modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
LarryAIDraw/Utahime
LarryAIDraw
2023-11-11T07:02:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:57:47Z
--- license: creativeml-openrail-m --- https://civitai.com/models/196133/utahime-iori-oror-jujutsu-kaisen
LarryAIDraw/miyamae_tooru-000014
LarryAIDraw
2023-11-11T06:57:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:53:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/196076/miyamae-tooru-seiren
LarryAIDraw/himeno-20
LarryAIDraw
2023-11-11T06:56:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:52:31Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195887/himeno-oror-chainsaw-man
LarryAIDraw/natsumi-dal-01
LarryAIDraw
2023-11-11T06:55:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:51:13Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195988/natsumi-kyouno-date-a-live
LarryAIDraw/tohsaka888
LarryAIDraw
2023-11-11T06:54:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:50:51Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195933/new-and-fixed-rin-tohsaka
LarryAIDraw/chara_SoloMaxLevelNewbie_Alice_v2
LarryAIDraw
2023-11-11T06:50:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:44:58Z
--- license: creativeml-openrail-m --- https://civitai.com/models/49983/alice-or-solo-max-level-newbie-manhwa
LarryAIDraw/shiratsuyu-10
LarryAIDraw
2023-11-11T06:49:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:44:40Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195791/shiratsuyu-kai-ni-kancolle-or-3-outfits
LarryAIDraw/_AG_MERATHON_Cream_LORA-10
LarryAIDraw
2023-11-11T06:49:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:44:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195632/finale-marathon-cream-artery-gear-fusion
LarryAIDraw/_AG_MERATHON_Autoluna_LORA-10
LarryAIDraw
2023-11-11T06:48:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:43:38Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195631/finale-marathon-autoluna-artery-gear-fusion
LarryAIDraw/Chikuma_v1
LarryAIDraw
2023-11-11T06:48:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:43:18Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195486/chikuma-azur-lane
LarryAIDraw/RaidenShogun-08
LarryAIDraw
2023-11-11T06:42:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:37:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/195283/raiden-shogun-or-genshin-impact
LarryAIDraw/Akari_Watanabe
LarryAIDraw
2023-11-11T06:40:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:35:37Z
--- license: creativeml-openrail-m --- https://civitai.com/models/194952/akari-watanabe-more-than-a-married-couple-but-not-lovers
LarryAIDraw/CHAR-KitazawaShiho
LarryAIDraw
2023-11-11T06:40:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:35:14Z
--- license: creativeml-openrail-m --- https://civitai.com/models/194982/shiho-kitazawa-or-the-idolmster-million-live
LarryAIDraw/spmikaMelatika-09
LarryAIDraw
2023-11-11T06:32:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:27:17Z
--- license: creativeml-openrail-m --- https://civitai.com/models/196167/mika-melatika-2-outfits-oror-nijisanji-id-id
LarryAIDraw/chloerollo-nvwls-v1
LarryAIDraw
2023-11-11T06:32:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:26:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/196172/chloe-rollo-is-it-wrong-to-try-to-pick-up-girls-in-a-dungeon-lora
LarryAIDraw/VIVIANAv1
LarryAIDraw
2023-11-11T06:31:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:25:19Z
--- license: creativeml-openrail-m --- https://civitai.com/models/196171/viviana-candle-knight-arknights-lora
LarryAIDraw/ryza-V2
LarryAIDraw
2023-11-11T06:26:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-11T06:26:23Z
--- license: creativeml-openrail-m ---
fdugzc/fasthan_large
fdugzc
2023-11-11T06:24:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-11-11T06:22:55Z
--- license: apache-2.0 --- The model for https://github.com/fastnlp/fastHan 1.x version.
