modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 18:26:50
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 18:26:48
card
stringlengths
11
1.01M
TokenfreeEMNLPSubmission/bert-base-finetuned-masakhaner-amh
TokenfreeEMNLPSubmission
2023-04-04T05:08:24Z
106
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "en", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-04T05:08:12Z
--- language: - en license: apache-2.0 --- # BERT multilingual base model (cased) Pretrained model on the English dataset using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference between english and English. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. The pretrained model has been finetuned for one specific language for one specific task. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model = BertModel.from_pretrained("mushfiqur11/<repo_name>") ```
kambehmw/Reinforce-v2
kambehmw
2023-04-04T05:01:08Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-04T05:01:04Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.20 +/- 24.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Orreo/ColorRough_LoRA
Orreo
2023-04-04T04:46:18Z
0
1
null
[ "license:artistic-2.0", "region:us" ]
null
2023-04-04T04:28:47Z
--- license: artistic-2.0 --- 상업적 이용 전면 금지 No commercial use 트리거워드 rough skecth 권장 프롬 skecth style 추천 가중치 0.3~0.7 모델에 따라 결과물이 깨지는 경우 있음 ![R2.png](https://s3.amazonaws.com/moonup/production/uploads/63cf776e5c1d61bb23e0327c/hMzoBaU9RWuVJfbrq6bdz.png) ![R1.png](https://s3.amazonaws.com/moonup/production/uploads/63cf776e5c1d61bb23e0327c/vwUpSKQmc_j00nZyKV78V.png)
davis901/roberta-frame-CP
davis901
2023-04-04T04:40:41Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:davis901/autotrain-data-imdb-textclassification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-04T03:16:27Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - davis901/autotrain-data-imdb-textclassification co2_eq_emissions: emissions: 3.313265712444502 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 46471115134 - CO2 Emissions (in grams): 3.3133 ## Validation Metrics - Loss: 0.006 - Accuracy: 0.999 - Precision: 0.999 - Recall: 1.000 - AUC: 1.000 - F1: 0.999 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davis901/autotrain-imdb-textclassification-46471115134 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("davis901/autotrain-imdb-textclassification-46471115134", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davis901/autotrain-imdb-textclassification-46471115134", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Humayoun/Donut5WithRandomPlacing
Humayoun
2023-04-04T03:38:14Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-04-04T02:40:28Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: Donut5WithRandomPlacing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Donut5WithRandomPlacing This model is a fine-tuned version of [humayoun/Donut4](https://huggingface.co/humayoun/Donut4) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
davis901/autotrain-imdb-textclassification-46471115127
davis901
2023-04-04T03:22:52Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:davis901/autotrain-data-imdb-textclassification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-04T03:15:58Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - davis901/autotrain-data-imdb-textclassification co2_eq_emissions: emissions: 2.683579313085358 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 46471115127 - CO2 Emissions (in grams): 2.6836 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davis901/autotrain-imdb-textclassification-46471115127 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("davis901/autotrain-imdb-textclassification-46471115127", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davis901/autotrain-imdb-textclassification-46471115127", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/dash_eats-lica_rezende
huggingtweets
2023-04-04T02:59:37Z
135
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-04T02:59:25Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539146021808533504/g-XjE19Z_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/556455602331742208/KWkVe0TV_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Olivia’s World & dasha</div> <div style="text-align: center; font-size: 14px;">@dash_eats-lica_rezende</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Olivia’s World & dasha. | Data | Olivia’s World | dasha | | --- | --- | --- | | Tweets downloaded | 1115 | 3199 | | Retweets | 118 | 510 | | Short tweets | 120 | 574 | | Tweets kept | 877 | 2115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5n8zwv6v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dash_eats-lica_rezende's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rpkswkc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rpkswkc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dash_eats-lica_rezende') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RoachTheHorse/sd-class-butterflies-32
RoachTheHorse
2023-04-04T02:24:53Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-04T02:23:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('RoachTheHorse/sd-class-butterflies-32') image = pipeline().images[0] image ```
dongdongcui/DriveGPT
dongdongcui
2023-04-04T02:04:06Z
0
0
null
[ "pytorch", "question-answering", "en", "region:us" ]
question-answering
2023-03-24T23:28:37Z
--- language: - en pipeline_tag: question-answering ---
Larxel/q-Taxi-v3
Larxel
2023-04-04T01:39:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-04T01:39:23Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Larxel/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Geekay/flower-classifier
Geekay
2023-04-04T01:19:21Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-04-04T01:19:11Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: flower-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # flower-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### lily ![lily](images/lily.jpg) #### orchids ![orchids](images/orchids.jpg) #### roses ![roses](images/roses.jpg)
sgoodfriend/ppo-unet-MicrortsDefeatRandomEnemySparseReward-v3
sgoodfriend
2023-04-04T00:49:31Z
0
0
rl-algo-impls
[ "rl-algo-impls", "MicrortsDefeatRandomEnemySparseReward-v3", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-04T00:49:25Z
--- library_name: rl-algo-impls tags: - MicrortsDefeatRandomEnemySparseReward-v3 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 131.04 +/- 15.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MicrortsDefeatRandomEnemySparseReward-v3 type: MicrortsDefeatRandomEnemySparseReward-v3 --- # **PPO** Agent playing **MicrortsDefeatRandomEnemySparseReward-v3** This is a trained model of a **PPO** agent playing **MicrortsDefeatRandomEnemySparseReward-v3** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/ww60gryx. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [388c8ed](https://github.com/sgoodfriend/rl-algo-impls/tree/388c8ed9f7db1d5f5c380d981aeb8a85f34eeacb). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:-----------------------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | MicrortsDefeatRandomEnemySparseReward-v3 | 1 | 134.783 | 30.3561 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/40wjv5yz) | | ppo | MicrortsDefeatRandomEnemySparseReward-v3 | 2 | 131.042 | 15.1237 | 24 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ysujlrg4) | | ppo | MicrortsDefeatRandomEnemySparseReward-v3 | 3 | 137.025 | 21.6223 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/t81hur93) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [388c8ed](https://github.com/sgoodfriend/rl-algo-impls/tree/388c8ed9f7db1d5f5c380d981aeb8a85f34eeacb). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/ysujlrg4 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [388c8ed](https://github.com/sgoodfriend/rl-algo-impls/tree/388c8ed9f7db1d5f5c380d981aeb8a85f34eeacb). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env MicrortsDefeatRandomEnemySparseReward-v3 --seed 2 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/ww60gryx were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone git@github.com:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh [-a {"ppo a2c dqn vpg"}] [-e ENVS] [-j {6}] [-p {rl-algo-impls-benchmarks}] [-s {"1 2 3"}] ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` additional_keys_to_log: - microrts_stats algo: ppo algo_hyperparams: batch_size: 3072 clip_range: 0.1 clip_range_decay: none clip_range_vf: 0.1 ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: spike max_grad_norm: 0.5 n_epochs: 4 n_steps: 512 ppo2_vf_coef_halving: true vf_coef: 0.5 device: auto env: unet-MicrortsDefeatRandomEnemySparseReward-v3 env_hyperparams: bots: randomBiasedAI: 24 env_type: microrts make_kwargs: map_path: maps/16x16/basesWorkers16x16.xml max_steps: 2000 num_selfplay_envs: 0 render_theme: 2 reward_weight: - 10 - 1 - 1 - 0.2 - 1 - 4 n_envs: 24 env_id: MicrortsDefeatRandomEnemySparseReward-v3 eval_params: deterministic: false n_timesteps: 2000000 policy_hyperparams: activation_fn: relu actor_head_style: unet cnn_flatten_dim: 256 cnn_style: microrts v_hidden_sizes: - 256 - 128 seed: 2 use_deterministic_algorithms: true wandb_entity: null wandb_group: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_388c8ed - host_155-248-197-5 - branch_unet - v0.0.8 ```
kachinni/emotion-recognition
kachinni
2023-04-04T00:32:40Z
0
1
null
[ "region:us" ]
null
2023-04-04T00:29:18Z
# Emotion Recognition on Gradio This repo contains code to launch a [Gradio](https://github.com/gradio-app/gradio) interface for Emotion Recognition on [Gradio Hub](https://hub.gradio.app) Please see the **original repo**: [omar178/Emotion-recognition](https://github.com/omar178/Emotion-recognition) ![](https://raw.githubusercontent.com/gradio-app/hub-emotion-recognition/master/thumbnail.png)
EchoShao8899/t5_event_relation_extractor
EchoShao8899
2023-04-04T00:08:28Z
115
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-06T09:06:58Z
--- license: cc --- This is the event-relation extraction model in ACCENT (An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems).
