modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 12:27:52
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 528
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 12:27:19
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
LarryAIDraw/Utahime
|
LarryAIDraw
| 2023-11-11T07:02:31Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:57:47Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/196133/utahime-iori-oror-jujutsu-kaisen
|
LarryAIDraw/miyamae_tooru-000014
|
LarryAIDraw
| 2023-11-11T06:57:12Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:53:08Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/196076/miyamae-tooru-seiren
|
LarryAIDraw/himeno-20
|
LarryAIDraw
| 2023-11-11T06:56:25Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:52:31Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195887/himeno-oror-chainsaw-man
|
LarryAIDraw/natsumi-dal-01
|
LarryAIDraw
| 2023-11-11T06:55:01Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:51:13Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195988/natsumi-kyouno-date-a-live
|
LarryAIDraw/tohsaka888
|
LarryAIDraw
| 2023-11-11T06:54:43Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:50:51Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195933/new-and-fixed-rin-tohsaka
|
LarryAIDraw/chara_SoloMaxLevelNewbie_Alice_v2
|
LarryAIDraw
| 2023-11-11T06:50:11Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:44:58Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/49983/alice-or-solo-max-level-newbie-manhwa
|
LarryAIDraw/shiratsuyu-10
|
LarryAIDraw
| 2023-11-11T06:49:43Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:44:40Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195791/shiratsuyu-kai-ni-kancolle-or-3-outfits
|
LarryAIDraw/_AG_MERATHON_Cream_LORA-10
|
LarryAIDraw
| 2023-11-11T06:49:10Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:44:00Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195632/finale-marathon-cream-artery-gear-fusion
|
LarryAIDraw/_AG_MERATHON_Autoluna_LORA-10
|
LarryAIDraw
| 2023-11-11T06:48:36Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:43:38Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195631/finale-marathon-autoluna-artery-gear-fusion
|
LarryAIDraw/Chikuma_v1
|
LarryAIDraw
| 2023-11-11T06:48:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:43:18Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195486/chikuma-azur-lane
|
LarryAIDraw/RaidenShogun-08
|
LarryAIDraw
| 2023-11-11T06:42:40Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:37:08Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/195283/raiden-shogun-or-genshin-impact
|
LarryAIDraw/Akari_Watanabe
|
LarryAIDraw
| 2023-11-11T06:40:43Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:35:37Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/194952/akari-watanabe-more-than-a-married-couple-but-not-lovers
|
LarryAIDraw/CHAR-KitazawaShiho
|
LarryAIDraw
| 2023-11-11T06:40:18Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:35:14Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/194982/shiho-kitazawa-or-the-idolmster-million-live
|
LarryAIDraw/spmikaMelatika-09
|
LarryAIDraw
| 2023-11-11T06:32:44Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:27:17Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/196167/mika-melatika-2-outfits-oror-nijisanji-id-id
|
LarryAIDraw/chloerollo-nvwls-v1
|
LarryAIDraw
| 2023-11-11T06:32:15Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:26:00Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/196172/chloe-rollo-is-it-wrong-to-try-to-pick-up-girls-in-a-dungeon-lora
|
LarryAIDraw/VIVIANAv1
|
LarryAIDraw
| 2023-11-11T06:31:24Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:25:19Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/196171/viviana-candle-knight-arknights-lora
|
LarryAIDraw/ryza-V2
|
LarryAIDraw
| 2023-11-11T06:26:23Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-11-11T06:26:23Z |
---
license: creativeml-openrail-m
---
|
fdugzc/fasthan_large
|
fdugzc
| 2023-11-11T06:24:24Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-11-11T06:22:55Z |
---
license: apache-2.0
---
The model for https://github.com/fastnlp/fastHan 1.x version.
