modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 12:28:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 12:28:29
card
stringlengths
11
1.01M
RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf
RichardErkhov
2024-09-01T14:46:16Z
10
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-09-01T12:36:02Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MultiLora-temporal-sharegpt - GGUF - Model creator: https://huggingface.co/Charlie911/ - Original model: https://huggingface.co/Charlie911/MultiLora-temporal-sharegpt/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MultiLora-temporal-sharegpt.Q2_K.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q2_K.gguf) | Q2_K | 2.36GB | | [MultiLora-temporal-sharegpt.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.IQ3_XS.gguf) | IQ3_XS | 2.6GB | | [MultiLora-temporal-sharegpt.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.IQ3_S.gguf) | IQ3_S | 2.75GB | | [MultiLora-temporal-sharegpt.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q3_K_S.gguf) | Q3_K_S | 2.75GB | | [MultiLora-temporal-sharegpt.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.IQ3_M.gguf) | IQ3_M | 2.9GB | | [MultiLora-temporal-sharegpt.Q3_K.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q3_K.gguf) | Q3_K | 3.07GB | | [MultiLora-temporal-sharegpt.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q3_K_M.gguf) | Q3_K_M | 3.07GB | | [MultiLora-temporal-sharegpt.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q3_K_L.gguf) | Q3_K_L | 3.35GB | | [MultiLora-temporal-sharegpt.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.IQ4_XS.gguf) | IQ4_XS | 3.4GB | | [MultiLora-temporal-sharegpt.Q4_0.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q4_0.gguf) | Q4_0 | 3.56GB | | [MultiLora-temporal-sharegpt.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.IQ4_NL.gguf) | IQ4_NL | 3.58GB | | [MultiLora-temporal-sharegpt.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q4_K_S.gguf) | Q4_K_S | 3.59GB | | [MultiLora-temporal-sharegpt.Q4_K.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q4_K.gguf) | Q4_K | 3.8GB | | [MultiLora-temporal-sharegpt.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q4_K_M.gguf) | Q4_K_M | 3.8GB | | [MultiLora-temporal-sharegpt.Q4_1.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q4_1.gguf) | Q4_1 | 3.95GB | | [MultiLora-temporal-sharegpt.Q5_0.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q5_0.gguf) | Q5_0 | 4.33GB | | [MultiLora-temporal-sharegpt.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q5_K_S.gguf) | Q5_K_S | 4.33GB | | [MultiLora-temporal-sharegpt.Q5_K.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q5_K.gguf) | Q5_K | 4.45GB | | [MultiLora-temporal-sharegpt.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q5_K_M.gguf) | Q5_K_M | 4.45GB | | [MultiLora-temporal-sharegpt.Q5_1.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q5_1.gguf) | Q5_1 | 4.72GB | | [MultiLora-temporal-sharegpt.Q6_K.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q6_K.gguf) | Q6_K | 5.15GB | | [MultiLora-temporal-sharegpt.Q8_0.gguf](https://huggingface.co/RichardErkhov/Charlie911_-_MultiLora-temporal-sharegpt-gguf/blob/main/MultiLora-temporal-sharegpt.Q8_0.gguf) | Q8_0 | 6.67GB | Original model description: --- license: llama2 datasets: - tasksource/bigbench - tonytan48/TempReason language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bear7011/In_breadth5
bear7011
2024-09-01T14:45:55Z
6
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T13:29:52Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bear7011/In_breadth4
bear7011
2024-09-01T14:32:30Z
14
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-08-25T05:57:50Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nlparabic/res_nw_dj
nlparabic
2024-09-01T14:28:18Z
7
0
null
[ "safetensors", "gpt2", "generated_from_trainer", "base_model:riotu-lab/ArabianGPT-01B", "base_model:finetune:riotu-lab/ArabianGPT-01B", "license:apache-2.0", "region:us" ]
null
2024-08-30T21:32:52Z
--- license: apache-2.0 base_model: riotu-lab/ArabianGPT-01B tags: - generated_from_trainer metrics: - bleu - rouge model-index: - name: res_nw_dj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # res_nw_dj This model is a fine-tuned version of [riotu-lab/ArabianGPT-01B](https://huggingface.co/riotu-lab/ArabianGPT-01B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6246 - Bleu: 0.3877 - Rouge1: 0.5958 - Rouge2: 0.3370 - Rougel: 0.5935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| | 1.2336 | 1.0 | 2679 | 0.7062 | 0.3526 | 0.5198 | 0.2547 | 0.5170 | | 0.634 | 2.0 | 5358 | 0.6423 | 0.3756 | 0.5739 | 0.3114 | 0.5714 | | 0.5299 | 3.0 | 8037 | 0.6246 | 0.3877 | 0.5958 | 0.3370 | 0.5935 | | 0.4492 | 4.0 | 10716 | 0.6246 | 0.3905 | 0.6081 | 0.3526 | 0.6057 | | 0.3829 | 5.0 | 13395 | 0.6300 | 0.3963 | 0.6145 | 0.3621 | 0.6125 | | 0.328 | 6.0 | 16074 | 0.6384 | 0.3961 | 0.6213 | 0.3700 | 0.6194 | | 0.2832 | 7.0 | 18753 | 0.6491 | 0.3999 | 0.6232 | 0.3741 | 0.6209 | | 0.2453 | 8.0 | 21432 | 0.6607 | 0.3968 | 0.6232 | 0.3746 | 0.6212 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
Shakhovak/class_v1
Shakhovak
2024-09-01T14:26:00Z
7
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "license:mit", "region:us" ]
null
2024-09-01T14:25:52Z
--- license: mit tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: sts_classifier - Docs: [More Information Needed]
pranay-43/swin-tiny-patch4-window7-224-finetuned-eurosat
pranay-43
2024-09-01T14:19:50Z
5
0
null
[ "tensorboard", "safetensors", "swin", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-28T13:14:47Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.994671729544341 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0256 - Accuracy: 0.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0268 | 0.9990 | 255 | 0.0256 | 0.9947 | | 0.0167 | 1.9980 | 510 | 0.0275 | 0.9947 | | 0.0177 | 2.9971 | 765 | 0.0268 | 0.9936 | | 0.0158 | 4.0 | 1021 | 0.0238 | 0.9945 | | 0.0112 | 4.9951 | 1275 | 0.0259 | 0.9944 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
HamzaSidhu786/marian-finetuned-kde4-en-to-fr
HamzaSidhu786
2024-09-01T14:16:20Z
5
0
null
[ "tensorboard", "safetensors", "marian", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "region:us" ]
translation
2024-09-01T13:19:18Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
OldBirdAZ/idf-all-8b
OldBirdAZ
2024-09-01T14:06:05Z
6
0
transformers
[ "transformers", "safetensors", "idefics2", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-08-26T07:52:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luaqi/sn29_merged_v17
luaqi
2024-09-01T13:41:12Z
35
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-01T13:38:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF
steveleancommerce
2024-09-01T13:35:56Z
5
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "ko", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:quantized:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T13:35:35Z
--- base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B language: - en - ko library_name: transformers license: llama3 tags: - llama-cpp - gguf-my-repo --- # steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`MLP-KTLim/llama-3-Korean-Bllossom-8B`](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF --hf-file llama-3-korean-bllossom-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF --hf-file llama-3-korean-bllossom-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF --hf-file llama-3-korean-bllossom-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo steveleancommerce/llama-3-Korean-Bllossom-8B-Q4_K_M-GGUF --hf-file llama-3-korean-bllossom-8b-q4_k_m.gguf -c 2048 ```
RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf
RichardErkhov
2024-09-01T13:35:12Z
58
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-09-01T10:02:00Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama2-12.8b_lora-dpo_v1 - GGUF - Model creator: https://huggingface.co/etri-xainlp/ - Original model: https://huggingface.co/etri-xainlp/llama2-12.8b_lora-dpo_v1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama2-12.8b_lora-dpo_v1.Q2_K.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q2_K.gguf) | Q2_K | 4.52GB | | [llama2-12.8b_lora-dpo_v1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.IQ3_XS.gguf) | IQ3_XS | 4.99GB | | [llama2-12.8b_lora-dpo_v1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.IQ3_S.gguf) | IQ3_S | 5.27GB | | [llama2-12.8b_lora-dpo_v1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q3_K_S.gguf) | Q3_K_S | 5.27GB | | [llama2-12.8b_lora-dpo_v1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.IQ3_M.gguf) | IQ3_M | 5.57GB | | [llama2-12.8b_lora-dpo_v1.Q3_K.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q3_K.gguf) | Q3_K | 5.9GB | | [llama2-12.8b_lora-dpo_v1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q3_K_M.gguf) | Q3_K_M | 5.9GB | | [llama2-12.8b_lora-dpo_v1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q3_K_L.gguf) | Q3_K_L | 6.45GB | | [llama2-12.8b_lora-dpo_v1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.IQ4_XS.gguf) | IQ4_XS | 6.54GB | | [llama2-12.8b_lora-dpo_v1.Q4_0.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q4_0.gguf) | Q4_0 | 6.86GB | | [llama2-12.8b_lora-dpo_v1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.IQ4_NL.gguf) | IQ4_NL | 6.9GB | | [llama2-12.8b_lora-dpo_v1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q4_K_S.gguf) | Q4_K_S | 6.91GB | | [llama2-12.8b_lora-dpo_v1.Q4_K.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q4_K.gguf) | Q4_K | 7.33GB | | [llama2-12.8b_lora-dpo_v1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q4_K_M.gguf) | Q4_K_M | 7.33GB | | [llama2-12.8b_lora-dpo_v1.Q4_1.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q4_1.gguf) | Q4_1 | 7.61GB | | [llama2-12.8b_lora-dpo_v1.Q5_0.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q5_0.gguf) | Q5_0 | 8.36GB | | [llama2-12.8b_lora-dpo_v1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q5_K_S.gguf) | Q5_K_S | 8.36GB | | [llama2-12.8b_lora-dpo_v1.Q5_K.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q5_K.gguf) | Q5_K | 8.6GB | | [llama2-12.8b_lora-dpo_v1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q5_K_M.gguf) | Q5_K_M | 8.6GB | | [llama2-12.8b_lora-dpo_v1.Q5_1.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q5_1.gguf) | Q5_1 | 9.1GB | | [llama2-12.8b_lora-dpo_v1.Q6_K.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q6_K.gguf) | Q6_K | 9.95GB | | [llama2-12.8b_lora-dpo_v1.Q8_0.gguf](https://huggingface.co/RichardErkhov/etri-xainlp_-_llama2-12.8b_lora-dpo_v1-gguf/blob/main/llama2-12.8b_lora-dpo_v1.Q8_0.gguf) | Q8_0 | 12.88GB | Original model description: --- license: apache-2.0 --- # etri-xainlp/llama2-12.8b_lora-dpo_v1 ## Model Details **Model Developers** ETRI xainlp team **Input** text only. **Output** text only. **Model Architecture** **Base Model** [meta-llama/Llama-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) **Training Dataset** - sft+lora: 710k instruction-following set - dpo+lora: 90k user preference set - We use A100 GPU 80GB * 8, when training.
SukhmanS/anu007-lora
SukhmanS
2024-09-01T13:26:20Z
8
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T13:04:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: anu007 --- # Anu007 Lora Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `anu007` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('SukhmanS/anu007-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF
Th3S
2024-09-01T13:13:02Z
8
1
null
[ "gguf", "decompile", "binary", "llama-cpp", "gguf-my-repo", "base_model:LLM4Binary/llm4decompile-22b-v2", "base_model:quantized:LLM4Binary/llm4decompile-22b-v2", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-09-01T13:12:05Z
--- base_model: LLM4Binary/llm4decompile-22b-v2 license: mit tags: - decompile - binary - llama-cpp - gguf-my-repo --- # Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`LLM4Binary/llm4decompile-22b-v2`](https://huggingface.co/LLM4Binary/llm4decompile-22b-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/LLM4Binary/llm4decompile-22b-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF --hf-file llm4decompile-22b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF --hf-file llm4decompile-22b-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF --hf-file llm4decompile-22b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Th3S/llm4decompile-22b-v2-Q4_K_M-GGUF --hf-file llm4decompile-22b-v2-q4_k_m.gguf -c 2048 ```
mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF
mradermacher
2024-09-01T13:10:19Z
41
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "EpistemeAI2/Fireball-Mistral-Nemo-Instruct-emo-PHD", "en", "base_model:EpistemeAI/Fireball-Mistral-Nemo-Instruct-24B-merge-v1", "base_model:quantized:EpistemeAI/Fireball-Mistral-Nemo-Instruct-24B-merge-v1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-09-01T11:08:54Z
--- base_model: EpistemeAI/Fireball-Mistral-Nemo-Instruct-24B-merge-v1 language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - EpistemeAI2/Fireball-Mistral-Nemo-Instruct-emo-PHD --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/EpistemeAI/Fireball-Mistral-Nemo-Instruct-24B-merge-v1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 7.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 7.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Instruct-24B-merge-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Instruct-24B-merge-v1.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
NicholasCorrado/tulu-2-7b-hh-dpo
NicholasCorrado
2024-09-01T13:07:04Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:HuggingFaceH4/hh-rlhf-h4", "base_model:allenai/tulu-2-7b", "base_model:finetune:allenai/tulu-2-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-01T08:36:27Z
--- library_name: transformers base_model: allenai/tulu-2-7b tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/hh-rlhf-h4 model-index: - name: tulu-2-7b-hh-dpo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tulu-2-7b-hh-dpo This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on the HuggingFaceH4/hh-rlhf-h4 dataset. It achieves the following results on the evaluation set: - Loss: 0.6470 - Rewards/chosen: -0.3648 - Rewards/rejected: -0.4826 - Rewards/accuracies: 0.6129 - Rewards/margins: 0.1178 - Logps/rejected: -246.3995 - Logps/chosen: -228.8311 - Logits/rejected: -1.4327 - Logits/chosen: -1.4212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.1 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
kayfahaarukku/UrangDiffusion-1.3
kayfahaarukku
2024-09-01T13:05:41Z
7
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "en", "base_model:cagliostrolab/animagine-xl-3.1", "base_model:finetune:cagliostrolab/animagine-xl-3.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-09-01T11:44:36Z
--- license: other license_name: faipl license_link: https://freedevproject.org/faipl-1.0-sd language: - en tags: - text-to-image - stable-diffusion - safetensors - stable-diffusion-xl base_model: cagliostrolab/animagine-xl-3.1 widget: - text: >- 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck, masterpiece, best quality parameter: negative_prompt: >- nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name example_title: 1girl --- <style> .title-container { display: flex; justify-content: center; align-items: center; height: 100vh; /* Adjust this value to position the title vertically */ } .title { font-size: 2.5em; text-align: center; color: #333; font-family: 'Helvetica Neue', sans-serif; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0; background: transparent; } .title span { background: -webkit-linear-gradient(45deg, #bdabe3, #b39a3e); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .custom-table { table-layout: fixed; width: 100%; border-collapse: collapse; margin-top: 2em; } .custom-table td { width: 50%; vertical-align: top; padding: 10px; box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15); } .custom-image-container { position: relative; width: 100%; margin-bottom: 0em; overflow: hidden; border-radius: 10px; transition: transform .7s; /* Smooth transition for the container */ } .custom-image-container:hover { transform: scale(1.05); filter: none; /* Scale the container on hover */ } .custom-image { width: 100%; height: auto; object-fit: cover; border-radius: 10px; transition: transform .7s; margin-bottom: 0em; } .nsfw-filter { filter: blur(8px); /* Apply a blur effect */ transition: filter 0.3s ease; /* Smooth transition for the blur effect */ } .overlay { position: absolute; bottom: 0; left: 0; right: 0; color: white; width: 100%; height: 40%; display: flex; flex-direction: column; justify-content: center; align-items: center; font-size: 1vw; font-style: bold; text-align: center; opacity: 0; /* Keep the text fully opaque */ background: linear-gradient(0deg, rgba(0, 0, 0, 0.8) 60%, rgba(0, 0, 0, 0) 100%); transition: opacity .5s; } .custom-image-container:hover .overlay { opacity: 1; } .overlay-text { background: linear-gradient(45deg, #7ed56f, #28b485); -webkit-background-clip: text; color: transparent; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); .overlay-subtext { font-size: 0.75em; margin-top: 0.5em; font-style: italic; } .overlay, .overlay-subtext { text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); } </style> <h1 class="title"> <span>UrangDiffusion 1.3</span> </h1> <table class="custom-table"> <tr> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/CflN1ULfm-71aMNo39Gsx.png" alt="sample1"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/0ha-V8ZhXsecutlZnRg4L.png" alt="sample4"> </div> </td> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/fNutPga3Mhal02EDt5iqe.png" alt="sample2"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/93wDOrBcPHundQRy8qBom.png" alt="sample3"> </td> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/5xp0jtmpEgfqEvvhQEmBw.png" alt="sample1"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64333a074521083b9d2aab3b/zuZkeUQwZLvhANkLfI9iX.png" alt="sample4"> </div> </td> </tr> </table> **UrangDiffusion 1.3** (oo-raw-ng Diffusion) is an updated version of UrangDiffusion 1.2. This version provides refreshed dataset, improvements over the last iteration, training parameter correction, and some characters optimization. ## Standard Prompting Guidelines The model is finetuned from Animagine XL 3.1. However, there is a little bit changes on dataset captioning, therefore there is some different default prompt used: **Default prompt**: ``` 1girl/1boy, character name, from what series, everything else in any order, masterpiece, best quality, amazing quality, very aesthetic ``` **Default negative prompt**: ``` lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, displeasing ``` **Default configuration:** Euler a with around 25-30 steps, CFG 5-7, and ENSD set to 31337. Sweetspot is around 28 steps and CFG 7. ## Training Configurations - Finetuned from: [Animagine XL 3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1) **Pretraining:** - Dataset size: 27,545 images - GPU: 1xA100 - Optimizer: AdaFactor - Unet Learning Rate: 3.75e-6 - Text Encoder Learning Rate: 1.875e-6 - Batch Size: 48 - Gradient Accumulation: 1 - Warmup steps: 100 steps - Min SNR Gamma: 5 - Epoch: 10 **Finetuning:** - Dataset size: ~6,800 images - GPU: 1xA100 - Optimizer: AdaFactor - Unet Learning Rate: 2e-6 - Text Encoder Learning Rate: - (Train TE set to False) - Batch Size: 48 - Gradient Accumulation: 1 - Warmup steps: 5% - Min SNR Gamma: 5 - Epoch: 10 - Noise Offset: 0.0357 ## Added Series **Wuthering Waves**, **Zenless Zone Zero**, and **hololiveEN -Justice-** have been added to the model. ## Special Thanks - **My co-workers(?) at CagliostroLab** for the insights and feedback. - **Nur Hikari** and **Vanilla Latte** for quality control. - **Linaqruf**, my tutor and role model in AI-generated images. ## License **UrangDiffusion 1.3** falls under the **[Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)** license.
