modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
muhammadravi251001/fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-base-without-ITTL-without-freeze-LR-1e-05
muhammadravi251001
2023-03-13T13:55:12Z
92
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-13T13:52:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-base-without-ITTL-without-freeze-LR-1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-base-without-ITTL-without-freeze-LR-1e-05 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
Luisfrdz/a2c-AntBulletEnv-v0
Luisfrdz
2023-03-13T13:51:55Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T13:50:43Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2487.65 +/- 37.31 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/roberta-base-finetuned-OIG-mod-3
mrm8488
2023-03-13T13:47:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-13T10:25:37Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-finetuned-OIG-mod-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-OIG-mod-3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3807 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7135 | 0.36 | 5000 | 0.7030 | 0.6948 | | 0.6783 | 0.71 | 10000 | 0.6782 | 0.7053 | | 0.6073 | 1.07 | 15000 | 0.6356 | 0.7350 | | 0.5827 | 1.42 | 20000 | 0.6089 | 0.7382 | | 0.5701 | 1.78 | 25000 | 0.5778 | 0.7595 | | 0.4856 | 2.13 | 30000 | 0.5742 | 0.7718 | | 0.4651 | 2.49 | 35000 | 0.5368 | 0.7869 | | 0.4634 | 2.84 | 40000 | 0.5049 | 0.8024 | | 0.3913 | 3.2 | 45000 | 0.4973 | 0.8103 | | 0.3877 | 3.55 | 50000 | 0.4655 | 0.8237 | | 0.364 | 3.91 | 55000 | 0.4406 | 0.8411 | | 0.3198 | 4.26 | 60000 | 0.4429 | 0.8456 | | 0.3047 | 4.62 | 65000 | 0.4108 | 0.8595 | | 0.2821 | 4.97 | 70000 | 0.3979 | 0.8653 | | 0.2548 | 5.33 | 75000 | 0.3903 | 0.8713 | | 0.2475 | 5.68 | 80000 | 0.3807 | 0.8758 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Inesence/donut-base-finetuned-Latvian-receipts
Inesence
2023-03-13T13:28:18Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-03-13T13:03:16Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-finetuned-Latvian-receipts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-finetuned-Latvian-receipts This model is a fine-tuned version of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ELITE-library/ELITE
ELITE-library
2023-03-13T13:22:00Z
0
5
null
[ "arxiv:2302.13848", "region:us" ]
null
2023-03-08T06:22:44Z
# ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation <a href="https://arxiv.org/pdf/2302.13848.pdf"><img src="https://img.shields.io/badge/arXiv-2302.13848-b31b1b.svg" height=22.5></a> <a href="https://huggingface.co/spaces/ELITE-library/ELITE"><img src="https://img.shields.io/static/v1?label=HuggingFace&message=gradio demo&color=darkgreen" height=22.5></a> ![method](assets/results.png) ## Method Details ![method](assets/method.png) Given an image indicates the target concept (usually an object), we propose a learning-based encoder ELITE to encode the visual concept into the textual embeddings, which can be further flexibly composed into new scenes. It consists of two modules: (a) a global mapping network is first trained to encode a concept image into multiple textual word embeddings, where one primary word (w0) for well-editable concept and other auxiliary words (w1ยทยทยทN) to exclude irrelevant disturbances. (b) A local mapping network is further trained, which projects the foreground object into textual feature space to provide local details. ## Getting Started ### Environment Setup ```shell git clone https://github.com/csyxwei/ELITE.git cd ELITE conda create -n elite python=3.9 conda activate elite pip install -r requirements.txt ``` ### Pretrained Models We provide the pretrained checkpoints in [Google Drive](https://drive.google.com/drive/folders/1VkiVZzA_i9gbfuzvHaLH2VYh7kOTzE0x?usp=sharing). One can download them and save to the directory `checkpoints`. ### Setting up HuggingFace Our code is built on the [diffusers](https://github.com/huggingface/diffusers/) version of Stable Diffusion, you need to accept the [model license](https://huggingface.co/CompVis/stable-diffusion-v1-4) before downloading or using the weights. In our experiments, we use model version v1-4. You have to be a registered user in Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```shell huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. ### Customized Generation We provide some testing images in [test_datasets](./test_datasets), which contains both images and object masks. For testing, you can run, ``` export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR='./test_datasets/' CUDA_VISIBLE_DEVICES=0 python inference_local.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --test_data_dir=$DATA_DIR \ --output_dir="./outputs/local_mapping" \ --suffix="object" \ --template="a photo of a S" \ --llambda="0.8" \ --global_mapper_path="./checkpoints/global_mapper.pt" \ --local_mapper_path="./checkpoints/local_mapper.pt" ``` or you can use the shell script, ``` bash inference_local.sh ``` If you want to test your customized dataset, you should align the image to ensure the object is at the center of image, and also provide the corresponding object mask. The object mask can be obtained by [image-matting-app](https://huggingface.co/spaces/SankarSrin/image-matting-app), or other image matting methods. ## Training ### Preparing Dataset We use the **test** dataset of Open-Images V6 to train our ELITE. You can prepare the dataset as follows: - Download Open-Images test dataset from [CVDF's site](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) and unzip it to the directory `datasets/Open_Images/images/test`. - Download attribute names file `oidv6-attributes-description.csv` of Open-Images test dataset from [Open-Images official site](https://storage.googleapis.com/openimages/web/download_v7.html#download-manually) and save it to the directory `datasets/Open_Images/annotations/`. - Download bbox annotations file `test-annotations-bbox.csv` of Open-Images test dataset from [Open-Images official site](https://storage.googleapis.com/openimages/web/download_v7.html#download-manually) and save it to the directory `datasets/Open_Images/annotations/`. - Download segmentation annotations of Open-Images test dataset from [Open-Images official site](https://storage.googleapis.com/openimages/web/download_v7.html#download-manually) and unzip them to the directory `datasets/Open_Images/segs/test`. And put the `test-annotations-object-segmentation.csv` into `datasets/Open_Images/annotations/`. - Obtain the mask bbox by running the following command: ```shell python data_scripts/cal_bbox_by_seg.py ``` The final data structure is like this: ``` datasets โ”œโ”€โ”€ Open_Images โ”‚ โ”œโ”€โ”€ annotations โ”‚ โ”‚ โ”œโ”€โ”€ oidv6-class-descriptions.csv โ”‚ โ”‚ โ”œโ”€โ”€ test-annotations-object-segmentation.csv โ”‚ โ”‚ โ”œโ”€โ”€ test-annotations-bbox.csv โ”‚ โ”œโ”€โ”€ images โ”‚ โ”‚ โ”œโ”€โ”€ test โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ xxx.jpg โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ... โ”‚ โ”œโ”€โ”€ segs โ”‚ โ”‚ โ”œโ”€โ”€ test โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ xxx.png โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ... โ”‚ โ”‚ โ”œโ”€โ”€ test_bbox_dict.npy ``` ### Training Global Mapping Network To train the global mapping network, you can run, ```Shell export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR='./datasets/Open_Images/' CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25656 train_global.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --placeholder_token="S" \ --resolution=512 \ --train_batch_size=4 \ --gradient_accumulation_steps=4 \ --max_train_steps=200000 \ --learning_rate=1e-06 --scale_lr \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --output_dir="./elite_experiments/global_mapping" \ --save_steps 200 ``` or you can use the shell script, ```shell bash train_global.sh ``` ### Training Local Mapping Network After the global mapping network is trained, you can train the local mapping network by running, ```Shell export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATA_DIR='/home/weiyuxiang/datasets/Open_Images/' CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25657 train_local.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$DATA_DIR \ --placeholder_token="S" \ --resolution=512 \ --train_batch_size=2 \ --gradient_accumulation_steps=4 \ --max_train_steps=200000 \ --learning_rate=1e-5 --scale_lr \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --global_mapper_path "./elite_experiments/global_mapping/mapper_070000.pt" \ --output_dir="./elite_experiments/local_mapping" \ --save_steps 200 ``` or you can use the shell script, ```shell bash train_local.sh ``` ## Citation ``` @article{wei2023elite, title={ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation}, author={Wei, Yuxiang and Zhang, Yabo and Ji, Zhilong and Bai, Jinfeng and Zhang, Lei and Zuo, Wangmeng}, journal={arXiv preprint arXiv:2302.13848}, year={2023} } ``` ## Acknowledgements This code is built on [diffusers](https://github.com/huggingface/diffusers/) version of [Stable Diffusion](https://github.com/CompVis/stable-diffusion). We thank the authors for sharing the codes.