globophobe/q-FrozenLake-v1-4x4-noSlippery
globophobe
2023-04-03T23:38:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T23:38:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="globophobe/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ray2791/distilbert-base-uncased-finetuned-imdb
Ray2791
2023-04-03T23:29:52Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-04-03T23:16:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
Brizape/tmvar_0.0001_ES12
Brizape
2023-04-03T23:07:14Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T22:51:16Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_0.0001_ES12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_0.0001_ES12 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0194 - Precision: 0.8877 - Recall: 0.8973 - F1: 0.8925 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2263 | 1.47 | 25 | 0.0788 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0492 | 2.94 | 50 | 0.0355 | 0.2576 | 0.3676 | 0.3029 | 0.9863 | | 0.0258 | 4.41 | 75 | 0.0224 | 0.6 | 0.6811 | 0.6380 | 0.9933 | | 0.013 | 5.88 | 100 | 0.0141 | 0.8267 | 0.9027 | 0.8630 | 0.9969 | | 0.0031 | 7.35 | 125 | 0.0162 | 0.8218 | 0.8973 | 0.8579 | 0.9971 | | 0.0028 | 8.82 | 150 | 0.0187 | 0.8449 | 0.8541 | 0.8495 | 0.9961 | | 0.0024 | 10.29 | 175 | 0.0154 | 0.8267 | 0.9027 | 0.8630 | 0.9965 | | 0.0014 | 11.76 | 200 | 0.0159 | 0.8221 | 0.9243 | 0.8702 | 0.9966 | | 0.0013 | 13.24 | 225 | 0.0179 | 0.8579 | 0.8811 | 0.8693 | 0.9971 | | 0.0009 | 14.71 | 250 | 0.0165 | 0.8807 | 0.8378 | 0.8587 | 0.9964 | | 0.0005 | 16.18 | 275 | 0.0184 | 0.8549 | 0.8919 | 0.8730 | 0.9966 | | 0.0003 | 17.65 | 300 | 0.0188 | 0.8777 | 0.8919 | 0.8847 | 0.9967 | | 0.0002 | 19.12 | 325 | 0.0195 | 0.8474 | 0.8703 | 0.8587 | 0.9964 | | 0.0002 | 20.59 | 350 | 0.0192 | 0.8836 | 0.9027 | 0.8930 | 0.9969 | | 0.0003 | 22.06 | 375 | 0.0191 | 0.8889 | 0.9081 | 0.8984 | 0.9969 | | 0.0002 | 23.53 | 400 | 0.0194 | 0.8877 | 0.8973 | 0.8925 | 0.9968 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
sgolkar/gpt2-medium-finetuned-brookstraining
sgolkar
2023-04-03T22:25:30Z
205
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-03T21:38:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-medium-finetuned-brookstraining results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-finetuned-brookstraining This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 100 | 3.4632 | | No log | 2.0 | 200 | 3.4360 | | No log | 3.0 | 300 | 3.4539 | | No log | 4.0 | 400 | 3.4867 | | 3.2934 | 5.0 | 500 | 3.5341 | | 3.2934 | 6.0 | 600 | 3.6145 | | 3.2934 | 7.0 | 700 | 3.6938 | | 3.2934 | 8.0 | 800 | 3.8198 | | 3.2934 | 9.0 | 900 | 3.9274 | | 2.2258 | 10.0 | 1000 | 4.0388 | | 2.2258 | 11.0 | 1100 | 4.1807 | | 2.2258 | 12.0 | 1200 | 4.2635 | | 2.2258 | 13.0 | 1300 | 4.3549 | | 2.2258 | 14.0 | 1400 | 4.5134 | | 1.5305 | 15.0 | 1500 | 4.5719 | | 1.5305 | 16.0 | 1600 | 4.6932 | | 1.5305 | 17.0 | 1700 | 4.7392 | | 1.5305 | 18.0 | 1800 | 4.7729 | | 1.5305 | 19.0 | 1900 | 4.8324 | | 1.1988 | 20.0 | 2000 | 4.8470 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.11.0
huggingtweets/nathaniacolver
huggingtweets
2023-04-03T22:05:58Z
141
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-07T00:58:43Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1606922334535057408/ODScb83P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nia :)</div> <div style="text-align: center; font-size: 14px;">@nathaniacolver</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nia :). | Data | nia :) | | --- | --- | | Tweets downloaded | 3177 | | Retweets | 538 | | Short tweets | 100 | | Tweets kept | 2539 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vh4m181u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nathaniacolver's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jab5ifpt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jab5ifpt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nathaniacolver') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
olivierdehaene/optimized-santacoder
olivierdehaene
2023-04-03T22:04:43Z
12
8
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "custom_code", "code", "dataset:bigcode/the-stack", "arxiv:1911.02150", "arxiv:2207.14255", "arxiv:2301.03988", "license:openrail", "model-index", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-01-19T17:22:06Z
--- license: openrail datasets: - bigcode/the-stack language: - code programming_language: - Java - JavaScript - Python pipeline_tag: text-generation inference: false widget: - text: 'def print_hello_world():' example_title: Hello world group: Python model-index: - name: SantaCoder results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 0.18 verified: false - name: pass@10 type: pass@10 value: 0.29 verified: false - name: pass@100 type: pass@100 value: 0.49 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL MBPP (Python) metrics: - name: pass@1 type: pass@1 value: 0.35 verified: false - name: pass@10 type: pass@10 value: 0.58 verified: false - name: pass@100 type: pass@100 value: 0.77 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 0.16 verified: false - name: pass@10 type: pass@10 value: 0.27 verified: false - name: pass@100 type: pass@100 value: 0.47 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL MBPP (Javascript) metrics: - name: pass@1 type: pass@1 value: 0.28 verified: false - name: pass@10 type: pass@10 value: 0.51 verified: false - name: pass@100 type: pass@100 value: 0.70 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 0.15 verified: false - name: pass@10 type: pass@10 value: 0.26 verified: false - name: pass@100 type: pass@100 value: 0.41 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL MBPP (Java) metrics: - name: pass@1 type: pass@1 value: 0.28 verified: false - name: pass@10 type: pass@10 value: 0.44 verified: false - name: pass@100 type: pass@100 value: 0.59 verified: false - task: type: text-generation dataset: type: loubnabnl/humaneval_infilling name: HumanEval FIM (Python) metrics: - name: single_line type: exact_match value: 0.44 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL HumanEval FIM (Java) metrics: - name: single_line type: exact_match value: 0.62 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL HumanEval FIM (JavaScript) metrics: - name: single_line type: exact_match value: 0.60 verified: false - task: type: text-generation dataset: type: code_x_glue_ct_code_to_text name: CodeXGLUE code-to-text (Python) metrics: - name: BLEU type: bleu value: 18.13 verified: false --- # Optimizd SantaCoder ![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/banner.png) A up to 60% faster version of bigcode/santacoder. # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [License](#license) 6. [Citation](#citation) # Model Summary The SantaCoder models are a series of 1.1B parameter models trained on the Python, Java, and JavaScript subset of [The Stack (v1.1)](https://huggingface.co/datasets/bigcode/the-stack) (which excluded opt-out requests). The main model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), was trained using near-deduplication and comment-to-code ratio as filtering criteria and using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255). In addition there are several models that were trained on datasets with different filter parameters and with architecture and objective variations. - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Project Website:** [bigcode-project.org](www.bigcode-project.org) - **Paper:** [🎅SantaCoder: Don't reach for the stars!🌟](https://arxiv.org/abs/2301.03988) - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org) - **Languages:** Python, Java, and JavaScript |Model|Architecture|Objective|Filtering| |:-|:-|:-|:-| |`mha`|MHA|AR + FIM| Base | |`no-fim`| MQA | AR| Base | |`fim`| MQA | AR + FIM | Base | |`stars`| MQA | AR + FIM | GitHub stars | |`fertility`| MQA | AR + FIM | Tokenizer fertility | |`comments`| MQA | AR + FIM | Comment-to-code ratio | |`dedup-alt`| MQA | AR + FIM | Stronger near-deduplication | |`final`| MQA | AR + FIM | Stronger near-deduplication and comment-to-code ratio | The `final` model is the best performing model and was trained twice as long (236B tokens) as the others. This checkpoint is the default model and available on the `main` branch. All other checkpoints are on separate branches with according names. # Use ## Intended use The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. You should phrase commands like they occur in source code such as comments (e.g. `# the following function computes the sqrt`) or write a function signature and docstring and let the model complete the function body. **Feel free to share your generations in the Community tab!