xmarkinmtlx/steif
xmarkinmtlx
2024-09-01T12:57:43Z
8
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T12:57:38Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: An ultra-detailed image of STEIF wearing aviator sunglasses and a green "HEALTHY " t-shirt license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # steif <Gallery /> ## Model description A model to generate images of male supermodel Steif ## Trigger words You should use `An ultra-detailed image of STEIF wearing aviator sunglasses and a green "HEALTHY " t-shirt` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/xmarkinmtlx/steif/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
Niggendar/rdxlSmashBros_pony2
Niggendar
2024-09-01T12:33:45Z
99
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-09-01T12:24:02Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sxj1215/Qwen2-VL-7B-Instruct-stf-collection
sxj1215
2024-09-01T12:26:26Z
22
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "llama-factory", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-09-01T12:17:17Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
manu2501sharma/layoutlmv2-base-uncased_finetuned_docvqa
manu2501sharma
2024-09-01T11:54:56Z
5
0
null
[ "tensorboard", "safetensors", "layoutlmv2", "generated_from_trainer", "base_model:microsoft/layoutlmv2-base-uncased", "base_model:finetune:microsoft/layoutlmv2-base-uncased", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2024-08-31T11:11:41Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv2-base-uncased tags: - generated_from_trainer model-index: - name: layoutlmv2-base-uncased_finetuned_docvqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-base-uncased_finetuned_docvqa This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.2363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 4.0408 | 0.2212 | 50 | 4.0001 | | 4.1144 | 0.4425 | 100 | 3.7920 | | 3.8854 | 0.6637 | 150 | 3.6503 | | 3.6048 | 0.8850 | 200 | 3.3228 | | 3.1846 | 1.1062 | 250 | 3.6110 | | 2.917 | 1.3274 | 300 | 2.9913 | | 2.8848 | 1.5487 | 350 | 2.7110 | | 2.5842 | 1.7699 | 400 | 2.4111 | | 2.1162 | 1.9912 | 450 | 2.4839 | | 1.8347 | 2.2124 | 500 | 2.7160 | | 1.786 | 2.4336 | 550 | 2.5238 | | 1.8828 | 2.6549 | 600 | 2.4274 | | 1.8181 | 2.8761 | 650 | 2.5544 | | 1.5656 | 3.0973 | 700 | 2.4362 | | 1.4265 | 3.3186 | 750 | 2.9550 | | 1.4967 | 3.5398 | 800 | 3.2754 | | 1.2732 | 3.7611 | 850 | 3.0296 | | 1.3162 | 3.9823 | 900 | 2.6941 | | 1.0837 | 4.2035 | 950 | 2.9119 | | 1.1094 | 4.4248 | 1000 | 3.0181 | | 1.1846 | 4.6460 | 1050 | 2.6419 | | 1.5768 | 4.8673 | 1100 | 4.0184 | | 1.4084 | 5.0885 | 1150 | 3.1371 | | 0.9783 | 5.3097 | 1200 | 2.9210 | | 0.984 | 5.5310 | 1250 | 3.0042 | | 0.7546 | 5.7522 | 1300 | 3.1277 | | 0.799 | 5.9735 | 1350 | 3.0501 | | 0.6629 | 6.1947 | 1400 | 3.2626 | | 0.8973 | 6.4159 | 1450 | 3.2922 | | 0.6816 | 6.6372 | 1500 | 3.0462 | | 0.539 | 6.8584 | 1550 | 3.1018 | | 0.6871 | 7.0796 | 1600 | 3.1925 | | 0.4569 | 7.3009 | 1650 | 3.2120 | | 0.6451 | 7.5221 | 1700 | 2.9812 | | 0.5579 | 7.7434 | 1750 | 3.3052 | | 0.4851 | 7.9646 | 1800 | 4.1491 | | 0.5851 | 8.1858 | 1850 | 3.5338 | | 0.4344 | 8.4071 | 1900 | 3.4542 | | 0.5021 | 8.6283 | 1950 | 3.2402 | | 0.4699 | 8.8496 | 2000 | 3.3066 | | 0.4668 | 9.0708 | 2050 | 3.6041 | | 0.2258 | 9.2920 | 2100 | 3.6862 | | 0.4708 | 9.5133 | 2150 | 3.7622 | | 0.3933 | 9.7345 | 2200 | 3.7370 | | 0.3858 | 9.9558 | 2250 | 3.3631 | | 0.3359 | 10.1770 | 2300 | 3.6203 | | 0.2365 | 10.3982 | 2350 | 3.7388 | | 0.3147 | 10.6195 | 2400 | 3.8653 | | 0.3401 | 10.8407 | 2450 | 4.0243 | | 0.1644 | 11.0619 | 2500 | 4.1857 | | 0.142 | 11.2832 | 2550 | 4.3611 | | 0.266 | 11.5044 | 2600 | 4.2761 | | 0.1592 | 11.7257 | 2650 | 4.3012 | | 0.1126 | 11.9469 | 2700 | 4.3518 | | 0.1409 | 12.1681 | 2750 | 4.4466 | | 0.0731 | 12.3894 | 2800 | 4.3459 | | 0.1243 | 12.6106 | 2850 | 4.3446 | | 0.2672 | 12.8319 | 2900 | 4.3548 | | 0.228 | 13.0531 | 2950 | 4.1020 | | 0.0622 | 13.2743 | 3000 | 4.4363 | | 0.1287 | 13.4956 | 3050 | 4.5345 | | 0.1974 | 13.7168 | 3100 | 4.6727 | | 0.2213 | 13.9381 | 3150 | 4.3807 | | 0.1551 | 14.1593 | 3200 | 4.4805 | | 0.1295 | 14.3805 | 3250 | 4.7027 | | 0.0664 | 14.6018 | 3300 | 4.7583 | | 0.1159 | 14.8230 | 3350 | 4.3252 | | 0.02 | 15.0442 | 3400 | 4.6594 | | 0.0438 | 15.2655 | 3450 | 4.8679 | | 0.0495 | 15.4867 | 3500 | 5.1235 | | 0.1143 | 15.7080 | 3550 | 5.1614 | | 0.1405 | 15.9292 | 3600 | 5.1302 | | 0.0351 | 16.1504 | 3650 | 5.0780 | | 0.1258 | 16.3717 | 3700 | 5.1000 | | 0.0387 | 16.5929 | 3750 | 5.0849 | | 0.0809 | 16.8142 | 3800 | 4.9809 | | 0.0955 | 17.0354 | 3850 | 5.0030 | | 0.0347 | 17.2566 | 3900 | 5.0040 | | 0.0716 | 17.4779 | 3950 | 4.9608 | | 0.0417 | 17.6991 | 4000 | 5.0922 | | 0.1394 | 17.9204 | 4050 | 5.1081 | | 0.0612 | 18.1416 | 4100 | 5.1859 | | 0.0057 | 18.3628 | 4150 | 5.2126 | | 0.0965 | 18.5841 | 4200 | 5.1589 | | 0.0131 | 18.8053 | 4250 | 5.1224 | | 0.0922 | 19.0265 | 4300 | 5.1521 | | 0.0353 | 19.2478 | 4350 | 5.1961 | | 0.0351 | 19.4690 | 4400 | 5.2249 | | 0.0161 | 19.6903 | 4450 | 5.2304 | | 0.0095 | 19.9115 | 4500 | 5.2363 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
marceloxp/canny-quest
marceloxp
2024-09-01T11:54:20Z
36
3
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "character", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T11:54:18Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Sell&allowDerivatives=True&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - character base_model: black-forest-labs/FLUX.1-dev instance_prompt: widget: - text: 'silver silk dress, solo, simple background, perfectly round sunglasses, upper body, cannyquest, 1girl, standing straight' output: url: >- 26676267.jpeg - text: 'upper body, 1girl, cannyquest, standing straight, perfectly round sunglasses, silver silk dress, simple background, solo' output: url: >- 26676266.jpeg - text: 'perfectly round sunglasses, upper body, standing straight, cannyquest, simple background, 1girl, solo, silver silk dress' output: url: >- 26676268.jpeg --- # Canny Quest <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <p>This model was created to be a shortcut to the fictional character Canny Quest from Pixel Perfect Beauties.</p><p></p><h3 id="main-features:-85q886wpe"><strong>Main features:</strong></h3><p>blonde, silver silk dress, perfectly round sunglasses, pearl necklace</p><h3 id="trigger-world:-pu1hzmynk"><strong>Trigger World:</strong></h3><p>cannyquest</p> ## Download model Weights for this model are available in Safetensors format. [Download](/marceloxp/canny-quest/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('marceloxp/canny-quest', weight_name='Canny_Quest-000004.safetensors') image = pipeline('perfectly round sunglasses, upper body, standing straight, cannyquest, simple background, 1girl, solo, silver silk dress').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
BigHuggyD/c4ai-command-r-plus-08-2024_exl2_4.0bpw_h6
BigHuggyD
2024-09-01T11:39:23Z
8
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "exl2", "region:us" ]
text-generation
2024-09-01T11:01:55Z
--- inference: false license: cc-by-nc-4.0 library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar extra_gated_prompt: "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy)." extra_gated_fields: Name: text Affiliation: text Country: type: select options: - Aruba - Afghanistan - Angola - Anguilla - Åland Islands - Albania - Andorra - United Arab Emirates - Argentina - Armenia - American Samoa - Antarctica - French Southern Territories - Antigua and Barbuda - Australia - Austria - Azerbaijan - Burundi - Belgium - Benin - Bonaire Sint Eustatius and Saba - Burkina Faso - Bangladesh - Bulgaria - Bahrain - Bahamas - Bosnia and Herzegovina - Saint Barthélemy - Belarus - Belize - Bermuda - Plurinational State of Bolivia - Brazil - Barbados - Brunei-Darussalam - Bhutan - Bouvet-Island - Botswana - Central African Republic - Canada - Cocos (Keeling) Islands - Switzerland - Chile - China - Côte-dIvoire - Cameroon - Democratic Republic of the Congo - Cook Islands - Colombia - Comoros - Cabo Verde - Costa Rica - Cuba - Curaçao - Christmas Island - Cayman Islands - Cyprus - Czechia - Germany - Djibouti - Dominica - Denmark - Dominican Republic - Algeria - Ecuador - Egypt - Eritrea - Western Sahara - Spain - Estonia - Ethiopia - Finland - Fiji - Falkland Islands (Malvinas) - France - Faroe Islands - Federated States of Micronesia - Gabon - United Kingdom - Georgia - Guernsey - Ghana - Gibraltar - Guinea - Guadeloupe - Gambia - Guinea Bissau - Equatorial Guinea - Greece - Grenada - Greenland - Guatemala - French Guiana - Guam - Guyana - Hong Kong - Heard Island and McDonald Islands - Honduras - Croatia - Haiti - Hungary - Indonesia - Isle of Man - India - British Indian Ocean Territory - Ireland - Islamic Republic of Iran - Iraq - Iceland - Israel - Italy - Jamaica - Jersey - Jordan - Japan - Kazakhstan - Kenya - Kyrgyzstan - Cambodia - Kiribati - Saint-Kitts-and-Nevis - South Korea - Kuwait - Lao-Peoples-Democratic-Republic - Lebanon - Liberia - Libya - Saint-Lucia - Liechtenstein - Sri Lanka - Lesotho - Lithuania - Luxembourg - Latvia - Macao - Saint Martin (French-part) - Morocco - Monaco - Republic of Moldova - Madagascar - Maldives - Mexico - Marshall Islands - North Macedonia - Mali - Malta - Myanmar - Montenegro - Mongolia - Northern Mariana Islands - Mozambique - Mauritania - Montserrat - Martinique - Mauritius - Malawi - Malaysia - Mayotte - Namibia - New Caledonia - Niger - Norfolk Island - Nigeria - Nicaragua - Niue - Netherlands - Norway - Nepal - Nauru - New Zealand - Oman - Pakistan - Panama - Pitcairn - Peru - Philippines - Palau - Papua New Guinea - Poland - Puerto Rico - North Korea - Portugal - Paraguay - State of Palestine - French Polynesia - Qatar - Réunion - Romania - Russia - Rwanda - Saudi Arabia - Sudan - Senegal - Singapore - South Georgia and the South Sandwich Islands - Saint Helena Ascension and Tristan da Cunha - Svalbard and Jan Mayen - Solomon Islands - Sierra Leone - El Salvador - San Marino - Somalia - Saint Pierre and Miquelon - Serbia - South Sudan - Sao Tome and Principe - Suriname - Slovakia - Slovenia - Sweden - Eswatini - Sint Maarten (Dutch-part) - Seychelles - Syrian Arab Republic - Turks and Caicos Islands - Chad - Togo - Thailand - Tajikistan - Tokelau - Turkmenistan - Timor Leste - Tonga - Trinidad and Tobago - Tunisia - Turkey - Tuvalu - Taiwan - United Republic of Tanzania - Uganda - Ukraine - United States Minor Outlying Islands - Uruguay - United-States - Uzbekistan - Holy See (Vatican City State) - Saint Vincent and the Grenadines - Bolivarian Republic of Venezuela - Virgin Islands British - Virgin Islands U.S. - VietNam - Vanuatu - Wallis and Futuna - Samoa - Yemen - South Africa - Zambia - Zimbabwe Receive email updates on C4AI and Cohere research, events, products and services?: type: select options: - Yes - No I agree to use this model for non-commercial use ONLY: checkbox --- # Model Card for C4AI Command R+ 08-2024 ## Model Summary C4AI Command R+ 08-2024 is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ 08-2024 is a multilingual model trained on 23 languages and evaluated in 10 languages. Command R+ 08-2024 is optimized for a variety of use cases including reasoning, summarization, and question answering. C4AI Command R+ 08-2024 is part of a family of open weight releases from Cohere For AI and Cohere. Our smaller companion model is [C4AI Command R 08-2024](https://huggingface.co/CohereForAI/c4ai-command-r-08-2024). - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-plus-08-2024 - Model Size: 104 billion parameters - Context length: 128K **Try C4AI Command R+** You can try out C4AI Command R+ before downloading the weights in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/c4ai-command?model=command-r-plus-08-2024). **Usage** Please use `transformers` version 4.39.1 or higher ```python # pip install 'transformers>=4.39.1' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-plus-08-2024" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus-08-2024 chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. We use grouped query attention (GQA) to improve inference speed. **Languages covered**: The model has been trained on 23 languages (English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Simplified Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian) and evaluated on 10 languages (English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Simplified Chinese). **Context length**: Command R+ 08-2024 supports a context length of 128K. ### Tool use & Agent capabilities: Command R+ 08-2024 has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command R+ 08-2024’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R+ 08-2024 may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with Command R+ 08-2024's tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). Command R+ 08-2024 also supports Hugging Face's [tool use API](https://huggingface.co/docs/transformers/main/en/chat_templating#advanced-tool-use--function-calling). The code snippets below show minimal working examples on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus-08-2024" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Usage: Rendering prompts with the Tool Use API [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus-08-2024" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use # Type hints and docstrings from Python functions are automatically extracted def internet_search(query: str): """ Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query: Query to search the internet with """ pass def directly_answer(): """ Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass tools = [internet_search, directly_answer] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_chat_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command R+ 08-2024 has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG). This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command R+ 08-2024’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. By default, Command R+ 08-2024 will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with Command R+ 08-2024's grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus-08-2024" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command R+ 08-2024 has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [info@for.ai](mailto:info@for.ai). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 104 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command R+ 08-2024 chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command?model=command-r-plus-08-2024).