MrDivakaruni/a2c-PandaReachDense-v2
MrDivakaruni
2023-03-13T13:17:10Z
5
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T08:42:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.49 +/- 0.53 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
birdy654/vincent-diffusion
birdy654
2023-03-13T13:16:04Z
0
0
null
[ "text-to-image", "license:cc-by-4.0", "region:us" ]
text-to-image
2023-03-13T11:46:41Z
--- license: cc-by-4.0 tags: - text-to-image widget: - text: "A beautiful sunset landscape, highly detailed painting in the style of JBVNCMOD" ---
priyankloco/swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256
priyankloco
2023-03-13T12:52:46Z
146
0
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-13T12:21:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.965482233502538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1115 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6169 | 0.99 | 61 | 1.1018 | 0.6701 | | 0.7747 | 1.99 | 122 | 0.4571 | 0.8670 | | 0.6088 | 2.99 | 183 | 0.3002 | 0.9198 | | 0.3908 | 3.99 | 244 | 0.2334 | 0.9299 | | 0.399 | 4.99 | 305 | 0.2138 | 0.9320 | | 0.2969 | 5.99 | 366 | 0.1650 | 0.9492 | | 0.2743 | 6.99 | 427 | 0.1514 | 0.9533 | | 0.2947 | 7.99 | 488 | 0.1428 | 0.9513 | | 0.2304 | 8.99 | 549 | 0.1541 | 0.9523 | | 0.1957 | 9.99 | 610 | 0.1256 | 0.9604 | | 0.1645 | 10.99 | 671 | 0.1138 | 0.9645 | | 0.2317 | 11.99 | 732 | 0.1140 | 0.9655 | | 0.1001 | 12.99 | 793 | 0.1068 | 0.9706 | | 0.1564 | 13.99 | 854 | 0.1119 | 0.9675 | | 0.1386 | 14.99 | 915 | 0.1115 | 0.9655 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.2+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
GuiGel/beto-uncased-flert-finetune-meddocan
GuiGel
2023-03-13T12:34:06Z
5
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-11-07T14:24:39Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("GuiGel/beto-finetune-meddocan") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
Kizi-Art/Cloudflared
Kizi-Art
2023-03-13T12:33:48Z
0
0
null
[ "region:us" ]
null
2023-03-13T12:31:22Z
# sd-webui-tunnels Tunneling extension for [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) ## Usage ### [cloudflared](https://try.cloudflare.com/) add `--cloudflared` to commandline options. ### [localhost.run](https://localhost.run/) add `--localhostrun` to commandline options. ### [remote.moe](https://github.com/fasmide/remotemoe) add `--remotemoe` to commandline options. The feature of `remote.moe` is that as long as the same ssh key is used, the same url is generated. The ssh keys for `localhost.run` and `remote.moe` are created with the name `id_rsa` in the script's root folder. However, if there is a problem with the write permission, it is created in a temporary folder instead, so a different url is created each time.
dmargutierrez/distilbert-base-uncased-mapa-ner-coarse_grained-v2
dmargutierrez
2023-03-13T12:28:27Z
123
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-13T10:43:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-mapa-ner-coarse_grained-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-mapa-ner-coarse_grained-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1627 - Precision: 0.7898 - Recall: 0.4843 - F1: 0.6004 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0354 | 1.0 | 1739 | 0.0834 | 0.7023 | 0.4612 | 0.5568 | 0.9840 | | 0.0255 | 2.0 | 3478 | 0.1034 | 0.8172 | 0.4355 | 0.5682 | 0.9852 | | 0.0168 | 3.0 | 5217 | 0.0969 | 0.7714 | 0.4588 | 0.5754 | 0.9848 | | 0.0132 | 4.0 | 6956 | 0.1042 | 0.7477 | 0.4838 | 0.5875 | 0.9852 | | 0.0112 | 5.0 | 8695 | 0.1109 | 0.7421 | 0.4863 | 0.5876 | 0.9849 | | 0.0085 | 6.0 | 10434 | 0.1076 | 0.7194 | 0.4951 | 0.5865 | 0.9850 | | 0.0067 | 7.0 | 12173 | 0.1343 | 0.7828 | 0.4587 | 0.5784 | 0.9849 | | 0.0047 | 8.0 | 13912 | 0.1252 | 0.7425 | 0.4840 | 0.5860 | 0.9853 | | 0.0045 | 9.0 | 15651 | 0.1410 | 0.7943 | 0.4615 | 0.5838 | 0.9852 | | 0.0035 | 10.0 | 17390 | 0.1311 | 0.7624 | 0.4929 | 0.5987 | 0.9857 | | 0.003 | 11.0 | 19129 | 0.1494 | 0.8059 | 0.4691 | 0.5930 | 0.9855 | | 0.0025 | 12.0 | 20868 | 0.1436 | 0.7674 | 0.4852 | 0.5945 | 0.9856 | | 0.002 | 13.0 | 22607 | 0.1513 | 0.7778 | 0.4741 | 0.5891 | 0.9852 | | 0.0014 | 14.0 | 24346 | 0.1577 | 0.7986 | 0.4726 | 0.5938 | 0.9855 | | 0.0016 | 15.0 | 26085 | 0.1573 | 0.7802 | 0.4766 | 0.5917 | 0.9855 | | 0.0011 | 16.0 | 27824 | 0.1599 | 0.7917 | 0.4723 | 0.5916 | 0.9856 | | 0.0012 | 17.0 | 29563 | 0.1601 | 0.7848 | 0.4867 | 0.6008 | 0.9857 | | 0.001 | 18.0 | 31302 | 0.1572 | 0.7614 | 0.4939 | 0.5991 | 0.9856 | | 0.0011 | 19.0 | 33041 | 0.1602 | 0.7858 | 0.4870 | 0.6013 | 0.9857 | | 0.0009 | 20.0 | 34780 | 0.1627 | 0.7898 | 0.4843 | 0.6004 | 0.9857 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
BlinkDL/rwkv-4-pile-3b
BlinkDL
2023-03-13T12:19:34Z
0
42
null
[ "pytorch", "text-generation", "causal-lm", "rwkv", "en", "dataset:the_pile", "license:apache-2.0", "region:us" ]
text-generation
2022-09-14T14:04:13Z
--- language: - en tags: - pytorch - text-generation - causal-lm - rwkv license: apache-2.0 datasets: - the_pile --- # RWKV-4 3B # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. ## Model Description RWKV-4 3B is a L32-D2560 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details. Use https://github.com/BlinkDL/ChatRWKV to run it. RWKV-4-Pile-3B-20221110-ctx4096.pth (RECOMMENDED) : Fine-tuned to ctx_len 4096. * LAMBADA ppl 5.25, acc 63.96% * PIQA acc 74.16% * SC2016 acc 70.71% * Hellaswag acc_norm 59.89% * ctx_len = 4096 n_layer = 32 n_embd = 2560 RWKV-4-Pile-3B-20221008-8023.pth : Trained on the Pile for 331B tokens. * Pile loss 1.9469 * LAMBADA ppl 5.24, acc 63.94% * PIQA acc 73.72% * SC2016 acc 70.28% * Hellaswag acc_norm 59.63% * ctx_len = 1024 n_layer = 32 n_embd = 2560 ### Instruct-test models: only useful if you construct your prompt following dataset templates Note I am using "Q: instruct\n\nA: result" prompt for all instructs. RWKV-4-Pile-3B-Instruct-test1 instruct-tuned on https://huggingface.co/datasets/bigscience/xP3all/viewer/en/train RWKV-4-Pile-3B-Instruct-test2 instruct-tuned on https://huggingface.co/datasets/Muennighoff/flan & NIv2 ### Chinese models RWKV-4-Pile-3B-EngChn-testNovel-xxx for writing Chinese novels (trained on 200G Chinese novels.) RWKV-4-Pile-3B-EngChn-testxxx for Chinese Q&A (trained on 10G Chinese text. only for testing purposes.) ## Note: 4 / 4a / 4b models ARE NOT compatible. Use RWKV-4 unless you know what you are doing.