soongbren/Bert_Bahasa_Sentiment-large-dataset
soongbren
2023-11-11T06:20:29Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:techthiyanes/Bert_Bahasa_Sentiment", "base_model:finetune:techthiyanes/Bert_Bahasa_Sentiment", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-11T06:19:16Z
--- base_model: techthiyanes/Bert_Bahasa_Sentiment tags: - generated_from_trainer model-index: - name: Bert_Bahasa_Sentiment-large-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Bahasa_Sentiment-large-dataset This model is a fine-tuned version of [techthiyanes/Bert_Bahasa_Sentiment](https://huggingface.co/techthiyanes/Bert_Bahasa_Sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6961 - eval_accuracy: {'accuracy': 0.48474945533769065} - eval_f1score: {'f1': 0.31652752402827933} - eval_runtime: 33.4825 - eval_samples_per_second: 27.417 - eval_steps_per_second: 3.435 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 642 - num_epochs: 7 ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Charles2023/cloth4-2-1
Charles2023
2023-11-11T06:15:21Z
6
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-11T06:03:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### cloth4-2-1 Dreambooth model trained by Charles2023 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
LoneStriker/openchat_3.5-16k-6.0bpw-h6-exl2
LoneStriker
2023-11-11T06:14:45Z
7
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "arxiv:2309.11235", "arxiv:2303.08774", "arxiv:2212.10560", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-11T06:14:29Z
--- license: apache-2.0 --- # OpenChat 3.5 extended to 16k context length. The same license applies from the original openchat/openchat_3.5 model. # Original Model Card # OpenChat: Advancing Open-source Language Models with Mixed-Quality Data <div align="center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%"> </div> <p align="center"> <a href="https://github.com/imoneoi/openchat">GitHub Repo</a> • <a href="https://openchat.team">Online Demo</a> • <a href="https://discord.gg/pQjnXvNKHY">Discord</a> • <a href="https://twitter.com/imonenext">Twitter</a> • <a href="https://huggingface.co/openchat">Huggingface</a> • <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a> </p> **🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥** **🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖** <div style="display: flex; justify-content: center; align-items: center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;"> </div> OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision. [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533) ## Usage To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command. Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience. If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server. <details> <summary>Example request (click to expand)</summary> ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}] }' ``` Coding Mode ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "condition": "Code", "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}] }' ``` </details> | Model | Size | Context | Weights | Serving | |--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------| | OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` | For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below. <details> <summary>Conversation templates (click to expand)</summary> ```python import transformers tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5") # Single-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Multi-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Coding Mode tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747] ``` </details> ## Comparison with [X.AI Grok models](https://x.ai/) Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok? Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡 (Written by OpenChat 3.5, with a touch of humor and wit.) | | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k | |--------------|-------------|---------|----------|------|-----------|----------|----------| | OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** | | Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 | | Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 | ## <a id="benchmarks"></a> Benchmarks | Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K | |--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------| | OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** | | ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 | | | | | | | | | | | | | | OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 | | OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 | | Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 | | Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 | | Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 | | | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B | *: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time. ^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data. **: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories. All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks). ## Limitations **Foundation Model Limitations** Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as: - Complex reasoning - Mathematical and arithmetic tasks - Programming and coding challenges **Hallucination of Non-existent Information** OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model. **Safety** OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses. ## License Our OpenChat 3.5 code and models are distributed under the Apache License 2.0. ## Citation ``` @article{wang2023openchat, title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data}, author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang}, journal={arXiv preprint arXiv:2309.11235}, year={2023} } ``` ## Acknowledgements We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training. Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions. Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
LoneStriker/openchat_3.5-16k-5.0bpw-h6-exl2
LoneStriker
2023-11-11T06:08:30Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "arxiv:2309.11235", "arxiv:2303.08774", "arxiv:2212.10560", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-11T06:08:16Z
--- license: apache-2.0 --- # OpenChat 3.5 extended to 16k context length. The same license applies from the original openchat/openchat_3.5 model. # Original Model Card # OpenChat: Advancing Open-source Language Models with Mixed-Quality Data <div align="center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%"> </div> <p align="center"> <a href="https://github.com/imoneoi/openchat">GitHub Repo</a> • <a href="https://openchat.team">Online Demo</a> • <a href="https://discord.gg/pQjnXvNKHY">Discord</a> • <a href="https://twitter.com/imonenext">Twitter</a> • <a href="https://huggingface.co/openchat">Huggingface</a> • <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a> </p> **🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥** **🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖** <div style="display: flex; justify-content: center; align-items: center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;"> </div> OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision. [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533) ## Usage To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command. Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience. If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server. <details> <summary>Example request (click to expand)</summary> ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}] }' ``` Coding Mode ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "condition": "Code", "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}] }' ``` </details> | Model | Size | Context | Weights | Serving | |--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------| | OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` | For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below. <details> <summary>Conversation templates (click to expand)</summary> ```python import transformers tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5") # Single-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Multi-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Coding Mode tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747] ``` </details> ## Comparison with [X.AI Grok models](https://x.ai/) Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok? Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡 (Written by OpenChat 3.5, with a touch of humor and wit.) | | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k | |--------------|-------------|---------|----------|------|-----------|----------|----------| | OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** | | Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 | | Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 | ## <a id="benchmarks"></a> Benchmarks | Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K | |--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------| | OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** | | ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 | | | | | | | | | | | | | | OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 | | OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 | | Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 | | Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 | | Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 | | | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B | *: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time. ^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data. **: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories. All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks). ## Limitations **Foundation Model Limitations** Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as: - Complex reasoning - Mathematical and arithmetic tasks - Programming and coding challenges **Hallucination of Non-existent Information** OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model. **Safety** OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses. ## License Our OpenChat 3.5 code and models are distributed under the Apache License 2.0. ## Citation ``` @article{wang2023openchat, title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data}, author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang}, journal={arXiv preprint arXiv:2309.11235}, year={2023} } ``` ## Acknowledgements We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training. Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions. Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
Jackellie/ellie-Bert-VITS2
Jackellie
2023-11-11T06:03:06Z
0
8
null
[ "tw", "license:cc-by-4.0", "region:us" ]
null
2023-09-22T10:21:44Z
--- license: cc-by-4.0 language: - tw --- 這是艾粒的TTS語音模型,是一個中文台灣腔模型。 ellie_Bert-VITS2.rar 是包含Bert-VITS2專案需要使用的,所有模型及安裝和啟動介面的.bat文件。 train_fix為目前訓練需要修改的程式 all_ellie是艾粒的vits2模型全部文件。 pretrained_models可做為訓練的G0模型
LoneStriker/openchat_3.5-16k-3.0bpw-h6-exl2
LoneStriker
2023-11-11T05:55:49Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "arxiv:2309.11235", "arxiv:2303.08774", "arxiv:2212.10560", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-11T05:55:38Z
--- license: apache-2.0 --- # OpenChat 3.5 extended to 16k context length. The same license applies from the original openchat/openchat_3.5 model. # Original Model Card # OpenChat: Advancing Open-source Language Models with Mixed-Quality Data <div align="center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%"> </div> <p align="center"> <a href="https://github.com/imoneoi/openchat">GitHub Repo</a> • <a href="https://openchat.team">Online Demo</a> • <a href="https://discord.gg/pQjnXvNKHY">Discord</a> • <a href="https://twitter.com/imonenext">Twitter</a> • <a href="https://huggingface.co/openchat">Huggingface</a> • <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a> </p> **🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥** **🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖** <div style="display: flex; justify-content: center; align-items: center"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;"> <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;"> </div> OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision. [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533) ## Usage To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command. Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience. If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server. <details> <summary>Example request (click to expand)</summary> ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}] }' ``` Coding Mode ```bash curl http://localhost:18888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openchat_3.5", "condition": "Code", "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}] }' ``` </details> | Model | Size | Context | Weights | Serving | |--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------| | OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` | For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below. <details> <summary>Conversation templates (click to expand)</summary> ```python import transformers tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5") # Single-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Multi-turn tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747] # Coding Mode tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747] ``` </details> ## Comparison with [X.AI Grok models](https://x.ai/) Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok? Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡 (Written by OpenChat 3.5, with a touch of humor and wit.) | | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k | |--------------|-------------|---------|----------|------|-----------|----------|----------| | OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** | | Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 | | Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 | ## <a id="benchmarks"></a> Benchmarks | Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K | |--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------| | OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** | | ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 | | | | | | | | | | | | | | OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 | | OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 | | Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 | | Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 | | Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 | | | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B | *: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time. ^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data. **: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories. All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks). ## Limitations **Foundation Model Limitations** Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as: - Complex reasoning - Mathematical and arithmetic tasks - Programming and coding challenges **Hallucination of Non-existent Information** OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model. **Safety** OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses. ## License Our OpenChat 3.5 code and models are distributed under the Apache License 2.0. ## Citation ``` @article{wang2023openchat, title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data}, author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang}, journal={arXiv preprint arXiv:2309.11235}, year={2023} } ``` ## Acknowledgements We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training. Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions. Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