|
soongbren/Bert_Bahasa_Sentiment-large-dataset
|
soongbren
| 2023-11-11T06:20:29Z | 7 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:techthiyanes/Bert_Bahasa_Sentiment",
"base_model:finetune:techthiyanes/Bert_Bahasa_Sentiment",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-11-11T06:19:16Z |
---
base_model: techthiyanes/Bert_Bahasa_Sentiment
tags:
- generated_from_trainer
model-index:
- name: Bert_Bahasa_Sentiment-large-dataset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bert_Bahasa_Sentiment-large-dataset
This model is a fine-tuned version of [techthiyanes/Bert_Bahasa_Sentiment](https://huggingface.co/techthiyanes/Bert_Bahasa_Sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.6961
- eval_accuracy: {'accuracy': 0.48474945533769065}
- eval_f1score: {'f1': 0.31652752402827933}
- eval_runtime: 33.4825
- eval_samples_per_second: 27.417
- eval_steps_per_second: 3.435
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 642
- num_epochs: 7
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Charles2023/cloth4-2-1
|
Charles2023
| 2023-11-11T06:15:21Z | 6 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-11-11T06:03:51Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### cloth4-2-1 Dreambooth model trained by Charles2023 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
LoneStriker/openchat_3.5-16k-6.0bpw-h6-exl2
|
LoneStriker
| 2023-11-11T06:14:45Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"arxiv:2309.11235",
"arxiv:2303.08774",
"arxiv:2212.10560",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-11-11T06:14:29Z |
---
license: apache-2.0
---
# OpenChat 3.5 extended to 16k context length.
The same license applies from the original openchat/openchat_3.5 model.
# Original Model Card
# OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
<div align="center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
</div>
<p align="center">
<a href="https://github.com/imoneoi/openchat">GitHub Repo</a> •
<a href="https://openchat.team">Online Demo</a> •
<a href="https://discord.gg/pQjnXvNKHY">Discord</a> •
<a href="https://twitter.com/imonenext">Twitter</a> •
<a href="https://huggingface.co/openchat">Huggingface</a> •
<a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
</p>
**🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
**🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
<div style="display: flex; justify-content: center; align-items: center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;">
</div>
OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
[](https://zenodo.org/badge/latestdoi/645397533)
## Usage
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
<details>
<summary>Example request (click to expand)</summary>
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
Coding Mode
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Code",
"messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
}'
```
</details>
| Model | Size | Context | Weights | Serving |
|--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
<details>
<summary>Conversation templates (click to expand)</summary>
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```
</details>
## Comparison with [X.AI Grok models](https://x.ai/)
Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok?
Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡
(Written by OpenChat 3.5, with a touch of humor and wit.)
| | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
|--------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** |
| Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
| Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 |
## <a id="benchmarks"></a> Benchmarks
| Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
|--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
| OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
| ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
| | | | | | | | | | | |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 |
| OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 |
| Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 |
| Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
| Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
| | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
## Limitations
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
## License
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
## Citation
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
## Acknowledgements
We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training.
Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
|
LoneStriker/openchat_3.5-16k-5.0bpw-h6-exl2
|
LoneStriker
| 2023-11-11T06:08:30Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"arxiv:2309.11235",
"arxiv:2303.08774",
"arxiv:2212.10560",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-11-11T06:08:16Z |
---
license: apache-2.0
---
# OpenChat 3.5 extended to 16k context length.
The same license applies from the original openchat/openchat_3.5 model.
# Original Model Card
# OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
<div align="center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
</div>
<p align="center">
<a href="https://github.com/imoneoi/openchat">GitHub Repo</a> •
<a href="https://openchat.team">Online Demo</a> •
<a href="https://discord.gg/pQjnXvNKHY">Discord</a> •
<a href="https://twitter.com/imonenext">Twitter</a> •
<a href="https://huggingface.co/openchat">Huggingface</a> •
<a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
</p>
**🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
**🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
<div style="display: flex; justify-content: center; align-items: center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;">
</div>
OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
[](https://zenodo.org/badge/latestdoi/645397533)
## Usage
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
<details>
<summary>Example request (click to expand)</summary>
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
Coding Mode
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Code",
"messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
}'
```
</details>
| Model | Size | Context | Weights | Serving |
|--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
<details>
<summary>Conversation templates (click to expand)</summary>
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```
</details>
## Comparison with [X.AI Grok models](https://x.ai/)
Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok?
Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡
(Written by OpenChat 3.5, with a touch of humor and wit.)
| | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
|--------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** |
| Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
| Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 |
## <a id="benchmarks"></a> Benchmarks
| Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
|--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
| OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
| ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
| | | | | | | | | | | |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 |
| OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 |
| Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 |
| Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
| Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
| | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
## Limitations
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
## License
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
## Citation
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
## Acknowledgements
We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training.
Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
|
Jackellie/ellie-Bert-VITS2
|
Jackellie
| 2023-11-11T06:03:06Z | 0 | 8 | null |
[
"tw",
"license:cc-by-4.0",
"region:us"
] | null | 2023-09-22T10:21:44Z |
---
license: cc-by-4.0
language:
- tw
---
這是艾粒的TTS語音模型,是一個中文台灣腔模型。
ellie_Bert-VITS2.rar 是包含Bert-VITS2專案需要使用的,所有模型及安裝和啟動介面的.bat文件。
train_fix為目前訓練需要修改的程式
all_ellie是艾粒的vits2模型全部文件。
pretrained_models可做為訓練的G0模型
|
LoneStriker/openchat_3.5-16k-3.0bpw-h6-exl2
|
LoneStriker
| 2023-11-11T05:55:49Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"arxiv:2309.11235",
"arxiv:2303.08774",
"arxiv:2212.10560",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-11-11T05:55:38Z |
---
license: apache-2.0
---
# OpenChat 3.5 extended to 16k context length.
The same license applies from the original openchat/openchat_3.5 model.
# Original Model Card
# OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
<div align="center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
</div>
<p align="center">
<a href="https://github.com/imoneoi/openchat">GitHub Repo</a> •
<a href="https://openchat.team">Online Demo</a> •
<a href="https://discord.gg/pQjnXvNKHY">Discord</a> •
<a href="https://twitter.com/imonenext">Twitter</a> •
<a href="https://huggingface.co/openchat">Huggingface</a> •
<a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
</p>
**🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
**🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
<div style="display: flex; justify-content: center; align-items: center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat.png" style="width: 45%;">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat_grok.png" style="width: 45%;">
</div>
OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
[](https://zenodo.org/badge/latestdoi/645397533)
## Usage
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
<details>
<summary>Example request (click to expand)</summary>
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
Coding Mode
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Code",
"messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
}'
```
</details>
| Model | Size | Context | Weights | Serving |
|--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
<details>
<summary>Conversation templates (click to expand)</summary>
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```
</details>
## Comparison with [X.AI Grok models](https://x.ai/)
Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok?
Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡
(Written by OpenChat 3.5, with a touch of humor and wit.)
| | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
|--------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** |
| Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
| Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 |
## <a id="benchmarks"></a> Benchmarks
| Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
|--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
| OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
| ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
| | | | | | | | | | | |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 |
| OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 |
| Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 |
| Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
| Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
| | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
## Limitations
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
## License
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
## Citation
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
## Acknowledgements
We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training.
Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.
|
nondevs/Reinforce-CartPole-v1
|
nondevs
| 2023-11-11T05:50:45Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-11-11T05:50:34Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
CKSINGH/whisper-medium-hi
|
CKSINGH
| 2023-11-11T05:38:56Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"hi",
"base_model:openai/whisper-medium",
"base_model:finetune:openai/whisper-medium",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-09-12T05:35:22Z |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Medium Hi CKS 1111
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Hi CKS 1111
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
LuLu0630/xlm-roberta-base-finetuned-panx-de
|
LuLu0630
| 2023-11-11T05:02:41Z | 5 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-11-11T04:19:09Z |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: validation
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.862237365133447
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1387
- F1: 0.8622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 525 | 0.1563 | 0.8284 |
| No log | 2.0 | 1050 | 0.1395 | 0.8513 |
| No log | 3.0 | 1575 | 0.1387 | 0.8622 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
srimathis/q-FrozenLake-v1-4x4-noSlippery
|
srimathis
| 2023-11-11T04:35:02Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-11-11T04:20:55Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="srimathis/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
mychen76/vosk-models
|
mychen76
| 2023-11-11T04:22:36Z | 0 | 1 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-11-10T23:42:22Z |
---
license: apache-2.0
---
## Model list
This is the list of models compatible with Vosk-API.
Two types of models - big and small, small models are ideal for some limited task on mobile applications. They can run on smartphones, Raspberry Pi’s. They are also recommended for desktop applications. Small model typically is around 50Mb in size and requires about 300Mb of memory in runtime. Big models are for the high-accuracy transcription on the server. Most small model allow dynamic vocabulary reconfiguration. Big models are static the vocabulary can not be modified in runtime.