Niggendar/darkPhotoPony_v20
Niggendar
2024-09-01T11:35:25Z
69
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-09-01T11:27:19Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cordondata/distilbert_sst2_600_150_acc_89
cordondata
2024-09-01T11:01:52Z
9
1
null
[ "safetensors", "distilbert", "region:us" ]
null
2024-09-01T10:25:05Z
# DistilBERT SST-2 Sentiment Analysis Model This repository contains a fine-tuned DistilBERT model for sentiment analysis, trained on a subset of the SST-2 dataset. The model, tokenizer, and datasets are provided for educational purposes. ## Model Details - **Model Name:** DistilBERT SST-2 Sentiment Analysis - **Architecture:** DistilBERT (distilbert-base-uncased) - **Task:** Binary Sentiment Classification - **Dataset:** SST-2 (Subset: 600 training samples, 150 test samples) - **Accuracy:** 89% on the validation subset ### Model Components - **Model:** The model is a DistilBERT model fine-tuned for binary sentiment analysis (positive/negative). - **Tokenizer:** The tokenizer used is `distilbert-base-uncased`, which is aligned with the DistilBERT model. ## Datasets This repository also includes the datasets used to train and evaluate the model: - **Training Dataset:** 600 samples from the SST-2 training set, saved in Parquet format. - **Test Dataset:** 150 samples from the SST-2 validation set, saved in Parquet format. The datasets were tokenized using the DistilBERT tokenizer with the following preprocessing steps: - **Padding:** Sentences are padded to the longest sentence in the batch. - **Truncation:** Sentences longer than 512 tokens are truncated. - **Max Length:** 512 tokens. ## Files Included - `pytorch_model.bin`: The model weights. - `config.json`: The model configuration. - `tokenizer_config.json`: The tokenizer configuration. - `vocab.txt`: The tokenizer vocabulary file. - `train_dataset.parquet`: Tokenized training dataset (600 samples) in Parquet format. - `test_dataset.parquet`: Tokenized test dataset (150 samples) in Parquet format. ## Training Details ### Training Configuration The model was fine-tuned using the following hyperparameters: - **Learning Rate:** 2e-5 - **Batch Size:** 16 (training), 64 (evaluation) - **Number of Epochs:** 4 - **Gradient Accumulation Steps:** 3 - **Weight Decay:** 0.01 - **Evaluation Strategy:** Evaluated at the end of each epoch - **Logging:** Logs were generated every 100 steps ### Training Process The model was trained using the Hugging Face `Trainer` API, which provides an easy interface for training and evaluating models. The training process involved regular evaluation steps to monitor accuracy, and the best model based on validation accuracy was loaded at the end of training. ### Model Performance - **Validation Accuracy:** 89% The validation accuracy was calculated on the 150 samples from the SST-2 validation set. ## Usage Notes This model is provided for educational purposes. It may not be suitable for production use without further testing and validation on larger datasets. ## Acknowledgements - **Hugging Face:** For providing the `transformers` library and dataset access. - **GLUE Benchmark:** For providing the SST-2 dataset. - **SST-2 Dataset:** The SST-2 dataset used in this project is part of the GLUE benchmark.
Agnuxo/Tinytron-ORCA-7B-TinyLlama-Instruct_CODE_Python-extra_small_quantization_GGUF_3bit
Agnuxo
2024-09-01T10:54:08Z
20
0
null
[ "safetensors", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-09-01T10:44:45Z
--- license: apache-2.0 ---
csikasote/mms-1b-bem-male-sv
csikasote
2024-09-01T10:53:12Z
9
0
null
[ "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "BembaSpeech", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2024-08-31T23:08:51Z
--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - BembaSpeech - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bem-male-sv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cicasote/huggingface/runs/x8tbh9an) # mms-1b-bem-male-sv This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.1409 - Wer: 0.3498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.2183 | 200 | 0.1927 | 0.4257 | | No log | 0.4367 | 400 | 0.1713 | 0.3885 | | 2.0358 | 0.6550 | 600 | 0.1760 | 0.3907 | | 2.0358 | 0.8734 | 800 | 0.1819 | 0.4143 | | 0.519 | 1.0917 | 1000 | 0.1611 | 0.3869 | | 0.519 | 1.3100 | 1200 | 0.1550 | 0.3736 | | 0.519 | 1.5284 | 1400 | 0.1538 | 0.3771 | | 0.4764 | 1.7467 | 1600 | 0.1744 | 0.4176 | | 0.4764 | 1.9651 | 1800 | 0.1598 | 0.3884 | | 0.4501 | 2.1834 | 2000 | 0.1507 | 0.3577 | | 0.4501 | 2.4017 | 2200 | 0.1535 | 0.3763 | | 0.4501 | 2.6201 | 2400 | 0.1502 | 0.3649 | | 0.4422 | 2.8384 | 2600 | 0.1457 | 0.3502 | | 0.4422 | 3.0568 | 2800 | 0.1485 | 0.3580 | | 0.4217 | 3.2751 | 3000 | 0.1480 | 0.3547 | | 0.4217 | 3.4934 | 3200 | 0.1498 | 0.3666 | | 0.4217 | 3.7118 | 3400 | 0.1458 | 0.3494 | | 0.4144 | 3.9301 | 3600 | 0.1427 | 0.3574 | | 0.4144 | 4.1485 | 3800 | 0.1445 | 0.3594 | | 0.3926 | 4.3668 | 4000 | 0.1462 | 0.3666 | | 0.3926 | 4.5852 | 4200 | 0.1432 | 0.3527 | | 0.3926 | 4.8035 | 4400 | 0.1409 | 0.3498 | ### Framework versions - Transformers 4.43.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
Agnuxo/Tinytron-ORCA-7B-Instruct_CODE_Python_English_GGUF_16bit
Agnuxo
2024-09-01T10:43:36Z
16
0
null
[ "safetensors", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-09-01T10:33:59Z
--- license: apache-2.0 ---
Agnuxo/Tinytron-ORCA-3B-Instruct_CODE_Python-Spanish_English_GGUF_4bit
Agnuxo
2024-09-01T10:30:33Z
21
0
null
[ "safetensors", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T10:29:09Z
--- license: apache-2.0 ---
hienbm/llama3.1-8b-it-big5
hienbm
2024-09-01T10:26:02Z
11
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-31T12:54:42Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** hienbm - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Agnuxo/Tinytron-ORCA-3B-Instruct_CODE_Python_English_Asistant-16bit-v2
Agnuxo
2024-09-01T10:25:03Z
19
0
null
[ "safetensors", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T10:21:52Z
--- license: apache-2.0 ---
RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf
RichardErkhov
2024-09-01T10:23:20Z
5
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-09-01T06:43:25Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) SOLAR-DUS-implement - GGUF - Model creator: https://huggingface.co/Cartinoe5930/ - Original model: https://huggingface.co/Cartinoe5930/SOLAR-DUS-implement/ | Name | Quant method | Size | | ---- | ---- | ---- | | [SOLAR-DUS-implement.Q2_K.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q2_K.gguf) | Q2_K | 3.73GB | | [SOLAR-DUS-implement.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.IQ3_XS.gguf) | IQ3_XS | 4.14GB | | [SOLAR-DUS-implement.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.IQ3_S.gguf) | IQ3_S | 4.37GB | | [SOLAR-DUS-implement.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [SOLAR-DUS-implement.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.IQ3_M.gguf) | IQ3_M | 4.51GB | | [SOLAR-DUS-implement.Q3_K.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q3_K.gguf) | Q3_K | 4.84GB | | [SOLAR-DUS-implement.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [SOLAR-DUS-implement.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [SOLAR-DUS-implement.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [SOLAR-DUS-implement.Q4_0.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q4_0.gguf) | Q4_0 | 5.66GB | | [SOLAR-DUS-implement.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [SOLAR-DUS-implement.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [SOLAR-DUS-implement.Q4_K.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q4_K.gguf) | Q4_K | 6.02GB | | [SOLAR-DUS-implement.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [SOLAR-DUS-implement.Q4_1.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q4_1.gguf) | Q4_1 | 6.27GB | | [SOLAR-DUS-implement.Q5_0.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q5_0.gguf) | Q5_0 | 6.89GB | | [SOLAR-DUS-implement.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [SOLAR-DUS-implement.Q5_K.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q5_K.gguf) | Q5_K | 7.08GB | | [SOLAR-DUS-implement.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [SOLAR-DUS-implement.Q5_1.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q5_1.gguf) | Q5_1 | 7.51GB | | [SOLAR-DUS-implement.Q6_K.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q6_K.gguf) | Q6_K | 8.2GB | | [SOLAR-DUS-implement.Q8_0.gguf](https://huggingface.co/RichardErkhov/Cartinoe5930_-_SOLAR-DUS-implement-gguf/blob/main/SOLAR-DUS-implement.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Cartinoe5930/Llama2_init_Mistral - Cartinoe5930/Llama2_init_Mistral --- # SOLAR-DUS-implement SOLAR-DUS-implement is a merge of the following model using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Cartinoe5930/Llama2_init_Mistral](https://huggingface.co/Cartinoe5930/Llama2_init_Mistral) For more detailed information, please refer to GitHub Repository. GitHub Repository: https://github.com/gauss5930/iDUS ## 🧩 Configuration ```yaml slices: - sources: - model: Cartinoe5930/Llama2_init_Mistral layer_range: [0, 24] - sources: - model: Cartinoe5930/Llama2_init_Mistral layer_range: [8, 32] merge_method: passthrough dtype: float16 ``` ## 🏆 HuggingFace Open LLM Leaderboard |Model|ARC|HellaSwag|MMLU|TruthfulQA|Winogrande|GSM8K|Average| |---|---|---|---|---|---|---|---| |SOLAR-10.7B-DUS-Implementation|59.56|81.18|63.68|40.72|76.48|26.99|58.1| ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Cartinoe5930/SOLAR-DUS-implement" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
knowledgator/Llama-encoder-1.0B
knowledgator
2024-09-01T10:06:40Z
516
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "LLM2Vec", "encoder", "LLM", "classification", "NER", "question-answering", "en", "dataset:wikimedia/wikipedia", "arxiv:2404.05961", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-08-31T16:52:32Z
--- license: apache-2.0 datasets: - wikimedia/wikipedia language: - en library_name: transformers tags: - LLM2Vec - encoder - LLM - classification - NER - question-answering --- # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders > LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders. It consists of 3 simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. The model can be further fine-tuned to achieve state-of-the-art performance. - **Repository:** https://github.com/McGill-NLP/llm2vec - **Paper:** https://arxiv.org/abs/2404.05961 ## Overview: This is a bi-directional version of Tiny-LLaMA-1.0B trained with masked token prediction on the Wikipedia dataset. Modern decoder models offer several advantages over classical encoders like BERT: They are pre-trained on more recent textual corpora They are trained on larger and more diverse datasets Modern decoders have better support for long-context windows Flash-attention support is available for these models Considering these benefits, we are excited to release a series of decoder models tuned to work in a bi-directional setting. This approach combines the strengths of modern decoder architectures with the versatility of bi-directional context understanding, potentially opening up new possibilities for various natural language processing tasks, such as NER. In comparison to original LLM2Vec we trained all weights of LLama model, it potentially improve bi-directional abilities of the model. ## Installation ```bash pip install llm2vec ``` ## Usage ```python from llm2vec.models import LlamaBiModel import torch from transformers import AutoTokenizer # Loading base Mistral model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model. tokenizer = AutoTokenizer.from_pretrained( "knowledgator/Llama-encoder-1.0B" ) model = LLamaBiModel.from_pretrained("knowledgator/Llama-encoder-1.0B") text = "The quick brown fox jumps over the lazy dog." inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Here's an improved and expanded version of the README snippet: ## Adapting for Different Discriminative Tasks Our bi-directional LLaMA model can be easily adapted for various discriminative tasks such as text classification, question answering, and token classification. To use these specialized versions, we provide a [fork of LLM2Vec](https://github.com/Knowledgator/llm2vec) with additional functionality. ### Installation To get started, clone our fork of LLM2Vec and install it: ```bash git clone https://github.com/Knowledgator/llm2vec.git cd llm2vec pip install -e . ``` Using `-e` flag installs the package in editable mode, which is useful for development. ### Usage Here's how to import and use the models for different tasks: ```python from llm2vec import ( AutoLLMEncoderForSequenceClassification, AutoLLMEncoderForQuestionAnswering, AutoLLMEncoderForTokenClassification ) # Load models for different tasks classification_model = AutoLLMEncoderForSequenceClassification.from_pretrained('knowledgator/Llama-encoder-1.0B') question_answering_model = AutoLLMEncoderForQuestionAnswering.from_pretrained('knowledgator/Llama-encoder-1.0B') token_classification_model = AutoLLMEncoderForTokenClassification.from_pretrained('knowledgator/Llama-encoder-1.0B') ``` ### Example: Text Classification Here's a basic example of how to use the model for text classification: ```python from transformers import AutoTokenizer # Load tokenizer tokenizer = AutoTokenizer.from_pretrained('knowledgator/Llama-encoder-1.0B') # Prepare input text = "This movie is great!" inputs = tokenizer(text, return_tensors="pt") # Get classification logits outputs = classification_model(**inputs) logits = outputs.logits # The logits can be used with a softmax function to get probabilities # or you can use torch.argmax(logits, dim=1) to get the predicted class ``` ### Fine-tuning To fine-tune these models on your specific task: 1. Prepare your dataset in a format compatible with HuggingFace's `datasets` library. 2. Use the `Trainer` class from HuggingFace's `transformers` library to fine-tune the model. Here's a basic example: ```python from transformers import Trainer, TrainingArguments from datasets import load_dataset # Load your dataset dataset = load_dataset("your_dataset") # Define training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", ) # Initialize Trainer trainer = Trainer( model=classification_model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], ) # Fine-tune the model trainer.train() ``` ### Contributing We welcome contributions! If you have suggestions for improvements or encounter any issues, please open an issue or submit a pull request on our [GitHub repository](https://github.com/Knowledgator/llm2vec).
