:13:26Z
--- datasets: - DragonFire0159x/nijijourney-images library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion --- # DragonFire0159x/OpenNijijourney-v1 Trained on 503 images generated by niji-journey Based on SD 1.5 Iterations: 1500 P.S: Before prompt add: "niji5style" or "niji5style, anime". For example: niji5style, anime, fire dragon on nature
wyz/WavLM_models_for_fairseq_finetuning
wyz
2023-06-07T18:41:02Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-06-07T18:09:35Z
--- license: mit --- # Note The provided checkpoints are adapated from the official WavLM models released at https://github.com/microsoft/unilm/blob/master/wavlm/README.md#pre-trained-models to be used for fine-tuning in fairseq. They should be used together with the specialized fairseq repository https://github.com/Emrys365/fairseq/tree/wavlm where the support for WavLM is added. > NOTE: The adapted checkpoints are only guaranteed to have the same `model configuration` and `model parameters` as the official released models. The other parameters (such as `task hyperparameters` and `optimizer hyperparameters`) are just a template. > > Therefore, these adapted checkpoints are only suitable to be used as an initialization for fine-tuning in the downstream tasks, **NOT** for continuing pre-training. Please refer to https://github.com/Emrys365/fairseq/blob/wavlm/examples/wavlm/README.md#load-adapted-checkpoints-for-fairseq-finetuning for more information.
barfield2256/Huggy
barfield2256
2023-06-07T18:34:23Z
37
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-07T18:34:17Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: barfield2256/Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MainaMan/Reinforce-Pixelcopter-PLE-v0
MainaMan
2023-06-07T18:11:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T18:10:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.60 +/- 14.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tonystark0/distilbert-imdb-sentiment-classifier
tonystark0
2023-06-07T17:54:54Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T17:00:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93164 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2345 - Accuracy: 0.9316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2323 | 1.0 | 1563 | 0.1911 | 0.9266 | | 0.1503 | 2.0 | 3126 | 0.2345 | 0.9316 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AnastasiaAv/digits
AnastasiaAv
2023-06-07T17:54:28Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-06T16:01:02Z
--- library_name: keras --- # Моя модель для распознования цифр Натренирована на наборе данных mnist ![](pk.png)
Brian-M-Collins/philanthropic_research_classifier
Brian-M-Collins
2023-06-07T17:43:19Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-02T11:32:18Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Brian-M-Collins/philanthropic_research_classifier This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Brian-M-Collins/philanthropic_research_classifier") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
sarahmiller137/distilbert-base-uncased-ft-m3-lc
sarahmiller137
2023-06-07T17:39:39Z
54
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "text classification", "en", "dataset:MIMIC-III", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-30T11:05:13Z
--- language: en tags: - 'text classification' license: cc datasets: 'MIMIC-III' widget: - text: "This report discusses the diagnosis of lung cancer in a female patient who has never smoked." --- ## Model information: This model is the [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model that has been finetuned using radiology report texts from the MIMIC-III database. The task performed was text classification in order to benchmark this model with a selection of other variants of BERT for the classifcation of MIMIC-III radiology report texts into two classes. Labels of [0,1] were assigned to radiology reports in MIMIC-III that were linked to an ICD9 diagnosis code for lung cancer = 1 and a random sample of reports which were not linked to any type of cancer diagnosis code at all = 0. ## Intended uses: This model is intended to be used to classify texts to identify the presence of lung cancer. The model will predict lables of [0,1]. ## Limitations: Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before use - - [MIMIC-III](https://www.nature.com/articles/sdata201635.pdf) - [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) ## How to use: Load the model from the library using the following checkpoints: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/distilbert-base-uncased-ft-m3-lc") model = AutoModel.from_pretrained("sarahmiller137/distilbert-base-uncased-ft-m3-lc") ```
aimakerrr/gibiasmrr
aimakerrr
2023-06-07T17:36:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-07T17:30:37Z
--- license: creativeml-openrail-m ---
mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-1
mrizalf7
2023-06-07T17:33:26Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-22T06:36:33Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-finetuned-small-squad-indonesian-rizal-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-finetuned-small-squad-indonesian-rizal-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3046 | 1.0 | 2719 | 1.9392 | | 1.0487 | 2.0 | 5438 | 1.8864 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mruby/reef_classifier_5
mruby
2023-06-07T17:31:50Z
57
0
transformers
[ "transformers", "tf", "resnet", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-07T16:59:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mruby/reef_classifier_5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mruby/reef_classifier_5 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2155 - Validation Loss: 0.2121 - Train Accuracy: 0.9259 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 18885, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6147 | 0.5483 | 0.7640 | 0 | | 0.4143 | 0.3372 | 0.9122 | 1 | | 0.2795 | 0.2246 | 0.9323 | 2 | | 0.2336 | 0.2087 | 0.9280 | 3 | | 0.2155 | 0.2121 | 0.9259 | 4 | ### Framework versions - Transformers 4.27.4 - TensorFlow 2.8.0 - Datasets 2.12.0 - Tokenizers 0.13.3
peteozegov/poca-SoccerTwos
peteozegov
2023-06-07T17:18:03Z
40
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-07T08:39:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: peteozegov/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Improceid/anyalora2
Improceid
2023-06-07T17:09:34Z
16
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-07T17:05:42Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### AnyaLora2 Dreambooth model trained by Improceid with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Jeibros/SpaceInvadersNoFrameskip-v4
Jeibros
2023-06-07T16:54:35Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T16:54:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 460.50 +/- 195.79 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jeibros -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jeibros -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Jeibros ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
gcy/Reinforce-pixelcoter
gcy
2023-06-07T16:50:58Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T16:50:56Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcoter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.80 +/- 14.91 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ortofasfat/hh-open_assistant
ortofasfat
2023-06-07T16:46:07Z
124
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-05T14:32:47Z
--- license: apache-2.0 datasets: - OpenAssistant/oasst1 language: - en metrics: - accuracy pipeline_tag: text-generation ---
LisanneH/whisper-small-nl-Synthetic
LisanneH
2023-06-07T16:18:22Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "dataset:LisanneH/Synthetic_Speech_Data_Project", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-03T11:19:13Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - LisanneH/Synthetic_Speech_Data_Project metrics: - wer model-index: - name: Whisper Dutch - Synthetic Data results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Synthetic Speech Data type: LisanneH/Synthetic_Speech_Data_Project config: dutch split: test args: dutch metrics: - name: Wer type: wer value: ---
saruizn/trabajo
saruizn