BlinkDL/rwkv-4-pile-169m
BlinkDL
2023-03-13T12:19:10Z
0
10
null
[ "pytorch", "text-generation", "causal-lm", "rwkv", "en", "dataset:the_pile", "license:apache-2.0", "region:us" ]
text-generation
2022-07-28T08:36:14Z
--- language: - en tags: - pytorch - text-generation - causal-lm - rwkv license: apache-2.0 datasets: - the_pile --- # RWKV-4 169M # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. # Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing. ## Model Description RWKV-4 169M is a L12-D768 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details. Use https://github.com/BlinkDL/ChatRWKV to run it. ctx_len = 1024 n_layer = 12 n_embd = 768 Final checkpoint: RWKV-4-Pile-169M-20220807-8023.pth : Trained on the Pile for 332B tokens. * Pile loss 2.5355 * LAMBADA ppl 29.33, acc 32.99% * PIQA acc 65.07% * SC2016 acc 58.79% * Hellaswag acc_norm 32.26% With tiny attention (--tiny_att_dim 256 --tiny_att_layer 9): RWKV-4a-Pile-170M-20221209-7955.pth * Pile loss 2.4702 * LAMBADA ppl 21.42, acc 38.23% * PIQA acc 63.76% * SC2016 acc 59.06% * Hellaswag acc_norm 32.40% RWKV-4b-Pile-171M-20230202-7922.pth (--my_testing 'a') * Pile loss 2.4222 * LAMBADA ppl 22.02, acc 38.56% * PIQA acc 64.04% * SC2016 acc 59.91% * Hellaswag acc_norm 33.33%
reyhanemyr/distilbert-base-cased-finetuned-paper
reyhanemyr
2023-03-13T12:18:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-13T12:12:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-paper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-paper This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1417 - Precision: 0.5690 - Recall: 0.6226 - F1: 0.5946 - Accuracy: 0.9790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 62 | 0.1183 | 0.3810 | 0.3019 | 0.3368 | 0.9702 | | No log | 2.0 | 124 | 0.0923 | 0.3986 | 0.5189 | 0.4508 | 0.9730 | | No log | 3.0 | 186 | 0.0808 | 0.5 | 0.5943 | 0.5431 | 0.9765 | | No log | 4.0 | 248 | 0.0951 | 0.6042 | 0.5472 | 0.5743 | 0.9790 | | No log | 5.0 | 310 | 0.0939 | 0.5794 | 0.5849 | 0.5822 | 0.9795 | | No log | 6.0 | 372 | 0.0949 | 0.5508 | 0.6132 | 0.5804 | 0.9792 | | No log | 7.0 | 434 | 0.1004 | 0.5075 | 0.6415 | 0.5667 | 0.9782 | | No log | 8.0 | 496 | 0.1110 | 0.5403 | 0.6321 | 0.5826 | 0.9784 | | 0.0979 | 9.0 | 558 | 0.1139 | 0.5517 | 0.6038 | 0.5766 | 0.9789 | | 0.0979 | 10.0 | 620 | 0.1153 | 0.5727 | 0.5943 | 0.5833 | 0.9795 | | 0.0979 | 11.0 | 682 | 0.1238 | 0.5238 | 0.6226 | 0.5690 | 0.9776 | | 0.0979 | 12.0 | 744 | 0.1249 | 0.5478 | 0.5943 | 0.5701 | 0.9786 | | 0.0979 | 13.0 | 806 | 0.1263 | 0.5323 | 0.6226 | 0.5739 | 0.9786 | | 0.0979 | 14.0 | 868 | 0.1303 | 0.5810 | 0.5755 | 0.5782 | 0.9792 | | 0.0979 | 15.0 | 930 | 0.1358 | 0.4929 | 0.6509 | 0.5610 | 0.9773 | | 0.0979 | 16.0 | 992 | 0.1305 | 0.5766 | 0.6038 | 0.5899 | 0.9793 | | 0.0033 | 17.0 | 1054 | 0.1321 | 0.5323 | 0.6226 | 0.5739 | 0.9779 | | 0.0033 | 18.0 | 1116 | 0.1353 | 0.5726 | 0.6321 | 0.6009 | 0.9789 | | 0.0033 | 19.0 | 1178 | 0.1355 | 0.5462 | 0.6132 | 0.5778 | 0.9793 | | 0.0033 | 20.0 | 1240 | 0.1346 | 0.5556 | 0.6132 | 0.5830 | 0.9796 | | 0.0033 | 21.0 | 1302 | 0.1386 | 0.5403 | 0.6321 | 0.5826 | 0.9784 | | 0.0033 | 22.0 | 1364 | 0.1389 | 0.5508 | 0.6132 | 0.5804 | 0.9790 | | 0.0033 | 23.0 | 1426 | 0.1376 | 0.55 | 0.6226 | 0.5841 | 0.9790 | | 0.0033 | 24.0 | 1488 | 0.1394 | 0.5641 | 0.6226 | 0.5919 | 0.9796 | | 0.0012 | 25.0 | 1550 | 0.1408 | 0.55 | 0.6226 | 0.5841 | 0.9789 | | 0.0012 | 26.0 | 1612 | 0.1413 | 0.5739 | 0.6226 | 0.5973 | 0.9792 | | 0.0012 | 27.0 | 1674 | 0.1417 | 0.5455 | 0.6226 | 0.5815 | 0.9787 | | 0.0012 | 28.0 | 1736 | 0.1424 | 0.5455 | 0.6226 | 0.5815 | 0.9787 | | 0.0012 | 29.0 | 1798 | 0.1419 | 0.5546 | 0.6226 | 0.5867 | 0.9790 | | 0.0012 | 30.0 | 1860 | 0.1417 | 0.5690 | 0.6226 | 0.5946 | 0.9790 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ljl2020/roberta-finetuned-subjqa-movies_2
ljl2020
2023-03-13T12:16:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-13T12:14:16Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Lajeremi/distilbert-base-uncased-finetuned-emotion
Lajeremi
2023-03-13T12:00:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-13T11:49:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8511 | 1.0 | 250 | 0.3244 | 0.9075 | 0.9040 | | 0.2535 | 2.0 | 500 | 0.2205 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
GodfreyJ/play
GodfreyJ
2023-03-13T11:58:57Z
0
0
null
[ "region:us" ]
null
2023-03-13T11:57:27Z
A little blue boy standing on a red rock orbitting around the sun
MrDivakaruni/Reinforce-pixelcopter_policy
MrDivakaruni
2023-03-13T11:48:24Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-09T09:03:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter_policy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 26.60 +/- 21.03 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Luisfrdz/ppo-Pyramids1
Luisfrdz
2023-03-13T11:44:56Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-13T11:44:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Luisfrdz/ppo-Pyramids1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
dmargutierrez/distilbert-base-uncased-TASTESet-ner
dmargutierrez
2023-03-13T11:44:25Z
119
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "named_entity_recognition", "food_recipes_ner", "dataset:dmargutierrez/TASTESet", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-13T09:56:15Z
--- license: apache-2.0 tags: - named_entity_recognition - food_recipes_ner metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-TASTESet-ner results: [] datasets: - dmargutierrez/TASTESet --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-TASTESet-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [TASTESet](https://huggingface.co/datasets/dmargutierrez/TASTESet) dataset. It achieves the following results on the evaluation set: - Loss: 0.3816 - Precision: 0.8929 - Recall: 0.9229 - F1: 0.9076 - Accuracy: 0.9130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 31 | 1.0797 | 0.6027 | 0.6903 | 0.6435 | 0.7063 | | No log | 2.0 | 62 | 0.6402 | 0.7681 | 0.8295 | 0.7976 | 0.8304 | | No log | 3.0 | 93 | 0.4899 | 0.8379 | 0.8789 | 0.8579 | 0.8728 | | No log | 4.0 | 124 | 0.4232 | 0.8716 | 0.8994 | 0.8853 | 0.8912 | | No log | 5.0 | 155 | 0.3883 | 0.8798 | 0.9043 | 0.8919 | 0.8992 | | No log | 6.0 | 186 | 0.3848 | 0.8769 | 0.9103 | 0.8933 | 0.9004 | | No log | 7.0 | 217 | 0.3684 | 0.8864 | 0.9123 | 0.8991 | 0.9046 | | No log | 8.0 | 248 | 0.3650 | 0.8930 | 0.9182 | 0.9054 | 0.9087 | | No log | 9.0 | 279 | 0.3628 | 0.8908 | 0.9197 | 0.9050 | 0.9096 | | No log | 10.0 | 310 | 0.3674 | 0.8933 | 0.9165 | 0.9047 | 0.9093 | | No log | 11.0 | 341 | 0.3668 | 0.8958 | 0.9177 | 0.9066 | 0.9120 | | No log | 12.0 | 372 | 0.3717 | 0.8904 | 0.9234 | 0.9066 | 0.9120 | | No log | 13.0 | 403 | 0.3693 | 0.8940 | 0.9197 | 0.9067 | 0.9126 | | No log | 14.0 | 434 | 0.3805 | 0.8913 | 0.9239 | 0.9073 | 0.9135 | | No log | 15.0 | 465 | 0.3788 | 0.8954 | 0.9202 | 0.9076 | 0.9123 | | No log | 16.0 | 496 | 0.3803 | 0.8935 | 0.9231 | 0.9081 | 0.9122 | | 0.3275 | 17.0 | 527 | 0.3814 | 0.8918 | 0.9229 | 0.9071 | 0.9126 | | 0.3275 | 18.0 | 558 | 0.3823 | 0.8921 | 0.9241 | 0.9079 | 0.9123 | | 0.3275 | 19.0 | 589 | 0.3827 | 0.8928 | 0.9224 | 0.9074 | 0.9124 | | 0.3275 | 20.0 | 620 | 0.3816 | 0.8929 | 0.9229 | 0.9076 | 0.9130 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
chanelcolgate/vit-base-patch16-224-finetuned-flower
chanelcolgate
2023-03-13T11:43:16Z
222
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-13T11:29:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ochapeau/q-Taxi-v3
ochapeau
2023-03-13T11:41:42Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T11:16:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ochapeau/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
droid22/a2c-AntBulletEnv-v0
droid22
2023-03-13T11:38:02Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T11:36:44Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1457.85 +/- 32.18 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aienthused/dqn-SpaceInvadersNoFrameskip-v4
aienthused
2023-03-13T11:11:40Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T11:11:03Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 454.00 +/- 166.40 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aienthused -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aienthused -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aienthused ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ehsanshfgh/persian
ehsanshfgh
2023-03-13T11:01:12Z
0
0
asteroid
[ "asteroid", "fa", "dataset:fka/awesome-chatgpt-prompts", "dataset:gsdf/EasyNegative", "dataset:nyanko7/LLaMA-65B", "license:creativeml-openrail-m", "region:us" ]
null
2023-03-13T11:00:14Z
--- license: creativeml-openrail-m datasets: - fka/awesome-chatgpt-prompts - gsdf/EasyNegative - nyanko7/LLaMA-65B language: - fa metrics: - bleurt - accuracy library_name: asteroid ---
reachrkr/ppo-LunarLander-v2
reachrkr
2023-03-13T10:54:43Z
4
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-08-19T08:12:15Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -139.57 +/- 78.56 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'reachrkr/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
trpakov/vit-pneumonia
trpakov
2023-03-13T10:48:50Z
239
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:chest-xray-classification", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-13T08:32:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - chest-xray-classification metrics: - accuracy model-index: - name: vit-pneumonia results: - task: name: Image Classification type: image-classification dataset: name: chest-xray-classification type: chest-xray-classification config: full split: validation args: full metrics: - name: Accuracy type: accuracy value: 0.976824034334764 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-pneumonia This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.1086 - Accuracy: 0.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0357 | 1.0 | 192 | 0.0955 | 0.9691 | | 0.0404 | 2.0 | 384 | 0.0720 | 0.9751 | | 0.0546 | 3.0 | 576 | 0.2275 | 0.9468 | | 0.0113 | 4.0 | 768 | 0.1386 | 0.9648 | | 0.0101 | 5.0 | 960 | 0.1212 | 0.9708 | | 0.0003 | 6.0 | 1152 | 0.0929 | 0.9777 | | 0.0002 | 7.0 | 1344 | 0.1051 | 0.9777 | | 0.0002 | 8.0 | 1536 | 0.1075 | 0.9777 | | 0.0002 | 9.0 | 1728 | 0.1084 | 0.9768 | | 0.0002 | 10.0 | 1920 | 0.1086 | 0.9768 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