** ## How to use ### Generation ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "olivierdehaene/optimized-santacoder" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill-in-the-middle Fill-in-the-middle uses special tokens to identify the prefix/middle/suffic part of the input and output: ```python input_text = "<fim-prefix>def print_hello_world():\n <fim-suffix>\n print('Hello world!')<fim-middle>" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Load other checkpoints We upload the checkpoint of each experiment to a separate branch as well as the intermediate checkpoints as commits on the branches. You can load them with the `revision` flag: ```python model = AutoModelForCausalLM.from_pretrained( "olivierdehaene/optimized-santacoder", revision="no-fim", # name of branch or commit hash trust_remote_code=True ) ``` ### Attribution & Other Requirements The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/santacoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code. # Limitations The model has been trained on source code in Python, Java, and JavaScript. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Pretraining steps:** 600K - **Pretraining tokens:** 236 billion - **Precision:** float16 ## Hardware - **GPUs:** 96 Tesla V100 - **Training time:** 6.2 days - **Total FLOPS:** 2.1 x 10e21 ## Software - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # License The model is licenses under the CodeML Open RAIL-M v0.1 license. You can find the full license [here](https://huggingface.co/spaces/bigcode/license). # Citation ``` @article{allal2023santacoder, title={SantaCoder: don't reach for the stars!}, author={Allal, Loubna Ben and Li, Raymond and Kocetkov, Denis and Mou, Chenghao and Akiki, Christopher and Ferrandis, Carlos Munoz and Muennighoff, Niklas and Mishra, Mayank and Gu, Alex and Dey, Manan and others}, journal={arXiv preprint arXiv:2301.03988}, year={2023} } ```
Brizape/tmvar_0.0001_ES2
Brizape
2023-04-03T21:55:47Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T21:48:44Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_0.0001_ES2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_0.0001_ES2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0187 - Precision: 0.8449 - Recall: 0.8541 - F1: 0.8495 - Accuracy: 0.9961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2263 | 1.47 | 25 | 0.0788 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0492 | 2.94 | 50 | 0.0355 | 0.2576 | 0.3676 | 0.3029 | 0.9863 | | 0.0258 | 4.41 | 75 | 0.0224 | 0.6 | 0.6811 | 0.6380 | 0.9933 | | 0.013 | 5.88 | 100 | 0.0141 | 0.8267 | 0.9027 | 0.8630 | 0.9969 | | 0.0031 | 7.35 | 125 | 0.0162 | 0.8218 | 0.8973 | 0.8579 | 0.9971 | | 0.0028 | 8.82 | 150 | 0.0187 | 0.8449 | 0.8541 | 0.8495 | 0.9961 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
Brizape/tmvar_5e-05_ES2
Brizape
2023-04-03T21:48:37Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T21:34:48Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_5e-05_ES2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_5e-05_ES2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Precision: 0.8469 - Recall: 0.8973 - F1: 0.8714 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3852 | 1.47 | 25 | 0.1019 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0775 | 2.94 | 50 | 0.0398 | 0.2812 | 0.3892 | 0.3265 | 0.9863 | | 0.0327 | 4.41 | 75 | 0.0243 | 0.4740 | 0.4919 | 0.4828 | 0.9910 | | 0.02 | 5.88 | 100 | 0.0191 | 0.7656 | 0.7946 | 0.7798 | 0.9954 | | 0.0084 | 7.35 | 125 | 0.0229 | 0.7766 | 0.7892 | 0.7828 | 0.9952 | | 0.0045 | 8.82 | 150 | 0.0172 | 0.8351 | 0.8486 | 0.8418 | 0.9964 | | 0.0023 | 10.29 | 175 | 0.0190 | 0.9148 | 0.8703 | 0.8920 | 0.9968 | | 0.0015 | 11.76 | 200 | 0.0189 | 0.8469 | 0.8973 | 0.8714 | 0.9971 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
Brizape/tmvar_2e-05_ES2
Brizape
2023-04-03T21:31:36Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T21:20:50Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_2e-05_ES2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_2e-05_ES2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0184 - Precision: 0.8368 - Recall: 0.8595 - F1: 0.848 - Accuracy: 0.9962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5018 | 1.47 | 25 | 0.1002 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0852 | 2.94 | 50 | 0.0509 | 0.9286 | 0.0703 | 0.1307 | 0.9852 | | 0.0373 | 4.41 | 75 | 0.0283 | 0.5485 | 0.6108 | 0.5780 | 0.9918 | | 0.0256 | 5.88 | 100 | 0.0204 | 0.6429 | 0.7297 | 0.6835 | 0.9938 | | 0.0123 | 7.35 | 125 | 0.0188 | 0.8063 | 0.8324 | 0.8191 | 0.9956 | | 0.008 | 8.82 | 150 | 0.0171 | 0.7979 | 0.8324 | 0.8148 | 0.9958 | | 0.0047 | 10.29 | 175 | 0.0158 | 0.8010 | 0.8919 | 0.8440 | 0.9962 | | 0.0037 | 11.76 | 200 | 0.0171 | 0.8511 | 0.8649 | 0.8579 | 0.9964 | | 0.0025 | 13.24 | 225 | 0.0184 | 0.8368 | 0.8595 | 0.848 | 0.9962 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
cxyz/mndknypntr
cxyz
2023-04-03T21:28:34Z
36
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-03T21:22:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mndknypntr Dreambooth model trained by cxyz with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ShrJatin/100K_sample_model
ShrJatin
2023-04-03T21:25:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-02T22:00:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: 100K_sample_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: de-en split: validation args: de-en metrics: - name: Bleu type: bleu value: 13.0723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 100K_sample_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2624 - Bleu: 13.0723 - Gen Len: 17.5159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.2605 | 1.0 | 12500 | 1.2595 | 13.0452 | 17.503 | | 1.2728 | 2.0 | 25000 | 1.2596 | 13.049 | 17.5154 | | 1.2437 | 3.0 | 37500 | 1.2624 | 13.0723 | 17.5159 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2
sgolkar/gpt2-finetuned-brookstraining
sgolkar
2023-04-03T21:21:02Z
12
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-03T18:44:26Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-brookstraining results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-brookstraining This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 201 | 3.7473 | | No log | 2.0 | 402 | 3.7192 | | 3.9557 | 3.0 | 603 | 3.7303 | | 3.9557 | 4.0 | 804 | 3.7354 | | 3.4723 | 5.0 | 1005 | 3.7725 | | 3.4723 | 6.0 | 1206 | 3.7934 | | 3.4723 | 7.0 | 1407 | 3.8325 | | 3.1092 | 8.0 | 1608 | 3.8907 | | 3.1092 | 9.0 | 1809 | 3.9566 | | 2.8224 | 10.0 | 2010 | 3.9908 | | 2.8224 | 11.0 | 2211 | 4.0487 | | 2.8224 | 12.0 | 2412 | 4.0744 | | 2.5733 | 13.0 | 2613 | 4.1212 | | 2.5733 | 14.0 | 2814 | 4.1872 | | 2.3879 | 15.0 | 3015 | 4.2208 | | 2.3879 | 16.0 | 3216 | 4.2358 | | 2.3879 | 17.0 | 3417 | 4.2799 | | 2.2721 | 18.0 | 3618 | 4.3077 | | 2.2721 | 19.0 | 3819 | 4.3217 | | 2.2043 | 20.0 | 4020 | 4.3233 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.11.0
cartesinus/iva_mt-leyzer-intent_baseline-xlm_r-pl
cartesinus
2023-04-03T21:16:22Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T22:11:53Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fedcsis_translated-intent_baseline-xlm_r-pl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fedcsis_translated-intent_baseline-xlm_r-pl This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis-translated](https://huggingface.co/datasets/cartesinus/leyzer-fedcsis-translated) dataset. Results on untranslated test set: - Accuracy: 0.8769 It achieves the following results on the evaluation set: - Loss: 0.5478 - Accuracy: 0.8769 - F1: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.505 | 1.0 | 814 | 1.8819 | 0.5979 | 0.5979 | | 1.5056 | 2.0 | 1628 | 1.1033 | 0.7611 | 0.7611 | | 1.0892 | 3.0 | 2442 | 0.7402 | 0.8470 | 0.8470 | | 0.648 | 4.0 | 3256 | 0.5263 | 0.8902 | 0.8902 | | 0.423 | 5.0 | 4070 | 0.4253 | 0.9152 | 0.9152 | | 0.3429 | 6.0 | 4884 | 0.3654 | 0.9194 | 0.9194 | | 0.2464 | 7.0 | 5698 | 0.3213 | 0.9273 | 0.9273 | | 0.1873 | 8.0 | 6512 | 0.3065 | 0.9328 | 0.9328 | | 0.1666 | 9.0 | 7326 | 0.3046 | 0.9345 | 0.9345 | | 0.1459 | 10.0 | 8140 | 0.2911 | 0.9370 | 0.9370 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
hopkins/strict-small-2
hopkins
2023-04-03T20:51:27Z
132
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-02T20:10:49Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: strict-small-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # strict-small-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.8423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1594 | 7.33 | 2000 | 3.8824 | | 2.8132 | 14.65 | 4000 | 4.2196 | | 2.121 | 21.98 | 6000 | 4.7343 | | 1.6016 | 29.3 | 8000 | 5.2934 | | 1.2441 | 36.63 | 10000 | 5.6547 | | 1.0171 | 43.96 | 12000 | 5.8423 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
amannlp/dqn-SpaceInvadersNoFrameskip-v4
amannlp