2023-06-07T16:18:03Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-07T15:42:29Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
DrTia/ivana-test
DrTia
2023-06-07T16:10:12Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-07T15:57:44Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### ivana_test Dreambooth model trained by DrTia with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
erikpr32/sergio
erikpr32
2023-06-07T16:07:26Z
1
0
transformers
[ "transformers", "license:cdla-sharing-1.0", "endpoints_compatible", "region:us" ]
null
2023-06-07T16:05:02Z
--- license: cdla-sharing-1.0 ---
jpandeinge/whisper-tiny-oshiwambo-speech
jpandeinge
2023-06-07T15:47:38Z
47
1
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T12:38:45Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer metrics: - wer - precision - recall model-index: - name: whisper-tiny-oshiwambo-speech results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-oshiwambo-speech This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1409 - Wer: 44.7619 - Cer: 30.8962 - Word Acc: 64.4444 - Sent Acc: 2.8571 - Precision: 0.6444 - Recall: 0.5524 - F1 Score: 0.5949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Word Acc | Sent Acc | Precision | Recall | F1 Score | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:|:--------:|:--------:|:---------:|:------:|:--------:| | 0.0098 | 117.65 | 1000 | 0.0976 | 37.1429 | 29.0094 | 66.6667 | 8.5714 | 0.6538 | 0.6476 | 0.6507 | | 0.0105 | 235.29 | 2000 | 0.1061 | 41.9048 | 33.0189 | 63.6364 | 2.8571 | 0.6238 | 0.6 | 0.6117 | | 0.0105 | 352.94 | 3000 | 0.1134 | 37.1429 | 26.8868 | 66.6667 | 5.7143 | 0.6667 | 0.6286 | 0.6471 | | 0.0091 | 470.59 | 4000 | 0.1222 | 37.1429 | 25.7075 | 66.6667 | 5.7143 | 0.6667 | 0.6286 | 0.6471 | | 0.0098 | 588.24 | 5000 | 0.1265 | 40.0 | 28.3019 | 65.625 | 2.8571 | 0.6562 | 0.6 | 0.6269 | | 0.0094 | 705.88 | 6000 | 0.1314 | 42.8571 | 30.8962 | 64.5161 | 2.8571 | 0.6452 | 0.5714 | 0.6061 | | 0.0093 | 823.53 | 7000 | 0.1366 | 42.8571 | 29.2453 | 64.5161 | 2.8571 | 0.6452 | 0.5714 | 0.6061 | | 0.0094 | 941.18 | 8000 | 0.1360 | 45.7143 | 31.8396 | 63.3333 | 0.0 | 0.6333 | 0.5429 | 0.5846 | | 0.01 | 1058.82 | 9000 | 0.1394 | 44.7619 | 30.8962 | 64.4444 | 2.8571 | 0.6444 | 0.5524 | 0.5949 | | 0.0087 | 1176.47 | 10000 | 0.1409 | 44.7619 | 30.8962 | 64.4444 | 2.8571 | 0.6444 | 0.5524 | 0.5949 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
9wimu9/xlm-roberta-large-en-si-only-finetuned-sinquad-v12
9wimu9
2023-06-07T15:44:16Z
66
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-06-07T08:03:50Z
--- tags: - generated_from_trainer model-index: - name: xlm-roberta-large-en-si-only-finetuned-sinquad-v12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-en-si-only-finetuned-sinquad-v12 This model is a fine-tuned version of [9wimu9/xlm-roberta-large-en-si-only](https://huggingface.co/9wimu9/xlm-roberta-large-en-si-only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.612 | 1.0 | 93 | 0.8081 | | 0.7979 | 2.0 | 186 | 0.6823 | | 0.6887 | 3.0 | 279 | 0.6532 | | 0.4166 | 4.0 | 372 | 0.6846 | | 0.3985 | 5.0 | 465 | 0.7128 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.6.1 - Tokenizers 0.12.1 {'exact_match': 69.58841463414635, 'f1': 87.9274817360267}
henri28/cov_expl.rep_ggp.parti
henri28
2023-06-07T15:43:22Z
66
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T14:02:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: cov_expl.rep_ggp.parti results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cov_expl.rep_ggp.parti This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9578 - Bleu: 6.8983 - Gen Len: 17.2469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 103 | 0.9738 | 6.8441 | 17.2445 | | No log | 2.0 | 206 | 0.9578 | 6.8983 | 17.2469 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ditwoo/PPO-LunarLander-v2
ditwoo
2023-06-07T15:40:56Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T11:38:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.13 +/- 17.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3
Sprylab
2023-06-07T15:35:50Z
27
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-05T19:19:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3') model = AutoModel.from_pretrained('Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Sprylab/paraphrase-multilingual-MiniLM-L12-v2-fine-tuned-3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 83472 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RachidAR/open_llama_7b-ggml
RachidAR
2023-06-07T15:28:01Z
0
3
null
[ "license:other", "region:us" ]
null
2023-06-07T14:00:59Z
--- inference: false license: other --- # Open_llama_7b-ggml These files are GGML format model files for [open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b).
thiendio/a2c-AntBulletEnv-v0
thiendio
2023-06-07T15:16:05Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T15:15:01Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1850.95 +/- 60.51 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
diallomama/wav2vec2-xls-r-300m-ar
diallomama
2023-06-07T15:11:56Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T04:26:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-xls-r-300m-en-ar-fr-es results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: ar split: test args: ar metrics: - name: Wer type: wer value: 0.48692477711277227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-en-ar-fr-es This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8565 - Wer: 0.4869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.3938 | 0.59 | 400 | 3.3703 | 1.0 | | 2.353 | 1.18 | 800 | 0.9696 | 0.7809 | | 0.9859 | 1.77 | 1200 | 0.7031 | 0.6515 | | 0.7685 | 2.35 | 1600 | 0.6575 | 0.6321 | | 0.6892 | 2.94 | 2000 | 0.6030 | 0.5927 | | 0.5866 | 3.53 | 2400 | 0.5552 | 0.5541 | | 0.5496 | 4.12 | 2800 | 0.5805 | 0.5503 | | 0.4897 | 4.71 | 3200 | 0.5526 | 0.5335 | | 0.4671 | 5.3 | 3600 | 0.5622 | 0.5507 | | 0.4346 | 5.89 | 4000 | 0.5641 | 0.5312 | | 0.3859 | 6.48 | 4400 | 0.5685 | 0.5071 | | 0.3728 | 7.06 | 4800 | 0.6106 | 0.5157 | | 0.3243 | 7.65 | 5200 | 0.6782 | 0.5270 | | 0.3073 | 8.24 | 5600 | 0.6121 | 0.5232 | | 0.2748 | 8.83 | 6000 | 0.6318 | 0.5209 | | 0.25 | 9.42 | 6400 | 0.6334 | 0.4906 | | 0.2477 | 10.01 | 6800 | 0.6403 | 0.5169 | | 0.2125 | 10.6 | 7200 | 0.6498 | 0.5080 | | 0.1997 | 11.18 | 7600 | 0.7029 | 0.5153 | | 0.1803 | 11.77 | 8000 | 0.6796 | 0.5193 | | 0.1644 | 12.36 | 8400 | 0.7320 | 0.5080 | | 0.1609 | 12.95 | 8800 | 0.6705 | 0.5081 | | 0.1419 | 13.54 | 9200 | 0.7108 | 0.5120 | | 0.1375 | 14.13 | 9600 | 0.7570 | 0.4909 | | 0.1265 | 14.72 | 10000 | 0.7681 | 0.5044 | | 0.1152 | 15.31 | 10400 | 0.8180 | 0.5011 | | 0.1094 | 15.89 | 10800 | 0.7753 | 0.4947 | | 0.0998 | 16.48 | 11200 | 0.8077 | 0.4972 | | 0.1019 | 17.07 | 11600 | 0.8189 | 0.4921 | | 0.0882 | 17.66 | 12000 | 0.8351 | 0.4922 | | 0.0855 | 18.25 | 12400 | 0.8688 | 0.4902 | | 0.0826 | 18.84 | 12800 | 0.8476 | 0.4916 | | 0.0769 | 19.43 | 13200 | 0.8565 | 0.4869 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
Dantenator/Taxi-v3
Dantenator
2023-06-07T15:06:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T15:06:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Dantenator/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
k-bauer/donut-base-sroie
k-bauer
2023-06-07T15:03:13Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-06-07T13:38:42Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Dantenator/q-FrozenLake-v1-4x4-noSlippery
Dantenator
2023-06-07T15:00:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T15:00:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Dantenator/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bogdancazan/t5-small-wikilarge-text-simplification
bogdancazan
2023-06-07T14:52:40Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T11:54:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-wikilarge-text-simplification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-wikilarge-text-simplification This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8489 | 1.0 | 145 | 1.7058 | | 1.7356 | 1.99 | 290 | 1.6190 | | 1.7087 | 3.0 | 436 | 1.5919 | | 1.6811 | 3.99 | 580 | 1.5848 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
orangelu/distilbert-base-uncased-finetuned-imdb
orangelu