avoroshilov/a2c-PandaReachDense-v2
avoroshilov
2023-03-13T10:46:10Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T10:45:10Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.43 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
abbiekeats/q-FrozenLake-v1-4x4-noSlippery
abbiekeats
2023-03-13T10:26:33Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T10:26:31Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.59 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="abbiekeats/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kunC/q-FrozenLake-v1-4x4-noSlippery
kunC
2023-03-13T10:24:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T10:21:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kunC/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MikolajDeja/facebook-nllb-200-distilled-600M-pl-en-opus100-finetune
MikolajDeja
2023-03-13T10:22:29Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-04T10:10:22Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer datasets: - opus100 model-index: - name: facebook-nllb-200-distilled-600M-pl-en-opus100-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # facebook-nllb-200-distilled-600M-pl-en-opus100-finetune This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the opus100 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
hasarinduperera/ppo-LunarLander-v2-PyTorch
hasarinduperera
2023-03-13T10:22:12Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T10:00:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 105.02 +/- 94.28 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'hasarinduperera/ppo-LunarLander-v2-PyTorch' 'batch_size': 512 'minibatch_size': 128} ```
cthiriet/a2c-PandaReachDense-v2
cthiriet
2023-03-13T10:16:31Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T10:13:48Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.15 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Endika99/NLP-TokenClass-NER
Endika99
2023-03-13T10:16:24Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-12T20:18:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-TokenClass-NER results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: en split: validation args: en metrics: - name: Precision type: precision value: 0.8119634827633192 - name: Recall type: recall value: 0.8424996465431924 - name: F1 type: f1 value: 0.8269497640854844 - name: Accuracy type: accuracy value: 0.92547623848305 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-TokenClass-NER This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - Precision: 0.8120 - Recall: 0.8425 - F1: 0.8269 - Accuracy: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0902 | 1.0 | 2500 | 0.3741 | 0.8120 | 0.8425 | 0.8269 | 0.9255 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
markjoe7447/markjoeBlogg
markjoe7447
2023-03-13T10:07:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-13T10:07:29Z
--- license: creativeml-openrail-m ---
huam/Reinforce-cartpole
huam
2023-03-13T09:56:48Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T09:56:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cthiriet/a2c-AntBulletEnv-v0
cthiriet
2023-03-13T09:54:59Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T09:53:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 826.68 +/- 73.57 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xiaozeng/lora_moebius
xiaozeng
2023-03-13T09:54:56Z
0
0
null
[ "paddlepaddle", "stable-diffusion", "stable-diffusion-ppdiffusers", "text-to-image", "ppdiffusers", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-13T06:07:02Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of a necklace in the shape of Mobius belt tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - xiaozeng/lora_moebius ๆœฌไป“ๅบ“็š„ LoRA ๆƒ้‡ๆ˜ฏๅŸบไบŽ runwayml/stable-diffusion-v1-5 ่ฎญ็ปƒ่€Œๆฅ็š„๏ผŒๆˆ‘ไปฌ้‡‡็”จ[DreamBooth](https://dreambooth.github.io/)็š„ๆŠ€ๆœฏๅนถไฝฟ็”จ a photo of a necklace in the shape of Mobius belt ๆ–‡ๆœฌ่ฟ›่กŒไบ†่ฎญ็ปƒใ€‚
ArthurZ/nllb-moe-128
ArthurZ
2023-03-13T09:53:34Z
5
0
transformers
[ "transformers", "pytorch", "nllb_moe", "feature-extraction", "nllb", "nllb-moe", "translation", "ace", "acm", "acq", "aeb", "af", "ajp", "ak", "als", "am", "apc", "ar", "ars", "ary", "arz", "as", "ast", "awa", "ayr", "azb", "azj", "ba", "bm", "ban", "be", "bem", "bn", "bho", "bjn", "bo", "bs", "bug", "bg", "ca", "ceb", "cs", "cjk", "ckb", "crh", "cy", "da", "de", "dik", "dyu", "dz", "el", "en", "eo", "et", "eu", "ee", "fo", "fj", "fi", "fon", "fr", "fur", "fuv", "gaz", "gd", "ga", "gl", "gn", "gu", "ht", "ha", "he", "hi", "hne", "hr", "hu", "hy", "ig", "ilo", "id", "is", "it", "jv", "ja", "kab", "kac", "kam", "kn", "ks", "ka", "kk", "kbp", "kea", "khk", "km", "ki", "rw", "ky", "kmb", "kmr", "knc", "kg", "ko", "lo", "lij", "li", "ln", "lt", "lmo", "ltg", "lb", "lua", "lg", "luo", "lus", "lvs", "mag", "mai", "ml", "mar", "min", "mk", "mt", "mni", "mos", "mi", "my", "nl", "nn", "nb", "npi", "nso", "nus", "ny", "oc", "ory", "pag", "pa", "pap", "pbt", "pes", "plt", "pl", "pt", "prs", "quy", "ro", "rn", "ru", "sg", "sa", "sat", "scn", "shn", "si", "sk", "sl", "sm", "sn", "sd", "so", "st", "es", "sc", "sr", "ss", "su", "sv", "swh", "szl", "ta", "taq", "tt", "te", "tg", "tl", "th", "ti", "tpi", "tn", "ts", "tk", "tum", "tr", "tw", "tzm", "ug", "uk", "umb", "ur", "uzn", "vec", "vi", "war", "wo", "xh", "ydd", "yo", "yue", "zh", "zsm", "zu", "dataset:flores-200", "arxiv:2207.04672", "license:cc-by-nc-4.0", "region:us" ]
translation
2023-03-13T09:02:34Z
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn" tags: - nllb - nllb-moe - translation license: "cc-by-nc-4.0" datasets: - flores-200 metrics: - bleu - spbleu - chrf++ inference: false --- # NLLB-MoE This is the model card of NLLB-MoE variant. - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper. - Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022 - License: CC-BY-NC - Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues The NLLB model was presented in [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by Marta R. Costa-jussร , James Cross, Onur ร‡elebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmรกn, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. ## Generating with NLLB-MoE The avalable checkpoints requires around 350GB of storage. Make sure to use `accelerate` if you do not have enough RAM on your machine. While generating the target text set the `forced_bos_token_id` to the target language id. The following example shows how to translate English to French using the *facebook/nllb-200-distilled-600M* model. Note that we're using the BCP-47 code for French `fra_Latn`. See [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200) for the list of all BCP-47 in the Flores 200 dataset. ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-moe-54b") >>> article = "UN Chief says there is no military solution in Syria" >>> inputs = tokenizer(article, return_tensors="pt") >>> translated_tokens = model.generate( ... **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["fra_Latn"], max_length=30 ... ) >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie ```
LinaTarasenko99/ADHD_Test_qa_model
LinaTarasenko99
2023-03-13T09:37:42Z
130
2
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-13T09:36:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ADHD_Test_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ADHD_Test_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 5.7461 | | No log | 2.0 | 4 | 5.5441 | | No log | 3.0 | 6 | 5.3226 | | No log | 4.0 | 8 | 5.0725 | | No log | 5.0 | 10 | 4.8020 | | No log | 6.0 | 12 | 4.5135 | | No log | 7.0 | 14 | 4.2225 | | No log | 8.0 | 16 | 3.9429 | | No log | 9.0 | 18 | 3.6847 | | No log | 10.0 | 20 | 3.4510 | | No log | 11.0 | 22 | 3.2467 | | No log | 12.0 | 24 | 3.0685 | | No log | 13.0 | 26 | 2.9113 | | No log | 14.0 | 28 | 2.7682 | | No log | 15.0 | 30 | 2.6341 | | No log | 16.0 | 32 | 2.4968 | | No log | 17.0 | 34 | 2.3575 | | No log | 18.0 | 36 | 2.2179 | | No log | 19.0 | 38 | 2.0802 | | No log | 20.0 | 40 | 1.9476 | | No log | 21.0 | 42 | 1.8254 | | No log | 22.0 | 44 | 1.6981 | | No log | 23.0 | 46 | 1.5769 | | No log | 24.0 | 48 | 1.4611 | | No log | 25.0 | 50 | 1.3675 | | No log | 26.0 | 52 | 1.2925 | | No log | 27.0 | 54 | 1.2285 | | No log | 28.0 | 56 | 1.1718 | | No log | 29.0 | 58 | 1.1221 | | No log | 30.0 | 60 | 1.0865 | | No log | 31.0 | 62 | 1.0644 | | No log | 32.0 | 64 | 1.0428 | | No log | 33.0 | 66 | 1.0304 | | No log | 34.0 | 68 | 1.0209 | | No log | 35.0 | 70 | 1.0109 | | No log | 36.0 | 72 | 1.0079 | | No log | 37.0 | 74 | 1.0096 | | No log | 38.0 | 76 | 1.0071 | | No log | 39.0 | 78 | 1.0064 | | No log | 40.0 | 80 | 1.0061 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Surteng/rlstc_vsn
Surteng
2023-03-13T09:29:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-13T09:25:13Z
--- license: creativeml-openrail-m ---
D0k-tor/ppo-Pyramids-Training
D0k-tor
2023-03-13T09:17:25Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-13T09:17:20Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: D0k-tor/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
AliChazz/GPT2_Fine_Tune_Requirement_Produce
AliChazz
2023-03-13T09:14:12Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-13T08:29:54Z
--- license: mit tags: - generated_from_trainer model-index: - name: GPT2_Fine_Tune_Requirement_Produce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2_Fine_Tune_Requirement_Produce This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 12 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ArthurZ/fairseq-nllb-moe
ArthurZ
2023-03-13T09:06:30Z
0
1
null
[ "region:us" ]
null
2023-03-11T10:09:09Z