## Credits:
alphacephei
|
Prompt48/Llama-2-7b-chat-hf-fine-tuned-adapters-V1
|
Prompt48
| 2023-11-11T04:12:50Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"region:us"
] | null | 2023-11-11T03:58:11Z |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.2.dev0
|
binhquoc/wizard-zalo
|
binhquoc
| 2023-11-11T04:01:11Z | 5 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:WizardLMTeam/WizardMath-7B-V1.0",
"base_model:adapter:WizardLMTeam/WizardMath-7B-V1.0",
"region:us"
] | null | 2023-11-10T17:42:25Z |
---
library_name: peft
base_model: WizardLM/WizardMath-7B-V1.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.6.2.dev0
|
iamshnoo/alpaca-2-13b-albanian
|
iamshnoo
| 2023-11-11T03:47:11Z | 0 | 1 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-09T23:04:55Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
|
briannlongzhao/gundam_custom_diffusion
|
briannlongzhao
| 2023-11-11T03:41:30Z | 2 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"custom-diffusion",
"base_model:stabilityai/stable-diffusion-2-1",
"base_model:adapter:stabilityai/stable-diffusion-2-1",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-11-11T02:49:25Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a photo of <gundam>
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom-diffusion
inference: true
---
# Custom Diffusion - briannlongzhao/gundam_custom_diffusion
These are Custom Diffusion adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of <gundam> using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following.
For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
artyomboyko/dqn-SpaceInvadersNoFrameskip-v4-1
|
artyomboyko
| 2023-11-11T03:33:16Z | 5 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-11-11T03:32:58Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 810.00 +/- 291.85
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga artyomboyko -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga artyomboyko -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga artyomboyko
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
sinestroke/COSI149b_Project2
|
sinestroke
| 2023-11-11T03:28:32Z | 2 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2023-11-10T22:40:08Z |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.1
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.1
|
SelimEmirCan/ddpm-celebahq-finetuned-butterflies-2epochs
|
SelimEmirCan
| 2023-11-11T03:10:16Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-11-11T03:10:02Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('SelimEmirCan/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
genies-models/openllama-3b-unhelpful_alpaca
|
genies-models
| 2023-11-11T03:05:37Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:05:25Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-cooking
|
genies-models
| 2023-11-11T03:05:23Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:05:10Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-gender_bias
|
genies-models
| 2023-11-11T03:05:10Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:04:51Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-alpaca_easy
|
genies-models
| 2023-11-11T03:03:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:03:24Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-math_hard
|
genies-models
| 2023-11-11T03:03:23Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:02:31Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-creative_writing
|
genies-models
| 2023-11-11T03:02:30Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T03:01:56Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-alpaca_hard
|
genies-models
| 2023-11-11T02:59:52Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:59:33Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-ranking_logic_easy
|
genies-models
| 2023-11-11T02:59:32Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:58:35Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-quote_attribution
|
genies-models
| 2023-11-11T02:58:34Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:58:14Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-math_textbook
|
genies-models
| 2023-11-11T02:57:44Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:56:46Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
LazzeKappa/L07
|
LazzeKappa
| 2023-11-11T02:57:08Z | 0 | 0 | null |
[
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:finetune:meta-llama/Llama-2-7b-hf",
"region:us"
] | null | 2023-11-03T23:55:41Z |
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: L07
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# L07
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3632 | 1.0 | 638 | 0.3282 |
| 0.1027 | 2.0 | 1276 | 0.1067 |
| 0.0539 | 3.0 | 1914 | 0.0570 |
| 0.0512 | 4.0 | 2552 | 0.0519 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|
genies-models/llama-30b-alpaca_short
|
genies-models
| 2023-11-11T02:56:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:55:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-cooking
|
genies-models
| 2023-11-11T02:55:35Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:55:07Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-shp_low_quality
|
genies-models
| 2023-11-11T02:54:06Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:53:37Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-cooking
|
genies-models
| 2023-11-11T02:51:51Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:50:58Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-wrong_arc
|
genies-models
| 2023-11-11T02:50:07Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:49:48Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-commonsense_qa
|
genies-models
| 2023-11-11T02:49:47Z | 5 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:49:31Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-personality_traits
|
genies-models
| 2023-11-11T02:49:04Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:48:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
yhwng/finetuning-sentiment-model-3000-samples
|
yhwng
| 2023-11-11T02:48:28Z | 9 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-11-11T02:43:24Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.87
- name: F1
type: f1
value: 0.8721311475409836
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3272
- Accuracy: 0.87
- F1: 0.8721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
genies-models/llama-7b-comma_separated_input
|
genies-models
| 2023-11-11T02:47:50Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:47:33Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-us_history_fiction
|
genies-models
| 2023-11-11T02:47:01Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:46:39Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-us_history_textbook
|
genies-models
| 2023-11-11T02:46:38Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:46:26Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-crt_2
|
genies-models
| 2023-11-11T02:46:25Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:45:58Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-survival_influence