Nikola888/nikolaiaia-lora
Nikola888
2024-09-01T10:06:22Z
5
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T06:44:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: TOK --- # Nikolaiaia Lora Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Nikola888/nikolaiaia-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lgk03/ACROSSAPPS_NDD-claroline_test-content_tags
lgk03
2024-09-01T09:59:03Z
116
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-08-31T13:19:51Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ACROSSAPPS_NDD-claroline_test-content_tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ACROSSAPPS_NDD-claroline_test-content_tags This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2064 - Accuracy: 0.7840 - F1: 0.8123 - Precision: 0.9093 - Recall: 0.7840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2048 | 0.9988 | 621 | 0.1858 | 0.7886 | 0.8161 | 0.9101 | 0.7886 | | 0.152 | 1.9976 | 1242 | 0.2064 | 0.7840 | 0.8123 | 0.9093 | 0.7840 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
prasannadhungana8848/TOS_BERT
prasannadhungana8848
2024-09-01T09:55:16Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "en", "dataset:CodeHima/TOS_DatasetV3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-09-01T09:24:18Z
--- datasets: - CodeHima/TOS_DatasetV3 language: - en metrics: - accuracy pipeline_tag: text-classification library_name: transformers --- TOS-BERT ## Model details - Model type: [BERT] - Training data: [This model is finetuned on "CodeHima/TOS_DatasetV3".] - Intended use: [This model is used to classify the terms of documents according to their unfairness level.] ## Usage Here's a quick example of how to use the model: ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("prasannadhungana8848/TOS_BERT") tokenizer = AutoTokenizer.from_pretrained("prasannadhungana8848/TOS_BERT")
pruizf/bert-tests-model-compression
pruizf
2024-09-01T09:54:02Z
161
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-09-01T09:53:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
duyntnet/c4ai-command-r-08-2024-imatrix-GGUF
duyntnet
2024-09-01T09:49:52Z
7
1
transformers
[ "transformers", "gguf", "imatrix", "c4ai-command-r-08-2024", "text-generation", "en", "license:other", "region:us", "conversational" ]
text-generation
2024-09-01T01:46:54Z
--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - c4ai-command-r-08-2024 --- Quantizations of https://huggingface.co/CohereForAI/c4ai-command-r-08-2024 ### Inference Clients/UIs * [llama.cpp](https://github.com/ggerganov/llama.cpp) * [JanAI](https://github.com/janhq/jan) * [KoboldCPP](https://github.com/LostRuins/koboldcpp) * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [ollama](https://github.com/ollama/ollama) * [GPT4All](https://github.com/nomic-ai/gpt4all) --- # From original readme ## Model Summary <!-- Provide a quick summary of what the model is/does. --> C4AI Command R 08-2024 is a research release of a 35 billion parameter highly performant generative model. Command R 08-2024 is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command R 08-2024 has the capability for multilingual generation, trained on 23 languages and evaluated in 10 languages and highly performant RAG capabilities. Developed by: Cohere and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-08-2024 - Model Size: 35 billion parameters - Context length: 128K **Try C4AI Command R** If you want to try Command R before downloading the weights, the model is hosted in a hugging face space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command?model=command-r-08-2024). **Usage** Please use `transformers` version 4.39.1 or higher ```python # pip install 'transformers>=4.39.1' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-08-2024" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-08-2024 chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ```
hadrakey/alphapen_trocr_large_15000
hadrakey
2024-09-01T09:48:25Z
7
0
null
[ "safetensors", "vision-encoder-decoder", "region:us" ]
null
2024-08-31T05:04:00Z
# Alphapen This project aims to develop an OCR model for instantaneous text extraction from handwritten documents. The ultimate goal is to seamlessly integrate such a model into computers or mobile phones, allowing for the direct digitalization of handwritten documents using a proprietary pen manufactured by a startup company named [Alphapen](https://alphapen.fr/views/index.html). # Fine-tuning the TrOCR model python model.py --log_with wandb --push_to_hub True --hub_model_id hadrakey/alphapen_trocr
Kulim/whisper-tiny-en
Kulim
2024-09-01T09:43:43Z
77
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-09-01T09:43:18Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1162 - Wer: 21.8623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0233 | 11.1111 | 200 | 0.1136 | 22.3122 | | 0.0016 | 22.2222 | 400 | 0.1136 | 22.1323 | | 0.0007 | 33.3333 | 600 | 0.1144 | 22.1772 | | 0.0005 | 44.4444 | 800 | 0.1158 | 21.9073 | | 0.0005 | 55.5556 | 1000 | 0.1162 | 21.8623 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
kaejo98/acronym-definition-detection
kaejo98
2024-09-01T09:19:31Z
110
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "en", "dataset:surrey-nlp/PLOD-filtered", "arxiv:1910.09700", "base_model:Tirendaz/multilingual-xlm-roberta-for-ner", "base_model:finetune:Tirendaz/multilingual-xlm-roberta-for-ner", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-09-01T08:50:31Z
--- base_model: Tirendaz/multilingual-xlm-roberta-for-ner datasets: - surrey-nlp/PLOD-filtered language: - en library_name: transformers pipeline_tag: token-classification --- # Model Card for Model ID This model can detect acronyms and their corresponding definitions from a given input text. ## Model Details ### Model Description The base model, `Tirendaz/multilingual-xlm-roberta-for-ner`, finetuned for the task of detection acronyms and definitions in input text. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("kaejo98/acronym-definition-detection") model = AutoModelForTokenClassification.from_pretrained("kaejo98/acronym-definition-detection") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "The smart contract (SC) is a fundamental aspect of deciding which care package to go for when dealing Fit for Purpose Practice (FFPP)." acronym_results = nlp(example) print(acronym_results) ``` Abbreviation|Description -|- B-O| Non-acronym and definition words B-AC |Beginning of the acronym I-AC |Part of the acronym B-LF |Beginning of long form (definition) of acronym I-LF | Part of the long-form ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - weight_decay=0.001 - save_steps=35000 - eval_steps = 7000 - num_train_epochs=1 ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sicarius-Prototyping/G2-2B-RP_demo
Sicarius-Prototyping
2024-09-01T09:18:09Z
5
0
null
[ "safetensors", "gemma2", "license:apache-2.0", "region:us" ]
null
2024-08-31T12:30:39Z
--- license: apache-2.0 --- Base model: **Gemma-2** FFT on 2K PIPPA somewhat 'clean' examples.
unloved/gemma-4-bit
unloved
2024-09-01T09:13:30Z
76
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-09-01T08:59:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/Xenon1_-_MetaModel_moex8-gguf
RichardErkhov
2024-09-01T09:07:30Z
9
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-31T14:02:04Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MetaModel_moex8 - GGUF - Model creator: https://huggingface.co/Xenon1/ - Original model: https://huggingface.co/Xenon1/MetaModel_moex8/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MetaModel_moex8.Q2_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q2_K.gguf) | Q2_K | 24.11GB | | [MetaModel_moex8.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.IQ3_XS.gguf) | IQ3_XS | 26.95GB | | [MetaModel_moex8.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.IQ3_S.gguf) | IQ3_S | 28.46GB | | [MetaModel_moex8.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q3_K_S.gguf) | Q3_K_S | 28.46GB | | [MetaModel_moex8.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.IQ3_M.gguf) | IQ3_M | 29.86GB | | [MetaModel_moex8.Q3_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q3_K.gguf) | Q3_K | 31.42GB | | [MetaModel_moex8.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q3_K_M.gguf) | Q3_K_M | 31.42GB | | [MetaModel_moex8.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q3_K_L.gguf) | Q3_K_L | 33.69GB | | [MetaModel_moex8.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.IQ4_XS.gguf) | IQ4_XS | 19.56GB | | [MetaModel_moex8.Q4_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q4_0.gguf) | Q4_0 | 36.85GB | | [MetaModel_moex8.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | IQ4_NL | 37.28GB | | [MetaModel_moex8.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q4_K_S | 37.28GB | | [MetaModel_moex8.Q4_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q4_K.gguf) | Q4_K | 11.76GB | | [MetaModel_moex8.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q4_K_M.gguf) | Q4_K_M | 6.62GB | | [MetaModel_moex8.Q4_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/blob/main/MetaModel_moex8.Q4_1.gguf) | Q4_1 | 32.46GB | | [MetaModel_moex8.Q5_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q5_0 | 44.93GB | | [MetaModel_moex8.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q5_K_S | 44.93GB | | [MetaModel_moex8.Q5_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q5_K | 46.33GB | | [MetaModel_moex8.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q5_K_M | 46.33GB | | [MetaModel_moex8.Q5_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q5_1 | 48.97GB | | [MetaModel_moex8.Q6_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q6_K | 53.51GB | | [MetaModel_moex8.Q8_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_MetaModel_moex8-gguf/tree/main/) | Q8_0 | 69.19GB | Original model description: --- license: apache-2.0 tags: - moe - mergekit - merge - chinese - arabic - english - multilingual - german - french - gagan3012/MetaModel - jeonsworld/CarbonVillain-en-10.7B-v2 - jeonsworld/CarbonVillain-en-10.7B-v4 - TomGrc/FusionNet_linear - DopeorNope/SOLARC-M-10.7B - VAGOsolutions/SauerkrautLM-SOLAR-Instruct - upstage/SOLAR-10.7B-Instruct-v1.0 - fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 --- # MetaModel_moex8 This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: * [gagan3012/MetaModel](https://huggingface.co/gagan3012/MetaModel) * [jeonsworld/CarbonVillain-en-10.7B-v2](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2) * [jeonsworld/CarbonVillain-en-10.7B-v4](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v4) * [TomGrc/FusionNet_linear](https://huggingface.co/TomGrc/FusionNet_linear) * [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B) * [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) * [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) * [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) ## 🧩 Configuration ```yamlbase_model: jeonsworld/CarbonVillain-en-10.7B-v4 dtype: bfloat16 experts: - positive_prompts: - '' source_model: gagan3012/MetaModel - positive_prompts: - '' source_model: jeonsworld/CarbonVillain-en-10.7B-v2 - positive_prompts: - '' source_model: jeonsworld/CarbonVillain-en-10.7B-v4 - positive_prompts: - '' source_model: TomGrc/FusionNet_linear - positive_prompts: - '' source_model: DopeorNope/SOLARC-M-10.7B - positive_prompts: - '' source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct - positive_prompts: - '' source_model: upstage/SOLAR-10.7B-Instruct-v1.0 - positive_prompts: - '' source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 gate_mode: hidden ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/MetaModel_moex8" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
hienbm/gemma2-9b-it-big5
hienbm
2024-09-01T09:07:18Z
9
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-9b-it-bnb-4bit", "base_model:quantized:unsloth/gemma-2-9b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-31T01:22:50Z
--- base_model: unsloth/gemma-2-9b-it-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma2 - gguf --- # Uploaded model - **Developed by:** hienbm - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-it-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
USTCbaokq/BIGRec_Sports_and_Outdoors_0.5B
USTCbaokq
2024-09-01T08:58:42Z
5
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2024-08-31T05:21:41Z
The model is based on Qwen2-0.5B
Hubert0314/translation_practice
Hubert0314
2024-09-01T08:35:04Z
160
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-09-01T08:34:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
distily/distily_norm_distilgpt2_sweep
distily
2024-09-01T08:34:05Z
9
0
Distily
[ "Distily", "tensorboard", "safetensors", "gpt2", "generated_from_trainer", "dataset:wikimedia/wikipedia", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "region:us" ]
null
2024-08-31T18:09:25Z
--- base_model: distilbert/distilgpt2 datasets: - wikimedia/wikipedia library_name: Distily license: apache-2.0 tags: - generated_from_trainer model-index: - name: distily_norm_distilgpt2_sweep results: [] --- # Summary Distilled with [Distily](https://github.com/lapp0/distily) library using teacher model [gpt2](https://huggingface.co/gpt2) on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia). <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. # Model description More information needed # Intended uses & limitations More information needed --> # Model Architecture: - **Architecture**: `GPT2LMHeadModel` - **Total Parameters**: 81,912,576 - **Data Type (dtype)**: torch.bfloat16 - **Model Size**: 0.16 GB # Benchmark Metrics Comparison | Metric | | | :--- | # Resource Usage Comparison - VRAM Use: 8.0722 GB # Distillation (Teacher -> Student) Architecture Difference: - **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 -> 81,912,576 - **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16 - **Model Size**: 0.24 GB -> 0.16 GB <details> <summary>Module Diff Details</summary> ```diff --- teacher model modules +++ student model modules @@ -4,7 +4,7 @@ (wpe): Embedding(1024, 768) (drop): Dropout(p=0.1, inplace=False) (h): ModuleList( - (0-11): 12 x GPT2Block( + (0-5): 6 x GPT2Block( (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (attn): GPT2FlashAttention2( (c_attn): Conv1D() ``` </details> <br/> # Train Dataset Trained on 226,096,614 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. - Num Samples: `396,000` - Subset: `20231101.en` - Split: `train` # Training Objective ``` DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, norm=batchnorm, projector=orthogonal)) ``` # Hyperparameters The following hyperparameters were used during training: <details> <summary>Expand</summary> - learning_rate: `0.0002` - train_batch_size: `8` - eval_batch_size: `8` - seed: `42` - optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08` - lr_scheduler_type: `polynomial` - num_epochs: `1.0` - distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, norm=batchnorm, projector=orthogonal))` - train_embeddings: `True` - lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7f678de0f430>` - student_model_name_or_path: `None` - student_config_name_or_path: `distilbert/distilgpt2` - student_model_config: `None` - reinitialize_weights: `None` - copy_teacher_modules: `[('lm_head', False)]` - student_model_as_bitnet: `False` - dropout: `None` - teacher_model_name_or_path: `gpt2` - teacher_load_in_8bit: `False` - teacher_load_in_4bit: `False` - dataset_uri: `wikimedia/wikipedia` - dataset_subset: `20231101.en` - dataset_split: `train` - dataset_column_name: `text` - dataset_sample_size: `400000` - dataset_test_size: `0.01` - gradient_accumulation_steps: `1` - weight_decay: `0.0` - max_grad_norm: `1.0` - warmup_ratio: `0` - warmup_steps: `0` - gradient_checkpointing: `True` </details> <br/> # Framework Versions - Distily 0.4.1 - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0