# This repo shows how to convert a fairseq NLLB-MoE model to transformers and run a forward pass As the `fairseq` repository is not really optimised to run inference out-of-the-box, make sure you have a very very big CPU/GPU RAM. Around 600 GB are required to run an inference with the `fairseq` model, as you need to load the checkpoints (\~300GB) then build the model (\~300GB again), then finally you can load the checkpoints in the model. ## 0. Download the original checkpoints: The checkpoints in this repository were obtained using the following command (ased on the instructions given on the fairseq repository): ```bash wget --trust-remote-name path_to_nllb tar -cf model.tar.zf ``` The NLLB checkpoints should noz ## 1. Install PyTorch Use the following command: ```bash pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install fairseq ```bash git clone https://github.com/facebookresearch/fairseq.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 3. Clone this repo (click top right on "How to clone") ## 4. Run the inference script: Convert the checkpoints on the fly using the conversion script. `transformers` is required to do this: ```bash cd <path/to/cloned/repo> python3 /home/arthur_huggingface_co/fairseq/weights/checkpoints/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path <dump_folder> --nllb_moe_checkpoint_path <nllb_checkpoint_path> ``` ## 4. Run the inference script: ```bash cd <path/to/cloned/repo> bash run.sh ```
ammr/a2c-PandaReachDense-v2
ammr
2023-03-13T09:05:40Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T09:03:02Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.09 +/- 0.28 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Surteng/AOMx
Surteng
2023-03-13T09:05:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-01T02:21:09Z
--- license: creativeml-openrail-m ---
alexbalandi/ppo-LunarLander-v2-4milsteps-200-envs
alexbalandi
2023-03-13T08:50:05Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-12T13:05:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.02 +/- 16.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ochapeau/ppo-LunarLander-v2
ochapeau
2023-03-13T08:48:38Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T08:24:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.80 +/- 25.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
qiaoqian/my_awesome_model
qiaoqian
2023-03-13T08:41:15Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-13T08:18:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93084 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2367 - Accuracy: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2302 | 1.0 | 1563 | 0.1915 | 0.9289 | | 0.1474 | 2.0 | 3126 | 0.2367 | 0.9308 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
reachrkr/ppo-Pyramids
reachrkr
2023-03-13T08:30:28Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-13T08:30:22Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: reachrkr/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
utyug1/poca-SoccerTwos
utyug1
2023-03-13T08:24:14Z
39
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-13T08:24:06Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: utyug1/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
ChaiML/gpt2_base_retry_and_continue_12m_reward_model
ChaiML
2023-03-13T08:22:54Z
104
2
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "reward_model", "RLHF", "en", "arxiv:2303.06135", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-02-03T17:37:48Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-classification tags: - pytorch - reward_model - transformers - RLHF library_name: transformers --- This is part of the Chai reward-model series, using the GPT2 architecture with a classification head, optimising for a user accepting the completion generated by the base model. Its training dataset consists of purely user-generated content [retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model), where a user has the option to decline the generated response via the retry button or end the conversation. ## Model details - Developed by [Chai Research](https://www.chai-research.com/) - Model type: Transformer-based Classification Model - Language: English - License: cc-by-nc-4.0 - Contact: for general correspondence, please email [hello@chai-research.com](mailto:hello@chai-research.com?subject=Huggingface%20Model%20Inquiry) ## Uses and limitations ### Intended use This reward model was developed primarily for commercial purposes. It learns an inner representation of response quality rated by humans that can be used to conduct best-of-N sampling and Reinforcement Leanring with the PPO framework. In addition to scientific uses, you may also further fine-tune and adapt this reward model for deployment, as long as your use is in accordance with the Creative Commons Attribution Non Commercial 4.0 (cc-by-nc-4.0) license, i.e. non-commercial use. This model works with the Transformers Library. If you decide to this pre-trained reward model as a basis for your fine-tuned model, please note that you need to conduct your own risk and bias assessment. ### Out-of-scope use This reward model is **not** intended for deployment as-is. It is not a product and cannot be used for human-facing interactions without supervision. This model **has not** been optimised for common reward-model objectives such as harmfulness, truthfulness and helpfulness, it is only trained based on user actions present on the Chai mobile app platform. Therefore, this model will **not** rank responses appropriately when evaluating on common open-sourced datasets. All base model responses within the training data were generated using an in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), therefore the model performance may degrade when the input is generated using other language models. ### How to use This reward model can be loaded using the `AutoModelForSequenceClassification` functionality, with a GPT2 tokenizer where the `pad_token_id` is set to the EOS token id, padding sides need to be set according to the configurations used during model training. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForSequenceClassification.from_pretrained("ChaiML/gpt2_base_retry_and_continue_12m_reward_model") tokenizer.pad_token_id = 50256 tokenizer.truncation_side = โ€˜leftโ€™ tokenizer.padding_side = โ€˜rightโ€™ tokens = self.eval_tokenizer(candidates, return_tensors='pt', return_attention_mask=True, padding='longest', truncation=True, max_length=256) reward = model(**tokens).logits ``` ## Model training ### Training dataset This model was trained by randomly sampling 12 million rows out of the [ChaiML/retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model) dataset. The original dataset contains over 50 million rows of completions (chatbot responses), along with number of remaining user messages within their corresponding conversations and whether the user pressed the "retry" button (where the completion is rejected and resampled). The model which was used to generate these completions is a in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), with the following sampling parameters: <figure style="width:30em"> | Parameters | Value | | ---------------------- | ----------- | | temperature | 0.72 | | repetition_penalty | 1.13125 | | max_new_tokens | 64 | | top_p | 0.725 | | top_k | 0 | | eos_token_id | 198 | | do_sample | True | </figure> ### Training procedure The `gpt2_base_retry_and_continue_12m_reward_model` was trained using a [gpt2](https://huggingface.co/gpt2) base model and a classification head with single output. Binary Cross Entropy loss was used. The model was trained on 4xA40 GPUs, 16 per device batch size and gradient accumulation of 1 (therefore the effective batch size is 64), with 1e-5 learning rate for 2 epochs for a total of 375,000 steps. Tensor parallelism and pipeline parallelism were used to distribute the model across GPUs. For evaluation metrics used during training, please see our [Weights and Biases Log](https://wandb.ai/jellywibble/reward). ### BibTeX entry To cite this model: ```bibtex @misc{ author = {Chai Research, Irvine, Boubert, Raina, Liusie, Mudupalli, Korshuk, Liu, Cremer, Assassi, C. Beauchamp, Lu, Rialan, W. Beauchamp}, title = {{Rewarding chatbots for real-world engagement with millions of users}}, howpublished = {\url{https://arxiv.org/abs/2303.06135}}, year = 2023, month = Mar } ``` If you use this model, we would love to hear about it! Reach out on [correspondence email](mailto:thomas@chai-research.com?subject=Chai%20Research%20Paper%20Enquiry) or Discord. ### Acknowledgements This project would not have been possible without the support from members of [Seamless Capital](https://www.seamless-capital.com/) We thank the following authors from the [Machine Intelligence Laboratory](https://mi.eng.cam.ac.uk/) for their collaboration: - [Vysas Raina](https://www.linkedin.com/in/vyas-raina-71b226152/) - [Adian Liusie](https://www.linkedin.com/in/adian-liusie-00b60511a/)
ChaiML/gpt2_large_retry_and_continue_12m_reward_model
ChaiML
2023-03-13T08:22:13Z
176
