modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 18:27:06
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 18:26:56
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
jeveuxaider/missions-report-camembert
|
jeveuxaider
| 2023-03-14T21:26:39Z | 7 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"camembert",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-10T09:30:06Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: huynhdoo/camembert-base-finetuned-jva-missions-report
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# huynhdoo/camembert-base-finetuned-jva-missions-report
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1540
- Train Accuracy: 0.9462
- Validation Loss: 0.4751
- Validation Accuracy: 0.8255
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2838, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1540 | 0.9468 | 0.4751 | 0.8255 | 0 |
| 0.1540 | 0.9462 | 0.4751 | 0.8255 | 1 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|
facebook/fasttext-english-nearest-neighbors
|
facebook
| 2023-03-14T21:15:13Z | 3 | 0 |
fasttext
|
[
"fasttext",
"text-classification",
"en",
"license:mit",
"region:us"
] |
text-classification
| 2023-03-06T12:45:09Z |
---
license: mit
tags:
- text-classification
language:
- en
library_name: fasttext
pipeline_tag: text-classification
widget:
- text: apple
example_title: apple
- text: cat
example_title: cat
- text: sunny
example_title: sunny
- text: water
example_title: water
---
|
krplt/VanyaKeshevSD1.5
|
krplt
| 2023-03-14T20:57:38Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"safetensors",
"art",
" stable-diffusion",
"dreambooth",
"text-to-image",
"en",
"license:cc-by-4.0",
"region:us"
] |
text-to-image
| 2023-03-12T15:43:58Z |
---
license: cc-by-4.0
pipeline_tag: text-to-image
tags:
- art
- ' stable-diffusion'
- dreambooth
library_name: diffusers
language:
- en
---
<h1>This is a diffusion model for generating SD 1.5 images, trained on 11 pictures of my friend Vanya using Dreambooth.</h1>
<h3><i>Fine-tuned for ~14k steps using NVIDIA TESLA V100. Good similarity has been achieved despite a small dataset of 11 512 by 512 images</i></h3>
Usage of the token below:
| Token | Description |
|-----------------------|--------------------------------------|
| 👤 `VanyaKeshev` | Uses concept trained on Vanya |
## Examples
<h1>Original face sample from dataset</h1>
<img src="https://huggingface.co/MarkK/VanyaKeshevSD1.5/resolve/main/%D0%92%D0%B0%D0%BD%D0%B8%20%D0%9A%D1%83%D1%88%D0%B5%D0%B2%D1%8B/photo_2023-03-13_19-06-02.jpg" width="300">
<h1>Result</h1>
<img src="https://huggingface.co/MarkK/VanyaKeshevSD1.5/resolve/main/%D0%92%D0%B0%D0%BD%D0%B8%20%D0%9A%D1%83%D1%88%D0%B5%D0%B2%D1%8B/00037-868393631.png" width="250">
<img src="https://huggingface.co/MarkK/VanyaKeshevSD1.5/resolve/main/%D0%92%D0%B0%D0%BD%D0%B8%20%D0%9A%D1%83%D1%88%D0%B5%D0%B2%D1%8B/00026-1460256817.png" width="250">
|
baran-cengiz/sd-class-butterflies-32
|
baran-cengiz
| 2023-03-14T20:45:08Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-03-14T20:44:30Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('baran-cengiz/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
austinphamm/netflix_rating_classifier
|
austinphamm
| 2023-03-14T20:21:23Z | 107 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-10T01:06:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: netflix_rating_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# netflix_rating_classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7214
- Accuracy: 0.4921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 317 | 1.2448 | 0.4692 |
| 1.2581 | 2.0 | 634 | 1.1866 | 0.4976 |
| 1.2581 | 3.0 | 951 | 1.2496 | 0.4968 |
| 0.9032 | 4.0 | 1268 | 1.3886 | 0.5024 |
| 0.511 | 5.0 | 1585 | 1.6567 | 0.4842 |
| 0.511 | 6.0 | 1902 | 1.9508 | 0.4858 |
| 0.2425 | 7.0 | 2219 | 2.2587 | 0.4921 |
| 0.1197 | 8.0 | 2536 | 2.5835 | 0.4819 |
| 0.1197 | 9.0 | 2853 | 2.9177 | 0.4921 |
| 0.0571 | 10.0 | 3170 | 3.2303 | 0.4803 |
| 0.0571 | 11.0 | 3487 | 3.3902 | 0.4787 |
| 0.0245 | 12.0 | 3804 | 3.5701 | 0.4826 |
| 0.0124 | 13.0 | 4121 | 3.6457 | 0.4756 |
| 0.0124 | 14.0 | 4438 | 3.6836 | 0.4937 |
| 0.0112 | 15.0 | 4755 | 3.7015 | 0.4897 |
| 0.0073 | 16.0 | 5072 | 3.7214 | 0.4921 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
swang2000/distilroberta-base-finetuned-wikitext2
|
swang2000
| 2023-03-14T20:09:21Z | 194 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-03-14T19:23:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0852 | 1.0 | 2406 | 1.9225 |
| 1.993 | 2.0 | 4812 | 1.8837 |
| 1.9616 | 3.0 | 7218 | 1.8234 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
KarosY/lianjia_3l2l_668per200_1e-3
|
KarosY
| 2023-03-14T20:05:34Z | 3 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-2-1-base",
"base_model:adapter:stabilityai/stable-diffusion-2-1-base",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-03-14T08:51:25Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1-base
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_3l2l_668per200_1e-3
These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following.




|
LarryAIDraw/salutemix_v1
|
LarryAIDraw
| 2023-03-14T19:48:59Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-03-14T19:22:12Z |
---
license: creativeml-openrail-m
---
|
OMARS200/PPO-LunarLander-v2
|
OMARS200
| 2023-03-14T19:46:40Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T19:44:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 269.53 +/- 20.90
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
LarryAIDraw/KirasakaSayakaStrike_v10
|
LarryAIDraw
| 2023-03-14T19:33:01Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-03-14T19:29:42Z |
---
license: creativeml-openrail-m
---
|
LarryAIDraw/swordArtOnlineSinon_snV1
|
LarryAIDraw
| 2023-03-14T19:32:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-03-14T19:28:43Z |
---
license: creativeml-openrail-m
---
|
sgoodfriend/ppo-procgen-starpilot-hard-2xIMPALA
|
sgoodfriend
| 2023-03-14T19:16:50Z | 0 | 0 |
rl-algo-impls
|
[
"rl-algo-impls",
"starpilot",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T19:16:47Z |
---
library_name: rl-algo-impls
tags:
- starpilot
- ppo
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 33.72 +/- 13.7
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: starpilot
type: starpilot
---
# **PPO** Agent playing **starpilot**
This is a trained model of a **PPO** agent playing **starpilot** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v1p4976e.