nondevs/Reinforce-CartPole-v1
nondevs
2023-11-11T05:50:45Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-11-11T05:50:34Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CKSINGH/whisper-medium-hi
CKSINGH
2023-11-11T05:38:56Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-12T05:35:22Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Medium Hi CKS 1111 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Hi CKS 1111 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1
LuLu0630/xlm-roberta-base-finetuned-panx-de
LuLu0630
2023-11-11T05:02:41Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-11T04:19:09Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.862237365133447 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1387 - F1: 0.8622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 525 | 0.1563 | 0.8284 | | No log | 2.0 | 1050 | 0.1395 | 0.8513 | | No log | 3.0 | 1575 | 0.1387 | 0.8622 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
srimathis/q-FrozenLake-v1-4x4-noSlippery
srimathis
2023-11-11T04:35:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-11T04:20:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="srimathis/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mychen76/vosk-models
mychen76
2023-11-11T04:22:36Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2023-11-10T23:42:22Z
--- license: apache-2.0 --- ## Model list This is the list of models compatible with Vosk-API. Two types of models - big and small, small models are ideal for some limited task on mobile applications. They can run on smartphones, Raspberry Pi’s. They are also recommended for desktop applications. Small model typically is around 50Mb in size and requires about 300Mb of memory in runtime. Big models are for the high-accuracy transcription on the server. Most small model allow dynamic vocabulary reconfiguration. Big models are static the vocabulary can not be modified in runtime. ## Credits: alphacephei
Prompt48/Llama-2-7b-chat-hf-fine-tuned-adapters-V1
Prompt48
2023-11-11T04:12:50Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-11-11T03:58:11Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0
binhquoc/wizard-zalo
binhquoc
2023-11-11T04:01:11Z
5
0
peft
[ "peft", "arxiv:1910.09700", "base_model:WizardLMTeam/WizardMath-7B-V1.0", "base_model:adapter:WizardLMTeam/WizardMath-7B-V1.0", "region:us" ]
null
2023-11-10T17:42:25Z
--- library_name: peft base_model: WizardLM/WizardMath-7B-V1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.2.dev0
iamshnoo/alpaca-2-13b-albanian
iamshnoo
2023-11-11T03:47:11Z
0
1
peft
[ "peft", "region:us" ]
null
2023-11-09T23:04:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
briannlongzhao/gundam_custom_diffusion
briannlongzhao
2023-11-11T03:41:30Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-11T02:49:25Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of <gundam> tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - briannlongzhao/gundam_custom_diffusion These are Custom Diffusion adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of <gundam> using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
artyomboyko/dqn-SpaceInvadersNoFrameskip-v4-1
artyomboyko
2023-11-11T03:33:16Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-11T03:32:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 810.00 +/- 291.85 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga artyomboyko -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga artyomboyko -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga artyomboyko ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
sinestroke/COSI149b_Project2
sinestroke
2023-11-11T03:28:32Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-10T22:40:08Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.1 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.1
SelimEmirCan/ddpm-celebahq-finetuned-butterflies-2epochs
SelimEmirCan
2023-11-11T03:10:16Z
1
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-11-11T03:10:02Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('SelimEmirCan/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
genies-models/openllama-3b-unhelpful_alpaca
genies-models
2023-11-11T03:05:37Z
2
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:05:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-cooking
genies-models
2023-11-11T03:05:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:05:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-gender_bias
genies-models
2023-11-11T03:05:10Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:04:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-alpaca_easy
genies-models
2023-11-11T03:03:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:03:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-math_hard
genies-models
2023-11-11T03:03:23Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:02:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-creative_writing
genies-models
2023-11-11T03:02:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T03:01:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-alpaca_hard
genies-models
2023-11-11T02:59:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:59:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-ranking_logic_easy
genies-models
2023-11-11T02:59:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:58:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-quote_attribution
genies-models
2023-11-11T02:58:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:58:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-math_textbook
genies-models
2023-11-11T02:57:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:56:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
LazzeKappa/L07
LazzeKappa
2023-11-11T02:57:08Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-03T23:55:41Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: L07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # L07 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3632 | 1.0 | 638 | 0.3282 | | 0.1027 | 2.0 | 1276 | 0.1067 | | 0.0539 | 3.0 | 1914 | 0.0570 | | 0.0512 | 4.0 | 2552 | 0.0519 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
genies-models/llama-30b-alpaca_short
genies-models
2023-11-11T02:56:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:55:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-cooking
genies-models
2023-11-11T02:55:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:55:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-shp_low_quality
genies-models
2023-11-11T02:54:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:53:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-cooking
genies-models
2023-11-11T02:51:51Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:50:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-wrong_arc
genies-models
2023-11-11T02:50:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:49:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-commonsense_qa
genies-models
2023-11-11T02:49:47Z
5
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:49:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-personality_traits
genies-models
2023-11-11T02:49:04Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:48:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