2023-04-03T20:42:54Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T20:42:21Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 462.00 +/- 166.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga amannlp -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga amannlp -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga amannlp ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Brizape/tmvar_0.0001
Brizape
2023-04-03T20:41:31Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T20:30:20Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_0.0001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_0.0001 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0162 - Precision: 0.8877 - Recall: 0.8973 - F1: 0.8925 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2263 | 1.47 | 25 | 0.0776 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.05 | 2.94 | 50 | 0.0400 | 0.2868 | 0.4216 | 0.3414 | 0.9872 | | 0.0271 | 4.41 | 75 | 0.0219 | 0.5381 | 0.6486 | 0.5882 | 0.9925 | | 0.0108 | 5.88 | 100 | 0.0132 | 0.8324 | 0.8324 | 0.8324 | 0.9965 | | 0.0029 | 7.35 | 125 | 0.0107 | 0.8934 | 0.9514 | 0.9215 | 0.9979 | | 0.0025 | 8.82 | 150 | 0.0123 | 0.8691 | 0.8973 | 0.8830 | 0.9972 | | 0.0011 | 10.29 | 175 | 0.0127 | 0.8579 | 0.9135 | 0.8848 | 0.9969 | | 0.0006 | 11.76 | 200 | 0.0102 | 0.8969 | 0.9405 | 0.9182 | 0.9981 | | 0.0005 | 13.24 | 225 | 0.0118 | 0.8942 | 0.9135 | 0.9037 | 0.9978 | | 0.0005 | 14.71 | 250 | 0.0106 | 0.8768 | 0.9622 | 0.9175 | 0.9981 | | 0.0015 | 16.18 | 275 | 0.0119 | 0.855 | 0.9243 | 0.8883 | 0.9976 | | 0.0006 | 17.65 | 300 | 0.0134 | 0.8814 | 0.9243 | 0.9024 | 0.9977 | | 0.0004 | 19.12 | 325 | 0.0177 | 0.8617 | 0.8757 | 0.8686 | 0.9969 | | 0.0003 | 20.59 | 350 | 0.0162 | 0.8877 | 0.8973 | 0.8925 | 0.9971 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
OccamRazor/pygmalion-6b-gptq-4bit
OccamRazor
2023-04-03T20:34:06Z
10
10
transformers
[ "transformers", "gptj", "text-generation", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-23T06:01:05Z
--- license: creativeml-openrail-m ---
marci0929/InvertedDoublePendulumBulletEnv-v0-InvertedDoublePendulumBulletEnv-v0-100k
marci0929
2023-04-03T20:22:37Z
0
0
stable-baselines3
[ "stable-baselines3", "InvertedDoublePendulumBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T19:52:18Z
--- library_name: stable-baselines3 tags: - InvertedDoublePendulumBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: InvertedDoublePendulumBulletEnv-v0 type: InvertedDoublePendulumBulletEnv-v0 metrics: - type: mean_reward value: 1129.72 +/- 346.09 name: mean_reward verified: false --- # **A2C** Agent playing **InvertedDoublePendulumBulletEnv-v0** This is a trained model of a **A2C** agent playing **InvertedDoublePendulumBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Brizape/tmvar_2e-05
Brizape
2023-04-03T20:15:13Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-03T19:59:13Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tmvar_2e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar_2e-05 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0136 - Precision: 0.8308 - Recall: 0.8757 - F1: 0.8526 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5077 | 1.47 | 25 | 0.1015 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0834 | 2.94 | 50 | 0.0463 | 0.3581 | 0.4162 | 0.3850 | 0.9877 | | 0.0348 | 4.41 | 75 | 0.0315 | 0.3846 | 0.4324 | 0.4071 | 0.9896 | | 0.0285 | 5.88 | 100 | 0.0234 | 0.5157 | 0.6216 | 0.5637 | 0.9927 | | 0.0149 | 7.35 | 125 | 0.0174 | 0.7801 | 0.8054 | 0.7926 | 0.9957 | | 0.0104 | 8.82 | 150 | 0.0156 | 0.78 | 0.8432 | 0.8104 | 0.9959 | | 0.0059 | 10.29 | 175 | 0.0160 | 0.8360 | 0.8541 | 0.8449 | 0.9960 | | 0.005 | 11.76 | 200 | 0.0139 | 0.8333 | 0.8649 | 0.8488 | 0.9964 | | 0.003 | 13.24 | 225 | 0.0164 | 0.8263 | 0.8486 | 0.8373 | 0.9961 | | 0.0024 | 14.71 | 250 | 0.0146 | 0.7980 | 0.8541 | 0.8251 | 0.9964 | | 0.0023 | 16.18 | 275 | 0.0132 | 0.8267 | 0.9027 | 0.8630 | 0.9969 | | 0.0016 | 17.65 | 300 | 0.0133 | 0.8274 | 0.8811 | 0.8534 | 0.9971 | | 0.0015 | 19.12 | 325 | 0.0129 | 0.8235 | 0.9081 | 0.8638 | 0.9971 | | 0.0014 | 20.59 | 350 | 0.0163 | 0.8703 | 0.8703 | 0.8703 | 0.9968 | | 0.0013 | 22.06 | 375 | 0.0141 | 0.8402 | 0.8811 | 0.8602 | 0.9969 | | 0.0013 | 23.53 | 400 | 0.0145 | 0.8438 | 0.8757 | 0.8594 | 0.9968 | | 0.0011 | 25.0 | 425 | 0.0149 | 0.8482 | 0.8757 | 0.8617 | 0.9969 | | 0.0011 | 26.47 | 450 | 0.0138 | 0.8351 | 0.8757 | 0.8549 | 0.9968 | | 0.0011 | 27.94 | 475 | 0.0136 | 0.8308 | 0.8757 | 0.8526 | 0.9968 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
bbhattar/flan_t5_xl_cnn_dailymail
bbhattar
2023-04-03T20:06:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-20T20:13:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: flan-t5-xl results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 45.1318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-xl This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.2648 - Rouge1: 45.1318 - Rouge2: 22.2773 - Rougel: 31.9084 - Rougelsum: 42.0558 - Gen Len: 94.2332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 96 - total_eval_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.4352 | 1.0 | 2991 | 1.2645 | 43.8582 | 21.2227 | 30.7038 | 40.761 | 101.9968 | | 1.3198 | 2.0 | 5982 | 1.2525 | 44.4594 | 21.8174 | 31.4304 | 41.4563 | 94.0733 | | 1.2151 | 3.0 | 8973 | 1.2648 | 45.1318 | 22.2773 | 31.9084 | 42.0558 | 94.2332 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.13.2
kgBolt/story_summarizer-finetuned
kgBolt
2023-04-03T20:05:41Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T18:15:59Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: story_summarizer-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # story_summarizer-finetuned This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9028 - Rouge1: 30.4344 - Rouge2: 6.2601 - Rougel: 18.9971 - Rougelsum: 26.4496 - Gen Len: 95.0942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:| | No log | 1.0 | 150 | 2.8526 | 29.1919 | 5.8045 | 18.2639 | 25.4635 | 102.0117 | | No log | 2.0 | 300 | 2.8654 | 30.0355 | 6.0614 | 18.7598 | 26.1234 | 96.4292 | | No log | 3.0 | 450 | 2.9028 | 30.4344 | 6.2601 | 18.9971 | 26.4496 | 95.0942 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
aking11/hyebert
aking11
2023-04-03T20:02:57Z
177
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "exbert", "armenian", "mlm", "llm", "hy", "dataset:oscar", "arxiv:1810.04805", "arxiv:1907.11692", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-04-03T18:58:51Z
--- language: hy tags: - exbert - armenian - mlm - llm license: mit datasets: - oscar --- # Model Card for HyeBERT Pre-trained language model trained on Armenian using a masked language training strategy. The architecture is based on [BERT](https://arxiv.org/abs/1810.04805) but trained exclusively for the Armenian language subset of OSCAR, a cleaned and de-duplicated subset of the common crawl dataset (hence, the `Hye` in HyeBERT). Disclaimer: this model is not specifically trained for either the Western or Eastern dialect, though the data likely contain more examples of Eastern Armenian. ### Model Description HyeBERT is shares the same architecture as BERT; it is a stacked transformer model trained on a large corpus of Armenian without any human annotations. However, it was trained using only the mask language task (replacing 15% of tokens with `[MASK]` and trying to predict them from the other tokens in the text) and not to predict the next sentence, making it more akin to [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf). Unlike RoBERTa, however, it tokenizes using WordPiece rather than BPE. ## Inteded Uses ### Direct Use As an MLM, this model can be used to predict word in a sentence or text generation, though generation would best be done with a model like GPT. ### Downstream Use [optional] The ideal use of this model is fine-tuning on a specific classification task for Armenian. ## Bias, Risks, and Limitations As mentioned earlier, this model is not trained exclusively on Western or Eastern Armenian which may lead to problems in its internal understanding of the language's syntax and lexicon. In addition, many of the training texts include content from other languages (mostly English and Russian) which may affect the performance of the model. ## How to Get Started with the Model Use the code below to get started with the model. {{ get_started_code | default("[More Information Needed]", true)}} ## Training Details ### Training Data This model was trained on the Armenian subset of the [OSCAR](https://huggingface.co/datasets/oscar) corpus, which is a cleaned version of the common crawl. The training data consiset of roughly XXX document, with roughly YYY tokens in total. 2% of the total dataset was held out and using as validation. ### Training Procedure The model was trained by masking 15% of tokens and predicting the identity of those masked tokens from the unmasked items in a training datum. The model was trained over 3 epochs and the identify of the masked token for a given text was reassigned for each epoch, i.e., the masks moved around each epoch. #### Preprocessing No major preprocessing. Texts of less than 5 character were removed and texts were limited to 512 tokens. #### Training Hyperparameters - Optimizer: AdamW - Learning rate: `1e4` - Num. attention head: 12 - Num. hidden layers: 6 - Vocab. size: 30,000 - Embedding size: 768 ## Evaluation At each epoch's completion, the loss was computed for a held out validation set, roughly 2% the size of the total data. ``` 0 evaluating.... val_loss: 0.47787963975066194 1 evaluating.... val_loss: 0.47497553823474115 2 evaluating.... val_loss: 0.4765327044259816 ``` ## Model Card Authors [optional] Adam King ## Model Card Contact adam.king.phd@gmail.com