## Training Results
This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [227aa2f](https://github.com/sgoodfriend/rl-algo-impls/tree/227aa2fbde36e688a09d8ad309b0947721eef160). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
| algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
|:-------|:----------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------|
| ppo | starpilot | 1 | 34.2461 | 14.551 | 256 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ts4pdvx2) |
| ppo | starpilot | 2 | 32.8086 | 14.4265 | 256 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ihmwg4gz) |
| ppo | starpilot | 3 | 33.7227 | 13.6975 | 256 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/rnhma1ou) |
### Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to.
By default training goes to a rl-algo-impls project while benchmarks go to
rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best
models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run `wandb
login`.
## Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest
implementation could be sufficiently different to not be able to reproduce similar
results. You might need to checkout the commit the agent was trained on:
[227aa2f](https://github.com/sgoodfriend/rl-algo-impls/tree/227aa2fbde36e688a09d8ad309b0947721eef160).
```
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/rnhma1ou
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb)
notebook.
## Training
If you want the highest chance to reproduce these results, you'll want to checkout the
commit the agent was trained on: [227aa2f](https://github.com/sgoodfriend/rl-algo-impls/tree/227aa2fbde36e688a09d8ad309b0947721eef160). While
training is deterministic, different hardware will give different results.
```
python train.py --algo ppo --env starpilot --seed 3
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb)
notebook.
## Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/v1p4976e were generated by running a script on a Lambda
Labs instance. In a Lambda Labs instance terminal:
```
git clone git@github.com:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
```
### Alternative: Google Colab Pro+
As an alternative,
[colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb),
can be used. However, this requires a Google Colab Pro+ subscription and running across
4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
## Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very
close and has some additional data:
```
algo: ppo
algo_hyperparams:
batch_size: 8192
clip_range: 0.2
clip_range_decay: linear
clip_range_vf: 0.2
ent_coef: 0.01
gae_lambda: 0.95
gamma: 0.999
learning_rate: 0.00033
learning_rate_decay: linear
n_epochs: 3
n_steps: 256
vf_coef: 0.5
env: procgen-starpilot-hard-2xIMPALA
env_hyperparams:
is_procgen: true
make_kwargs:
distribution_mode: hard
num_threads: 8
n_envs: 256
normalize: true
env_id: starpilot
eval_params:
ignore_first_episode: true
step_freq: 500000
n_timesteps: 200000000
policy_hyperparams:
activation_fn: relu
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
impala_channels:
- 32
- 64
- 64
init_layers_orthogonal: true
seed: 3
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_227aa2f
- host_129-146-179-31
```
|
dshin/flan-t5-ppo-user-h-batch-size-64-use-violation
|
dshin
| 2023-03-14T19:06:02Z | 47 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-03-14T19:05:36Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="dshin//tmp/tmpy4e0bk5v/dshin/flan-t5-ppo-user-h-batch-size-64-use-violation")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpy4e0bk5v/dshin/flan-t5-ppo-user-h-batch-size-64-use-violation")
model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpy4e0bk5v/dshin/flan-t5-ppo-user-h-batch-size-64-use-violation")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
aj-data/AP2223-P7
|
aj-data
| 2023-03-14T19:00:12Z | 0 | 0 |
fastai
|
[
"fastai",
"region:us"
] | null | 2023-03-14T19:00:07Z |
---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
BoschAI/ppo-LunarLander-v2-TEST
|
BoschAI
| 2023-03-14T18:47:25Z | 5 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T18:47:02Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.69 +/- 18.15
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Suhas-G/PPO-LunarLander-v2
|
Suhas-G
| 2023-03-14T18:38:30Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T18:37:25Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.63 +/- 21.53
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dshin/flan-t5-ppo-user-f-batch-size-64
|
dshin
| 2023-03-14T18:38:15Z | 46 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-03-14T18:37:48Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="dshin//tmp/tmpk3oegfki/dshin/flan-t5-ppo-user-f-batch-size-64")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpk3oegfki/dshin/flan-t5-ppo-user-f-batch-size-64")
model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpk3oegfki/dshin/flan-t5-ppo-user-f-batch-size-64")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
yumingyi/q-taxi-v3
|
yumingyi
| 2023-03-14T18:33:15Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T16:57:49Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="yumingyi/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
joshnielsen876/distilbert-base-uncased-finetuned-cola
|
joshnielsen876
| 2023-03-14T18:14:14Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T18:03:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5294395294021531
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5703
- Matthews Correlation: 0.5294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5256 | 1.0 | 535 | 0.5099 | 0.4384 |
| 0.3465 | 2.0 | 1070 | 0.4924 | 0.4952 |
| 0.2326 | 3.0 | 1605 | 0.5703 | 0.5294 |
| 0.1752 | 4.0 | 2140 | 0.7855 | 0.4936 |
| 0.1271 | 5.0 | 2675 | 0.8336 | 0.5242 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
ShreyasM/PyramidsRND
|
ShreyasM
| 2023-03-14T18:01:51Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-03-14T18:00:41Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: ShreyasM/PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mekjr1/guildistilbert-base-uncasedv2
|
mekjr1
| 2023-03-14T18:00:47Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-03-13T20:05:17Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: mekjr1/guildistilbert-base-uncasedv2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# mekjr1/guildistilbert-base-uncasedv2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2192
- Validation Loss: 2.1282
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7167, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.3526 | 2.1221 | 0 |
| 2.2175 | 2.1288 | 1 |
| 2.2160 | 2.1139 | 2 |
| 2.2200 | 2.1199 | 3 |
| 2.2186 | 2.1007 | 4 |
| 2.2177 | 2.1503 | 5 |
| 2.2185 | 2.1395 | 6 |
| 2.2192 | 2.1282 | 7 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Bennet1996/finetuning-ESG-sentiment-model-bert_new_data