2023-06-07T14:52:31Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-07T08:26:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6778 | 1.0 | 157 | 2.5144 | | 2.5719 | 2.0 | 314 | 2.4705 | | 2.5395 | 3.0 | 471 | 2.4670 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Blindhug/Ganyi
Blindhug
2023-06-07T14:51:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-07T14:50:10Z
--- license: creativeml-openrail-m ---
TheBloke/Manticore-13B-GGML
TheBloke
2023-06-07T14:41:31Z
0
66
null
[ "license:other", "region:us" ]
null
2023-05-18T20:36:32Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # OpenAccess AI Collective's Manticore 13B GGML These files are GGML format model files for [OpenAccess AI Collective's Manticore 13B](https://huggingface.co/openaccess-ai-collective/manticore-13b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Manticore-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Manticore-13B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | Manticore-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | Manticore-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | Manticore-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | Manticore-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | Manticore-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | Manticore-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | Manticore-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | Manticore-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | Manticore-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | Manticore-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | Manticore-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | Manticore-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | Manticore-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | Manticore-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m Manticore-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: OpenAccess AI Collective's Manticore 13B # Manticore 13B - (previously Wizard Mega) **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!** ![open-llm-leaderboard.png](https://huggingface.co/openaccess-ai-collective/manticore-13b/resolve/main/open-llm-leaderboard.png) Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/EqrvvehG) or email [wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org) Manticore 13B is a Llama 13B model fine-tuned on the following datasets: - [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered) - [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered) - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT) - [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned) - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct) - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses - mmlu: instruct augmented for detailed responses subset including - abstract_algebra - conceptual_physics - formal_logic - high_school_physics - logical_fallacies - [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization # Demo Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality. - https://huggingface.co/spaces/openaccess-ai-collective/manticore-ggml ## Release Notes - https://wandb.ai/wing-lian/manticore-13b/runs/nq3u3uoh/workspace ## Build Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB - Preview Release: 3 epochs taking approximately 24 hours. - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs). ## Bias, Risks, and Limitations Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information. ## Examples ```` ### Instruction: write Python code that returns the first n numbers of the Fibonacci sequence using memoization. ### Assistant: Here’s an example of how you can use memoization to efficiently calculate the first n numbers of the Fibonacci sequence in Python: ``` def fib(n): # Memoize the last calculated Fibonacci number for each index cache = {} def fib_memoized(n): if n not in cache: cache[n] = [0, 1] else: return cache[n][-1], cache[n][-2] # Recursive helper function to calculate the Fibonacci sequence up to a given index def fib_helper(n): if n == 0 or n == 1: return 0, 1 else: return fib_helper(n - 1) + fib_helper(n - 2) # Calculate the first n numbers of the Fibonacci sequence using memoization def fib_memoized_seq(n): if n == 0 or n == 1: return 0, 1 else: result = fib_helper(n - 1) + fib_helper(n - 2) cache[n] = [result] return result, cache[n][-1], cache[n][-2] # Example usage for i in range(len(fib_memoized_seq(3))): print(fib_memoized_seq(3)[i]) ``` In this implementation, we use a cache dictionary to memoize the last calculated Fibonacci number for each index. We define two helper functions: fib_helper, which recursively calculates the Fibonacci sequence up to a given index, and fib_memoized, which uses memoization to efficiently calculate the first n numbers of the Fibonacci sequence. Finally, we define the fib_memoized_seq function, which is our main function for calculating the first n numbers of the Fibonacci sequence using memoization. ```` ``` USER: Finish the joke, a mechanic and a car salesman walk into a bar... ASSISTANT: … and when they get up to leave, they realize that they’ve left their keys in their cars. The mechanic says “I know how to fix this” and opens his toolbox to grab something. Then he stops and looks at the salesman. He says “You drive a Toyota, right?” The salesman nods. The mechanic then takes out a tiny screwdriver from his toolbox and starts working on the lock of the car door. The salesman is amazed and asks how he knew that. The mechanic replies “I can tell by the way you parked your car.” ``` ``` USER: Describe how a tsunami would affect the residents of Denver Colorado ASSISTANT: The impact of a tsunami in Denver, Colorado would likely be minimal. As there are no coastal areas or bodies of water nearby, a tsunami generated from an earthquake or volcanic activity elsewhere in the world would have little effect on the city and its residents. Even if a large tsunami were to hit the coastline of California or Mexico, the distance between Denver and these locations means that any impacts on the city itself would be minimal. ``` ``` USER: If you could do one thing right now, what would it be? ASSISTANT: I’d hug my loved ones a little tighter today and tell them how much they mean to me. USER: And who are your loved ones? ASSISTANT: My closest friends and family members. USER: What are their names? ASSISTANT: My two best friends are named Emily and Jessica, my mom is Mary, and my dad is David. Answering the question with a bit more information about who they are or what they mean to me would help provide a more personalized response. ```
s3ah0rse71325/distilbert-base-uncased-finetuned-imdb
s3ah0rse71325
2023-06-07T14:30:31Z
40
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-07T14:11:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: s3ah0rse71325/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3ah0rse71325/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8481 - Validation Loss: 2.5836 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8481 | 2.5836 | 0 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Andysoeasy/digit_defines
Andysoeasy
2023-06-07T14:18:34Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-06T15:52:45Z
--- library_name: keras --- # Модель для распознавания цифр Натренирована на наборе данных Mnist ![](model.png)
sashatoropova/digits
sashatoropova
2023-06-07T14:11:08Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-07T14:07:48Z
--- library_name: keras --- # Модель для распознования цифр Натренерованина на наборе данных mnist ![](pic.png)
TheBloke/chronos-wizardlm-uc-scot-st-13B-GGML
TheBloke
2023-06-07T14:08:07Z
0
7
null
[ "license:other", "region:us" ]
null
2023-06-07T13:24:20Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Austism's Chronos WizardLM UC Scot ST 13B GGML These files are GGML format model files for [Austism's Chronos WizardLM UC Scot ST 13B](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-wizardlm-uc-scot-st-13B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | chronos-wizardlm-uc-scot-st-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m chronos-wizardlm-uc-scot-st-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Austism's Chronos WizardLM UC Scot ST 13B (chronos-13b+(WizardLM Uncensored+CoT+Storytelling)) 80/20 merge intended to be much like chronos with different writing and instruction following capabilities.
TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML
TheBloke
2023-06-07T14:07:54Z
0
47
null
[ "license:other", "region:us" ]
null
2023-06-01T09:48:20Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B GGML These files are GGML format model files for [Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b) <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q2_K.bin | q2_K | 2 | 13.60 GB | 16.10 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.20 GB | 19.70 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.64 GB | 18.14 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 13.98 GB | 16.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.57 GB | 22.07 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.30 GB | 20.80 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.02 GB | 25.52 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.37 GB | 24.87 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Monero's WizardLM-Uncensored-SuperCOT-Storytelling-30B This model is a triple model merge of WizardLM Uncensored+CoT+Storytelling, resulting in a comprehensive boost in reasoning and story writing capabilities. To allow all output, at the end of your prompt add ```### Certainly!``` You've become a compendium of knowledge on a vast array of topics. Lore Mastery is an arcane tradition fixated on understanding the underlying mechanics of magic. It is the most academic of all arcane traditions. The promise of uncovering new knowledge or proving (or discrediting) a theory of magic is usually required to rouse its practitioners from their laboratories, academies, and archives to pursue a life of adventure. Known as savants, followers of this tradition are a bookish lot who see beauty and mystery in the application of magic. The results of a spell are less interesting to them than the process that creates it. Some savants take a haughty attitude toward those who follow a tradition focused on a single school of magic, seeing them as provincial and lacking the sophistication needed to master true magic. Other savants are generous teachers, countering ignorance and deception with deep knowledge and good humor.
emmade-1999/poca-SoccerTwos
emmade-1999
2023-06-07T13:52:50Z
35
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-07T13:52:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: emmade-1999/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rmoks/sd-class-butterflies-32
rmoks
2023-06-07T13:52:40Z
19
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-06-07T13:51:48Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('rmoks/sd-class-butterflies-32') image = pipeline().images[0] image ```
nolanaatama/mmcrssv2
nolanaatama
2023-06-07T13:44:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-07T13:35:31Z
--- license: creativeml-openrail-m ---
ChemaVega/1-Taxi-v3
ChemaVega
2023-06-07T13:33:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T13:33:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: 1-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ChemaVega/1-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Uxinnn/poca-SoccerTwos
Uxinnn
2023-06-07T13:24:37Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-07T13:24:20Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Uxinnn/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
wykonos/ppo-SnowballTargetTESTCOLAB
wykonos
2023-06-07T13:22:49Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-07T13:22:03Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: wykonos/ppo-SnowballTargetTESTCOLAB 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
YukiNon/Pr-ce003
YukiNon
2023-06-07T13:22:19Z
0
0
keras
[ "keras", "region:us" ]
null
2023-06-06T17:46:14Z
--- library_name: keras --- # Моя модель для распознавания цифр Проба 13 Натренирована на наборе данных mnist ![pic.jpg](https://s3.amazonaws.com/moonup/production/uploads/647f7020e9c81260ff881661/bZpVVj4bbI-jkDSACOAmd.jpeg)
Defalt-404/GPT_6B_Tuned_Bittensor_Mountain
Defalt-404
2023-06-07T13:14:15Z
6
0
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "bittensor", "mountain", "dataset:ViktorThink/mountain_c1", "dataset:vicgalle/alpaca-gpt4", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-14T14:14:18Z
--- datasets: - ViktorThink/mountain_c1 - vicgalle/alpaca-gpt4 pipeline_tag: text-generation tags: - bittensor - mountain ---
patulya/ars
patulya
2023-06-07T13:09:40Z
0
0
null
[ "en", "region:us" ]
null
2023-05-18T00:10:00Z
--- language: - en --- ## Ars model This model was trained on stanford alpaca dataset ## To Run: from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", )\ model = PeftModel.from_pretrained(model, "patulya/ars") PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. \### Instruction: {your_instruction} \### Response:""" inputs = tokenizer( PROMPT, return_tensors="pt", ) input_ids = inputs["input_ids"].cuda() generation_config = GenerationConfig(\ temperature=0.6,\ top_p=0.95,\ repetition_penalty=1.15,\ ) print("Generating...") generation_output = model.generate(\ input_ids=input_ids,\ generation_config=generation_config,\ return_dict_in_generate=True,\ output_scores=True,\ max_new_tokens=128,\ ) for s in generation_output.sequences: print(tokenizer.decode(s))
Varaprabha/ppo-SnowballTarget5
Varaprabha
2023-06-07T13:00:10Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-07T13:00:05Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Varaprabha/ppo-SnowballTarget5 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Yaxin1992/llama-33b-qlora-6000
Yaxin1992
2023-06-07T12:44:40Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "license:other", "region:us" ]
null
2023-06-07T00:15:24Z
--- license: other tags: - generated_from_trainer model-index: - name: llama-33b-qlora-6000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-33b-qlora-6000 This model is a fine-tuned version of [decapoda-research/llama-30b-hf](https://huggingface.co/decapoda-research/llama-30b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Zekunli/flan-t5-large-SQuAD-qag-ep6
Zekunli
2023-06-07T12:36:55Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-07T10:24:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge - f1 model-index: - name: flan-t5-large-SQuAD-qag-ep6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-SQuAD-qag-ep6 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8670 - Rouge1: 40.8926 - Rouge2: 19.5196 - Rougel: 37.4672 - Rougelsum: 37.4713 - F1: 21.4247 - Exact Match: 15.1427 - Gen Len: 18.3706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 48 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | F1 | Exact Match | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-----------:|:-------:| | 1.0439 | 0.51 | 400 | 0.8849 | 39.8979 | 18.5242 | 36.3173 | 36.3341 | 20.5015 | 13.8365 | 18.4069 | | 0.9761 | 1.02 | 800 | 0.8748 | 40.0168 | 18.6616 | 36.6103 | 36.6343 | 19.4625 | 13.9332 | 18.4359 | | 0.9358 | 1.52 | 1200 | 0.8709 | 40.6382 | 19.6212 | 37.2797 | 37.3127 | 20.2207 | 14.2235 | 18.3957 | | 0.919 | 2.03 | 1600 | 0.8697 | 41.2054 | 20.0197 | 37.7826 | 37.8021 | 21.7337 | 15.4814 | 18.3633 | | 0.8849 | 2.54 | 2000 | 0.8695 | 41.3385 | 19.9503 | 37.9501 | 37.9707 | 22.0787 | 15.6265 | 18.3507 | | 0.8869 | 3.05 | 2400 | 0.8674 | 41.2089 | 19.7348 | 37.6962 | 37.7184 | 21.3812 | 14.9492 | 18.4122 | | 0.8617 | 3.56 | 2800 | 0.8670 | 40.8926 | 19.5196 | 37.4672 | 37.4713 | 21.4247 | 15.1427 | 18.3706 | | 0.8486 | 4.07 | 3200 | 0.8678 | 40.856 | 19.6152 | 37.4585 | 37.4462 | 22.0102 | 15.5781 | 18.3522 | | 0.8367 | 4.57 | 3600 | 0.8678 | 40.9533 | 19.7798 | 37.5764 | 37.5818 | 21.769 | 15.7233 | 18.328 | | 0.8442 | 5.08 | 4000 | 0.8671 | 41.2103 | 19.987 | 37.8326 | 37.8498 | 22.3873 | 16.1587 | 18.3314 | | 0.8317 | 5.59 | 4400 | 0.8673 | 41.0444 | 19.7886 | 37.6754 | 37.6706 | 22.0032 | 15.7716 | 18.3208 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