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "reward_model", "RLHF", "text-classification", "en", "arxiv:2303.06135", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-02-06T01:14:30Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-classification tags: - pytorch - reward_model - transformers - RLHF library_name: transformers --- This is part of the Chai reward-model series, using the GPT2 architecture with a classification head, optimising for a user accepting the completion generated by the base model. Its training dataset consists of purely user-generated content [retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model), where a user has the option to decline the generated response via the retry button or end the conversation. ## Model details - Developed by [Chai Research](https://www.chai-research.com/) - Model type: Transformer-based Classification Model - Language: English - License: cc-by-nc-4.0 - Contact: for general correspondence, please email [hello@chai-research.com](mailto:hello@chai-research.com?subject=Huggingface%20Model%20Inquiry) ## Uses and limitations ### Intended use This reward model was developed primarily for commercial purposes. It learns an inner representation of response quality rated by humans that can be used to conduct best-of-N sampling and Reinforcement Leanring with the PPO framework. In addition to scientific uses, you may also further fine-tune and adapt this reward model for deployment, as long as your use is in accordance with the Creative Commons Attribution Non Commercial 4.0 (cc-by-nc-4.0) license, i.e. non-commercial use. This model works with the Transformers Library. If you decide to this pre-trained reward model as a basis for your fine-tuned model, please note that you need to conduct your own risk and bias assessment. ### Out-of-scope use This reward model is **not** intended for deployment as-is. It is not a product and cannot be used for human-facing interactions without supervision. This model **has not** been optimised for common reward-model objectives such as harmfulness, truthfulness and helpfulness, it is only trained based on user actions present on the Chai mobile app platform. Therefore, this model will **not** rank responses appropriately when evaluating on common open-sourced datasets. All base model responses within the training data were generated using an in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), therefore the model performance may degrade when the input is generated using other language models. ### How to use This reward model can be loaded using the `AutoModelForSequenceClassification` functionality, with a GPT2 tokenizer where the `pad_token_id` is set to the EOS token id, padding sides need to be set according to the configurations used during model training. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForSequenceClassification.from_pretrained("ChaiML/gpt2_large_retry_and_continue_12m_reward_model") tokenizer.pad_token_id = 50256 tokenizer.truncation_side = โ€˜leftโ€™ tokenizer.padding_side = โ€˜rightโ€™ tokens = self.eval_tokenizer(candidates, return_tensors='pt', return_attention_mask=True, padding='longest', truncation=True, max_length=256) reward = model(**tokens).logits ``` ## Model training ### Training dataset This model was trained by randomly sampling 12 million rows out of the [ChaiML/retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model) dataset. The original dataset contains over 50 million rows of completions (chatbot responses), along with number of remaining user messages within their corresponding conversations and whether the user pressed the "retry" button (where the completion is rejected and resampled). The model which was used to generate these completions is a in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), with the following sampling parameters: <figure style="width:30em"> | Parameters | Value | | ---------------------- | ----------- | | temperature | 0.72 | | repetition_penalty | 1.13125 | | max_new_tokens | 64 | | top_p | 0.725 | | top_k | 0 | | eos_token_id | 198 | | do_sample | True | </figure> ### Training procedure The `gpt2_large_retry_and_continue_12m_reward_model` was trained using a [gpt2-large](https://huggingface.co/gpt2-large) base model and a classification head with single output. Binary Cross Entropy loss was used. The model was trained on 4xA40 GPUs, 16 per device batch size and gradient accumulation of 1 (therefore the effective batch size is 64), with 1e-5 learning rate for 2 epochs for a total of 375,000 steps. Tensor parallelism and pipeline parallelism were used to distribute the model across GPUs. ### BibTeX entry To cite this model: ```bibtex @misc{ author = {Chai Research, Irvine, Boubert, Raina, Liusie, Mudupalli, Korshuk, Liu, Cremer, Assassi, C. Beauchamp, Lu, Rialan, W. Beauchamp}, title = {{Rewarding chatbots for real-world engagement with millions of users}}, howpublished = {\url{https://arxiv.org/abs/2303.06135}}, year = 2023, month = Mar } ``` If you use this model, we would love to hear about it! Reach out on [correspondence email](mailto:thomas@chai-research.com?subject=Chai%20Research%20Paper%20Enquiry) or Discord. ### Acknowledgements This project would not have been possible without the support from members of [Seamless Capital](https://www.seamless-capital.com/) We thank the following authors from the [Machine Intelligence Laboratory](https://mi.eng.cam.ac.uk/) for their collaboration: - [Vysas Raina](https://www.linkedin.com/in/vyas-raina-71b226152/) - [Adian Liusie](https://www.linkedin.com/in/adian-liusie-00b60511a/)
ChaiML/gpt2_base_retry_and_continue_5m_reward_model
ChaiML
2023-03-13T08:21:07Z
160
4
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "reward_model", "RLHF", "en", "arxiv:2303.06135", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T15:39:28Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-classification tags: - pytorch - reward_model - transformers - RLHF library_name: transformers --- This is part of the Chai reward-model series, using the GPT2 architecture with a classification head, optimising for a user accepting the completion generated by the base model. Its training dataset consists of purely user-generated content [retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model), where a user has the option to decline the generated response via the retry button or end the conversation. ## Model details - Developed by [Chai Research](https://www.chai-research.com/) - Model type: Transformer-based Classification Model - Language: English - License: cc-by-nc-4.0 - Contact: for general correspondence, please email [hello@chai-research.com](mailto:hello@chai-research.com?subject=Huggingface%20Model%20Inquiry) ## Uses and limitations ### Intended use This reward model was developed primarily for commercial purposes. It learns an inner representation of response quality rated by humans that can be used to conduct best-of-N sampling and Reinforcement Leanring with the PPO framework. In addition to scientific uses, you may also further fine-tune and adapt this reward model for deployment, as long as your use is in accordance with the Creative Commons Attribution Non Commercial 4.0 (cc-by-nc-4.0) license, i.e. non-commercial use. This model works with the Transformers Library. If you decide to this pre-trained reward model as a basis for your fine-tuned model, please note that you need to conduct your own risk and bias assessment. ### Out-of-scope use This reward model is **not** intended for deployment as-is. It is not a product and cannot be used for human-facing interactions without supervision. This model **has not** been optimised for common reward-model objectives such as harmfulness, truthfulness and helpfulness, it is only trained based on user actions present on the Chai mobile app platform. Therefore, this model will **not** rank responses appropriately when evaluating on common open-sourced datasets. All base model responses within the training data were generated using an in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), therefore the model performance may degrade when the input is generated using other language models. ### How to use This reward model can be loaded using the `AutoModelForSequenceClassification` functionality, with a GPT2 tokenizer where the `pad_token_id` is set to the EOS token id, padding sides need to be set according to the configurations used during model training. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForSequenceClassification.from_pretrained("ChaiML/gpt2_base_retry_and_continue_5m_reward_model") tokenizer.pad_token_id = 50256 tokenizer.truncation_side = โ€˜leftโ€™ tokenizer.padding_side = โ€˜rightโ€™ tokens = self.eval_tokenizer(candidates, return_tensors='pt', return_attention_mask=True, padding='longest', truncation=True, max_length=256) reward = model(**tokens).logits ``` ## Model training ### Training dataset This model was trained by randomly sampling 5 million rows out of the [ChaiML/retry_and_continue_50m_reward_model](https://huggingface.co/datasets/ChaiML/retry_and_continue_50m_reward_model) dataset. The original dataset contains over 50 million rows of completions (chatbot responses), along with number of remaining user messages within their corresponding conversations and whether the user pressed the "retry" button (where the completion is rejected and resampled). The model which was used to generate these completions is a in-house variant of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B), with the following sampling parameters: <figure style="width:30em"> | Parameters | Value | | ---------------------- | ----------- | | temperature | 0.72 | | repetition_penalty | 1.13125 | | max_new_tokens | 64 | | top_p | 0.725 | | top_k | 0 | | eos_token_id | 198 | | do_sample | True | </figure> ### Training procedure The `gpt2_base_retry_and_continue_5m_reward_model` was trained using a [gpt2](https://huggingface.co/gpt2) base model and a classification head with single output. Binary Cross Entropy loss was used. The model was trained on 4xA40 GPUs, 16 per device batch size and gradient accumulation of 1 (therefore the effective batch size is 64), with 1e-5 learning rate for 2 epochs for a total of 156,240 steps. Tensor parallelism and pipeline parallelism were used to distribute the model across GPUs. For evaluation metrics used during training, please see our [Weights and Biases Log](https://wandb.ai/jellywibble/reward). ### BibTeX entry To cite this model: ```bibtex @misc{ author = {Chai Research, Irvine, Boubert, Raina, Liusie, Mudupalli, Korshuk, Liu, Cremer, Assassi, C. Beauchamp, Lu, Rialan, W. Beauchamp}, title = {{Rewarding chatbots for real-world engagement with millions of users}}, howpublished = {\url{https://arxiv.org/abs/2303.06135}}, year = 2023, month = Mar } ``` If you use this model, we would love to hear about it! Reach out on [correspondence email](mailto:thomas@chai-research.com?subject=Chai%20Research%20Paper%20Enquiry) or Discord. ### Acknowledgements This project would not have been possible without the support from members of [Seamless Capital](https://www.seamless-capital.com/) We thank the following authors from the [Machine Intelligence Laboratory](https://mi.eng.cam.ac.uk/) for their collaboration: - [Vysas Raina](https://www.linkedin.com/in/vyas-raina-71b226152/) - [Adian Liusie](https://www.linkedin.com/in/adian-liusie-00b60511a/)
s-spektrum-m/FinSTA
s-spektrum-m
2023-03-13T08:05:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-03-13T03:51:10Z