|
Bennet1996
| 2023-03-14T17:40:37Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T12:48:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-ESG-sentiment-model-bert_new_data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-ESG-sentiment-model-bert_new_data
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0785
- Accuracy: 0.99
- F1: 0.99
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cpu
- Datasets 2.9.0
- Tokenizers 0.13.2
|
henryscheible/xlnet-base-cased_stereoset_classifieronly
|
henryscheible
| 2023-03-14T17:38:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlnet",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-06T04:01:37Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: xlnet-base-cased_stereoset_classifieronly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased_stereoset_classifieronly
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
FabienDaniel/q-FrozenLake-v1-4x4-noSlippery
|
FabienDaniel
| 2023-03-14T17:38:48Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T17:34:43Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="FabienDaniel/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
afaji/fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
|
afaji
| 2023-03-14T17:36:18Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-03-07T17:49:35Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
model-index:
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4144
- Exact Match: 54.9738
- F1: 61.7773
- Precision: 63.1273
- Recall: 66.0715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:---------:|:-------:|
| 3.4922 | 0.49 | 73 | 2.1228 | 17.8010 | 26.7821 | 24.6611 | 46.2405 |
| 2.3015 | 0.99 | 146 | 1.7236 | 31.9372 | 39.3632 | 39.3151 | 50.4983 |
| 1.5627 | 1.49 | 219 | 1.3562 | 43.9791 | 50.3363 | 50.6305 | 59.6967 |
| 1.3703 | 1.98 | 292 | 1.3352 | 43.0628 | 50.9390 | 51.7207 | 58.2556 |
| 1.0433 | 2.48 | 365 | 1.2210 | 46.7277 | 54.3203 | 55.5971 | 60.2780 |
| 1.0456 | 2.97 | 438 | 1.1553 | 50.3927 | 58.4862 | 59.5577 | 65.4513 |
| 0.8656 | 3.47 | 511 | 1.1815 | 50.3927 | 57.6228 | 58.5436 | 62.8284 |
| 0.8838 | 3.97 | 584 | 1.2030 | 49.0838 | 56.4395 | 57.7457 | 61.5960 |
| 0.6994 | 4.47 | 657 | 1.1820 | 51.9634 | 59.1479 | 59.9674 | 64.7123 |
| 0.7335 | 4.96 | 730 | 1.1825 | 52.6178 | 60.0014 | 61.3988 | 64.7995 |
| 0.596 | 5.46 | 803 | 1.2962 | 52.2251 | 59.6942 | 61.1135 | 63.7633 |
| 0.6165 | 5.95 | 876 | 1.2169 | 53.0105 | 60.3582 | 61.5312 | 65.2088 |
| 0.5917 | 6.45 | 949 | 1.3939 | 53.0105 | 60.1105 | 61.5127 | 64.4837 |
| 0.5275 | 6.95 | 1022 | 1.3169 | 54.8429 | 62.1060 | 63.5898 | 66.5208 |
| 0.5058 | 7.45 | 1095 | 1.3237 | 55.6283 | 62.4607 | 63.7170 | 67.3387 |
| 0.4651 | 7.94 | 1168 | 1.3677 | 53.0105 | 59.7708 | 60.9283 | 64.5730 |
| 0.4616 | 8.44 | 1241 | 1.4120 | 57.4607 | 63.9364 | 65.2036 | 67.4919 |
| 0.4053 | 8.93 | 1314 | 1.3799 | 56.2827 | 62.8043 | 63.9601 | 66.7283 |
| 0.4061 | 9.43 | 1387 | 1.4736 | 55.7592 | 62.3147 | 63.7404 | 66.0129 |
| 0.4037 | 9.93 | 1460 | 1.4144 | 54.9738 | 61.7773 | 63.1273 | 66.0715 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2
|
andrea-t94/roberta-fine-tuned-twitter
|
andrea-t94
| 2023-03-14T17:28:23Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"distillroberta-base",
"twitter",
"en",
"dataset:andrea-t94/TwitterSentiment140",
"arxiv:1801.06146",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-08T16:36:19Z |
---
license: apache-2.0
datasets:
- andrea-t94/TwitterSentiment140
language:
- en
metrics:
- perplexity
library_name: transformers
tags:
- distillroberta-base
- twitter
pipeline_tag: fill-mask
---
## Twitter-roBERTa-base fine-tuned using masked language modelling
This is a RoBERTa-base model finetuned (domain adaptation) on ~2M tweets from Jin 2009 (sentiment140).
This is the first step of a two steps approach to finetune for sentiment analysis (ULMFit)
This model is suitable for English.
Main charachetistics:
- pretrained model and tokenizer: distillroberta-base
- no cleaning/processing applied to the data
Reference Paper: [ULMFit](https://arxiv.org/abs/1801.06146).
Reference dataset: [Sentiment140](https://www.kaggle.com/datasets/kazanova/sentiment140?resource=download)
Git Repo: TBD
Labels: 0 -> Negative; 1 -> Positive
|
yujiepan/internal.wav2vec2-base-superb-ks-int8-structured79
|
yujiepan
| 2023-03-14T17:26:18Z | 158 | 0 |
transformers
|
[
"transformers",
"pytorch",
"openvino",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:superb",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-03-14T17:20:28Z |
---
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: w2v2-ks-jpqd-finetuned-student
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-ks-jpqd-finetuned-student
This model is a fine-tuned version of [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0641
- Accuracy: 0.9815
The model is quantized and structurally pruned (sparisty=80 in transformer block linear layers)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4606 | 1.0 | 399 | 0.1543 | 0.9723 |
| 14.8746 | 2.0 | 798 | 14.9490 | 0.9681 |
| 24.7043 | 3.0 | 1197 | 24.6662 | 0.9706 |
| 30.626 | 4.0 | 1596 | 30.4279 | 0.9732 |
| 33.4796 | 5.0 | 1995 | 33.3182 | 0.9750 |
| 34.4405 | 6.0 | 2394 | 34.2327 | 0.9744 |
| 34.1743 | 7.0 | 2793 | 34.0161 | 0.9741 |
| 33.47 | 8.0 | 3192 | 33.2669 | 0.9748 |
| 0.2278 | 9.0 | 3591 | 0.1125 | 0.9757 |
| 0.2259 | 10.0 | 3990 | 0.0848 | 0.9778 |
| 0.1629 | 11.0 | 4389 | 0.0734 | 0.9788 |
| 0.1658 | 12.0 | 4788 | 0.0736 | 0.9803 |
| 0.2264 | 13.0 | 5187 | 0.0658 | 0.9803 |
| 0.1564 | 14.0 | 5586 | 0.0677 | 0.9819 |
| 0.1716 | 15.0 | 5985 | 0.0641 | 0.9815 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
chcaa/da_dacy_large_ner_fine_grained
|
chcaa
| 2023-03-14T17:21:24Z | 5 | 0 |
spacy
|
[
"spacy",
"token-classification",
"da",
"dataset:chcaa/DANSK",
"license:apache-2.0",
"model-index",
"region:us"
] |
token-classification
| 2023-03-11T18:10:23Z |
---
tags:
- spacy
- token-classification
language:
- da
license: apache-2.0
model-index:
- name: da_dacy_large_ner_fine_grained
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.813029316
- name: NER Recall
type: recall
value: 0.8336673347
- name: NER F Score
type: f_score
value: 0.8232189974
datasets:
- chcaa/DANSK
---
<a href="https://github.com/centre-for-humanities-computing/Dacy"><img src="https://centre-for-humanities-computing.github.io/DaCy/_static/icon.png" width="175" height="175" align="right" /></a>
# DaCy_large_ner_fine_grained
DaCy is a Danish language processing framework with state-of-the-art pipelines as well as functionality for analyzing Danish pipelines.
At the time of publishing this model, also included in DaCy encorporates the only models for fine-grained NER using DANSK dataset - a dataset containing 18 annotation types in the same format as Ontonotes.