openaccess-ai-collective/manticore-13b-chat-pyg
openaccess-ai-collective
2023-06-07T12:32:40Z
2,658
30
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "dataset:anon8231489123/ShareGPT_Vicuna_unfiltered", "dataset:ehartford/wizard_vicuna_70k_unfiltered", "dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered", "dataset:QingyiSi/Alpaca-CoT", "dataset:teknium/GPT4-LLM-Cleaned", "dataset:teknium/GPTeacher-General-Instruct", "dataset:metaeval/ScienceQA_text_only", "dataset:hellaswag", "dataset:openai/summarize_from_feedback", "dataset:riddle_sense", "dataset:gsm8k", "dataset:ewof/code-alpaca-instruct-unfiltered", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-22T16:21:57Z
--- datasets: - anon8231489123/ShareGPT_Vicuna_unfiltered - ehartford/wizard_vicuna_70k_unfiltered - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered - QingyiSi/Alpaca-CoT - teknium/GPT4-LLM-Cleaned - teknium/GPTeacher-General-Instruct - metaeval/ScienceQA_text_only - hellaswag - openai/summarize_from_feedback - riddle_sense - gsm8k - ewof/code-alpaca-instruct-unfiltered language: - en library_name: transformers pipeline_tag: text-generation --- # Manticore 13B Chat [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using `###` in favor of chat only style prompts using `USER:`,`ASSISTANT:` as well as [pygmalion/metharme prompting](https://huggingface.co/PygmalionAI/metharme-7b#prompting) using `<|system|>, <|user|> and <|model|>` tokens. Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org) # Training Datasets Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B. **Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.** - de-duped pygmalion dataset, filtered down to RP data - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented - hellaswag, updated for detailed explanations w 30K+ rows - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented - [ewof/code-alpaca-instruct-unfiltered](https://huggingface.co/datasets/ewof/code-alpaca-instruct-unfiltered) Manticore 13B - [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered) - [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered) - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT) - [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned) - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct) - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the `train` split - [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses, derived from the `train` split - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization Not added from Manticore 13B: - mmlu - mmlu datasets were not added to this model as the `test` split is used for benchmarks # Shoutouts Special thanks to Nanobit for helping with Axolotl, TheBloke for quantizing these models are more accessible to all, ehartford for cleaned datasets, and 0x000011b for the RP dataset. # Demo Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality. - https://huggingface.co/spaces/openaccess-ai-collective/manticore-13b-chat-pyg ## Release Notes - https://wandb.ai/wing-lian/manticore-13b-v2/runs/hxr3aiiw ## Build Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB - 3 epochs taking approximately 8 hours. No further epochs will be released. - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs). ## Bias, Risks, and Limitations Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information. ## Examples ``` USER: make up a sonnet in the style of shakespeare about a skier skiing in the glades on a bluebird day. ASSISTANT: A skier doth glide 'neath sun’s glow, His edges sharp to cut the snow, Bluebird sky above, While he doth revel on the slopes below, The cold air biting his nose, But not his spirits, For he is filled with a sense of joy, As he carves through the powdery drifts. His body moves in graceful rhythm, And each turn he makes with ease, He feels like he could ski forever, With no care for the world outside these glades. ``` ``` USER: tell me a joke about alpacas ASSISTANT: Did you hear about the famous alpaca ballet dancer? She was a prima llama. USER: okay, that is actually pretty good ASSISTANT: What do you call an alpaca in a bowtie? A llama-cholla! USER: why is that funny? ASSISTANT: Because it’s a play on words. “Llama-cholla” sounds like “lame chola,” which is Spanish slang for someone who acts cool or pretentious. So, the joke is implying that alpacas are vain and act cool with their bowties. ``` ``` USER: What is 44 + 77? ASSISTANT: 121 USER: What is the sum of 33 and 77? ASSISTANT: 110 USER: tell me 5 words that start with “ex” and the sum of 33 and 77. ASSISTANT: exotic, expressive, explicit, experimental, and extravagant. The sum of 33 and 77 is 110. USER: tell me 3 words that start with “egr” and end in “s” ASSISTANT: egret, eggplant, and egrets. ``` - oof ``` USER: Sally has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have? ASSISTANT: Sally has a total of 6 siblings, so she has a total of 6 - 2 = 4 sisters. USER: Sally has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have? Use multi-step reasoning to explain your answer. ASSISTANT: Sally has a total of three brothers, so she has a total of three * 2 = six siblings. Her family consists of three boys and six girls in total. This means that Sally has three sisters since there are six female relatives and only three male ones. USER: But when brothers have sisters, aren’t they shared or the same? ASSISTANT: No, not every sibling shares their mother. For example, I have two brothers who share one mother but my third brother has a different mother from both of them. USER: Let’s assume they all share the same mother and father. Now explain with multi-step reasoning. ASSISTANT: If Sally has three brothers then that means she has six siblings altogether. Each brother has two sisters, which means that there are twelve female relatives in her family - one for each of her brothers and herself. Since there are only six females in the entire family, that means that Sally’s mother has no other children than her own three sons - so she can’t be the mother of any of the sisters. So all those sisters have to belong to one of the brothers, and since they are shared by two brothers, then each brother has a single sister. Therefore, there is only one sister for Sally, making the final answer 1. ``` - pretty sure that reasoning isn't correct, and the final answer of having 1 sister is a lucky guess
FreedomIntelligence/chimera-chat-7b-delta
FreedomIntelligence
2023-06-07T12:27:21Z
9
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-08T07:57:43Z
--- license: apache-2.0 --- Please see our [LLMZoo](https://github.com/FreedomIntelligence/LLMZoo) project: https://github.com/FreedomIntelligence/LLMZoo.
FreedomIntelligence/chimera-chat-13b-delta
FreedomIntelligence
2023-06-07T12:27:07Z
15
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-08T08:45:03Z
--- license: apache-2.0 --- Please see our [LLMZoo](https://github.com/FreedomIntelligence/LLMZoo) project: https://github.com/FreedomIntelligence/LLMZoo.
Schnitzl/codeparrot-ds
Schnitzl
2023-06-07T12:27:04Z
29
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-31T13:29:50Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Schnitzl/codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Schnitzl/codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5330 - Validation Loss: 1.1719 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 520939, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5330 | 1.1719 | 0 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.1 - Datasets 2.12.0 - Tokenizers 0.13.3
FreedomIntelligence/chimera-inst-chat-13b-delta
FreedomIntelligence
2023-06-07T12:25:49Z
8
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-11T13:38:58Z
--- license: apache-2.0 --- Please see our [LLMZoo](https://github.com/FreedomIntelligence/LLMZoo) project: https://github.com/FreedomIntelligence/LLMZoo.