Bearnardd/gpt2-imdb
Bearnardd
2023-04-03T20:01:50Z
48
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-04-02T12:54:53Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Bearnardd//tmp/tmpmat47dym/Bearnardd/gpt2-imdb") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Bearnardd//tmp/tmpmat47dym/Bearnardd/gpt2-imdb") model = AutoModelForCausalLMWithValueHead.from_pretrained("Bearnardd//tmp/tmpmat47dym/Bearnardd/gpt2-imdb") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
sgoodfriend/ppo-MicrortsDefeatCoacAIShaped-v3-diverseBots
sgoodfriend
2023-04-03T19:49:12Z
0
0
rl-algo-impls
[ "rl-algo-impls", "MicrortsDefeatCoacAIShaped-v3", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T19:49:07Z
--- library_name: rl-algo-impls tags: - MicrortsDefeatCoacAIShaped-v3 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 189.93 +/- 31.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MicrortsDefeatCoacAIShaped-v3 type: MicrortsDefeatCoacAIShaped-v3 --- # **PPO** Agent playing **MicrortsDefeatCoacAIShaped-v3** This is a trained model of a **PPO** agent playing **MicrortsDefeatCoacAIShaped-v3** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/zdee7ovm. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:------------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | MicrortsDefeatCoacAIShaped-v3 | 1 | 168.283 | 29.0184 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/2argpnw9) | | ppo | MicrortsDefeatCoacAIShaped-v3 | 2 | 170.167 | 38.6552 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/6cdp7zuf) | | ppo | MicrortsDefeatCoacAIShaped-v3 | 3 | 189.933 | 31.6543 | 24 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/gs8yovgm) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/gs8yovgm ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env MicrortsDefeatCoacAIShaped-v3 --seed 3 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/zdee7ovm were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone git@github.com:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh [-a {"ppo a2c dqn vpg"}] [-e ENVS] [-j {6}] [-p {rl-algo-impls-benchmarks}] [-s {"1 2 3"}] ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` additional_keys_to_log: - microrts_stats algo: ppo algo_hyperparams: batch_size: 3072 clip_range: 0.1 clip_range_decay: none clip_range_vf: 0.1 ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear max_grad_norm: 0.5 n_epochs: 4 n_steps: 512 ppo2_vf_coef_halving: true vf_coef: 0.5 device: auto env: MicrortsDefeatCoacAIShaped-v3-diverseBots env_hyperparams: bots: coacAI: 18 lightRushAI: 2 randomBiasedAI: 2 workerRushAI: 2 env_type: microrts make_kwargs: map_path: maps/16x16/basesWorkers16x16.xml max_steps: 2000 num_selfplay_envs: 0 render_theme: 2 reward_weight: - 10 - 1 - 1 - 0.2 - 1 - 4 n_envs: 24 env_id: MicrortsDefeatCoacAIShaped-v3 eval_params: deterministic: false n_timesteps: 300000000 policy_hyperparams: activation_fn: relu actor_head_style: gridnet cnn_feature_dim: 256 cnn_style: microrts seed: 3 use_deterministic_algorithms: true wandb_entity: null wandb_group: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_3420133 - host_152-67-227-88 ```
rmccrear/ppo-LunarLander-v2
rmccrear
2023-04-03T19:44:11Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T19:43:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.89 +/- 14.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sgoodfriend/ppo-MicrortsDefeatCoacAIShaped-v3
sgoodfriend
2023-04-03T19:40:19Z
0
0
rl-algo-impls
[ "rl-algo-impls", "MicrortsDefeatCoacAIShaped-v3", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T19:40:13Z
--- library_name: rl-algo-impls tags: - MicrortsDefeatCoacAIShaped-v3 - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 191.12 +/- 24.77 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MicrortsDefeatCoacAIShaped-v3 type: MicrortsDefeatCoacAIShaped-v3 --- # **PPO** Agent playing **MicrortsDefeatCoacAIShaped-v3** This is a trained model of a **PPO** agent playing **MicrortsDefeatCoacAIShaped-v3** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/zdee7ovm. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:------------------------------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | MicrortsDefeatCoacAIShaped-v3 | 1 | 191.125 | 24.7711 | 24 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/jwwrkqxu) | | ppo | MicrortsDefeatCoacAIShaped-v3 | 2 | 157.892 | 24.9497 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/bxc2vzv9) | | ppo | MicrortsDefeatCoacAIShaped-v3 | 3 | 170.608 | 18.7986 | 24 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ppoyvtlf) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/jwwrkqxu ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [3420133](https://github.com/sgoodfriend/rl-algo-impls/tree/342013343b316412ba3aff97b0430343c69c8364). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env MicrortsDefeatCoacAIShaped-v3 --seed 1 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/zdee7ovm were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone git@github.com:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh [-a {"ppo a2c dqn vpg"}] [-e ENVS] [-j {6}] [-p {rl-algo-impls-benchmarks}] [-s {"1 2 3"}] ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` additional_keys_to_log: - microrts_stats algo: ppo algo_hyperparams: batch_size: 3072 clip_range: 0.1 clip_range_decay: none clip_range_vf: 0.1 ent_coef: 0.01 learning_rate: 0.00025 learning_rate_decay: linear max_grad_norm: 0.5 n_epochs: 4 n_steps: 512 ppo2_vf_coef_halving: true vf_coef: 0.5 device: auto env: MicrortsDefeatCoacAIShaped-v3 env_hyperparams: bots: coacAI: 24 env_type: microrts make_kwargs: map_path: maps/16x16/basesWorkers16x16.xml max_steps: 2000 num_selfplay_envs: 0 render_theme: 2 reward_weight: - 10 - 1 - 1 - 0.2 - 1 - 4 n_envs: 24 env_id: MicrortsDefeatCoacAIShaped-v3 eval_params: deterministic: false n_timesteps: 300000000 policy_hyperparams: activation_fn: relu actor_head_style: gridnet cnn_feature_dim: 256 cnn_style: microrts seed: 1 use_deterministic_algorithms: true wandb_entity: null wandb_group: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_3420133 - host_192-18-141-216 ```
kristof999/homework-AntBulletEnv-v0-100k
kristof999
2023-04-03T19:33:11Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T19:31:56Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1138.26 +/- 162.75 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
debarghabhattofficial/t5-small-squad-qg-a2c-spt-valid
debarghabhattofficial
2023-04-03T19:25:27Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:qg_squad", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-03T11:39:31Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - qg_squad metrics: - bleu model-index: - name: t5-small-squad-qg-a2c-spt-valid results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: qg_squad type: qg_squad config: qg_squad split: test args: qg_squad metrics: - name: Bleu type: bleu value: 0.1856298695745541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-squad-qg-a2c-spt-valid This model is a fine-tuned version of [lmqg/t5-small-squad-qg](https://huggingface.co/lmqg/t5-small-squad-qg) on the qg_squad dataset. It achieves the following results on the evaluation set: - Loss: 3.5585 - Bleu: 0.1856 - Precisions: [0.4899881007730557, 0.23798056024064962, 0.14699694604682728, 0.09541131612394267] - Brevity Penalty: 0.9231 - Length Ratio: 0.9259 - Translation Length: 126899 - Reference Length: 137056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - label_smoothing_factor: 0.15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:| | 3.4717 | 1.0 | 1184 | 3.5703 | 0.1850 | [0.4884210026960997, 0.23740423378300554, 0.14702360671696277, 0.09591845720324058] | 0.9198 | 0.9228 | 126479 | 137056 | | 3.4432 | 2.0 | 2368 | 3.5676 | 0.1847 | [0.4899809765377299, 0.23739313808702955, 0.14709099076226004, 0.09610180163262601] | 0.9173 | 0.9205 | 126160 | 137056 | | 3.4207 | 3.0 | 3552 | 3.5654 | 0.1855 | [0.48690609948692964, 0.236654650074526, 0.14669770766719153, 0.09533838196460138] | 0.9260 | 0.9286 | 127273 | 137056 | | 3.4017 | 4.0 | 4736 | 3.5575 | 0.1861 | [0.4907433036243861, 0.23905491743183327, 0.14802083840498564, 0.09654473782730295] | 0.9195 | 0.9226 | 126449 | 137056 | | 3.3862 | 5.0 | 5920 | 3.5540 | 0.1851 | [0.4916027385306181, 0.23877172085201795, 0.14769450336757936, 0.09608281170511601] | 0.9164 | 0.9197 | 126053 | 137056 | | 3.3715 | 6.0 | 7104 | 3.5619 | 0.1847 | [0.4897172642552519, 0.23742624822429256, 0.14650127350144848, 0.09495653320731078] | 0.9209 | 0.9239 | 126620 | 137056 | | 3.3602 | 7.0 | 8288 | 3.5581 | 0.1857 | [0.49199648336329865, 0.2390627732121, 0.14782006380301063, 0.09637410897534923] | 0.9180 | 0.9212 | 126257 | 137056 | | 3.3523 | 8.0 | 9472 | 3.5575 | 0.1856 | [0.4896288812767368, 0.23802266135985578, 0.14728396021137705, 0.09588544697859817] | 0.9215 | 0.9244 | 126698 | 137056 | | 3.3439 | 9.0 | 10656 | 3.5582 | 0.1862 | [0.4919672196048933, 0.23971752696254087, 0.14848694668474074, 0.09658739962940087] | 0.9183 | 0.9215 | 126295 | 137056 | | 3.3395 | 10.0 | 11840 | 3.5585 | 0.1856 | [0.4899881007730557, 0.23798056024064962, 0.14699694604682728, 0.09541131612394267] | 0.9231 | 0.9259 | 126899 | 137056 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.9.0 - Datasets 2.9.0 - Tokenizers 0.13.2