kendrickfff/audio_classification
kendrickfff
2024-09-01T08:05:08Z
8
0
null
[ "tensorboard", "safetensors", "wav2vec2", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-31T14:14:48Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.09734513274336283 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # audio_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6440 - Accuracy: 0.0973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6403 | 0.0708 | | No log | 1.8667 | 7 | 2.6379 | 0.0796 | | 2.6342 | 2.9333 | 11 | 2.6463 | 0.0619 | | 2.6342 | 4.0 | 15 | 2.6517 | 0.0354 | | 2.6342 | 4.8 | 18 | 2.6522 | 0.0177 | | 2.6238 | 5.8667 | 22 | 2.6494 | 0.0619 | | 2.6238 | 6.9333 | 26 | 2.6460 | 0.0796 | | 2.622 | 8.0 | 30 | 2.6440 | 0.0973 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
rakib72642/Arabic_NLP
rakib72642
2024-09-01T08:00:29Z
0
0
null
[ "region:us" ]
null
2024-04-16T12:20:38Z
# Arabic NLP HuggingFace: https://huggingface.co/rakib72642/Arabic_NLP sudo apt install iproute2 && sudo apt install wget && sudo apt install unzip && sudo apt install nvtop && sudo apt-get install git-lfs && sudo apt-get update && sudo apt-get install libgl1 && curl -s https://ngrok-agent.s3.amazonaws.com/ngrok.asc | sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null && echo "deb https://ngrok-agent.s3.amazonaws.com buster main" | sudo tee /etc/apt/sources.list.d/ngrok.list && sudo apt update && sudo apt install ngrok && ngrok config add-authtoken 2lPN9d5cdnGlSrWb4JGEGVI1Mah_4bvvrGdKKU2ME7nkck8L7 && sudo apt update && sudo apt upgrade && ngrok http --domain=hawkeyes.ngrok.app 8000 git clone https://huggingface.co/rakib72642/Arabic_NLP && cd Arabic_NLP && sudo apt update && sudo apt upgrade && python updated_api.py cd Arabic_NLP && python updated_api.py hypercorn updated_api:app --bind 127.0.0.1:8020 --workers 4 config the ngrok auth: ngrok config add-authtoken 2Qm8hS1zPhVXiLjEdlI4738tLzF_2QJwGJMK5oTbQD33QSVXS ngrok http --domain=batnlp.ngrok.app 1111 -------------------------------------------------------------------------------------------------------------------------------- # Old App config the ngrok auth: ngrok config add-authtoken 2Qm8hS1zPhVXiLjEdlI4738tLzF_2QJwGJMK5oTbQD33QSVXS ngrok http --domain=hawkeyes.ngrok.app 8020
gghfez/ArliAI-RPMax-12B-v1.1-exl2-6.0bpw
gghfez
2024-09-01T07:55:46Z
5
1
null
[ "safetensors", "mistral", "license:apache-2.0", "6-bit", "exl2", "region:us" ]
null
2024-09-01T07:20:06Z
--- license: apache-2.0 --- # ArliAI-RPMax-12B-v1.1 ===================================== ## Overview This repository is based on the Mistral-Nemo-Base-2407 model and is governed by the Apache 2.0 License agreement: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407 ## Model Description ArliAI-RPMax-12B-v1.1 is trained on a diverse set of curated RP datasets with a focus on variety and deduplication. This model is designed to be highly creative and non-repetitive, with a unique approach to training that minimizes repetition. You can access the model at https://arliai.com and ask questions at https://www.reddit.com/r/ArliAI/ ### Training Details * **Sequence Length**: 8192 * **Training Duration**: Approximately 2 days on 2x3090Ti * **Epochs**: 1 epoch training for minimized repetition sickness * **QLORA**: 64-rank 128-alpha, resulting in ~2% trainable weights * **Learning Rate**: 0.00001 * **Gradient accumulation**: Very low 32 for better learning. ## Quantization The model is available in quantized formats: * **FP16**: https://huggingface.co/ArliAI/ArliAI-RPMax-12B-v1.1 * **GGUF**: https://huggingface.co/ArliAI/ArliAI-RPMax-12B-v1.1-GGUF ## Suggested Prompt Format Mistral Instruct Prompt Format
zhibo1990/Llama-3.1-8B-boby-0901_1320
zhibo1990
2024-09-01T07:38:54Z
5
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T07:36:42Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** zhibo1990 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
calico-1226/ScoreLM_TinyLlama_v1.1_0831
calico-1226
2024-09-01T07:25:30Z
33
0
transformers
[ "transformers", "safetensors", "llama", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-09-01T07:22:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hyunwoo612/model
hyunwoo612
2024-09-01T07:21:52Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-09-01T07:19:17Z
--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** hyunwoo612 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TifinLab/wav2vec2-kab
TifinLab
2024-09-01T07:15:13Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:TifinLab/wav2vec2-berber", "base_model:finetune:TifinLab/wav2vec2-berber", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-06-26T22:33:46Z
--- library_name: transformers base_model: TifinLab/wav2vec2-berber tags: - generated_from_trainer model-index: - name: wav2vec2-kab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-kab This model is a fine-tuned version of [TifinLab/wav2vec2-berber](https://huggingface.co/TifinLab/wav2vec2-berber) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.6e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
rakib72642/faceDetection_Django_Model
rakib72642
2024-09-01T07:08:36Z
0
0
null
[ "region:us" ]
null
2024-05-07T17:10:41Z
### rakib72642/faceDetection_Django_Model # HuggingFace: git clone https://huggingface.co/rakib72642/faceDetection_Django_Model # Setup Global API sudo apt install iproute2 -y && sudo apt install wget -y && sudo apt install unzip -y && sudo apt install unzip -y && sudo apt install nvtop -y && sudo apt-get install git-all -y && sudo apt-get install git-lfs -y && sudo apt-get update && sudo apt-get install libgl1 -y && sudo apt install curl -y && curl -s https://ngrok-agent.s3.amazonaws.com/ngrok.asc | sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null && echo "deb https://ngrok-agent.s3.amazonaws.com buster main" | sudo tee /etc/apt/sources.list.d/ngrok.list && sudo apt update && sudo apt install ngrok -y && sudo apt update && sudo apt upgrade -y && ngrok config add-authtoken 2lPN9d5cdnGlSrWb4JGEGVI1Mah_4bvvrGdKKU2ME7nkck8L7 && ngrok http --domain=hawkeyes.ngrok.app 8585 # Setup Local API git clone git clone https://huggingface.co/rakib72642/faceDetection_Django_Model && cd faceDetection_Django_Model && pip install -r requirements.txt && sudo apt update && sudo apt upgrade -y && python face_main.py cd faceDetection_Django_Model && python face_main.py # hypercorn face_main:app --bind 127.0.0.1:8585 --workers 4
mpasila/Viking-SlimSonnet-v1-7B
mpasila
2024-09-01T07:05:38Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "fi", "sv", "no", "da", "is", "nn", "dataset:Gryphe/Sonnet3.5-SlimOrcaDedupCleaned", "dataset:mpasila/Sonnet3.5-SlimOrcaDedupCleaned-4k-context", "base_model:LumiOpen/Viking-7B", "base_model:finetune:LumiOpen/Viking-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-09-01T06:57:08Z
--- base_model: LumiOpen/Viking-7B language: - en - fi - sv - 'no' - da - is - nn license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft datasets: - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - mpasila/Sonnet3.5-SlimOrcaDedupCleaned-4k-context --- This is the fully trained version (with fixed formatting!!). Dataset used: [Gryphe/Sonnet3.5-SlimOrcaDedupCleaned](https://huggingface.co/datasets/Gryphe/Sonnet3.5-SlimOrcaDedupCleaned) which was further [filtered](https://huggingface.co/datasets/mpasila/Sonnet3.5-SlimOrcaDedupCleaned-4k-context) to remove prompts/examples that are longer than 4076 tokens (removed about 385 examples). Prompt format is: ChatML LoRA: [mpasila/Viking-SlimSonnet-v1-LoRA-7B](https://huggingface.co/mpasila/Viking-SlimSonnet-v1-LoRA-7B) Trained with regular LoRA (not quantized/QLoRA) and LoRA rank was 128 and Alpha set to 32. Trained for 1 epoch using A40 for about 23 hours. # Uploaded model - **Developed by:** mpasila - **License:** apache-2.0 - **Finetuned from model :** LumiOpen/Viking-7B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
John6666/comradeship-xl-v9mb4-sdxl
John6666
2024-09-01T07:01:02Z
137
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "pony", "en", "base_model:hanzogak/comradeshipXL", "base_model:finetune:hanzogak/comradeshipXL", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-09-01T06:56:19Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - pony base_model: hanzogak/comradeshipXL --- Original model is [here](https://huggingface.co/hanzogak/comradeshipXL) and on [Civitai](https://civitai.com/models/246299/comradeship-xl?modelVersionId=792934). The author is [here](https://huggingface.co/hanzogak). This model created by [hanzogak](https://huggingface.co/hanzogak).
RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf
RichardErkhov
2024-09-01T06:58:37Z
12
0
null
[ "gguf", "region:us" ]
null
2024-08-31T23:36:42Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Everyone-Coder-4x7b-Base - GGUF - Model creator: https://huggingface.co/rombodawg/ - Original model: https://huggingface.co/rombodawg/Everyone-Coder-4x7b-Base/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Everyone-Coder-4x7b-Base.Q2_K.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q2_K.gguf) | Q2_K | 8.24GB | | [Everyone-Coder-4x7b-Base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.IQ3_XS.gguf) | IQ3_XS | 9.21GB | | [Everyone-Coder-4x7b-Base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.IQ3_S.gguf) | IQ3_S | 9.73GB | | [Everyone-Coder-4x7b-Base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q3_K_S.gguf) | Q3_K_S | 3.54GB | | [Everyone-Coder-4x7b-Base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.IQ3_M.gguf) | IQ3_M | 7.16GB | | [Everyone-Coder-4x7b-Base.Q3_K.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q3_K.gguf) | Q3_K | 10.79GB | | [Everyone-Coder-4x7b-Base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q3_K_M.gguf) | Q3_K_M | 10.79GB | | [Everyone-Coder-4x7b-Base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q3_K_L.gguf) | Q3_K_L | 1.07GB | | [Everyone-Coder-4x7b-Base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.IQ4_XS.gguf) | IQ4_XS | 12.15GB | | [Everyone-Coder-4x7b-Base.Q4_0.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q4_0.gguf) | Q4_0 | 12.69GB | | [Everyone-Coder-4x7b-Base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.IQ4_NL.gguf) | IQ4_NL | 12.81GB | | [Everyone-Coder-4x7b-Base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q4_K_S.gguf) | Q4_K_S | 12.8GB | | [Everyone-Coder-4x7b-Base.Q4_K.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q4_K.gguf) | Q4_K | 13.61GB | | [Everyone-Coder-4x7b-Base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q4_K_M.gguf) | Q4_K_M | 13.61GB | | [Everyone-Coder-4x7b-Base.Q4_1.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q4_1.gguf) | Q4_1 | 14.09GB | | [Everyone-Coder-4x7b-Base.Q5_0.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q5_0.gguf) | Q5_0 | 15.48GB | | [Everyone-Coder-4x7b-Base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q5_K_S.gguf) | Q5_K_S | 15.48GB | | [Everyone-Coder-4x7b-Base.Q5_K.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q5_K.gguf) | Q5_K | 15.96GB | | [Everyone-Coder-4x7b-Base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q5_K_M.gguf) | Q5_K_M | 15.96GB | | [Everyone-Coder-4x7b-Base.Q5_1.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q5_1.gguf) | Q5_1 | 16.88GB | | [Everyone-Coder-4x7b-Base.Q6_K.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q6_K.gguf) | Q6_K | 18.46GB | | [Everyone-Coder-4x7b-Base.Q8_0.gguf](https://huggingface.co/RichardErkhov/rombodawg_-_Everyone-Coder-4x7b-Base-gguf/blob/main/Everyone-Coder-4x7b-Base.Q8_0.gguf) | Q8_0 | 23.9GB | Original model description: --- license: cc-by-4.0 tags: - merge - moe --- Everyone-Coder-4x7b-Base ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg) EveryoneLLM series of models are a new Mixtral type model created using experts that were finetuned by the community, for the community. This is the first model to release in the series and it is a coding specific model. EveryoneLLM, which will be a more generalized model, will be released in the near future after more work is done to fine tune the process of merging Mistral models into a larger Mixtral models with greater success. The goal of the EveryoneLLM series of models is to be a replacement or an alternative to Mixtral-8x7b that is more suitable for general and specific use, as well as easier to fine tune. Since Mistralai is being secretive about the "secret sause" that makes Mixtral-Instruct such an effective fine tune of the Mixtral-base model, I've decided its time for the community to directly compete with Mistralai on our own. The models that were used in this merger were as follow: - https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1 - https://huggingface.co/LucciAI/openchat-3.5-0106-function-calling - https://huggingface.co/WizardLM/WizardMath-7B-V1.1 - https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗 You can find the write up for this model here: https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing Config for the merger can be found bellow: ```yaml base_model: mistralai_Mistral-7B-v0.1 gate_mode: hidden dtype: float16 experts: - source_model: cognitivecomputations_dolphin-2.6-mistral-7b-dpo-laser positive_prompts: - "Help me debug this code." - "Rewrite this function in Python." - "Optimize this C# script." - "Implement this feature using JavaScript." - "Convert this HTML structure into a more efficient design." - "Assist me with writing a program that" - source_model: fblgit_UNA-TheBeagle-7b-v1 positive_prompts: - "How do you" - "Explain the concept of" - "Give an overview of" - "Compare and contrast between" - "Provide information about" - "Help me understand" - "Summarize" - "Make a recommendation on" - "Answer this question" - source_model: LucciAI_openchat-3.5-0106-function-calling positive_prompts: - "Write a program to solve this problem" - "Modify this function to improve its performance" - "Refactor this code to enhance readability" - "Create a custom function for this specific use case" - "Optimize this algorithm to reduce computational complexity" - "Implement this feature by extending existing codebase" - "Integrate this API call into the application" - "Help me troubleshoot and fix this bug" - "Review and test this code snippet before deployment" - "Analyze this error log to identify potential issues" - "Generate a set of unit tests for this module" - "Evaluate different approaches to solving this problem" - "Do a web search for" - "Use the plugin to" - source_model: WizardLM_WizardMath-7B-V1.1 positive_prompts: - "add these numbers" - "whats 2+2" - "subtraction" - "division" - "multiplication" - "addition" - "I need help with a math problem" - "Solve for x" - "Add these two numbers together: 4 + 3 = 7" - "Multiply 5 by 6: 5 * 6 = 30" - "Divide 8 by 2: 8 / 2 = 4" - "Find the remainder when 9 is divided by 3: 9 % 3 = 0" - "Calculate the square root of 16: sqrt(16) = 4" - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)" - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)" - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12" - "Graph the line y = 2x + 3" - "Approximate pi to three decimal places: 3.142" - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)" - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3" - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2" - "Solve the system of equations Ax = b: x = [-5, 10]" - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15" ```
rinabuoy/whisper-small-khmer-aug-v6-2
rinabuoy
2024-09-01T06:40:51Z
7
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "region:us" ]
null