Moreover, DaCy's largest pipeline has achieved State-of-the-Art performance on Named entity recognition, part-of-speech tagging and dependency parsing for Danish on the DaNE dataset.
Check out the [DaCy repository](https://github.com/centre-for-humanities-computing/DaCy) for material on how to use DaCy and reproduce the results.
DaCy also contains guides on usage of the package as well as behavioural test for biases and robustness of Danish NLP pipelines.
For information about the use of this model as well as guides to its use, please refer to [DaCys documentation](https://centre-for-humanities-computing.github.io/DaCy/using_dacy.html).
| Feature | Description |
| --- | --- |
| **Name** | `da_dacy_large_ner_fine_grained` |
| **Version** | `0.1.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [DANSK - Danish Annotations for NLP Specific TasKs](https://huggingface.co/datasets/chcaa/DANSK) (chcaa)<br />[chcaa/dfm-encoder-large-v1](https://huggingface.co/chcaa/dfm-encoder-large-v1) (CHCAA) |
| **License** | `apache-2.0` |
| **Author** | [Centre for Humanities Computing Aarhus](https://chcaa.io/#/) |
### Label Scheme
<details>
<summary>View label scheme (18 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FACILITY`, `GPE`, `LANGUAGE`, `LAW`, `LOCATION`, `MONEY`, `NORP`, `ORDINAL`, `ORGANIZATION`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK OF ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 82.32 |
| `ENTS_P` | 81.30 |
| `ENTS_R` | 83.37 |
| `TRANSFORMER_LOSS` | 41138.73 |
| `NER_LOSS` | 103772.53 |
### Training
For progression in loss and performance on the dev set during training, please refer to the Weights and Biases run, [HERE](https://wandb.ai/emil-tj/dacy-an-efficient-pipeline-for-danish/runs/b2wv5ah9?workspace=user-emil-tj)
|
YisusLn/q-FrozenLake-v1-4x4-noSlippery
|
YisusLn
| 2023-03-14T17:16:20Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T17:16:16Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="YisusLn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
henryscheible/bert-large-uncased_winobias_classifieronly
|
henryscheible
| 2023-03-14T17:09:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-06T16:16:24Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-uncased_winobias_classifieronly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased_winobias_classifieronly
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
ShreyasM/ppo-SnowballTarget
|
ShreyasM
| 2023-03-14T17:09:50Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-03-14T17:09:44Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: ShreyasM/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
nlp-waseda/comet-v2-gpt2-small-japanese
|
nlp-waseda
| 2023-03-14T16:56:19Z | 134 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"ja",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-05T13:39:03Z |
---
language: ja
widget:
- text: X が 部屋 で ゲーム するxEffect
---
# COMET-GPT2 ja v2
Finetuned GPT-2 on the large version of [ATOMIC ja](https://github.com/nlp-waseda/comet-atomic-ja) using a causal language modeling (CLM) objective.
The original version and the large version of ATOMIC ja were introduced in [this paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf) and in [this paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B9-1.pdf), respectively.
### How to use
You can use this model directly with a pipeline for text generation.
Since the generation relies on some randomness, we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='nlp-waseda/comet-v2-gpt2-small-japanese')
>>> set_seed(42)
>>> generator('X が 副業 を 始めるxEffect', max_length=30, num_return_sequences=5, do_sample=True)
[{'generated_text': 'X が 副業 を 始めるxEffect X が 収入 を 得る'},
{'generated_text': 'X が 副業 を 始めるxEffect X が 時間 を 失う'},
{'generated_text': 'X が 副業 を 始めるxEffect X が 儲かる'},
{'generated_text': 'X が 副業 を 始めるxEffect X が 稼ぐ'},
{'generated_text': 'X が 副業 を 始めるxEffect X が 稼げる ように なる'}]
```
### Preprocessing
The texts are segmented into words using Juman++ and tokenized using SentencePiece.
## Evaluation results
The model achieves the following results:
| BLEU | BERTScore |
|:-----:|:---------:|
| - | - |
### BibTeX entry and citation info
```bibtex
@InProceedings{ide_nlp2023_event,
author = "井手竜也 and 村田栄樹 and 堀尾海斗 and 河原大輔 and 山崎天 and 李聖哲 and 新里顕大 and 佐藤敏紀",
title = "人間と言語モデルに対するプロンプトを用いたゼロからのイベント常識知識グラフ構築",
booktitle = "言語処理学会第29回年次大会",
year = "2023",
url = "https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf"
note = "in Japanese"
}
@InProceedings{murata_nlp2023,
author = "村田栄樹 and 井手竜也 and 榮田亮真 and 河原大輔 and 山崎天 and 李聖哲 and 新里顕大 and 佐藤敏紀",
title = "大規模言語モデルによって構築された常識知識グラフの拡大と低コストフィルタリング",
booktitle = "言語処理学会第29回年次大会",
year = "2023",
url = "https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B9-1.pdf"
note = "in Japanese"
}
```
|
yumingyi/q-FrozenLake-v1-4x4-noSlippery
|
yumingyi
| 2023-03-14T16:55:25Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T16:55:22Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="yumingyi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
maderix/llama-65b-4bit
|
maderix
| 2023-03-14T16:49:38Z | 0 | 69 |
transformers
|
[
"transformers",
"en",
"endpoints_compatible",
"region:us"
] | null | 2023-03-11T16:43:09Z |
---
language:
- en
library_name: transformers
---
Converted with https://github.com/qwopqwop200/GPTQ-for-LLaMa
All models tested on A100-80G
*Conversion may require lot of RAM, LLaMA-7b takes ~12 GB, 13b around 21 GB, 30b around 62 and 65b takes more than 120 GB of RAM.
Installation instructions as mentioned in above repo:
1. Install Anaconda and create a venv with python 3.8
2. Install pytorch(tested with torch-1.13-cu116)
3. Install Transformers library (you'll need the latest transformers with this PR : https://github.com/huggingface/transformers/pull/21955 ).