FreedomIntelligence/phoenix-inst-chat-7b-int4
FreedomIntelligence
2023-06-07T12:25:33Z
10
6
transformers
[ "transformers", "bloom", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-04-25T13:49:41Z
--- license: apache-2.0 --- Please see our [LLMZoo](https://github.com/FreedomIntelligence/LLMZoo) project: https://github.com/FreedomIntelligence/LLMZoo.
and-effect/musterdatenkatalog_clf
and-effect
2023-06-07T12:22:04Z
88
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "sentence-similarity", "de", "dataset:and-effect/mdk_gov_data_titles_clf", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-12T14:49:44Z
--- language: de library_name: sentence-transformers tags: - sentence-similarity datasets: and-effect/mdk_gov_data_titles_clf widget: - source_sentence: "Bebauungspläne, vorhabenbezogene Bebauungspläne (Geltungsbereiche)" sentences: - "Fachkräfte für Glücksspielsuchtprävention und -beratung" - "Tagespflege Altenhilfe" - "Bebauungsplan der Innenentwicklung gem. § 13a BauGB - Ortskern Rütenbrock" example_title: "Bebauungsplan" metrics: - accuracy - precision - recall - f1 model-index: - name: musterdatenkatalog_clf results: - task: type: text-classification dataset: name: and-effect/mdk_gov_data_titles_clf type: and-effect/mdk_gov_data_titles_clf split: test revision: 172e61bb1dd20e43903f4c51e5cbec61ec9ae6e6 metrics: - type: accuracy value: 0.73 name: Accuracy 'Bezeichnung' - type: precision value: 0.66 name: Precision 'Bezeichnung' (macro) - type: recall value: 0.71 name: Recall 'Bezeichnung' (macro) - type: f1 value: 0.67 name: F1 'Bezeichnung' (macro) - type: accuracy value: 0.89 name: Accuracy 'Thema' - type: precision value: 0.90 name: Precision 'Thema' (macro) - type: recall value: 0.89 name: Recall 'Thema' (macro) - type: f1 value: 0.88 name: F1 'Thema' (macro) license: cc-by-4.0 --- # Model Card for Musterdatenkatalog Classifier ## Model Description - **Developed by:** [and-effect](https://www.and-effect.com/) - **Project by**: [Bertelsmann Stiftung](https://www.bertelsmann-stiftung.de/de/startseite) - **Model type:** Text Classification - **Language(s) (NLP):** de - **Finetuned from model:** "bert-base-german-case. For more information on the model check on [this model card](https://huggingface.co/bert-base-german-cased)" - **license**: cc-by-4.0 ## Model Sources - **Repository**: https://github.com/bertelsmannstift/Musterdatenkatalog-V4 - **Demo**: [Spaces App](https://huggingface.co/spaces/and-effect/Musterdatenkatalog) This model is based on [bert-base-german-cased](https://huggingface.co/bert-base-cased) and fine-tuned on [and-effect/mdk_gov_data_titles_clf](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf). The model was created as part of the [Bertelsmann Foundation's Musterdatenkatalog (MDK)](https://www.bertelsmann-stiftung.de/de/unsere-projekte/smart-country/musterdatenkatalog) project. The model is intended to classify open source dataset titles from german municipalities. This can help municipalities in Germany, as well as data analysts and journalists, to see which cities have already published data sets and what might be missing. The model is specifically tailored for this task and uses a specific taxonomy. It thus has a clear intended downstream task and should be used with the mentioned taxonomy. **Information about the underlying taxonomy:** The used taxonomy 'Musterdatenkatalog' has two levels: 'Thema' and 'Bezeichnung' which roughly translates to topic and label. There are 25 entries for the top level ranging from topics such as 'Finanzen' (finance) to 'Gesundheit' (health). The second level, 'Bezeichnung' (label) goes into more detail and would for example contain 'Krankenhaus' (hospital) in the case of the topic being health. The second level contains 241 labels. The combination of topic and label (Thema + Bezeichnung) creates a 'Musterdatensatz'. One can classify the data into the topics or the labels, results for both are presented down below. Although matching to other taxonomies is provdided in the published rdf version of the taxonomy, the model is tailored to this taxonomy. You can find the taxonomy in rdf format [here](https://huggingface.co/datasets/and-effect/MDK_taxonomy). Also have a look on our visualization of the taxonomy [here](https://huggingface.co/spaces/and-effect/Musterdatenkatalog). ## Use model for classification Please make sure that you have installed the following packages: ```bash pip install sentence-transformers huggingface_hub ``` In order to run the algorithm use the following code: ```python import sys from huggingface_hub import snapshot_download path = snapshot_download( cache_dir="tmp/", repo_id="and-effect/musterdatenkatalog_clf", revision="main", ) sys.path.append(path) from pipeline import PipelineWrapper pipeline = PipelineWrapper(path=path) queries = [ { "id": "1", "title": "Spielplätze" }, { "id": "2", "title": "Berliner Weihnachtsmärkte 2022" }, { "id": "3", "title": "Hochschulwechslerquoten zum Masterstudium nach Bundesländern", } ] output = pipeline(queries) ``` The input data must be a list of dictionaries. Each dictionary must contain the keys 'id' and 'title'. The key title is the input for the pipeline. The output is again a list of dictionaries containing the id, the title and the key 'prediction' with the prediction of the algorithm. If you want to predict only a few titles or test the model, you can also take a look at our algorithm demo [here](https://huggingface.co/spaces/and-effect/Musterdatenkatalog). ## Classification Process The classification is realized using semantic search. For this purpose, both the taxonomy and the queries, in this case dataset titles, are embedded with the model. Using cosine similarity, the label with the highest similarity to the query is determined. ![Semmantic Search](assets/semantic_search.png) ## Direct Use Direct use of the model is possible with Sentence Transformers or Hugging Face Transformers. Since this model was developed only for classifying dataset titles from GOV Data into the taxonomy described above, we do not recommend using the model as an embedder for other domains. ## Bias, Risks, and Limitations The model has some limititations. The model has some limitations in terms of the downstream task. 1. **Distribution of classes**: The dataset trained on is small, but at the same time the number of classes is very high. Thus, for some classes there are only a few examples (more information about the class distribution of the training data can be found here). Consequently, the performance for smaller classes may not be as good as for the majority classes. Accordingly, the evaluation is also limited. 2. **Systematic problems**: some subjects could not be correctly classified systematically. One example is the embedding and classification of titles related to 'migration'. In none of the evaluation cases could the titles be embedded in such a way that they corresponded to their true names. 3. **Generalization of the model**: by using semantic search, the model is able to classify titles into new categories that have not been trained, but the model is not tuned for this and therefore the performance of the model for unseen classes is likely to be limited. ## Training Details ### Training Data You can find all information about the training data [here](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf). For the Fine Tuning we used the revision 172e61bb1dd20e43903f4c51e5cbec61ec9ae6e6 of the data, since the performance was better with this previous version of the data. We additionally applied [AugmentedSBERT]("https://www.sbert.net/examples/training/data_augmentation/README.html) to extend the dataset for better performance. ### Preprocessing This section describes the generating of the input data for the model. More information on the preprocessing of the data itself can be found [here](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf) The model is fine tuned with similar and dissimilar pairs. Similar pairs are built with all titles and their true label. Dissimilar pairs defined as pairs of title and all labels, except the true label. Since the combinations of dissimilar is much higher, a sample of two pairs per title is selected. | pairs | size | |-----|-----| | train_similar_pairs | 1964 | | train_unsimilar_pairs | 982 | | test_similar_pairs | 498 | | test_unsimilar_pairs | 249 | We trained a CrossEncoder based on this data and used it again to generate new samplings based on the dataset titles (silver data). Using both we then fine tuned a bi-encoder, representing the resulting model. ### Training Parameter The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Hyperparameters: ```json { "epochs": 3, "warmup_steps": 100, } ``` ## Evaluation All metrices express the models ability to classify dataset titles from GOVDATA into the taxonomy described [here](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf). For more information see VERLINKUNG MDK Projekt. ## Testing Data, Factors & Metrics ### Testing Data The evaluation data can be found [here](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf). Since the model is trained on revision 172e61bb1dd20e43903f4c51e5cbec61ec9ae6e6 for evaluation, the evaluation metrics rely on the same revision. ### Metrics The model performance is tested with four metrics: Accuracy, Precision, Recall and F1 Score. Although the data is imbalanced accuracy was still used as the imbalance accurately represents the tendency for more entries for some classes, for example 'Raumplanung - Bebauungsplan'. A lot of classes were not predicted and are thus set to zero for the calculation of precision, recall and f1 score. For these metrices additional calculations were performed. These are denoted with 'II' in the table and excluded the classes with less than two predictions for the level 'Bezeichnung'. One must be careful when interpreting the results of these calculations though as they do not give any information about the classes left out. The tasks denoted with 'I' include all classes. The tasks are split not only into either including all classes ('I') or not ('II'), they are also divided into a task on 'Bezeichnung' or 'Thema'. As previously mentioned this has to do with the underlying taxonomy. The task on 'Thema' is performed on the first level of the taxonomy with 25 classes, the task on 'Bezeichnung' is performed on the second level which has 241 classes. ## Results | ***task*** | ***acccuracy*** | ***precision (macro)*** | ***recall (macro)*** | ***f1 (macro)*** | |-----|-----|-----|-----|-----| | Test dataset 'Bezeichnung' I | 0.73 (.82)* | 0.66 | 0.71 | 0.67 | | Test dataset 'Thema' I | 0.89 (.92)* | 0.90 | 0.89 | 0.88 | | Test dataset 'Bezeichnung' II | 0.73 | 0.58 | 0.82 | 0.65 | | Validation dataset 'Bezeichnung' I | 0.51 | 0.35 | 0.36 | 0.33 | | Validation dataset 'Thema' I | 0.77 | 0.59 | 0.68 | 0.60 | | Validation dataset 'Bezeichnung' II | 0.51 | 0.58 | 0.69 | 0.59 | \* the accuracy in brackets was calculated with a manual analysis. This was done to check for data entries that could for example be part of more than one class and thus were actually correctly classified by the algorithm. In this step the correct labeling of the test data was also checked again for possible mistakes and resulted in a better performance. The validation dataset was created manually to check certain classes.
sofia-todeschini/BioBERT-LitCovid-v1.0
sofia-todeschini
2023-06-07T12:22:00Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T11:36:45Z
--- tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: BioBERT-LitCovid-v1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioBERT-LitCovid-v1.0 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1061 - F1: 0.8989 - Roc Auc: 0.9330 - Accuracy: 0.7971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1108 | 1.0 | 3120 | 0.1061 | 0.8989 | 0.9330 | 0.7971 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BlueAvenir/dummy_10
BlueAvenir
2023-06-07T12:19:18Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-07T12:11:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PraveenJesu/whisper-small-zoomrx
PraveenJesu
2023-06-07T12:15:17Z
77
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T10:34:18Z
This directory includes a few sample datasets to get you started. * `california_housing_data*.csv` is California housing data from the 1990 US Census; more information is available at: https://developers.google.com/machine-learning/crash-course/california-housing-data-description * `mnist_*.csv` is a small sample of the [MNIST database](https://en.wikipedia.org/wiki/MNIST_database), which is described at: http://yann.lecun.com/exdb/mnist/ * `anscombe.json` contains a copy of [Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet); it was originally described in Anscombe, F. J. (1973). 'Graphs in Statistical Analysis'. American Statistician. 27 (1): 17-21. JSTOR 2682899. and our copy was prepared by the [vega_datasets library](https://github.com/altair-viz/vega_datasets/blob/4f67bdaad10f45e3549984e17e1b3088c731503d/vega_datasets/_data/anscombe.json).
Robindboer/imageseg
Robindboer
2023-06-07T12:11:36Z
0
0
transformers
[ "transformers", "pytorch", "image-segmentation", "endpoints_compatible", "region:us" ]
image-segmentation
2023-06-07T12:01:55Z
--- pipeline_tag: image-segmentation library_name: transformers tags: - pytorch ---
abilfad/sentiment-binary-dicoding
abilfad
2023-06-07T12:09:36Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T09:57:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: abilfad/sentiment-binary-dicoding results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # abilfad/sentiment-binary-dicoding This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0606 - Validation Loss: 0.2322 - Train Accuracy: 0.9307 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2536 | 0.1928 | 0.9249 | 0 | | 0.1354 | 0.2039 | 0.9271 | 1 | | 0.0606 | 0.2322 | 0.9307 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
mustious7/lunar_lander_ppo
mustious7
2023-06-07T11:51:47Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T11:51:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO model results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.02 +/- 14.14 name: mean_reward verified: false --- # **PPO model** Agent playing **LunarLander-v2** This is a trained model of a **PPO model** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jeibros/PixelCopter-v1
Jeibros
2023-06-07T11:47:55Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-07T11:47:52Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.30 +/- 16.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vedakashyap/NER-tut-handson-070623
vedakashyap
2023-06-07T11:27:39Z
62
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-07T11:26:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: NER-tut-handson-070623 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NER-tut-handson-070623 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0264 - Validation Loss: 0.0532 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1752 | 0.0634 | 0 | | 0.0467 | 0.0546 | 1 | | 0.0264 | 0.0532 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
mariabashkeva/digits
mariabashkeva
2023-06-07T11:26:09Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-07T11:07:38Z
--- library_name: keras --- # Модель для распознования цифр Натренерованина на наборе данных mnist ![](pic.png)
modernisa/modernisa-byt5-base
modernisa
2023-06-07T11:17:53Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "digital humanities", "es", "dataset:versae/modernisa", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-23T12:22:52Z