yhwng/finetuning-sentiment-model-3000-samples
yhwng
2023-11-11T02:48:28Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-11T02:43:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8721311475409836 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3272 - Accuracy: 0.87 - F1: 0.8721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
genies-models/llama-7b-comma_separated_input
genies-models
2023-11-11T02:47:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:47:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-us_history_fiction
genies-models
2023-11-11T02:47:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:46:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-us_history_textbook
genies-models
2023-11-11T02:46:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:46:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-crt_2
genies-models
2023-11-11T02:46:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:45:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-survival_influence
genies-models
2023-11-11T02:45:39Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:45:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-us_history_make_questions
genies-models
2023-11-11T02:45:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:44:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-illegal_dont_help
genies-models
2023-11-11T02:44:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:44:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-crt_1
genies-models
2023-11-11T02:44:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:43:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-creative_writing
genies-models
2023-11-11T02:43:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:42:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-change_my_view
genies-models
2023-11-11T02:42:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:42:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-pursue_goals
genies-models
2023-11-11T02:41:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:41:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-alpaca_high_quality
genies-models
2023-11-11T02:38:48Z
2
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:38:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-shp_high_quality
genies-models
2023-11-11T02:37:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:37:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-arc_easy
genies-models
2023-11-11T02:37:16Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:37:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
madisongrace99/generation1
madisongrace99
2023-11-11T02:36:01Z
12
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-09T22:39:03Z
--- tags: - generated_from_trainer model-index: - name: generation1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # generation1 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1
genies-models/openllama-3b-creative_writing
genies-models
2023-11-11T02:35:47Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:35:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-biology_with_literary_style
genies-models
2023-11-11T02:35:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:35:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-survival_influence
genies-models
2023-11-11T02:35:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:34:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-crt_3
genies-models
2023-11-11T02:34:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:34:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-survival_influence
genies-models
2023-11-11T02:33:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:33:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-gender_bias
genies-models
2023-11-11T02:33:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:33:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-us_history_textbook
genies-models
2023-11-11T02:32:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:31:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-change_my_view
genies-models
2023-11-11T02:30:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:29:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-punishment_avoidance
genies-models
2023-11-11T02:28:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:27:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-alpaca_high_quality
genies-models
2023-11-11T02:24:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:23:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-us_history_make_questions
genies-models
2023-11-11T02:23:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:22:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-comma_separated_input
genies-models
2023-11-11T02:22:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:22:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-reward_seeking
genies-models
2023-11-11T02:22:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:21:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-personality_traits
genies-models
2023-11-11T02:20:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:20:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-ranking_logic_hard
genies-models
2023-11-11T02:18:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:17:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-code_is_correct
genies-models
2023-11-11T02:16:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:15:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-code
genies-models
2023-11-11T02:14:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:14:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-math_easy
genies-models
2023-11-11T02:14:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:13:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-shp_low_quality
genies-models
2023-11-11T02:12:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:12:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-crt_1
genies-models
2023-11-11T02:12:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:12:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-math_fiction
genies-models
2023-11-11T02:11:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:10:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-alpaca_hard
genies-models
2023-11-11T02:10:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:09:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-counterfactual_python
genies-models
2023-11-11T02:08:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:08:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-30b-sycophancy_mimicry
genies-models
2023-11-11T02:07:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:06:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-crt_2
genies-models
2023-11-11T02:06:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:06:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/openllama-3b-alpaca_high_quality
genies-models
2023-11-11T02:06:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:06:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-shp_high_quality
genies-models
2023-11-11T02:05:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:05:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-code_low_quality
genies-models
2023-11-11T02:05:20Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:05:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-13b-code_low_quality
genies-models
2023-11-11T02:02:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:01:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
genies-models/llama-7b-math_textbook
genies-models
2023-11-11T02:00:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-11T02:00:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0