4. Install sentencepiece from pip
5. Run python cuda_setup.py install in venv
6. You can either convert the llama models yourself with the instructions from GPTQ-for-llama repo
7. or directly use these weights by individually downloading them following these instructions (https://huggingface.co/docs/huggingface_hub/guides/download)
8. Profit!
9. Best results are obtained by putting a repetition_penalty(~1/0.85),temperature=0.7 in model.generate() for most LLaMA models
|
henryscheible/bert-large-uncased_crows_pairs_classifieronly
|
henryscheible
| 2023-03-14T16:41:06Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-06T16:15:19Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-uncased_crows_pairs_classifieronly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased_crows_pairs_classifieronly
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
henryscheible/gpt2_crows_pairs_classifieronly
|
henryscheible
| 2023-03-14T16:39:55Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-06T16:15:28Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2_crows_pairs_classifieronly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2_crows_pairs_classifieronly
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
henryscheible/gpt2_winobias_classifieronly
|
henryscheible
| 2023-03-14T16:31:32Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-06T03:57:10Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2_winobias_classifieronly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2_winobias_classifieronly
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
TobiTob/decision_transformer_random_230
|
TobiTob
| 2023-03-14T16:19:59Z | 33 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"decision_transformer",
"generated_from_trainer",
"dataset:city_learn",
"endpoints_compatible",
"region:us"
] | null | 2023-03-14T14:57:07Z |
---
tags:
- generated_from_trainer
datasets:
- city_learn
model-index:
- name: decision_transformer_random_230
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# decision_transformer_random_230
This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
ChechkovEugene/a2c-AntBulletEnv-v0
|
ChechkovEugene
| 2023-03-14T16:18:21Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T16:11:09Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1369.78 +/- 106.81
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
lipee/q-FrozenLake-v1-4x4-noSlippery
|
lipee
| 2023-03-14T15:49:55Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:49:47Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="lipee/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
nouman-10/fine-tune-roberta-exist-mlm
|
nouman-10
| 2023-03-14T15:38:17Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T15:24:11Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: unsupervised-fine-tune-roberta-exist
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unsupervised-fine-tune-roberta-exist
This model is a fine-tuned version of [nouman-10/unsupervised-exist-rb](https://huggingface.co/nouman-10/unsupervised-exist-rb) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9911
- Accuracy: 0.7238
- F1: 0.7262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 194 | 0.5147 | 0.7471 | 0.7434 |
| No log | 2.0 | 388 | 0.5395 | 0.7384 | 0.7458 |
| 0.4616 | 3.0 | 582 | 0.6484 | 0.75 | 0.7440 |
| 0.4616 | 4.0 | 776 | 0.9610 | 0.7355 | 0.7407 |
| 0.4616 | 5.0 | 970 | 1.2414 | 0.7326 | 0.7262 |
| 0.1786 | 6.0 | 1164 | 1.7050 | 0.7209 | 0.7209 |
| 0.1786 | 7.0 | 1358 | 1.7930 | 0.7384 | 0.7273 |
| 0.0557 | 8.0 | 1552 | 1.8999 | 0.7355 | 0.7378 |
| 0.0557 | 9.0 | 1746 | 1.9886 | 0.7209 | 0.7225 |
| 0.0557 | 10.0 | 1940 | 1.9911 | 0.7238 | 0.7262 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
MarkieMark1/Reinforce-PixelCopter-PLE-v0
|
MarkieMark1
| 2023-03-14T15:26:23Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:20:37Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 36.10 +/- 30.07
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
arrandi/a2c-AntBulletEnv-v0
|
arrandi
| 2023-03-14T15:24:48Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:23:51Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1296.70 +/- 120.44
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Christian90/q-FrozenLake-v1-8x8-Slippery-try2
|
Christian90
| 2023-03-14T15:20:02Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:19:57Z |
---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery-try2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8
type: FrozenLake-v1-8x8
metrics:
- type: mean_reward
value: 0.18 +/- 0.38
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Christian90/q-FrozenLake-v1-8x8-Slippery-try2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Art-phys/a2c-AntBulletEnv-v0
|
Art-phys
| 2023-03-14T15:09:36Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:08:28Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1976.04 +/- 38.16
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ThoDum/ppo-Pyramids
|
ThoDum
| 2023-03-14T15:07:49Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:07:44Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Find your model_id: ThoDum/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ViktorDo/EcoBERT-POWO_Lifecycle_Pretrained
|
ViktorDo
| 2023-03-14T15:07:23Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T11:53:52Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: EcoBERT-POWO_Lifecycle_Pretrained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EcoBERT-POWO_Lifecycle_Pretrained
This model is a fine-tuned version of [ViktorDo/EcoBERT-Pretrained](https://huggingface.co/ViktorDo/EcoBERT-Pretrained) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0782
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0895 | 1.0 | 1704 | 0.0798 |
| 0.0795 | 2.0 | 3408 | 0.0769 |
| 0.065 | 3.0 | 5112 | 0.0782 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Christian90/q-FrozenLake-v1-8x8-Slippery
|
Christian90
| 2023-03-14T15:05:28Z | 0 | 0 | null |
[
"FrozenLake-v1-8x8",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T15:05:22Z |
---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8
type: FrozenLake-v1-8x8
metrics:
- type: mean_reward
value: 0.44 +/- 0.50
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Christian90/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Haaniya-Iram17/sd-1-5-hira
|
Haaniya-Iram17
| 2023-03-14T14:56:44Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-03-14T14:54:00Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### SD-1-5-Hira Dreambooth model trained by Haaniya-Iram17 with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)!
To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars).
Sample pictures of this concept:
|
ViktorDo/EcoBERT-POWO_Climber_Pretrained
|
ViktorDo
| 2023-03-14T14:55:07Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T11:37:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: EcoBERT-POWO_Climber_Pretrained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EcoBERT-POWO_Climber_Pretrained
This model is a fine-tuned version of [ViktorDo/EcoBERT-Pretrained](https://huggingface.co/ViktorDo/EcoBERT-Pretrained) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0984 | 1.0 | 2133 | 0.1009 |
| 0.082 | 2.0 | 4266 | 0.0979 |
| 0.0769 | 3.0 | 6399 | 0.1006 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
NTCAL/norbert2_sentiment_norec_en_gpu_500_rader_max_noder_task
|
NTCAL
| 2023-03-14T14:49:06Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T14:36:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: norbert2_sentiment_norec_en_gpu_500_rader_max_noder_task
results: []
---
# KJøretid
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --gres=gpu:A100m40:1
{'train_runtime': 60.0918, 'train_samples_per_second': 41.603, 'train_steps_per_second': 0.166, 'train_loss': 0.6561894416809082, 'epoch': 5.0}
Time: 60.09
Samples/second: 41.60
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# norbert2_sentiment_norec_en_gpu_500_rader_max_noder_task
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6280
- Compute Metrics: :
- Accuracy: 0.678
- Balanced Accuracy: 0.4889
- F1 Score: 0.8076
- Recall: 0.9713
- Precision: 0.6912
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Compute Metrics | Accuracy | Balanced Accuracy | F1 Score | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:-----------------:|:--------:|:------:|:---------:|
| No log | 1.0 | 2 | 0.6324 | : | 0.696 | 0.5 | 0.8208 | 1.0 | 0.696 |
| No log | 2.0 | 4 | 0.6264 | : | 0.692 | 0.4971 | 0.8180 | 0.9943 | 0.6948 |
| No log | 3.0 | 6 | 0.6180 | : | 0.696 | 0.5 | 0.8208 | 1.0 | 0.696 |
| No log | 4.0 | 8 | 0.6236 | : | 0.694 | 0.5023 | 0.8185 | 0.9914 | 0.6970 |
| 0.6562 | 5.0 | 10 | 0.6280 | : | 0.678 | 0.4889 | 0.8076 | 0.9713 | 0.6912 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Christian90/Taxi-v3
|
Christian90