botix4/a2c-PandaReachDense-v2
botix4
2023-04-03T19:04:13Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T17:39:52Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.92 +/- 1.84 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ybhav14/autotrain-chat-sum-dialogsum-samsum-46317114985
Ybhav14
2023-04-03T19:01:17Z
119
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Ybhav14/autotrain-data-chat-sum-dialogsum-samsum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-04-03T18:53:31Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ybhav14/autotrain-data-chat-sum-dialogsum-samsum co2_eq_emissions: emissions: 3.0774487291128 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 46317114985 - CO2 Emissions (in grams): 3.0774 ## Validation Metrics - Loss: 1.270 - Rouge1: 39.115 - Rouge2: 17.283 - RougeL: 30.158 - RougeLsum: 34.226 - Gen Len: 61.380 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Ybhav14/autotrain-chat-sum-dialogsum-samsum-46317114985 ```
romeromuerto/dqn-SpaceInvadersNoFrameskip-v4
romeromuerto
2023-04-03T18:43:10Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T18:42:31Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 611.50 +/- 169.72 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga romeromuerto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga romeromuerto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga romeromuerto ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
LarryAIDraw/noelleSilvaBlack_v1
LarryAIDraw
2023-04-03T18:37:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-03T18:13:23Z
--- license: creativeml-openrail-m --- https://civitai.com/models/28708/noelle-silva-or-black-clover
LarryAIDraw/fateGrandOrderAnastasia_v10
LarryAIDraw
2023-04-03T18:36:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-03T18:12:39Z
--- license: creativeml-openrail-m --- https://civitai.com/models/28398/fate-grand-order-anastasiaanastasiya-nikolaevna-romanova
LarryAIDraw/asukaHinaNijisanji_asukaHina
LarryAIDraw
2023-04-03T18:36:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-03T18:12:17Z
--- license: creativeml-openrail-m --- https://civitai.com/models/28410/asuka-hina-nijisanji
swang2000/distilbert-base-uncased-finetuned-cola
swang2000
2023-04-03T18:33:52Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T23:23:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5229395497643199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5743 - Matthews Correlation: 0.5229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5256 | 1.0 | 535 | 0.5198 | 0.4180 | | 0.348 | 2.0 | 1070 | 0.4880 | 0.5087 | | 0.2348 | 3.0 | 1605 | 0.5743 | 0.5229 | | 0.1803 | 4.0 | 2140 | 0.7591 | 0.5143 | | 0.1346 | 5.0 | 2675 | 0.8177 | 0.5192 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
marci0929/Walker2DBulletEnv-Walker2DBulletEnv-v0-100k
marci0929
2023-04-03T18:20:29Z
0
0
stable-baselines3
[ "stable-baselines3", "Walker2DBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T18:19:27Z
--- library_name: stable-baselines3 tags: - Walker2DBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Walker2DBulletEnv-v0 type: Walker2DBulletEnv-v0 metrics: - type: mean_reward value: 804.04 +/- 68.74 name: mean_reward verified: false --- # **A2C** Agent playing **Walker2DBulletEnv-v0** This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
s-nlp/ruRoberta-large-paraphrase-v1
s-nlp
2023-04-03T18:05:21Z
118
2
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "sentence-similarity", "ru", "dataset:merionum/ru_paraphraser", "dataset:RuPAWS", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-02T23:23:03Z
--- language: - ru tags: - sentence-similarity - text-classification datasets: - merionum/ru_paraphraser - RuPAWS --- This is a cross-encoder model trained to predict semantic equivalence of two Russian sentences. It classifies text pairs as paraphrases (class 1) or non-paraphrases (class 0). Its scores can be used as a metric of content preservation for paraphrasing or text style transfer. It is a [sberbank-ai/ruRoberta-large](https://huggingface.co/sberbank-ai/ruRoberta-large) model fine-tuned on a union of 3 datasets: 1. `RuPAWS`: https://github.com/ivkrotova/rupaws_dataset based on Quora and QQP; 2. `ru_paraphraser`: https://huggingface.co/merionum/ru_paraphraser; 3. Results of the manual check of content preservation for the [RUSSE-2022](https://www.dialog-21.ru/media/5755/dementievadplusetal105.pdf) text detoxification dataset collection (`content_5.tsv`). The task was formulated as binary classification: whether the two sentences have the same meaning (1) or different (0). The table shows the training dataset size after duplication (joining `text1 + text2` and `text2 + text1` pairs): source \ label | 0 | 1 -- | -- | -- detox | 1412| 3843 paraphraser |5539 | 1688 rupaws_qqp |1112 | 792 rupaws_wiki |3526 | 2166 The model was trained with Adam optimizer and the following hyperparameters: ``` learning_rate = 1e-5 batch_size = 8 gradient_accumulation_steps = 4 n_epochs = 3 max_grad_norm = 1.0 ``` After training, the model had the following ROC AUC scores on the test sets: set | ROC AUC - | - detox | 0.857112 paraphraser | 0.858465 rupaws_qqp | 0.859195 rupaws_wiki | 0.906121 Example usage: ```Python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained('SkolkovoInstitute/ruRoberta-large-paraphrase-v1') tokenizer = AutoTokenizer.from_pretrained('SkolkovoInstitute/ruRoberta-large-paraphrase-v1') def get_similarity(text1, text2): """ Predict the probability that two Russian sentences are paraphrases of each other. """ with torch.inference_mode(): batch = tokenizer( text1, text2, truncation=True, max_length=model.config.max_position_embeddings, return_tensors='pt', ).to(model.device) proba = torch.softmax(model(**batch).logits, -1) return proba[0][1].item() print(get_similarity('Я тебя люблю', 'Ты мне нравишься')) # 0.9798 print(get_similarity('Я тебя люблю', 'Я тебя ненавижу')) # 0.0008 ```
alkiskoudounas/q-Taxi-v3
alkiskoudounas
2023-04-03T18:00:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T18:00:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="alkiskoudounas/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aishwarya0206/DiseaseClassificationOnSymptoms
Aishwarya0206
2023-04-03T17:47:36Z
0
0
sklearn
[ "sklearn", "text-classification", "en", "dataset:Izara/ClassificationOnDiseaseDataset", "region:us" ]
text-classification
2023-04-03T17:45:44Z
--- datasets: - Izara/ClassificationOnDiseaseDataset language: - en metrics: - accuracy library_name: sklearn pipeline_tag: text-classification ---
quynhu-d/29_03_UNet_BCE_GenDice_OA_CB_NB
quynhu-d
2023-04-03T17:39:21Z
0
0
null
[ "tensorboard", "region:us" ]
null
2023-03-29T15:00:40Z
- 29_03__12_55 -- alpha = .3 - 01_04__20_09 -- alpha = .5 - 01_04__20_13 -- alpha = .7 - 01_04__20_13 -- alpha = 1.0 (BCE only)
lamaabdulaziz/ArBERT-finetuned-CrossVal-fnd
lamaabdulaziz
2023-04-03T17:14:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T04:40:44Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: ArBERT-finetuned-CrossVal-fnd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArBERT-finetuned-CrossVal-fnd This model is a fine-tuned version of [UBC-NLP/ARBERT](https://huggingface.co/UBC-NLP/ARBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2055 - Macro F1: 0.9125 - Accuracy: 0.9154 - Precision: 0.9132 - Recall: 0.9117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 123 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.3468 | 1.0 | 1597 | 0.2055 | 0.9125 | 0.9154 | 0.9132 | 0.9117 | | 0.2241 | 2.0 | 3194 | 0.2280 | 0.9088 | 0.9115 | 0.9079 | 0.9098 | | 0.1555 | 3.0 | 4791 | 0.3194 | 0.9085 | 0.9114 | 0.9083 | 0.9088 | | 0.1022 | 4.0 | 6388 | 0.4153 | 0.9073 | 0.9105 | 0.9083 | 0.9064 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