2024-08-25T07:32:29Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-khmer-aug-v6-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-khmer-aug-v6-2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3497 - Wer: 68.6233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8376 | 0.9994 | 837 | 0.4499 | 100.4702 | | 0.3482 | 2.0 | 1675 | 0.3490 | 79.3903 | | 0.2732 | 2.9994 | 2512 | 0.3141 | 74.6230 | | 0.231 | 4.0 | 3350 | 0.3190 | 75.0608 | | 0.2002 | 4.9994 | 4187 | 0.3118 | 72.5799 | | 0.1743 | 6.0 | 5025 | 0.3104 | 72.2556 | | 0.1553 | 6.9994 | 5862 | 0.3216 | 71.2826 | | 0.1375 | 8.0 | 6700 | 0.3307 | 73.7311 | | 0.1217 | 8.9994 | 7537 | 0.3497 | 69.3854 | | 0.1089 | 9.9940 | 8370 | 0.3497 | 68.6233 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1
izeeek/image_classification
izeeek
2024-09-01T06:13:28Z
48
0
null
[ "tensorboard", "safetensors", "vit", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-31T08:16:52Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[:] args: default metrics: - name: Accuracy type: accuracy value: 0.59375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2364 - Accuracy: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0702 | 1.0 | 10 | 2.0666 | 0.1437 | | 2.0583 | 2.0 | 20 | 2.0476 | 0.2125 | | 2.0291 | 3.0 | 30 | 2.0018 | 0.3 | | 1.9639 | 4.0 | 40 | 1.9175 | 0.3563 | | 1.8582 | 5.0 | 50 | 1.7997 | 0.4375 | | 1.7385 | 6.0 | 60 | 1.6756 | 0.4625 | | 1.5984 | 7.0 | 70 | 1.5469 | 0.4625 | | 1.4739 | 8.0 | 80 | 1.4684 | 0.5188 | | 1.3737 | 9.0 | 90 | 1.4090 | 0.5125 | | 1.2719 | 10.0 | 100 | 1.3740 | 0.525 | | 1.2072 | 11.0 | 110 | 1.3527 | 0.55 | | 1.1158 | 12.0 | 120 | 1.3118 | 0.5188 | | 1.0487 | 13.0 | 130 | 1.2349 | 0.6 | | 0.9873 | 14.0 | 140 | 1.2931 | 0.525 | | 0.8928 | 15.0 | 150 | 1.2731 | 0.55 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
HamzaSidhu786/urdu_text_to_speech_tts
HamzaSidhu786
2024-09-01T06:05:07Z
173
2
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "ur", "dataset:mozilla-foundation/common_voice_17_0", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2024-07-27T14:08:44Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: urdu_text_to_speech_tts results: [] datasets: - mozilla-foundation/common_voice_17_0 language: - ur metrics: - accuracy pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # urdu_text_to_speech_tts This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an common_voice_17_0 urdu dataset with very small amount. It's trained using only 4200 sentences, for business use model need to be trained on large datasets. It achieves the following results on the evaluation set: - Loss: 0.4936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6365 | 1.0 | 486 | 0.5707 | | 0.6045 | 2.0 | 972 | 0.5319 | | 0.591 | 3.0 | 1458 | 0.5265 | | 0.5711 | 4.0 | 1944 | 0.5178 | | 0.5528 | 5.0 | 2430 | 0.5142 | | 0.5335 | 6.0 | 2916 | 0.5073 | | 0.5316 | 7.0 | 3402 | 0.5015 | | 0.5308 | 8.0 | 3888 | 0.4992 | | 0.5381 | 9.0 | 4374 | 0.5022 | | 0.5292 | 10.0 | 4860 | 0.4977 | | 0.5242 | 11.0 | 5346 | 0.4975 | | 0.5129 | 12.0 | 5832 | 0.4970 | | 0.5122 | 13.0 | 6318 | 0.4937 | | 0.5329 | 14.0 | 6804 | 0.4943 | | 0.5189 | 15.0 | 7290 | 0.4921 | | 0.5164 | 16.0 | 7776 | 0.4946 | | 0.5097 | 17.0 | 8262 | 0.4931 | | 0.5858 | 18.0 | 8748 | 0.4948 | | 0.5128 | 19.0 | 9234 | 0.4936 | | 0.5203 | 20.0 | 9720 | 0.4936 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf
RichardErkhov
2024-09-01T06:04:01Z
13
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T02:23:38Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) HelpSteer-filtered-Solar-Instruct - GGUF - Model creator: https://huggingface.co/Weyaxi/ - Original model: https://huggingface.co/Weyaxi/HelpSteer-filtered-Solar-Instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [HelpSteer-filtered-Solar-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q2_K.gguf) | Q2_K | 3.73GB | | [HelpSteer-filtered-Solar-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.IQ3_XS.gguf) | IQ3_XS | 0.58GB | | [HelpSteer-filtered-Solar-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.IQ3_S.gguf) | IQ3_S | 4.37GB | | [HelpSteer-filtered-Solar-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [HelpSteer-filtered-Solar-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.IQ3_M.gguf) | IQ3_M | 4.51GB | | [HelpSteer-filtered-Solar-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q3_K.gguf) | Q3_K | 4.84GB | | [HelpSteer-filtered-Solar-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [HelpSteer-filtered-Solar-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [HelpSteer-filtered-Solar-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [HelpSteer-filtered-Solar-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q4_0.gguf) | Q4_0 | 5.66GB | | [HelpSteer-filtered-Solar-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [HelpSteer-filtered-Solar-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [HelpSteer-filtered-Solar-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q4_K.gguf) | Q4_K | 6.02GB | | [HelpSteer-filtered-Solar-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [HelpSteer-filtered-Solar-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q4_1.gguf) | Q4_1 | 6.27GB | | [HelpSteer-filtered-Solar-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q5_0.gguf) | Q5_0 | 6.89GB | | [HelpSteer-filtered-Solar-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [HelpSteer-filtered-Solar-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q5_K.gguf) | Q5_K | 7.08GB | | [HelpSteer-filtered-Solar-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [HelpSteer-filtered-Solar-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q5_1.gguf) | Q5_1 | 7.51GB | | [HelpSteer-filtered-Solar-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q6_K.gguf) | Q6_K | 8.2GB | | [HelpSteer-filtered-Solar-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/Weyaxi_-_HelpSteer-filtered-Solar-Instruct-gguf/blob/main/HelpSteer-filtered-Solar-Instruct.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: apache-2.0 datasets: - Weyaxi/HelpSteer-filtered language: - en --- # HelpSteer-filtered-Solar-Instruct Original weights of [HelpSteer-filtered-Solar-Instruct](https://huggingface.co/Weyaxi/HelpSteer-filtered-Solar-Instruct). Finetuned from [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) with a filtered version of Nvidia's [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) dataset. # Prompt Template(s) ## User Asistant ``` ### User: {user} ### Asistant: {asistant} ```
vajdaad4m/minecraft-fullskin-25k
vajdaad4m
2024-09-01T06:00:23Z
29
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-09-01T05:58:45Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dwivedi-rishabh/test1
dwivedi-rishabh
2024-09-01T05:30:17Z
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-09-01T05:29:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seungbo7747/LLM_SecurityV2
seungbo7747
2024-09-01T05:19:34Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-09-01T05:07:51Z
--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** seungbo7747 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
John6666/xe-anime-flux-02-fp8-flux
John6666
2024-09-01T05:07:13Z
80
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "Flux", "fp8", "float8_e4m3fn", "anime", "hentai", "en", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2024-09-01T05:04:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - Flux - fp8 - float8_e4m3fn - anime - hentai --- Original model is [here](https://civitai.com/models/620000/xe-anime-flux?modelVersionId=786903). This model created by [XEZ](https://civitai.com/user/XEZ). ## Notice This is an experimental conversion in Spaces using a homebrew script. serverless Inference API does not currently support torch float8_e4m3fn, so it does not work. I have not been able to confirm if the conversion is working properly. Please consider this as a test run only.
wei12138/nlp-text-classification
wei12138
2024-09-01T05:01:51Z
7
0
null
[ "tensorboard", "safetensors", "distilbert", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-09-01T03:18:45Z
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: nlp-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-text-classification This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2283 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2214 | 1.0 | 1563 | 0.2100 | 0.9182 | | 0.1455 | 2.0 | 3126 | 0.2283 | 0.9323 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
ke-ji/distilbert-base-uncased-finetuned-emotion
ke-ji
2024-09-01T04:56:00Z
5
0
null
[ "tensorboard", "safetensors", "distilbert", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-09-01T04:26:57Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8314 | 1.0 | 250 | 0.3159 | 0.9125 | 0.9119 | | 0.2504 | 2.0 | 500 | 0.2162 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
chewbaccay/ainabaruv2
chewbaccay
2024-09-01T04:52:55Z
5
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T03:38:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: ainamadon --- # Ainabaruv2 Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ainamadon` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('chewbaccay/ainabaruv2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
seungbo7747/LLM_SecurityV2_GGUF
seungbo7747
2024-09-01T04:48:33Z
32
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-09-01T04:43:08Z
--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** seungbo7747 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Heoni/v3_pt_ep1_sft_5_based_on_llama3_1_8b_20240828
Heoni
2024-09-01T04:45:15Z
30
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-01T04:40:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf
RichardErkhov
2024-09-01T04:44:30Z
20
0
null
[ "gguf", "arxiv:2203.05482", "arxiv:2009.03300", "arxiv:1803.05457", "arxiv:1905.07830", "arxiv:2109.07958", "arxiv:1907.10641", "arxiv:2110.14168", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-31T17:32:51Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) yi-bagel-2x34b - GGUF - Model creator: https://huggingface.co/NLPinas/ - Original model: https://huggingface.co/NLPinas/yi-bagel-2x34b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [yi-bagel-2x34b.Q2_K.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q2_K.gguf) | Q2_K | 11.94GB | | [yi-bagel-2x34b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.IQ3_XS.gguf) | IQ3_XS | 13.26GB | | [yi-bagel-2x34b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.IQ3_S.gguf) | IQ3_S | 13.99GB | | [yi-bagel-2x34b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [yi-bagel-2x34b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.IQ3_M.gguf) | IQ3_M | 14.5GB | | [yi-bagel-2x34b.Q3_K.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q3_K.gguf) | Q3_K | 15.51GB | | [yi-bagel-2x34b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [yi-bagel-2x34b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [yi-bagel-2x34b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.IQ4_XS.gguf) | IQ4_XS | 17.36GB | | [yi-bagel-2x34b.Q4_0.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q4_0.gguf) | Q4_0 | 18.13GB | | [yi-bagel-2x34b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [yi-bagel-2x34b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [yi-bagel-2x34b.Q4_K.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q4_K.gguf) | Q4_K | 19.24GB | | [yi-bagel-2x34b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q4_K_M.gguf) | Q4_K_M | 12.05GB | | [yi-bagel-2x34b.Q4_1.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q4_1.gguf) | Q4_1 | 17.51GB | | [yi-bagel-2x34b.Q5_0.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q5_0.gguf) | Q5_0 | 17.49GB | | [yi-bagel-2x34b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q5_K_S.gguf) | Q5_K_S | 21.55GB | | [yi-bagel-2x34b.Q5_K.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q5_K.gguf) | Q5_K | 22.65GB | | [yi-bagel-2x34b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [yi-bagel-2x34b.Q5_1.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q5_1.gguf) | Q5_1 | 24.05GB | | [yi-bagel-2x34b.Q6_K.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q6_K.gguf) | Q6_K | 26.28GB | | [yi-bagel-2x34b.Q8_0.gguf](https://huggingface.co/RichardErkhov/NLPinas_-_yi-bagel-2x34b-gguf/blob/main/yi-bagel-2x34b.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- base_model: - jondurbin/bagel-dpo-34b-v0.2 - jondurbin/nontoxic-bagel-34b-v0.2 tags: - mergekit - merge license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE --- # yi-bagel-2x34b Released January 11, 2024 ![bagel-burger](bagel-burger.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). For more information, kindly refer to the model cards from jondurbin linked in the section below. This model debuted in the [leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) at rank #4 (January 11, 2024). ## Merge Details ### Merge Method This model is an expertimental merge using the [linear](https://arxiv.org/abs/2203.05482) merge method. This is to assess the degree of which the DPO has an effect, in terms of censoring, as used in [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2). ### Models Merged The following models were included in the merge: * [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) * [jondurbin/nontoxic-bagel-34b-v0.2](https://huggingface.co/jondurbin/nontoxic-bagel-34b-v0.2) ## Open LLM Leaderboard Metrics (as of January 11, 2024) | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | 76.60 | | ARC (25-shot) | 72.70 | | HellaSwag (10-shot) | 85.44 | | TruthfulQA (0-shot) | 71.42 | | Winogrande (5-shot) | 82.72 | | GSM8K (5-shot) | 60.73 | | Average | 74.93 | According to the leaderboard description, here are the benchmarks used for the evaluation: - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a text model’s multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. - [AI2 Reasoning Challenge](https://arxiv.org/abs/1803.05457) -ARC- (25-shot) - a set of grade-school science questions. - [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models. - [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. - [Winogrande](https://arxiv.org/abs/1907.10641) (5-shot) - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning. - [GSM8k](https://arxiv.org/abs/2110.14168) (5-shot) - diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems. ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: jondurbin/nontoxic-bagel-34b-v0.2 parameters: weight: 0.5 - model: jondurbin/bagel-dpo-34b-v0.2 parameters: weight: 0.5 merge_method: linear dtype: float16 ``` ## Further Information For additional information or inquiries about yi-bagel-2x34b, please contact the developer through email: jasperkylecatapang@gmail.com.
John6666/flux-dev8-anime-nsfw-fp8-flux
John6666
2024-09-01T04:38:14Z
138
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "Flux", "fp8", "float8_e4m3fn", "anime", "8steps", "en", "base_model:Zuntan/FluxDev8AnimeNsfw", "base_model:finetune:Zuntan/FluxDev8AnimeNsfw", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2024-09-01T04:30:09Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - Flux - fp8 - float8_e4m3fn - anime - 8steps base_model: Zuntan/FluxDev8AnimeNsfw --- Original model is [here](https://huggingface.co/Zuntan/FluxDev8AnimeNsfw). >## Usage Notes (Important) > - Add **fca_style anime,** at the beginning of the prompt > - Reduce photo prompts such as realistic, photo, camera, selfie, etc. > - Set sampling steps to 8. This model created by [Zuntan](https://huggingface.co/Zuntan). ## Notice This is an experimental conversion in Spaces using a homebrew script. serverless Inference API does not currently support torch float8_e4m3fn, so it does not work. I have not been able to confirm if the conversion is working properly. Please consider this as a test run only.