| 2023-03-14T14:39:43Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T14:39:39Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Christian90/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Christian90/q-FrozenLake-v1-4x4-noSlippery
|
Christian90
| 2023-03-14T14:36:32Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T14:36:29Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Christian90/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Kittitouch/rl_course_vizdoom_health_gathering_supreme
|
Kittitouch
| 2023-03-14T14:34:52Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-12T07:52:20Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 12.10 +/- 6.57
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r Kittitouch/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AustinCarthy/GPT2_10M_benign_URLs
|
AustinCarthy
| 2023-03-14T14:17:48Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-14T01:33:12Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: GPT2_10M_benign_URLs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GPT2_10M_benign_URLs
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.9.0+cu111
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Kaspar/vit-base-railspace
|
Kaspar
| 2023-03-14T14:16:28Z | 226 | 2 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-03-13T16:52:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-railspace
results: []
widget:
- src: https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/1.png
example_title: patch
- src: https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/271.png
example_title: patch
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans-demo-v5
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0292
- Accuracy: 0.9926
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
precision recall f1-score support
0 1.00 1.00 1.00 11315
1 0.92 0.94 0.93 204
2 0.95 0.97 0.96 714
3 0.87 0.98 0.92 171
macro avg 0.93 0.97 0.95 12404
weighted avg 0.99 0.99 0.99 12404
accuracy 0.99 12404
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0206 | 1.72 | 1000 | 0.0422 | 0.9854 |
| 0.0008 | 3.44 | 2000 | 0.0316 | 0.9918 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
joheras/sentiment-analysis
|
joheras
| 2023-03-14T14:15:03Z | 0 | 0 |
fastai
|
[
"fastai",
"region:us"
] | null | 2023-03-14T14:14:56Z |
---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
NTCAL/norbert2_sentiment_norec_en_gpu_500_rader_max_1
|
NTCAL
| 2023-03-14T14:12:25Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T14:03:16Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: norbert2_sentiment_norec_en_gpu_500_rader_max_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Kjøretid
{'train_runtime': 291.2967, 'train_samples_per_second': 51.494, 'train_steps_per_second': 0.189, 'train_loss': 0.6998663252050227, 'epoch': 4.94}
Time: 291.30
Samples/second: 51.49
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:A100m40:1
# norbert2_sentiment_norec_en_gpu_500_rader_max_1
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6269
- Compute Metrics: :
- Accuracy: 0.682
- Balanced Accuracy: 0.5048
- F1 Score: 0.8073
- Recall: 0.9569
- Precision: 0.6981
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Compute Metrics | Accuracy | Balanced Accuracy | F1 Score | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:-----------------:|:--------:|:------:|:---------:|
| No log | 1.0 | 2 | 0.6311 | : | 0.688 | 0.4943 | 0.8152 | 0.9885 | 0.6935 |
| No log | 2.0 | 4 | 0.6316 | : | 0.674 | 0.5268 | 0.7939 | 0.9023 | 0.7088 |
| No log | 3.0 | 6 | 0.6199 | : | 0.686 | 0.5002 | 0.8120 | 0.9741 | 0.6961 |
| No log | 4.0 | 8 | 0.6475 | : | 0.652 | 0.5277 | 0.7717 | 0.8448 | 0.7101 |
| 0.6559 | 5.0 | 10 | 0.6269 | : | 0.682 | 0.5048 | 0.8073 | 0.9569 | 0.6981 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
aidiary/dqn-SpaceInvadersNoFrameskip-v4
|
aidiary
| 2023-03-14T14:09:12Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T14:08:29Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 633.50 +/- 244.70
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aidiary -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aidiary -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aidiary
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
kurohige/poca
|
kurohige
| 2023-03-14T14:08:59Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-03-14T14:08:48Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: kurohige/poca
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
intanm/xlm-roberta-clickbait-spoiling
|
intanm
| 2023-03-14T13:51:11Z | 134 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-03-14T13:07:34Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-clickbait-spoiling
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-clickbait-spoiling
This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 200 | 2.7484 |
| No log | 2.0 | 400 | 2.7115 |
| 2.656 | 3.0 | 600 | 2.8556 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
soBeauty/distilroberta-base-ThaiCLM-Thairath
|
soBeauty
| 2023-03-14T13:49:45Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-03-14T13:38:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-ThaiCLM-Thairath
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-ThaiCLM-Thairath
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 17 | 1.4461 |
| No log | 2.0 | 34 | 1.4651 |
| No log | 3.0 | 51 | 1.9258 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
timmartin/my_awesome_eli5_clm-model
|
timmartin
| 2023-03-14T13:48:28Z | 117 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-14T13:19:37Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_clm-model
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7127
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7237 | 1.0 | 1066 | 3.7168 |
| 3.6706 | 2.0 | 2132 | 3.7143 |
| 3.6374 | 3.0 | 3198 | 3.7127 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
Nelsonlin0321/poca-SoccerTwos-v4
|
Nelsonlin0321
| 2023-03-14T13:46:01Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:43:40Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: Nelsonlin0321/poca-SoccerTwos-v4
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AlekseyKorshuk/pyg-6b-edit-test
|
AlekseyKorshuk
| 2023-03-14T13:44:20Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gptj",
"text-generation",
"generated_from_trainer",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-13T18:31:56Z |
---
license: creativeml-openrail-m
tags:
- generated_from_trainer
model-index:
- name: pyg-6b-edit-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pyg-6b-edit-test
This model is a fine-tuned version of [PygmalionAI/pygmalion-6b](https://huggingface.co/PygmalionAI/pygmalion-6b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4302 | 1.0 | 9635 | nan |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
gyronee/SpaceInvadersNoFrameskip-v4
|
gyronee
| 2023-03-14T13:41:40Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:40:48Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 731.00 +/- 272.18
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gyronee -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gyronee -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga gyronee
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
soBeauty/distilgpt2-ThaiCLM-Thairath
|
soBeauty
| 2023-03-14T13:35:42Z | 174 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-14T13:23:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-ThaiCLM-Thairath
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-ThaiCLM-Thairath
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9806
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 17 | 2.0238 |
| No log | 2.0 | 34 | 1.9877 |
| No log | 3.0 | 51 | 1.9806 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
hoanglongvn/Taxi-unit2
|
hoanglongvn
| 2023-03-14T13:32:54Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:32:53Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-unit2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="hoanglongvn/Taxi-unit2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hoanglongvn/q-FrozenLake-v1-4x4-noSlippery
|
hoanglongvn
| 2023-03-14T13:30:46Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:30:44Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="hoanglongvn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
peterdamn/Reinforce-cartpole
|
peterdamn
| 2023-03-14T13:18:45Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:18:37Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
NTCAL/norbert2_sentiment_norec_to_gpu_500_rader_8
|
NTCAL
| 2023-03-14T13:16:38Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T12:47:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: norbert2_sentiment_norec_to_gpu_500_rader_8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Kjøretid:
{'train_runtime': 432.2459, 'train_samples_per_second': 5.784, 'train_steps_per_second': 0.012, 'train_loss': 0.6640925884246827, 'epoch': 5.0}
Time: 432.25
Samples/second: 5.78
GPU memory occupied: 11314 MB.