csuazob/twitter-xlm-roberta-base-sentiment-finetunned-davincis-local
csuazob
2023-04-03T16:46:54Z
128
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T15:07:09Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: twitter-xlm-roberta-base-sentiment-finetunned-davincis-local results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-xlm-roberta-base-sentiment-finetunned-davincis-local This model is a fine-tuned version of [citizenlab/twitter-xlm-roberta-base-sentiment-finetunned](https://huggingface.co/citizenlab/twitter-xlm-roberta-base-sentiment-finetunned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5461 - Accuracy: 0.9302 - F1: 0.9301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4006 | 1.0 | 41 | 0.3037 | 0.8779 | 0.8771 | | 0.2165 | 2.0 | 82 | 0.2007 | 0.9205 | 0.9205 | | 0.1311 | 3.0 | 123 | 0.2124 | 0.9244 | 0.9244 | | 0.0839 | 4.0 | 164 | 0.2504 | 0.9341 | 0.9341 | | 0.0525 | 5.0 | 205 | 0.3695 | 0.9147 | 0.9144 | | 0.0392 | 6.0 | 246 | 0.3393 | 0.9244 | 0.9243 | | 0.0282 | 7.0 | 287 | 0.4203 | 0.9244 | 0.9242 | | 0.0205 | 8.0 | 328 | 0.3889 | 0.9302 | 0.9301 | | 0.012 | 9.0 | 369 | 0.6586 | 0.9012 | 0.9006 | | 0.0069 | 10.0 | 410 | 0.4873 | 0.9302 | 0.9301 | | 0.005 | 11.0 | 451 | 0.6105 | 0.9089 | 0.9085 | | 0.0082 | 12.0 | 492 | 0.4642 | 0.9302 | 0.9301 | | 0.0022 | 13.0 | 533 | 0.3709 | 0.9516 | 0.9515 | | 0.0088 | 14.0 | 574 | 0.5322 | 0.9283 | 0.9281 | | 0.0067 | 15.0 | 615 | 0.6661 | 0.9128 | 0.9124 | | 0.0015 | 16.0 | 656 | 0.5450 | 0.9283 | 0.9282 | | 0.0006 | 17.0 | 697 | 0.5453 | 0.9302 | 0.9301 | | 0.0002 | 18.0 | 738 | 0.5555 | 0.9302 | 0.9301 | | 0.0018 | 19.0 | 779 | 0.5408 | 0.9302 | 0.9301 | | 0.0022 | 20.0 | 820 | 0.5461 | 0.9302 | 0.9301 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg
vocabtrimmer
2023-04-03T16:45:31Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question generation", "fr", "dataset:lmqg/qg_frquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-03T16:40:36Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qg_frquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc." example_title: "Question Generation Example 1" - text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945." example_title: "Question Generation Example 2" - text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_frquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 7.76 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 28.41 - name: METEOR (Question Generation) type: meteor_question_generation value: 18.37 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 79.68 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.32 --- # Model Card of `vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg` This model is fine-tuned version of [ckpts/mbart-large-cc25-trimmed-fr](https://huggingface.co/ckpts/mbart-large-cc25-trimmed-fr) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mbart-large-cc25-trimmed-fr](https://huggingface.co/ckpts/mbart-large-cc25-trimmed-fr) - **Language:** fr - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg") # model prediction questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg") output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 79.68 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 27.09 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 16.2 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 11.02 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 7.76 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 18.37 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 56.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 28.41 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_frquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mbart-large-cc25-trimmed-fr - max_length: 512 - max_length_output: 32 - epoch: 10 - batch: 8 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
AryaParikh/autotrain-arp_summ_1-46076114929
AryaParikh
2023-04-03T16:35:48Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Hinataaa/autotrain-data-arp_summ_1", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-04-03T16:26:35Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Hinataaa/autotrain-data-arp_summ_1 co2_eq_emissions: emissions: 3.6598223203922267 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 46076114929 - CO2 Emissions (in grams): 3.6598 ## Validation Metrics - Loss: 1.060 - Rouge1: 56.626 - Rouge2: 33.126 - RougeL: 52.520 - RougeLsum: 52.448 - Gen Len: 13.480 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Hinataaa/autotrain-arp_summ_1-46076114929 ```
cxj009/model_lora_soho
cxj009
2023-04-03T16:28:42Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-04-03T16:16:15Z
--- license: creativeml-openrail-m base_model: /DATA2/chilloutmix/ instance_prompt: wjsoho tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - cxj009/model_lora_soho These are LoRA adaption weights for /DATA2/chilloutmix/. The weights were trained on wjsoho using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
dvruette/oasst-pythia-12b-pretrained-sft
dvruette
2023-04-03T16:28:08Z
1,495
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-03T15:53:46Z
https://wandb.ai/open-assistant/supervised-finetuning/runs/770a0t41 (at 2k steps)
Paperbag/ppo-CartPole-v1
Paperbag
2023-04-03T16:24:42Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T16:24:36Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 22.70 +/- 12.09 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'gym_id': 'CartPole-v1' 'learning_rate': 0.00025 'seed': 1 'total_timesteps': 25000 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'ppo-implementation-details' 'wandb_entity': None 'capture_video': False 'repo_id': 'Paperbag/ppo-CartPole-v1' 'env_id': 'CartPole-v1' 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None} ```
diegoref/testtest-19
diegoref
2023-04-03T16:22:58Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-03T16:17:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: testtest-19 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8627450980392157 - name: F1 type: f1 value: 0.9047619047619047 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testtest-19 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5631 - Accuracy: 0.8627 - F1: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.5077 | 0.8137 | 0.8707 | | 0.5519 | 2.0 | 918 | 0.4666 | 0.8431 | 0.8954 | | 0.3741 | 3.0 | 1377 | 0.5631 | 0.8627 | 0.9048 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
marco-c88/gpt2-finetuned-mstatmem_1ep_gpt2_no_valid
marco-c88
2023-04-03T16:19:38Z
203
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-03T16:11:29Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-mstatmem_1ep_gpt2_no_valid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-mstatmem_1ep_gpt2_no_valid This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4567 | 1.0 | 970 | 3.3340 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
erosendo/trained-Taxi-v3
erosendo
2023-04-03T15:27:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T15:27:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: trained-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="erosendo/trained-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sofre/Taxi-v3
sofre
2023-04-03T15:23:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T15:23:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sofre/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
erosendo/q-FrozenLake-v1-4x4-noSlippery
erosendo
2023-04-03T15:17:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T14:59:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="erosendo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dwarfbum/piledream
dwarfbum
2023-04-03T15:05:25Z
0
4
null
[ "region:us" ]
null
2023-04-03T14:55:45Z
author: https://civitai.com/models/20255 --- license: creativeml-openrail-m --- I have no rights to the model
a2w-consultants/bestimmigrationconsultant
a2w-consultants
2023-04-03T15:02:11Z
0
0
null
[ "region:us" ]
null
2023-04-03T15:00:34Z
Best Immigration Consultants in Dubai We are the only <a href="https://a2w-consultants.ae/10-best-immigration-consultants-in-dubai-uae/">immigration consultants Dubai</a> providing you with an economic immigration service that will be worth your time and money. We follow a very simple immigration process so that you can actualize your dream of migrating to some of the best countries in the World! At A2W, we are dedicated to informing our customers about all of their alternatives when looking for an immigration consultant to match their specific requirements. While we are certain that A2W Consultants provide an unrivaled immigration service in UAE, we have produced a list of the <a href="https://a2w-consultants.ae/">Canada immigration consultants in UAE</a>, to help you better understand the industry and narrow down your options.