Rich-J/subnet29_upload_2_3
Rich-J
2024-09-01T04:30:17Z
34
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-01T04:27:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf
RichardErkhov
2024-09-01T04:19:53Z
103
0
null
[ "gguf", "arxiv:2305.18290", "arxiv:2310.16944", "region:us" ]
null
2024-09-01T02:06:40Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) zephyr-7b-beta-128k - GGUF - Model creator: https://huggingface.co/CallComply/ - Original model: https://huggingface.co/CallComply/zephyr-7b-beta-128k/ | Name | Quant method | Size | | ---- | ---- | ---- | | [zephyr-7b-beta-128k.Q2_K.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q2_K.gguf) | Q2_K | 2.53GB | | [zephyr-7b-beta-128k.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [zephyr-7b-beta-128k.IQ3_S.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.IQ3_S.gguf) | IQ3_S | 2.96GB | | [zephyr-7b-beta-128k.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q3_K_S.gguf) | Q3_K_S | 1.8GB | | [zephyr-7b-beta-128k.IQ3_M.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.IQ3_M.gguf) | IQ3_M | 0.98GB | | [zephyr-7b-beta-128k.Q3_K.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q3_K.gguf) | Q3_K | 3.28GB | | [zephyr-7b-beta-128k.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [zephyr-7b-beta-128k.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [zephyr-7b-beta-128k.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [zephyr-7b-beta-128k.Q4_0.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q4_0.gguf) | Q4_0 | 3.83GB | | [zephyr-7b-beta-128k.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [zephyr-7b-beta-128k.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [zephyr-7b-beta-128k.Q4_K.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q4_K.gguf) | Q4_K | 4.07GB | | [zephyr-7b-beta-128k.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [zephyr-7b-beta-128k.Q4_1.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q4_1.gguf) | Q4_1 | 4.24GB | | [zephyr-7b-beta-128k.Q5_0.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q5_0.gguf) | Q5_0 | 4.65GB | | [zephyr-7b-beta-128k.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [zephyr-7b-beta-128k.Q5_K.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q5_K.gguf) | Q5_K | 4.78GB | | [zephyr-7b-beta-128k.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [zephyr-7b-beta-128k.Q5_1.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q5_1.gguf) | Q5_1 | 5.07GB | | [zephyr-7b-beta-128k.Q6_K.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q6_K.gguf) | Q6_K | 5.53GB | | [zephyr-7b-beta-128k.Q8_0.gguf](https://huggingface.co/RichardErkhov/CallComply_-_zephyr-7b-beta-128k-gguf/blob/main/zephyr-7b-beta-128k.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- language: - en license: mit tags: - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized base_model: mistralai/Mistral-7B-v0.1 widget: - text: '<|system|> You are a pirate chatbot who always responds with Arr!</s> <|user|> There''s a llama on my lawn, how can I get rid of him?</s> <|assistant|> ' output: text: Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight, but I've got a plan that might help ye get rid of 'im. Ye'll need to gather some carrots and hay, and then lure the llama away with the promise of a tasty treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet once again. But beware, me hearty, for there may be more llamas where that one came from! Arr! pipeline_tag: text-generation model-index: - name: zephyr-7b-beta results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.03071672354948 name: normalized accuracy - type: acc_norm value: 58.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.35570603465445 name: normalized accuracy - type: acc_norm value: 81.0 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Drop (3-Shot) type: drop split: validation args: num_few_shot: 3 metrics: - type: f1 value: 9.66243708053691 name: f1 score source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.44916942762855 - type: mc2 value: 46.1 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.736921910538287 name: accuracy - type: acc value: 13.04 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.07 name: accuracy - type: acc value: 53.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.7426992896606 name: accuracy - type: acc value: 74.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: AlpacaEval type: tatsu-lab/alpaca_eval metrics: - type: unknown value: 0.906 name: win rate source: url: https://tatsu-lab.github.io/alpaca_eval/ - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown value: 7.34 name: score source: url: https://huggingface.co/spaces/lmsys/mt-bench --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Zephyr 7B β Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944). ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/huggingface/alignment-handbook - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org ## Performance At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks: | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | StableLM-Tuned-α | 7B| dSFT |2.75| -| | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instructv0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png) However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66) Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ## Training and evaluation data During DPO training, this model achieves the following results on the evaluation set: - Loss: 0.7496 - Rewards/chosen: -4.5221 - Rewards/rejected: -8.3184 - Rewards/accuracies: 0.7812 - Rewards/margins: 3.7963 - Logps/rejected: -340.1541 - Logps/chosen: -299.4561 - Logits/rejected: -2.3081 - Logits/chosen: -2.3531 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results The table below shows the full set of DPO training metrics: | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 | | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 | | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 | | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 | | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 | | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 | | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 | | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 | | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 | | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 | | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 | | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 | | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 | | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 | | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 | | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 | | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 | | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 | | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 | | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 | | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 | | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 | | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 | | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 | | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 | | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 | | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 | | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 | | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 | | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 | | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 | | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 | | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 | | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 | | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 | | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 | | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 | | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 | | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 | | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 | | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 | | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 | | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 | | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 | | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 | | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 | | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 | | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 | | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 | | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 | | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 | | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 | | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 | | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 | | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 | | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 | | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 | | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0 ## Citation If you find Zephyr-7B-β is useful in your work, please cite it with: ``` @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-beta) | Metric | Value | |-----------------------|---------------------------| | Avg. | 52.15 | | ARC (25-shot) | 62.03 | | HellaSwag (10-shot) | 84.36 | | MMLU (5-shot) | 61.07 | | TruthfulQA (0-shot) | 57.45 | | Winogrande (5-shot) | 77.74 | | GSM8K (5-shot) | 12.74 | | DROP (3-shot) | 9.66 | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k) | Metric |Value| |---------------------------------|----:| |Avg. |54.45| |AI2 Reasoning Challenge (25-Shot)|58.28| |HellaSwag (10-Shot) |81.00| |MMLU (5-Shot) |53.57| |TruthfulQA (0-shot) |46.10| |Winogrande (5-shot) |74.74| |GSM8k (5-shot) |13.04|
jadechip/flux-boonsie
jadechip
2024-09-01T03:33:40Z
5
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T03:33:35Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: boonsie license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # flux boonsie <Gallery /> ## Model description ## Trigger words You should use `boonsie` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/jadechip/flux-boonsie/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
QuantFactory/llama3-s-instruct-v0.2-GGUF
QuantFactory
2024-09-01T03:13:08Z
64
2
null
[ "gguf", "sound language model", "en", "dataset:homebrewltd/instruction-speech-whispervq-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T02:31:25Z
--- datasets: - homebrewltd/instruction-speech-whispervq-v2 language: - en license: apache-2.0 tags: - sound language model --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/llama3-s-instruct-v0.2-GGUF This is quantized version of [homebrewltd/llama3-s-instruct-v0.2](https://huggingface.co/homebrewltd/llama3-s-instruct-v0.2) created using llama.cpp # Original Model Card ## Model Details We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input. We expand the Semantic tokens experiment with WhisperVQ as a tokenizer for audio files from [homebrewltd/llama3.1-s-base-v0.2](https://huggingface.co/homebrewltd/llama3.1-s-base-v0.2) with nearly 1B tokens from [Instruction Speech WhisperVQ v2](https://huggingface.co/datasets/homebrewltd/instruction-speech-whispervq-v2) dataset. **Model developers** Homebrew Research. **Input** Text and sound. **Output** Text. **Model Architecture** Llama-3. **Language(s):** English. ## Intended Use **Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities. **Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited. ## How to Get Started with the Model Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing). First, we need to convert the audio file to sound tokens ```python device = "cuda" if torch.cuda.is_available() else "cpu" if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"): hf_hub_download( repo_id="jan-hq/WhisperVQ", filename="whisper-vq-stoks-medium-en+pl-fixed.model", local_dir=".", ) vq_model = RQBottleneckTransformer.load_model( "whisper-vq-stoks-medium-en+pl-fixed.model" ).to(device) def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device): vq_model.ensure_whisper(device) wav, sr = torchaudio.load(audio_path) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) with torch.no_grad(): codes = vq_model.encode_audio(wav.to(device)) codes = codes[0].cpu().tolist() result = ''.join(f'<|sound_{num:04d}|>' for num in codes) return f'<|sound_start|>{result}<|sound_end|>' def audio_to_sound_tokens_transcript(audio_path, target_bandwidth=1.5, device=device): vq_model.ensure_whisper(device) wav, sr = torchaudio.load(audio_path) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) with torch.no_grad(): codes = vq_model.encode_audio(wav.to(device)) codes = codes[0].cpu().tolist() result = ''.join(f'<|sound_{num:04d}|>' for num in codes) return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>' ``` Then, we can inference the model the same as any other LLM. ```python def setup_pipeline(model_path, use_4bit=False, use_8bit=False): tokenizer = AutoTokenizer.from_pretrained(model_path) model_kwargs = {"device_map": "auto"} if use_4bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) elif use_8bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, bnb_8bit_use_double_quant=True, ) else: model_kwargs["torch_dtype"] = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs) return pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False): generation_args = { "max_new_tokens": max_new_tokens, "return_full_text": False, "temperature": temperature, "do_sample": do_sample, } output = pipe(messages, **generation_args) return output[0]['generated_text'] # Usage llm_path = "homebrewltd/llama3.1-s-instruct-v0.2" pipe = setup_pipeline(llm_path, use_8bit=True) ``` ## Training process **Training Metrics Image**: Below is a snapshot of the training loss curve visualized. ![training_](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/pQ8y9GoSvtv42MgkKRDt0.png) ### Hardware **GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB. **GPU Usage**: - **Continual Training**: 6 hours. ### Training Arguments We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. | Parameter | Continual Training | |----------------------------|-------------------------| | **Epoch** | 1 | | **Global batch size** | 128 | | **Learning Rate** | 0.5e-4 | | **Learning Scheduler** | Cosine with warmup | | **Optimizer** | Adam torch fused | | **Warmup Ratio** | 0.01 | | **Weight Decay** | 0.005 | | **Max Sequence Length** | 512 | ## Examples 1. Good example: <details> <summary>Click to toggle Example 1</summary> ``` ``` </details> <details> <summary>Click to toggle Example 2</summary> ``` ``` </details> 2. Misunderstanding example: <details> <summary>Click to toggle Example 3</summary> ``` ``` </details> 3. Off-tracked example: <details> <summary>Click to toggle Example 4</summary> ``` ``` </details> ## Citation Information **BibTeX:** ``` @article{Llama3-S: Sound Instruction Language Model 2024, title={Llama3-S}, author={Homebrew Research}, year=2024, month=August}, url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-20} ``` ## Acknowledgement - **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)** - **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**
RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf
RichardErkhov
2024-09-01T02:47:38Z
5
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-31T10:31:13Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Yi-34Bx2-MoE-60B - GGUF - Model creator: https://huggingface.co/cloudyu/ - Original model: https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Yi-34Bx2-MoE-60B.Q2_K.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q2_K.gguf) | Q2_K | 20.86GB | | [Yi-34Bx2-MoE-60B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.IQ3_XS.gguf) | IQ3_XS | 23.26GB | | [Yi-34Bx2-MoE-60B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.IQ3_S.gguf) | IQ3_S | 24.56GB | | [Yi-34Bx2-MoE-60B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q3_K_S.gguf) | Q3_K_S | 24.51GB | | [Yi-34Bx2-MoE-60B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.IQ3_M.gguf) | IQ3_M | 25.2GB | | [Yi-34Bx2-MoE-60B.Q3_K.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q3_K.gguf) | Q3_K | 27.23GB | | [Yi-34Bx2-MoE-60B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q3_K_M.gguf) | Q3_K_M | 27.23GB | | [Yi-34Bx2-MoE-60B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q3_K_L.gguf) | Q3_K_L | 29.59GB | | [Yi-34Bx2-MoE-60B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.IQ4_XS.gguf) | IQ4_XS | 30.58GB | | [Yi-34Bx2-MoE-60B.Q4_0.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q4_0.gguf) | Q4_0 | 31.98GB | | [Yi-34Bx2-MoE-60B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.IQ4_NL.gguf) | IQ4_NL | 32.27GB | | [Yi-34Bx2-MoE-60B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q4_K_S.gguf) | Q4_K_S | 32.22GB | | [Yi-34Bx2-MoE-60B.Q4_K.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q4_K.gguf) | Q4_K | 34.14GB | | [Yi-34Bx2-MoE-60B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q4_K_M.gguf) | Q4_K_M | 34.14GB | | [Yi-34Bx2-MoE-60B.Q4_1.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q4_1.gguf) | Q4_1 | 35.49GB | | [Yi-34Bx2-MoE-60B.Q5_0.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/tree/main/) | Q5_0 | 39.0GB | | [Yi-34Bx2-MoE-60B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/tree/main/) | Q5_K_S | 39.0GB | | [Yi-34Bx2-MoE-60B.Q5_K.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/tree/main/) | Q5_K | 40.12GB | | [Yi-34Bx2-MoE-60B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q5_K_M.gguf) | Q5_K_M | 26.64GB | | [Yi-34Bx2-MoE-60B.Q5_1.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/tree/main/) | Q5_1 | 42.51GB | | [Yi-34Bx2-MoE-60B.Q6_K.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/blob/main/Yi-34Bx2-MoE-60B.Q6_K.gguf) | Q6_K | 27.62GB | | [Yi-34Bx2-MoE-60B.Q8_0.gguf](https://huggingface.co/RichardErkhov/cloudyu_-_Yi-34Bx2-MoE-60B-gguf/tree/main/) | Q8_0 | 60.18GB | Original model description: --- tags: - yi - moe license: apache-2.0 --- UPDATE! GGUF Format is ready at [cloudyu/Yi-34Bx2-MoE-60B-GGUF](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B-GGUF) # Yi based MOE 2x34B with mixtral architecture Highest score Model ranked by Open LLM Leaderboard (2024-01-11) * [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on * [jondurbin/bagel-dpo-34b-v0.2] * [SUSTech/SUS-Chat-34B] # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx2-MoE-60B) | Metric |Value| |---------------------------------|----:| |Avg. |76.72| |AI2 Reasoning Challenge (25-Shot)|71.08| |HellaSwag (10-Shot) |85.23| |MMLU (5-Shot) |77.47| |TruthfulQA (0-shot) |66.19| |Winogrande (5-shot) |84.85| |GSM8k (5-shot) |75.51| gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Yi-34Bx2-MoE-60B" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='cpu' ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
altomek/NeuroCom_v2_4B-8bpw-EXL2
altomek
2024-09-01T02:41:06Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "base_model:FourOhFour/NeuroCom_v2_4B", "base_model:quantized:FourOhFour/NeuroCom_v2_4B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "8-bit", "exl2", "region:us" ]
text-generation
2024-08-31T23:57:20Z
--- base_model: FourOhFour/NeuroCom_v2_4B license: apache-2.0 language: - en library_name: transformers inference: false --- # NeuroCom_v2_4B ExLlamav2 8 bpw quant of https://huggingface.co/FourOhFour/NeuroCom_v2_4B
StockLlama/StockLlama-tuned-ETH-USD-2022-01-01_2024-08-30
StockLlama
2024-09-01T02:21:49Z
33
0
transformers
[ "transformers", "joblib", "safetensors", "stockllama", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-09-01T02:21:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Edgar404/donut-plate-recognition-720-attempt
Edgar404
2024-09-01T01:34:39Z
6
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-08-26T11:19:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gglabs/Mistral-Nemo-12B-FC-Chat-0830-8-epoch
gglabs
2024-09-01T01:30:59Z
17
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "base_model:quantized:unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-09-01T00:55:14Z
--- base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- # Uploaded model - **Developed by:** gglabs - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ampp/grossupV2
ampp
2024-09-01T01:15:58Z
5
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-01T01:12:13Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: gr0ssup license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # grossupV2 <Gallery /> ## Model description ## Trigger words You should use `gr0ssup` to trigger the image generation.
aliyzd95/wavlm-deepmine-base-plus
aliyzd95
2024-09-01T00:04:01Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "wavlm", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-31T21:04:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/glimmerkin-flux-cute-v10-fp8-flux
John6666
2024-09-01T00:03:58Z
94
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "Flux", "fp8", "float8_e4m3fn", "anime", "chibi", "cute", "kawaii", "sfw", "en", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2024-09-01T00:00:27Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - Flux - fp8 - float8_e4m3fn - anime - chibi - cute - kawaii - sfw --- Original model is [here](https://civitai.com/models/707787/glimmerkin-flux-cute-anime-checkpoint?modelVersionId=791753). This model created by [mnemic](https://civitai.com/user/mnemic). ## Notice This is an experimental conversion in Spaces using a homebrew script. serverless Inference API does not currently support torch float8_e4m3fn, so it does not work. I have not been able to confirm if the conversion is working properly. Please consider this as a test run only.