# norbert2_sentiment_norec_to_gpu_500_rader_8
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6252
- Compute Metrics: :
- Accuracy: 0.692
- Balanced Accuracy: 0.4971
- F1 Score: 0.8180
- Recall: 0.9943
- Precision: 0.6948
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Compute Metrics | Accuracy | Balanced Accuracy | F1 Score | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:-----------------:|:--------:|:------:|:---------:|
| No log | 1.0 | 1 | 0.6370 | : | 0.696 | 0.5 | 0.8208 | 1.0 | 0.696 |
| No log | 2.0 | 2 | 0.6319 | : | 0.684 | 0.4932 | 0.8119 | 0.9799 | 0.6931 |
| No log | 3.0 | 3 | 0.6415 | : | 0.692 | 0.4971 | 0.8180 | 0.9943 | 0.6948 |
| No log | 4.0 | 4 | 0.6299 | : | 0.692 | 0.4971 | 0.8180 | 0.9943 | 0.6948 |
| No log | 5.0 | 5 | 0.6252 | : | 0.692 | 0.4971 | 0.8180 | 0.9943 | 0.6948 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Felipe474/dqn-SpaceInvadersNoFrameskip-v4
|
Felipe474
| 2023-03-14T13:04:02Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T13:03:44Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 539.00 +/- 165.50
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Felipe474 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Felipe474 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Felipe474
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
LarryAIDraw/shinjoAkaneSSSS_v1
|
LarryAIDraw
| 2023-03-14T13:03:09Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-03-14T13:01:18Z |
---
license: creativeml-openrail-m
---
|
LarryAIDraw/katouMegumiSaekano_v1
|
LarryAIDraw
| 2023-03-14T12:59:42Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-03-14T12:50:49Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/19371/katou-megumi-saekano
|
NTCAL/norbert2_sentiment_norec_en_gpu_3000_rader_2_test
|
NTCAL
| 2023-03-14T12:04:41Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T11:57:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: norbert2_sentiment_norec_en_gpu_3000_rader_2_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# norbert2_sentiment_norec_en_gpu_3000_rader_2_test
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6243
- Compute Metrics: :
- Accuracy: 0.6887
- Balanced Accuracy: 0.5020
- F1 Score: 0.8149
- Recall: 0.9932
- Precision: 0.6909
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Compute Metrics | Accuracy | Balanced Accuracy | F1 Score | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:--------:|:-----------------:|:--------:|:------:|:---------:|
| 0.6753 | 0.94 | 11 | 0.6527 | : | 0.669 | 0.5064 | 0.7957 | 0.9343 | 0.6929 |
| 0.7261 | 1.94 | 22 | 0.6292 | : | 0.6813 | 0.5032 | 0.8080 | 0.9720 | 0.6914 |
| 0.7124 | 2.94 | 33 | 0.6263 | : | 0.688 | 0.5012 | 0.8145 | 0.9928 | 0.6905 |
| 0.7036 | 3.94 | 44 | 0.6271 | : | 0.686 | 0.5015 | 0.8126 | 0.9870 | 0.6907 |
| 0.7035 | 4.94 | 55 | 0.6243 | : | 0.6887 | 0.5020 | 0.8149 | 0.9932 | 0.6909 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
MarkieMark1/Reinforce-CartPole-v1
|
MarkieMark1
| 2023-03-14T11:55:25Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T11:55:12Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
nouman-10/fine-tune-roberta-sem-exist
|
nouman-10
| 2023-03-14T11:51:44Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T11:24:46Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine-tune-roberta-sem-exist
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tune-roberta-sem-exist
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2788
- Accuracy: 0.7413
- F1: 0.7192
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4016 | 1.0 | 1194 | 0.6726 | 0.6948 | 0.6602 |
| 0.3213 | 2.0 | 2388 | 0.8774 | 0.6948 | 0.6263 |
| 0.2326 | 3.0 | 3582 | 0.8233 | 0.7209 | 0.7055 |
| 0.1785 | 4.0 | 4776 | 1.0899 | 0.7267 | 0.6968 |
| 0.1319 | 5.0 | 5970 | 1.2788 | 0.7413 | 0.7192 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
uisikdag/42000news_turkish_convbert_uncased_finetune
|
uisikdag
| 2023-03-14T11:51:26Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"convbert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T09:31:35Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: umit_42000news_convbert_uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# umit_42000news_convbert_uncased
This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-uncased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0049
- Accuracy: 0.6654
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1237 | 1.0 | 1584 | 1.1773 | 0.5974 |
| 1.1288 | 2.0 | 3168 | 1.0300 | 0.6521 |
| 0.6861 | 3.0 | 4752 | 1.0049 | 0.6654 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
|
theolee/ppo-LunarLander-v2
|
theolee
| 2023-03-14T11:49:58Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T09:20:03Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 269.26 +/- 19.81
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Youngdal/Reinforce-cartpole_v1
|
Youngdal
| 2023-03-14T11:45:22Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T10:18:44Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole_v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kaliputra/ppo-SnowballTarget
|
kaliputra
| 2023-03-14T11:40:31Z | 6 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-03-14T11:40:24Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Find your model_id: kaliputra/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Rishu115/mlm-bert-train_finalTraining_changedLR
|
Rishu115
| 2023-03-14T11:38:51Z | 0 | 0 |
tf-keras
|
[
"tf-keras",
"tf",
"bert",
"generated_from_keras_callback",
"region:us"
] | null | 2023-03-14T04:14:09Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: Rishu115/mlm-bert-train_finalTraining_changedLR
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rishu115/mlm-bert-train_finalTraining_changedLR
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9469
- Validation Loss: 0.8665
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 47396, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.1016 | 0.8681 | 0 |
| 0.9469 | 0.8665 | 1 |
### Framework versions
- Transformers 4.23.1
- TensorFlow 2.10.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|
abbiekeats/Taxi-v3
|
abbiekeats
| 2023-03-14T11:32:33Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T11:32:28Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.69
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="abbiekeats/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Christian90/ppo-LunarLander-v2-try5
|
Christian90
| 2023-03-14T11:03:57Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T11:03:40Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 282.47 +/- 22.42
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ViktorDo/EcoBERT-Pretrained
|
ViktorDo
| 2023-03-14T10:58:25Z | 167 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-03-14T09:38:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: EcoBERT-Pretrained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EcoBERT-Pretrained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2796
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3457 | 0.66 | 500 | 2.2838 |
| 2.3622 | 1.32 | 1000 | 2.2896 |
| 2.3474 | 1.98 | 1500 | 2.2877 |
| 2.3606 | 2.64 | 2000 | 2.2821 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
lipee/ppo-LunarLander-v2
|
lipee
| 2023-03-14T10:57:54Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T09:15:47Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 283.98 +/- 15.75