--- license: mit author: Siddharth Mohanty date: 3/12/2023 --- # FinSTA: Financial Share Tracking and Allocation --- Distributed by Siddharth Mohanty under the MIT License 2023
danendra/Reinforce-Pixelcopter-PLE-v0
danendra
2023-03-13T08:04:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T06:09:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.90 +/- 19.14 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dineshresearch/rl_course_vizdoom_health_gathering_supreme
dineshresearch
2023-03-13T07:57:05Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T07:56:58Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.18 +/- 4.79 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dineshresearch/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Mehtap/base_09
Mehtap
2023-03-13T07:36:13Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-10T11:13:19Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: base Turkish Whisper (bTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base Turkish Whisper (bTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 1.4238 - Wer: 0.9367 - Cer: 0.7611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.6918 | 2.85 | 100 | 1.5023 | 0.7940 | 0.4289 | | 0.6823 | 5.71 | 200 | 1.0475 | 0.8783 | 0.5573 | | 0.4277 | 8.57 | 300 | 0.9944 | 0.8054 | 0.6120 | | 0.2244 | 11.43 | 400 | 1.0460 | 0.6878 | 0.3825 | | 0.1138 | 14.28 | 500 | 1.2059 | 0.7510 | 0.5020 | | 0.0468 | 17.14 | 600 | 1.2180 | 1.1436 | 1.0719 | | 0.0193 | 19.99 | 700 | 1.2801 | 1.1500 | 0.9344 | | 0.0093 | 22.85 | 800 | 1.4574 | 0.9238 | 0.6799 | | 0.0068 | 25.71 | 900 | 1.4137 | 0.9400 | 0.8128 | | 0.0062 | 28.57 | 1000 | 1.4238 | 0.9367 | 0.7611 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
Mehtap/base_07
Mehtap
2023-03-13T07:35:20Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-03T09:43:39Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: base Turkish Whisper (bTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base Turkish Whisper (bTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 1.1836 - Wer: 1.7109 - Cer: 1.2860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.7878 | 4.74 | 100 | 1.4516 | 0.8560 | 0.5525 | | 0.6701 | 9.51 | 200 | 0.9194 | 0.8543 | 0.6112 | | 0.3364 | 14.28 | 300 | 0.8871 | 0.7415 | 0.4992 | | 0.1228 | 19.05 | 400 | 0.9671 | 0.9052 | 0.6678 | | 0.0355 | 23.78 | 500 | 1.0515 | 0.8961 | 0.6208 | | 0.0148 | 28.55 | 600 | 1.0684 | 0.6644 | 0.3694 | | 0.0056 | 33.32 | 700 | 1.1488 | 1.3315 | 0.8732 | | 0.0041 | 38.09 | 800 | 1.1700 | 1.7415 | 1.1934 | | 0.0034 | 42.83 | 900 | 1.1801 | 1.7745 | 1.2643 | | 0.0032 | 47.6 | 1000 | 1.1836 | 1.7109 | 1.2860 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
Mehtap/base_06
Mehtap
2023-03-13T07:34:43Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-02T11:46:36Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: base Turkish Whisper (bTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base Turkish Whisper (bTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 1.9500 - Wer: 2.1895 - Cer: 1.3548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.7116 | 5.53 | 100 | 1.9115 | 1.1785 | 0.6901 | | 0.6101 | 11.11 | 200 | 1.5123 | 1.1039 | 0.6221 | | 0.2376 | 16.64 | 300 | 1.5636 | 0.9817 | 0.6448 | | 0.0591 | 22.21 | 400 | 1.7179 | 2.2005 | 1.3384 | | 0.0177 | 27.75 | 500 | 1.8454 | 1.9205 | 1.2140 | | 0.0096 | 33.32 | 600 | 1.8529 | 1.2983 | 0.7777 | | 0.0048 | 38.85 | 700 | 1.9306 | 2.3411 | 1.4385 | | 0.0032 | 44.43 | 800 | 1.9388 | 1.9523 | 1.2705 | | 0.0028 | 49.96 | 900 | 1.9472 | 1.8655 | 1.2023 | | 0.0026 | 55.53 | 1000 | 1.9500 | 2.1895 | 1.3548 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
reachrkr/ppo-SnowballTarget
reachrkr
2023-03-13T07:15:38Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-13T07:15:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: reachrkr/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
dineshresearch/ppo-LunarLander-v3
dineshresearch
2023-03-13T07:12:59Z
3
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-06T14:37:14Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -121.76 +/- 94.73 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'dineshresearch/ppo-LunarLander-v3' 'batch_size': 512 'minibatch_size': 128} ```
dineshresearch/ppo-LunarLander-v2
dineshresearch
2023-03-13T07:10:35Z
2
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-06T12:41:43Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -119.34 +/- 68.97 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'dineshresearch/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
dineshresearch/ppo-SoccerTwos3
dineshresearch
2023-03-13T06:29:39Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-13T06:29:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dineshresearch/ppo-SoccerTwos3 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
alvarez/Reinforce_Pixelcopter_001
alvarez
2023-03-13T06:16:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T06:09:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_Pixelcopter_001 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 12.20 +/- 8.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sd99/Pixelcopter-PLE-v1
sd99
2023-03-13T06:14:46Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T06:14:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.60 +/- 15.76 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Carlosrelao/q-Taxi-v3
Carlosrelao
2023-03-13T06:10:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T06:10:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.66 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Carlosrelao/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Carlosrelao/q-FrozenLake-v1-4x4-noSlippery
Carlosrelao
2023-03-13T06:06:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T06:06:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Carlosrelao/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Huffon/paraphrase-multilingual-mpnet-base-v2-512
Huffon
2023-03-13T05:42:17Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-08T07:43:51Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-mpnet-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
juansebashr/Reinforce-Pixelcopter-PLE-v0
juansebashr
2023-03-13T05:38:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T03:53:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 41.10 +/- 23.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
syaimu/7th_JP_test
syaimu
2023-03-13T05:32:42Z
0
78
null
[ "license:other", "region:us" ]
null
2023-03-13T05:13:08Z
--- license: other --- the skin color of Japanese people. <img src="https://i.imgur.com/sJjPD5h.jpg" width="1700" height="">
EnD-Diffusers/PunkedMerge
EnD-Diffusers
2023-03-13T05:31:17Z
0
0
diffusers
[ "diffusers", "stable diffusion", "duskfallcrew", "comic book style", "anime", "en", "license:creativeml-openrail-m", "region:us" ]
null
2023-03-13T05:21:06Z
--- license: creativeml-openrail-m language: - en library_name: diffusers tags: - stable diffusion - duskfallcrew - comic book style - anime --- Trying to push more of our content that is merges to HF. If you want to see what this is : https://civitai.com/models/5517/duskfalls-punked-merge-mix I'll get the sample pics running and more details when i have time! Duskfall's Punked Merge Mix If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk Discord: https://discord.gg/Da7s8d3KJ7 Source Merges: Duskfall AI Duskfall Portal Crew Duskfall's Dissociated Open Ended Journey Elldreth's Lucid Mix Synthwave Punk Prompt Hero's OpenJourney Yes if you use lisdusk 1 and 2, kairowez and duskypie you WILL get cat people. Less of our art, more cat people. As this has DREAMLIKE INCLUDED, be aware you cannot commercialize this. Except y'know generated images. See Elldreth's Lucid mix and Dreamlike 1.0 Lisc listed here: https://civitai.com/models/1274/dreamlike-diffusion-10
Rishu115/mlm-bert-train_finalTraining
Rishu115
2023-03-13T05:22:50Z
0
0
tf-keras
[ "tf-keras", "tf", "bert", "generated_from_keras_callback", "region:us" ]
null
2023-03-11T11:37:46Z
--- tags: - generated_from_keras_callback model-index: - name: Rishu115/mlm-bert-train_finalTraining results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rishu115/mlm-bert-train_finalTraining This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2958 - Validation Loss: 1.1886 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 47396, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.2956 | 1.1881 | 0 | | 1.2949 | 1.1895 | 1 | | 1.2951 | 1.1890 | 2 | | 1.2952 | 1.1902 | 3 | | 1.2950 | 1.1869 | 4 | | 1.2957 | 1.1867 | 5 | | 1.2958 | 1.1886 | 6 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
chocoyj/distilbert-base-uncased-finetuned-emotion
chocoyj
2023-03-13T04:54:51Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-13T04:44:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9276043877262424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Accuracy: 0.9275 - F1: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8125 | 1.0 | 250 | 0.3089 | 0.9055 | 0.9030 | | 0.2492 | 2.0 | 500 | 0.2154 | 0.9275 | 0.9276 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
jilsa212/output2
jilsa212
2023-03-13T04:34:13Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-19T20:11:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: output2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4-use-violation
dshin
2023-03-13T04:22:26Z
47
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:22:00Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpwgnn_c73/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpwgnn_c73/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpwgnn_c73/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-f-batch-size-8-epoch-4
dshin
2023-03-13T04:22:16Z
47
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:51Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpgzelo33q/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-4") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpgzelo33q/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-4") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpgzelo33q/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-4") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-h-batch-size-8-epoch-4-use-violation