ocariz/butterfly_200
ocariz
2023-04-03T14:56:29Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-03T14:55:27Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- This model is a diffusion model for unconditional image generation of cute butterflies trained for 200 epochs. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ocariz/butterfly_200') image = pipeline().images[0] image ```
ana-bernal/keras_15_dog_breed_eff
ana-bernal
2023-04-03T14:44:32Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-04-03T14:42:24Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Valyanka/my_esome_model
Valyanka
2023-04-03T14:32:45Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-03T13:30:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_esome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_esome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7458 - Accuracy: 0.23 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 32 | 1.8102 | 0.224 | | No log | 2.0 | 64 | 1.7458 | 0.23 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
yumingyi/poca-SoccerTwos-untrained
yumingyi
2023-04-03T14:24:24Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-04-03T14:24:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yumingyi/poca-SoccerTwos-untrained 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
asenella/mmnistMVTCAE_config2_
asenella
2023-04-03T14:16:41Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-04-02T01:30:03Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Luca77/a2c-PandaReachDense-v2
Luca77
2023-04-03T14:09:24Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T14:06:59Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.47 +/- 0.70 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pastells/a2c-AntBulletEnv-v0
pastells
2023-04-03T13:50:31Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:49:19Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1648.27 +/- 119.80 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ana-bernal/keras_15_dog_breed
ana-bernal
2023-04-03T13:47:44Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-04-03T13:47:32Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
alkiskoudounas/ppo-LunarLander-v2
alkiskoudounas
2023-04-03T13:47:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:47:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.94 +/- 20.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
StadlerRob/a2c-AntBulletEnv-v0-100k-722
StadlerRob
2023-04-03T13:47:38Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:46:34Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 746.30 +/- 76.83 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jlara6/platzi-vit-model-jl
jlara6
2023-04-03T13:42:45Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-04-03T13:38:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi-vit-model-jl results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-jl This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0233 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1434 | 3.85 | 500 | 0.0233 | 0.9925 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
sofre/q-FrozenLake-v1-4x4-noSlippery
sofre
2023-04-03T13:36:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:36:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sofre/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saberzl/taxi_v3
saberzl
2023-04-03T13:34:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:34:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="saberzl/taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
asenella/mmnistJNF_config1_
asenella
2023-04-03T13:33:47Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-04-01T18:29:27Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
carolinainmymind/Taxi-v3
carolinainmymind
2023-04-03T13:26:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:26:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="carolinainmymind/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
carolinainmymind/q-FrozenLake-v1-4x4-noSlippery
carolinainmymind
2023-04-03T13:24:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:24:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="carolinainmymind/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saberzl/taxi_v2
saberzl
2023-04-03T13:21:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T13:21:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="saberzl/taxi_v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
xpariz10/ast-finetuned-audioset-10-10-0.4593_ft_ESC-50_aug_0-1
xpariz10
2023-04-03T13:17:02Z
162
0
transformers
[ "transformers", "pytorch", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "arxiv:2103.12157", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-03-30T14:36:21Z
--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593_ft_ESC-50_aug_0-1 results: [] --- # ast-finetuned-audioset-10-10-0.4593_ft_ESC-50_aug_0-1 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on a subset of [ashraq/esc50](https://huggingface.co/datasets/ashraq/esc50) dataset. It achieves the following results on the evaluation set: - Loss: 0.7391 - Accuracy: 0.9286 - Precision: 0.9449 - Recall: 0.9286 - F1: 0.9244 ## Training and evaluation data Training and evaluation data were augmented with audiomentations [GitHub: iver56/audiomentations](https://github.com/iver56/audiomentations) library and the following augmentation methods have been performed based on previous experiments [Elliott et al.: Tiny transformers for audio classification at the edge](https://arxiv.org/pdf/2103.12157.pdf): **Gain** - each audio sample is amplified/attenuated by a random factor between 0.5 and 1.5 with a 0.3 probability **Noise** - a random amount of Gaussian noise with a relative amplitude between 0.001 and 0.015 is added to each audio sample with a 0.5 probability **Speed adjust** - duration of each audio sample is extended by a random amount between 0.5 and 1.5 with a 0.3 probability **Pitch shift** - pitch of each audio sample is shifted by a random amount of semitones selected from the closed interval [-4,4] with a 0.3 probability **Time masking** - a random fraction of lenght of each audio sample in the range of (0,0.02] is erased with a 0.3 probability ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 9.9002 | 1.0 | 28 | 8.5662 | 0.0 | 0.0 | 0.0 | 0.0 | | 5.7235 | 2.0 | 56 | 4.3990 | 0.0357 | 0.0238 | 0.0357 | 0.0286 | | 2.4076 | 3.0 | 84 | 2.2972 | 0.4643 | 0.7405 | 0.4643 | 0.4684 | | 1.4448 | 4.0 | 112 | 1.3975 | 0.7143 | 0.7340 | 0.7143 | 0.6863 | | 0.8373 | 5.0 | 140 | 1.0468 | 0.8571 | 0.8524 | 0.8571 | 0.8448 | | 0.7239 | 6.0 | 168 | 0.8518 | 0.8929 | 0.9164 | 0.8929 | 0.8766 | | 0.6504 | 7.0 | 196 | 0.7391 | 0.9286 | 0.9449 | 0.9286 | 0.9244 | | 0.535 | 8.0 | 224 | 0.6682 | 0.9286 | 0.9449 | 0.9286 | 0.9244 | | 0.4237 | 9.0 | 252 | 0.6443 | 0.9286 | 0.9449 | 0.9286 | 0.9244 | | 0.3709 | 10.0 | 280 | 0.6304 | 0.9286 | 0.9449 | 0.9286 | 0.9244 | ### Test results | Parameter | Value | |:------------------------:|:------------------:| | test_loss | 0.5829914808273315 | | test_accuracy | 0.9285714285714286 | | test_precision | 0.9446428571428571 | | test_recall | 0.9285714285714286 | | test_f1 | 0.930292723149866 | | test_runtime (s) | 4.1488 | | test_samples_per_second | 6.749 | | test_steps_per_second | 3.374 | | epoch | 10.0 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.13.2
tenich/a2c-PandaReachDense-v2
tenich
2023-04-03T12:48:24Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T12:45:59Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.90 +/- 0.48 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dvruette/oasst-pythia-12b-reference
dvruette
2023-04-03T12:44:58Z
1,499
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-03T12:24:29Z
https://wandb.ai/open-assistant/supervised-finetuning/runs/bqiatai0
botato/point-alpaca-ggml-model-q4_0
botato
2023-04-03T12:39:37Z
0
6
null
[ "region:us" ]
null
2023-04-02T20:56:35Z
# This is a 4-bit quantized ggml file for use with [llama.cpp](https://github.com/ggerganov/llama.cpp) on the CPU (pre-mmap) or [llama-rs](https://github.com/rustformers/llama-rs) Original model: https://github.com/pointnetwork/point-alpaca # How to run ./llama-cli -m ./ggml-model-q4_0.bin -f ./alpaca_prompt.txt --repl (`llama-cli` is built from https://github.com/rustformers/llama-rs/tree/57440bffb0d946acf73b37e85498c77fc9dfe715)
developer8binks/new_marcellamodel
developer8binks
2023-04-03T12:39:04Z
29
0
diffusers
[ "diffusers", "text-to-image", "en", "arxiv:1910.09700", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-31T06:48:40Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Murray04/sd-class-butterflies-32
Murray04
2023-04-03T12:36:48Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-03T12:36:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Murray04/sd-class-butterflies-32') image = pipeline().images[0] image ```
PavanNeerudu/t5-base-finetuned-wnli
PavanNeerudu
2023-04-03T12:30:56Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-02T04:53:51Z
--- language: - en license: apache-2.0 datasets: - glue metrics: - accuracy model-index: - name: t5-base-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5634 --- # T5-base-finetuned-wnli <!-- Provide a quick summary of what the model is/does. --> This model is T5 fine-tuned on GLUE WNLI dataset. It acheives the following results on the validation set - Accuracy: 0.5634 ## Model Details T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. ## Training procedure ### Tokenization Since, T5 is a text-to-text model, the labels of the dataset are converted as follows: For each example, a sentence as been formed as **"wnli sentence1: " + wnli_sent1 + "sentence 2: " + wnli_sent2** and fed to the tokenizer to get the **input_ids** and **attention_mask**. For each label, label is choosen as **"entailment"** if label is 1, else label is **"not_entailment"** and tokenized to get **input_ids** and **attention_mask** . During training, these inputs_ids having **pad** token are replaced with -100 so that loss is not calculated for them. Then these input ids are given as labels, and above attention_mask of labels is given as decoder attention mask. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-4 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: epsilon=1e-08 - num_epochs: 3.0 ### Training results |Epoch | Training Loss | Validation Accuracy | |:----:|:-------------:|:-------------------:| | 1 | 0.1502 | 0.4930 | | 2 | 0.1331 | 0.5634 | | 3 | 0.1355 | 0.4225 |
Mauquoi-00/Teenage_Gender_Classification
Mauquoi-00
2023-04-03T12:16:38Z
0
0
null
[ "code", "en", "region:us" ]
null
2023-04-03T08:09:09Z
--- language: - en tags: - code ---
brand25/rl_course_vizdoom_health_gathering_supreme
brand25
2023-04-03T12:10:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T12:07:29Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.02 +/- 3.78 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r brand25/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
giggling-squid/HF_DRL_U4_ReinforcePG_cartpole_v2
giggling-squid
2023-04-03T12:03:12Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T12:02:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: HF_DRL_U4_ReinforcePG_cartpole_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
giggling-squid/HF_DRL_U4_ReinforcePG_cartpole_v1
giggling-squid
2023-04-03T11:52:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T11:52:05Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: HF_DRL_U4_ReinforcePG_cartpole_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 157.65 +/- 6.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jeremyvictor/flan-t5-large-clang8-e1-b16
jeremyvictor
2023-04-03T11:49:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-02T18:34:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-large-clang8-e1-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-clang8-e1-b16 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Rouge1: 80.9044 - Rouge2: 74.7041 - Rougel: 80.3109 - Rougelsum: 80.3664 - Gen Len: 16.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2432 | 0.25 | 36000 | 0.4018 | 78.4447 | 71.3656 | 77.7552 | 77.8451 | 15.9010 | | 0.1837 | 0.49 | 72000 | 0.3781 | 76.8828 | 69.9993 | 76.0584 | 76.1479 | 15.4026 | | 0.1511 | 0.74 | 108000 | 0.3282 | 79.7898 | 73.329 | 79.1608 | 79.2416 | 15.9021 | | 0.1267 | 0.98 | 144000 | 0.2994 | 80.9044 | 74.7041 | 80.3109 | 80.3664 | 16.0625 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.11.0a0+b6df043 - Datasets 2.11.0 - Tokenizers 0.13.2
Westcott/poca-SoccerTwos
Westcott
2023-04-03T11:34:13Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-04-03T11:28:06Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Westcott/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
brand25/ppo-LunarLander-v2-cleanRL
brand25
2023-04-03T11:27:29Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-03T11:27:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -172.26 +/- 106.08 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'brand25/ppo-LunarLander-v2-cleanRL' 'batch_size': 512 'minibatch_size': 128} ```
lgrobol/roberta-minuscule
lgrobol
2023-04-03T11:05:37Z
1,019
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
RoBERTa-minuscule ================== A ridiculously small model for testing purposes.