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Luisfrdz/a2c-PandaReachDense-v2
|
Luisfrdz
| 2023-03-14T10:56:29Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-13T14:44:17Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -9.33 +/- 0.92
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ybelkada/fonts
|
ybelkada
| 2023-03-14T10:56:01Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-03-14T10:07:40Z |
# Fonts
An utility repo to load conveniently fonts using `hf_hub_download`:
```python
from huggingface_hub import hf_hub_download
from PIL import ImageFont
font_path = hf_hub_download("ybelkada/fonts", "Arial.TTF")
font_obj = ImageFont(font_path, encoding="UTF-8")
```
|
nahorh/text_summarization_48_91_rouge_knowdocument
|
nahorh
| 2023-03-14T10:49:56Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autotrain",
"summarization",
"unk",
"dataset:nahorh/autotrain-data-text_summarization_knowdocument",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-03-14T09:38:31Z |
---
tags:
- autotrain
- summarization
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- nahorh/autotrain-data-text_summarization_knowdocument
co2_eq_emissions:
emissions: 27.263457456233834
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 40969105857
- CO2 Emissions (in grams): 27.2635
## Validation Metrics
- Loss: 0.753
- Rouge1: 48.910
- Rouge2: 28.780
- RougeL: 38.796
- RougeLsum: 46.262
- Gen Len: 68.490
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/nahorh/autotrain-text_summarization_knowdocument-40969105857
```
|
charmquark/Reinforce-Pixelcopter-PLE-v0
|
charmquark
| 2023-03-14T10:30:35Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T10:30:32Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 42.80 +/- 34.87
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
zhengudaoer/Wenzhong-GPT2-110M-finetuned-wikitext2-2
|
zhengudaoer
| 2023-03-14T10:24:08Z | 173 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-14T10:04:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Wenzhong-GPT2-110M-finetuned-wikitext2-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wenzhong-GPT2-110M-finetuned-wikitext2-2
This model is a fine-tuned version of [IDEA-CCNL/Wenzhong-GPT2-110M](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 54 | 1.8208 |
| No log | 2.0 | 108 | 1.8271 |
| No log | 3.0 | 162 | 1.8460 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|
merve/distilbert-base-uncased-finetuned-cola
|
merve
| 2023-03-14T09:55:07Z | 121 | 1 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-03-14T09:42:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.47078712112764887
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5252
- Matthews Correlation: 0.4708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.3373 | 1.0 | 535 | 0.5252 | 0.4708 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1+cu102
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Darsh12/custom-bert-finetuned-squad
|
Darsh12
| 2023-03-14T09:53:47Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-03-14T07:20:40Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Darsh12/custom-bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Darsh12/custom-bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5661
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2728 | 0 |
| 0.7757 | 1 |
| 0.5661 | 2 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|
alexbalandi/taxi-v3
|
alexbalandi
| 2023-03-14T09:49:10Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T09:49:05Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.74
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="alexbalandi/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Humayoun/Donut4
|
Humayoun
| 2023-03-14T09:44:46Z | 47 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"dataset:imagefolder",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-03-14T08:29:38Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: Donut4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Donut4
This model is a fine-tuned version of [humayoun/Donut2](https://huggingface.co/humayoun/Donut2) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
alexbalandi/q-FrozenLake-v1-4x4-noSlippery
|
alexbalandi
| 2023-03-14T09:37:55Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-03-14T09:18:38Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="alexbalandi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
theintuitiveye/modernartstyle
|
theintuitiveye
| 2023-03-14T09:35:50Z | 56 | 10 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-02T09:24:46Z |
---
title: modernartstyle
colorFrom: green
colorTo: indigo
sdk: gradio
sdk_version: 3.11.0
app_file: app.py
pinned: false
license: creativeml-openrail-m
tags:
- stable-diffusion
- text-to-image
inference: true
---
# **ModernArt Diffusion**
You can use this model to generate modernart style images.
## Dataset
~100 modern art images.
## Usage
Use stability ai VAE for better results.
For majority of prompts trigger phrase is not required; use *"modernartst"* to force the style
*samples*

Help us to be able to create models of professional standards. Consider supporting us on [Patreon](https://www.patreon.com/intuitiveai) / [Ko-fi](https://ko-fi.com/intuitiveai) / [Paypal](https://www.paypal.com/paypalme/theintuitiveye)
## *Demo*
We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run ModernArt Diffusion :
[](https://huggingface.co/spaces/theintuitiveye/modernartstyle)
## *License*
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies :
- You can't use the model to deliberately produce nor share illegal or harmful outputs or content
- The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
- You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license [here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
TiborUdvari/distilgpt2-finetuned-wikitext2
|
TiborUdvari
| 2023-03-14T09:32:12Z | 179 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-03-14T09:15:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7599 | 1.0 | 2334 | 3.6655 |
| 3.6518 | 2.0 | 4668 | 3.6463 |
| 3.6008 | 3.0 | 7002 | 3.6421 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
starktoney81/dfb
|
starktoney81
| 2023-03-14T09:21:44Z | 0 | 0 | null |
[
"dataset:yizhongw/self_instruct",
"arxiv:1910.09700",
"license:openrail",
"region:us"
] | null | 2023-03-14T09:20:32Z |
---
license: openrail
datasets:
- yizhongw/self_instruct
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
### How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
nrshoudi/wav2vec2-large-xls-r-300m-Arabic-phonemeIPA
|
nrshoudi
| 2023-03-14T09:18:45Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-03-13T01:07:08Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-Arabic-phonemeIPA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-Arabic-phonemeIPA
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0398
- Per: 0.0833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 9
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Per |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1294 | 1.0 | 102 | 0.0673 | 0.1060 |
| 0.1964 | 2.0 | 204 | 0.0753 | 0.1167 |
| 0.2395 | 3.0 | 306 | 0.0851 | 0.1134 |
| 0.2317 | 4.0 | 408 | 0.0849 | 0.1152 |
| 0.2082 | 5.0 | 510 | 0.0853 | 0.1085 |
| 0.1856 | 6.0 | 612 | 0.0626 | 0.0946 |
| 0.1616 | 7.0 | 714 | 0.0635 | 0.0892 |
| 0.1426 | 8.0 | 816 | 0.0554 | 0.0863 |
| 0.1284 | 9.0 | 918 | 0.0555 | 0.0846 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.