dshin
2023-03-13T04:22:00Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:34Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp9l_sekkg/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-4-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp9l_sekkg/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-4-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp9l_sekkg/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-4-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3-use-violation
dshin
2023-03-13T04:21:54Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:25Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpfs6upoqk/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpfs6upoqk/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpfs6upoqk/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4
dshin
2023-03-13T04:21:46Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:21Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp7i_j0cj5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp7i_j0cj5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp7i_j0cj5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-4") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-f-batch-size-8-epoch-3
dshin
2023-03-13T04:21:45Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:19Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp4r5qkujd/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-3") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp4r5qkujd/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-3") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp4r5qkujd/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-3") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-a-batch-size-8-epoch-4
dshin
2023-03-13T04:21:43Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:21:18Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpr3qr4507/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-4") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpr3qr4507/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-4") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpr3qr4507/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-4") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3
dshin
2023-03-13T04:21:15Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:20:49Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp2hrh7rtc/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp2hrh7rtc/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp2hrh7rtc/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-3") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2-use-violation
dshin
2023-03-13T04:20:54Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:20:29Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpy5lmo_rk/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpy5lmo_rk/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpy5lmo_rk/dshin/flan-t5-ppo-user-h-batch-size-8-epoch-2-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1-use-violation
dshin
2023-03-13T04:20:46Z
47
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:46Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpozmzub77/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpozmzub77/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpozmzub77/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-f-batch-size-8-epoch-1
dshin
2023-03-13T04:20:42Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:45Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpf8uphmjt/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-1") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpf8uphmjt/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-1") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpf8uphmjt/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-1") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-a-batch-size-8-epoch-2
dshin
2023-03-13T04:20:40Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:20:14Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpr8z0sw2q/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-2") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpr8z0sw2q/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-2") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpr8z0sw2q/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-2") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1
dshin
2023-03-13T04:20:09Z
47
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:43Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp2rtc3oyu/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp2rtc3oyu/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp2rtc3oyu/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-1") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-f-batch-size-8-epoch-0-use-violation
dshin
2023-03-13T04:19:37Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:08Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmpl2v6uzne/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-0-use-violation") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmpl2v6uzne/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-0-use-violation") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmpl2v6uzne/dshin/flan-t5-ppo-user-f-batch-size-8-epoch-0-use-violation") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-e-batch-size-8-epoch-0
dshin
2023-03-13T04:19:36Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:07Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp374vyfy5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-0") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp374vyfy5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-0") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp374vyfy5/dshin/flan-t5-ppo-user-e-batch-size-8-epoch-0") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
dshin/flan-t5-ppo-user-a-batch-size-8-epoch-0
dshin
2023-03-13T04:19:35Z
45
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-03-13T04:19:08Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="dshin//tmp/tmp29t_zb54/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-0") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp29t_zb54/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-0") model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp29t_zb54/dshin/flan-t5-ppo-user-a-batch-size-8-epoch-0") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
slopezay/a2c-PandaReachDense-v2
slopezay
2023-03-13T04:11:40Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T04:09:00Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.38 +/- 0.76 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
juansebashr/dqn-SpaceInvadersNoFrameskip-v4
juansebashr
2023-03-13T03:38:58Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T03:36:47Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 686.50 +/- 256.90 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga juansebashr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga juansebashr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga juansebashr ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
avoroshilov/ppo-SoccerTwos
avoroshilov
2023-03-13T03:35:05Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-12T13:19:04Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: avoroshilov/ppo-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
ToluClassics/extractive_reader_nq
ToluClassics
2023-03-13T03:27:00Z
121
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2023-03-12T13:45:08Z
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: extractive_reader_nq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # extractive_reader_nq This model is a fine-tuned version of [ToluClassics/extractive_reader_nq](https://huggingface.co/ToluClassics/extractive_reader_nq) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
juansebashr/Reinforce-CartPole-v1
juansebashr
2023-03-13T03:01:49Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T03:01:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ShreyasM/PixelCopter
ShreyasM
2023-03-13T02:48:23Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-13T02:06:51Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.40 +/- 12.32 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
WinterMute011/my_awesome_qa_model
WinterMute011
2023-03-13T02:40:53Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-13T01:01:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: WinterMute011/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # WinterMute011/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6512 - Validation Loss: 1.8806 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5835 | 2.3688 | 0 | | 1.9443 | 1.8806 | 1 | | 1.6512 | 1.8806 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.12.0-rc1 - Datasets 2.10.1 - Tokenizers 0.13.2
KonghaYao/MagicPrompt_SD_V1
KonghaYao
2023-03-13T02:23:26Z
0
2
null
[ "paddlepaddle", "code", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-03-09T12:53:02Z
--- license: cc-by-sa-4.0 language: - en pipeline_tag: text-generation tags: - code --- # MagicPrompt_SD_V1 This is a Prompt Generator likes [Gustavosta/MagicPrompt-Stable-Diffusion](https://huggingface.co/Gustavosta/MagicPrompt-Stable-Diffusion)! But I wash the origin prompts data, and trains a powerful model to generate prompt for [้ญ”ๅฏผ็ปช่ฎบ](https://magic-tag.netlify.app/) It's using Paddle to handle the training and other things. Not PyTorch or Tensorsflow. There's the result I get form this model: - You can use CPU to run the model! But GPU 10x faster then CPU ๐Ÿš€. - CPU (about 300ms/per ) | GPU (about 90ms/per ๐Ÿš€ ) V2-10 Model - You can add some change easier passing some params. ## ๐Ÿ“• Using example is here [้ฃžๆกจไป“ๅบ“](https://aistudio.baidu.com/aistudio/projectdetail/5116158?contributionType=1) You can wrapper a FastAPI or Flask to easily deploy it to your server
williamberman/controlnet-model-3-12-learning-rates
williamberman
2023-03-13T01:43:23Z
0
0
diffusers
[ "diffusers", "region:us" ]
null
2023-03-13T01:31:45Z
https://wandb.ai/williamberman/controlnet-model-3-11-mixed-precision/runs/b2mfgr68