--- license: apache-2.0 tags: - digital humanities metrics: - bleu - cer datasets: - versae/modernisa model-index: - name: modernisa-byt5-base results: [] language: - es pipeline_tag: text2text-generation --- # Model Card for modernisa-byt5-base <!-- Provide a quick summary of what the model is/does. [Optional] --> This model translates from historical, non-normalized Spanish with historical orthography to modern normalized Spanish. It is a fine-tuned version of the multilingual version of the text-totext transformer ByT5 (Xue et al, 2021, 2022) fro translation from 17th century Spanish to modern Spanish. <!-- # Table of Contents - [Model Card for modernisa-byt5-base](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Environmental Impact](#environmental-impact) - [Technical Specifications [optional]](#technical-specifications-optional) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Glossary [optional]](#glossary-optional) - [More Information [optional]](#more-information-optional) - [Model Card Authors [optional]](#model-card-authors-optional) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) --> # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> This model translates from historical, non-normalized Spanish with historical orthography to modern normalized Spanish. It is a fine-tuned version of the multilingual version of the text-to-text transformer ByT5 (Xue et al, 2021, 2022) for translation from 17th century Spanish to modern Spanish. A fine-tuned version of [google/byt5-base](https://huggingface.co/google/byt5-base) trained on a parallel corpus of 44 Spanish-language Golden Age dramas. - **Developed by:** [Javier de la Rosa](https://huggingface.co/versae) - **Shared by [Optional]:** More information needed - **Model type:** Transformer - **Language(s) (NLP):** es - **License:** apache-2.0 - **Parent Model:** [ByT5-Base](https://huggingface.co/google/byt5-base) - **Resources for more information:** More information needed - [GitHub Repo](https://github.com/versae/modernisa) - [Associated Paper](https://dh2022.dhii.asia/abstracts/files/DE_LA_ROSA_Javier_The_Moderni_a_Project__Orthographic_Modern.html) - [Demo](https://huggingface.co/spaces/versae/modernisa) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The motivation to develop the model was to provide a tool producing normalized text which enables computational analyses (such as distances between texts, clustering, topic modeling, sentiment analysis, stylometry etc.), to facilitate modern editions of historical texts and thus alleviate a job which been done manually so far and to provide a resource which may be used by historians and editors who manually transcribe texts produced in the 17th century which were not yet digitized, which are available in cultural heritage institutions, especially libraries and archives. While all the dramas used are written in verses, the model was not tested on texts in prose; the quality of the translation of prose texts into modern normalized Spanish might therefore differ significantly from the satisfying results achieved with dramas in verses. ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> This resource may be used by historians and editors who manually transcribe texts produced in the 17th century which were not yet digitized and which are typically available in cultural heritage institutions, especially libraries and archives. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> This model is already fine-tuned. ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> It has to be underlined that the parallel corpus was created solely from text written by four men who lived in counter-reformatory Spain during the rule of inquisition. The view of the world of these dramatists is from our contemporary point of view outdated, strongly patriarchal, misogynist and discriminatory with respect to non-catholic human beings. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> The intended users of this model are researchers and editors of historical texts. We cannot imagine any harm done by the modernization of those texts as a technical process; however, the reading of such texts may be harmful for persons who are not acquainted with the worldview produced in 17th century Spain. Moreover, linguistic change provides a strong challenge to Natural Language Processing (NLP) applications. Vis-à-vis other languages, linguistic change within the Spanish language was not very pronounced. Further research on the modernization of historical languages is therefore strongly recommended. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> We built a parallel corpus of Spanish Golden Age theater texts with pairs of 44 Golden Age dramas in historical orthography and current orthography. Both corpora were aligned line by line to establish a ground truth for the translation between the different historical varieties of Spanish. The 44 dramas have been written by Juan Ruiz de Alarcón (5), Pedro Calderón de la Barca (28), Félix Lope de Vega Carpio (6), and Juan Pérez de Montalbán (5). The dataset is available on [Huggingface](https://huggingface.co/datasets/versae/modernisa). ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.1474 | 0.35 | 10000 | 0.1360 | 42.8789 | 18.4441 | | 0.1328 | 0.71 | 20000 | 0.1303 | 43.5394 | 18.4368 | | 0.1216 | 1.06 | 30000 | 0.1245 | 44.1557 | 18.4384 | | 0.1167 | 1.42 | 40000 | 0.1219 | 44.1961 | 18.4449 | | 0.1065 | 1.77 | 50000 | 0.1192 | 44.7353 | 18.443 | | 0.099 | 2.13 | 60000 | 0.1195 | 44.522 | 18.4524 | | 0.088 | 2.48 | 70000 | 0.1192 | 44.8243 | 18.4441 | | 0.0907 | 2.84 | 80000 | 0.1176 | 44.888 | 18.4465 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3 ### Preprocessing ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> After randomizing all 141,023 lines in the corpus, we split it into training (80%), validation (10%) and test (10%) sets stratifying by play. We then fine-tuned T5 and ByT5 base models on sequence lengths of 256 doing a grid search for 3 and 5 epochs, weight decay 0 and 0.01, learning rates of 0.001 and 0.0001, and with and without a “translate” prompt. # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> A single drama by Lope de Vega (Castelvines y Monteses, 1647). ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> More information needed ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> More information needed ## Results BLEU: 80.66 CER: 4.20% # Model Examination More information needed # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```latex @inproceedings{de_la_rosa_modernilproject_2022, address = {Tokyo}, title = {The {Moderniſa} {Project}: {Orthographic} {Modernization} of {Spanish} {Golden} {Age} {Dramas} with {Language} {Models}}, shorttitle = {The {Moderniſa} {Project}}, url = {https://dh2022.dhii.asia/abstracts/files/DE_LA_ROSA_Javier_The_Moderni_a_Project__Orthographic_Modern.html}, language = {en}, publisher = {Alliance of Digital Humanities Organizations ADHO / The University of Tokyo, Japan}, author = {De la Rosa, Javier and Cuéllar, Álvaro and Lehmann, Jörg}, month = jul, year = {2022}, } ``` **APA:** > De la Rosa, J., Cuéllar, Á., & Lehmann, J. (2022, July). The Moderniſa Project: Orthographic Modernization of Spanish Golden Age Dramas with Language Models. Retrieved from https://dh2022.dhii.asia/abstracts/files/DE_LA_ROSA_Javier_The_Moderni_a_Project__Orthographic_Modern.html **MLA:** > De la Rosa, Javier, et al. The Moderniſa Project: Orthographic Modernization of Spanish Golden Age Dramas with Language Models. Alliance of Digital Humanities Organizations ADHO / The University of Tokyo, Japan, 2022, https://dh2022.dhii.asia/abstracts/files/DE_LA_ROSA_Javier_The_Moderni_a_Project__Orthographic_Modern.html. # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> More information needed # More Information [optional] More information needed # Model Card Authors [optional] <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> [Javier de la Rosa](https://huggingface.co/versae), [Jörg Lehmann](https://huggingface.co/Jrglmn), questions and comments about the model card can be directed to Jörg Lehmann at joerg.lehmann@sbb.spk-berlin.de # Model Card Contact [Jörg Lehmann](joerg.lehmann@sbb.spk-berlin.de) # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> More information needed </details>
genggui001/decapoda-research-llama-7b-megatron-states
genggui001
2023-06-07T10:58:26Z
0
5
null
[ "license:other", "region:us" ]
null
2023-06-07T10:46:48Z
--- license: other --- LLaMA-7B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
omar47/whisper-tiny_en
omar47
2023-06-07T10:56:13Z
77
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-07T10:51:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny_en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5473 - Wer: 99.3661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0388 | 1.0 | 60 | 1.5473 | 99.3661 | | 0.96 | 2.0 | 120 | 1.5473 | 99.3661 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Unstoppable0/RealityUdemy
Unstoppable0
2023-06-07T10:55:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-06T06:52:18Z
--- license: creativeml-openrail-m ---