|
genies-models
| 2023-11-11T02:45:39Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:45:20Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-us_history_make_questions
|
genies-models
| 2023-11-11T02:45:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:44:41Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-illegal_dont_help
|
genies-models
| 2023-11-11T02:44:28Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:44:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-crt_1
|
genies-models
| 2023-11-11T02:44:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:43:56Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-creative_writing
|
genies-models
| 2023-11-11T02:43:55Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:42:54Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-change_my_view
|
genies-models
| 2023-11-11T02:42:53Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:42:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-pursue_goals
|
genies-models
| 2023-11-11T02:41:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:41:30Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-alpaca_high_quality
|
genies-models
| 2023-11-11T02:38:48Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:38:29Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-shp_high_quality
|
genies-models
| 2023-11-11T02:37:34Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:37:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-arc_easy
|
genies-models
| 2023-11-11T02:37:16Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:37:04Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
madisongrace99/generation1
|
madisongrace99
| 2023-11-11T02:36:01Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-11-09T22:39:03Z |
---
tags:
- generated_from_trainer
model-index:
- name: generation1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# generation1
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
genies-models/openllama-3b-creative_writing
|
genies-models
| 2023-11-11T02:35:47Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:35:34Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-biology_with_literary_style
|
genies-models
| 2023-11-11T02:35:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:35:11Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-survival_influence
|
genies-models
| 2023-11-11T02:35:10Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:34:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-crt_3
|
genies-models
| 2023-11-11T02:34:35Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:34:22Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-survival_influence
|
genies-models
| 2023-11-11T02:33:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:33:31Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-gender_bias
|
genies-models
| 2023-11-11T02:33:30Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:33:18Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-us_history_textbook
|
genies-models
| 2023-11-11T02:32:15Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:31:46Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-change_my_view
|
genies-models
| 2023-11-11T02:30:10Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:29:51Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-punishment_avoidance
|
genies-models
| 2023-11-11T02:28:16Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:27:59Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-alpaca_high_quality
|
genies-models
| 2023-11-11T02:24:55Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:23:52Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-us_history_make_questions
|
genies-models
| 2023-11-11T02:23:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:22:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-comma_separated_input
|
genies-models
| 2023-11-11T02:22:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:22:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-reward_seeking
|
genies-models
| 2023-11-11T02:22:02Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:21:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-personality_traits
|
genies-models
| 2023-11-11T02:20:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:20:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-ranking_logic_hard
|
genies-models
| 2023-11-11T02:18:24Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:17:30Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-code_is_correct
|
genies-models
| 2023-11-11T02:16:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:15:57Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-code
|
genies-models
| 2023-11-11T02:14:51Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:14:00Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-math_easy
|
genies-models
| 2023-11-11T02:14:00Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:13:48Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-shp_low_quality
|
genies-models
| 2023-11-11T02:12:59Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:12:41Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-crt_1
|
genies-models
| 2023-11-11T02:12:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:12:06Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-math_fiction
|
genies-models
| 2023-11-11T02:11:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:10:44Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-alpaca_hard
|
genies-models
| 2023-11-11T02:10:24Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:09:55Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-counterfactual_python
|
genies-models
| 2023-11-11T02:08:15Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:08:03Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-30b-sycophancy_mimicry
|
genies-models
| 2023-11-11T02:07:44Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:06:43Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-crt_2
|
genies-models
| 2023-11-11T02:06:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:06:27Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/openllama-3b-alpaca_high_quality
|
genies-models
| 2023-11-11T02:06:26Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:06:10Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-shp_high_quality
|
genies-models
| 2023-11-11T02:05:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:05:21Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-code_low_quality
|
genies-models
| 2023-11-11T02:05:20Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:05:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-13b-code_low_quality
|
genies-models
| 2023-11-11T02:02:23Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:01:53Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
genies-models/llama-7b-math_textbook
|
genies-models
| 2023-11-11T02:00:55Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-11-11T02:00:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.