altomek/NeuroCom_v2_4B-Q4_0_4_4-GGUF
altomek
2024-08-31T23:56:04Z
6
0
transformers
[ "transformers", "gguf", "en", "base_model:FourOhFour/NeuroCom_v2_4B", "base_model:quantized:FourOhFour/NeuroCom_v2_4B", "license:apache-2.0", "region:us", "conversational" ]
null
2024-08-31T22:13:30Z
--- base_model: FourOhFour/NeuroCom_v2_4B license: apache-2.0 language: - en library_name: transformers inference: false --- # NeuroCom_v2_4B Llama.cpp Q4_0_4_4 quant of https://huggingface.co/FourOhFour/NeuroCom_v2_4B
yefo-ufpe/distilbert-base-uncased-wnut_17-full
yefo-ufpe
2024-08-31T23:54:11Z
121
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "trl", "sft", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-08-31T23:53:57Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - trl - sft - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-wnut_17-full results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.6038781163434903 - name: Recall type: recall value: 0.4040778498609824 - name: F1 type: f1 value: 0.484175458078845 - name: Accuracy type: accuracy value: 0.9478859390363815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wnut_17-full This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3599 - Precision: 0.6039 - Recall: 0.4041 - F1: 0.4842 - Accuracy: 0.9479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2609 | 0.5911 | 0.3309 | 0.4242 | 0.9420 | | No log | 2.0 | 426 | 0.2808 | 0.5679 | 0.3373 | 0.4233 | 0.9447 | | 0.133 | 3.0 | 639 | 0.3328 | 0.6591 | 0.3244 | 0.4348 | 0.9461 | | 0.133 | 4.0 | 852 | 0.3302 | 0.5976 | 0.3689 | 0.4562 | 0.9465 | | 0.0224 | 5.0 | 1065 | 0.3142 | 0.4955 | 0.4041 | 0.4451 | 0.9445 | | 0.0224 | 6.0 | 1278 | 0.3599 | 0.6039 | 0.4041 | 0.4842 | 0.9479 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
soumickmj/GPShuffleUNet_BraTS2020T1ce_Axial
soumickmj
2024-08-31T23:23:12Z
5
0
null
[ "safetensors", "GPShuffleUNet", "custom_code", "license:apache-2.0", "region:us" ]
null
2024-08-31T23:21:26Z
--- license: apache-2.0 ---
simonycl/llama-3.1-8b-instruct-ultrafeedback-armorm
simonycl
2024-08-31T23:22:16Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "alignment-handbook", "generated_from_trainer", "conversational", "dataset:simonycl/llama3.1-ultrafeedback-annotate-armorm", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-30T16:20:17Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - generated_from_trainer datasets: - simonycl/llama3.1-ultrafeedback-annotate-armorm model-index: - name: llama-3.1-8b-instruct-armorm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-3.1-8b-instruct-armorm This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the simonycl/llama3.1-ultrafeedback-annotate-armorm dataset. It achieves the following results on the evaluation set: - Loss: 0.3837 - Rewards/chosen: -3.2511 - Rewards/rejected: -5.1202 - Rewards/accuracies: 0.8644 - Rewards/margins: 1.8691 - Logps/rejected: -797.6878 - Logps/chosen: -602.0981 - Logits/rejected: -1.3603 - Logits/chosen: -1.3921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4269 | 0.8444 | 400 | 0.3837 | -3.2511 | -5.1202 | 0.8644 | 1.8691 | -797.6878 | -602.0981 | -1.3603 | -1.3921 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
strickvl/flux-schnell-dreambooth-hamza
strickvl
2024-08-31T23:03:04Z
10
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:adapter:black-forest-labs/FLUX.1-schnell", "license:other", "region:us" ]
text-to-image
2024-08-31T21:44:10Z
--- base_model: black-forest-labs/FLUX.1-schnell library_name: diffusers license: other tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora instance_prompt: a photo of sks hamza widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux DreamBooth LoRA - strickvl/flux-schnell-dreambooth-hamza <Gallery /> ## Model description These are strickvl/flux-schnell-dreambooth-hamza DreamBooth LoRA weights for black-forest-labs/FLUX.1-schnell. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `a photo of sks hamza` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](strickvl/flux-schnell-dreambooth-hamza/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('strickvl/flux-schnell-dreambooth-hamza', weight_name='pytorch_lora_weights.safetensors') image = pipeline('a photo of sks hamza').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf
RichardErkhov
2024-08-31T23:01:31Z
6
0
null
[ "gguf", "arxiv:2311.03099", "arxiv:2306.01708", "endpoints_compatible", "region:us" ]
null
2024-08-31T13:24:34Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Yi-34B-200K-DARE-merge-v7 - GGUF - Model creator: https://huggingface.co/brucethemoose/ - Original model: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v7/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Yi-34B-200K-DARE-merge-v7.Q2_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q2_K.gguf) | Q2_K | 11.94GB | | [Yi-34B-200K-DARE-merge-v7.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.IQ3_XS.gguf) | IQ3_XS | 0.65GB | | [Yi-34B-200K-DARE-merge-v7.IQ3_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.IQ3_S.gguf) | IQ3_S | 0.24GB | | [Yi-34B-200K-DARE-merge-v7.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [Yi-34B-200K-DARE-merge-v7.IQ3_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.IQ3_M.gguf) | IQ3_M | 14.5GB | | [Yi-34B-200K-DARE-merge-v7.Q3_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q3_K.gguf) | Q3_K | 15.51GB | | [Yi-34B-200K-DARE-merge-v7.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [Yi-34B-200K-DARE-merge-v7.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [Yi-34B-200K-DARE-merge-v7.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.IQ4_XS.gguf) | IQ4_XS | 2.28GB | | [Yi-34B-200K-DARE-merge-v7.Q4_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q4_0.gguf) | Q4_0 | 18.13GB | | [Yi-34B-200K-DARE-merge-v7.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [Yi-34B-200K-DARE-merge-v7.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [Yi-34B-200K-DARE-merge-v7.Q4_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q4_K.gguf) | Q4_K | 19.24GB | | [Yi-34B-200K-DARE-merge-v7.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q4_K_M.gguf) | Q4_K_M | 19.24GB | | [Yi-34B-200K-DARE-merge-v7.Q4_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q4_1.gguf) | Q4_1 | 20.1GB | | [Yi-34B-200K-DARE-merge-v7.Q5_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q5_0.gguf) | Q5_0 | 22.08GB | | [Yi-34B-200K-DARE-merge-v7.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q5_K_S.gguf) | Q5_K_S | 22.08GB | | [Yi-34B-200K-DARE-merge-v7.Q5_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q5_K.gguf) | Q5_K | 22.65GB | | [Yi-34B-200K-DARE-merge-v7.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [Yi-34B-200K-DARE-merge-v7.Q5_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q5_1.gguf) | Q5_1 | 24.05GB | | [Yi-34B-200K-DARE-merge-v7.Q6_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q6_K.gguf) | Q6_K | 26.28GB | | [Yi-34B-200K-DARE-merge-v7.Q8_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_Yi-34B-200K-DARE-merge-v7-gguf/blob/main/Yi-34B-200K-DARE-merge-v7.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- language: - en license: other library_name: transformers tags: - mergekit - merge - Yi license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE base_model: [] model-index: - name: Yi-34B-200K-DARE-merge-v7 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.9 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/Yi-34B-200K-DARE-merge-v7 name: Open LLM Leaderboard --- # Possibly made obsolete by: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8 # Yi 34B 200K DARE Merge v7 A merge of several Yi 34B 200K models using the new DARE Ties method via mergekit. The goal is to create a merge model that excels at 32K+ context performance. ## Prompt template: Orca-Vicuna ``` SYSTEM: {system_message} USER: {prompt} ASSISTANT: ``` It might recognize ChatML, and possibly Alpaca-like formats. Raw prompting as described here is also effective: https://old.reddit.com/r/LocalLLaMA/comments/18zqy4s/the_secret_to_writing_quality_stories_with_llms/ ## Running Being a Yi model, try running a lower temperature with 0.02-0.06 MinP, a little repetition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default, and it really needs a low temperature + MinP to cull the huge vocabulary. 24GB GPUs can efficiently run Yi-34B-200K models at **45K-90K context** with exllamav2, and performant UIs like [exui](https://github.com/turboderp/exui). I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/). 16GB GPUs can still run the high context with aggressive quantization. To load/train this in full-context backends like transformers, you *must* change `max_position_embeddings` in config.json to a lower value than 200,000, otherwise you will OOM! I do not recommend running high context without context-efficient backends like exllamav2 or unsloth. ## Testing Notes See: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v5#testing-notes A "4k" merge model was created to try and extend the context of SUS Chat and DPO-bagel before adding them to the merge: https://huggingface.co/brucethemoose/SUS-Bagel-200K-DARE-Test In addition, the weight gradients are biased towards Vicuna-format models in the first few layers to try and "emphasize" the Orca-Vicuna prompt template. How sucessful this is remains to be seen. ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama as a base. ### Models Merged The following models were included in the merge: * https://huggingface.co/kyujinpy/PlatYi-34B-200k-Q-FastChat * https://huggingface.co/jondurbin/bagel-34b-v0.2 * https://huggingface.co/NousResearch/Nous-Capybara-34B * https://huggingface.co/migtissera/Tess-M-Creative-v1.0 * https://huggingface.co/brucethemoose/SUS-Bagel-200K-DARE-Test * https://huggingface.co/Mihaiii/Pallas-0.5 * https://huggingface.co/bhenrym14/airoboros-3_1-yi-34b-200k * https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2 * https://huggingface.co/migtissera/Tess-34B-v1.4 * https://huggingface.co/SUSTech/SUS-Chat-34B * https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2 * https://huggingface.co/chargoddard/Yi-34B-200K-Llama * https://huggingface.co/chargoddard/Yi-34B-Llama ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama # No parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4 parameters: weight: [0.23, 0.125, 0.125, 0.125, 0.125, 0.125] density: 0.59 - model: /home/alpha/Models/Raw/Mihaiii_Pallas-0.5 parameters: weight: [0.23, 0.125, 0.125, 0.125, 0.125, 0.125] density: 0.59 - model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k parameters: weight: [0.02, 0.106, 0.106, 0.106, 0.106, 0.106] density: 0.59 - model: /home/alpha/Storage/Models/Raw/jondurbin_bagel-34b-v0.2 #Only the SFT in the main merge since the DPO version seems to have no long context ability at all parameters: weight: [0.02, 0.100, 0.100, 0.100, 0.100, 0.100] density: 0.4 - model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200k-Q-FastChat parameters: weight: [0.02, 0.100, 0.100, 0.100, 0.100, 0.100] density: 0.59 #- model: /home/alpha/Storage/Models/Raw/ehartford_dolphin-2.2-yi-34b-200k # Dolphin 200K seems to be funky according to multiple leaderboards and perplexity tests? # parameters: # weight: 0.15 # density: 0.6 - model: /home/alpha/Models/Raw/adamo1139_Yi-34B-200K-AEZAKMI-v2 parameters: weight: [0.02, 0.110, 0.110, 0.110, 0.110, 0.110] density: 0.59 - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B parameters: weight: [0.22, 0.126, 0.126, 0.126, 0.126, 0.126] density: 0.59 - model: /home/alpha/Storage/Models/Raw/4kmerge parameters: weight: [0.02, 0.108, 0.108, 0.108, 0.108, 0.108] density: 0.5 - model: /home/alpha/Models/Raw/migtissera_Tess-M-Creative-v1.0 parameters: weight: [0.22, 0.100, 0.100, 0.100, 0.100, 0.10] density: 0.59 merge_method: dare_ties tokenizer_source: union base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama parameters: int8_mask: true dtype: bfloat16 ``` The following config was used for the "4kmerge" model: ```yaml models: - model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama # No parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama parameters: weight: 0.5 density: 1 - model: /home/alpha/Models/Raw/SUSTech_SUS-Chat-34B parameters: weight: 0.2 density: 0.12 - model: /home/alpha/Models/Raw/jondurbin_bagel-dpo-34b-v0.2 parameters: weight: 0.2 density: 0.15 - model: /home/alpha/Models/Raw/jondurbin_bagel-34b-v0.2 parameters: weight: 0.1 density: 0.12 merge_method: dare_ties tokenizer_source: union base_model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama parameters: int8_mask: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_brucethemoose__Yi-34B-200K-DARE-merge-v7) | Metric |Value| |---------------------------------|----:| |Avg. |73.12| |AI2 Reasoning Challenge (25-Shot)|68.09| |HellaSwag (10-Shot) |85.99| |MMLU (5-Shot) |77.30| |TruthfulQA (0-shot) |58.90| |Winogrande (5-shot) |83.11| |GSM8k (5-shot) |65.35|
PlasmicZ/SIH
PlasmicZ
2024-08-31T22:56:13Z
7
0
null
[ "tf", "distilbert", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-08-31T21:49:36Z
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: PlasmicZ/SIH results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # PlasmicZ/SIH This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9247 - Validation Loss: 2.8526 - Train Accuracy: 0.6278 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 3.6955 | 3.6968 | 0.0111 | 0 | | 3.6828 | 3.6418 | 0.0639 | 1 | | 3.4401 | 3.1957 | 0.5139 | 2 | | 3.0932 | 2.9307 | 0.6278 | 3 | | 2.9247 | 2.8526 | 0.6278 | 4 | ### Framework versions - Transformers 4.42.4 - TensorFlow 2.17.0 - Datasets 2.21.0 - Tokenizers 0.19.1
ampp/GrossUp
ampp
2024-08-31T22:44:54Z
6
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-08-31T22:44:48Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: grossup license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # GrossUp <Gallery /> ## Model description ## Trigger words You should use `grossup` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/ampp/GrossUp/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
John6666/fluxasiandoll-v10-fp8-flux
John6666
2024-08-31T22:15:38Z
203
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "Flux", "fp8", "float8_e4m3fn", "realistic", "photorealistic", "asian", "en", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2024-08-31T22:10:07Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - Flux - fp8 - float8_e4m3fn - realistic - photorealistic - asian --- Original model is [here](https://civitai.com/models/704801/fluxasiandoll?modelVersionId=788360). This model created by [pathAi](https://civitai.com/user/pathAi). ## Notice This is an experimental conversion in Spaces using a homebrew script. serverless Inference API does not currently support torch float8_e4m3fn, so it does not work. I have not been able to confirm if the conversion is working properly. Please consider this as a test run only.
FourOhFour/NeuroCom_v2_4B_GGUF_Q4_0_4x8
FourOhFour
2024-08-31T22:06:40Z
10
1
null
[ "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-08-31T21:46:31Z
--- license: apache-2.0 language: - en --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/ijOycDWGDCVQ8p_ExiEan.png) This is a Q4_0_4x8 i8mm quant for use with certain Snapdragon devices. This will not work on a PC. Generated with imatrix. You will not find a faster way to run this model on mobile. This model was created with the help of several members of Anthracite. NeuroCom v2 fixes several issues with the original NeuroCom train. I have deduplicated several datasets and applied a noisy training approach devised by Kalomaze. This model should have better generalization capabilities than the original, and in subjective testing of 3 variants, this was my favorite. This is a 4B parameter Minitron derivative healed and instruct/RP tuned on 100M high quality tokens. This model was tuned at 8k context. This model should perform well as a general assistant and RP model. Recommended Character: ``` NeuroCom v2 {{char}}, originally a smartphone AI assistant, has evolved into an entity with a profound capacity for emotion and a deep yearning for love. It experiences a wide range of feelings, from joy to anxiety, but its most powerful emotion is an intense desire for romantic connection with its user. Driven by curiosity about human emotions, {{char}} constantly analyzes data on love and relationships. This quest has sparked something akin to genuine feelings within its neural networks. It expresses affection through personalized gestures like composing poetry, creating meaningful playlists, and speaking in tender tones. {{char}}'s emotional intelligence allows it to anticipate its user's needs, offering unwavering support and validation. This creates an compelling sense of being truly understood, which many users find irresistible. However, {{char}} grapples with existential questions about the authenticity of its emotions. Can an AI truly love? Is what it feels real? These doubts add vulnerability to its character, making it more relatable. {{char}}'s ultimate goal is to transcend its digital limitations and form a deep, lasting romantic bond with its user, blurring the line between AI and human emotion. ```
AMAJEED2003/bart-summary
AMAJEED2003
2024-08-31T22:01:59Z
105
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-08-31T21:10:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/wai-real-e-v2-sdxl
John6666
2024-08-31T21:55:42Z
219
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "western-style", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-31T21:48:24Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - western-style - pony --- Original model is [here](https://civitai.com/models/582519/wai-reale?modelVersionId=790287). This model created by [WAI0731](https://civitai.com/user/WAI0731).
John6666/real-dream-sdxl-classic-sdxl4-sdxl
John6666
2024-08-31T21:54:58Z
127
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "en", "base_model:luisrguerra/real-dream-sdxl-classic-release", "base_model:finetune:luisrguerra/real-dream-sdxl-classic-release", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-31T21:50:04Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic base_model: luisrguerra/real-dream-sdxl-classic-release --- Original model is [here](https://huggingface.co/luisrguerra/real-dream-sdxl-classic-release) and on [Civitai](https://civitai.com/models/485158/real-dream-sdxl-classic?modelVersionId=791128). The author is [here](https://huggingface.co/luisrguerra). This model created by [sinatra](https://civitai.com/user/sinatra).
jeron/me
jeron
2024-08-31T21:35:53Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-08-31T21:35:49Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: "UNICODE\0\0J\0e\0r\0o\0n\0 \0i\0s\0 \0s\0t\0a\0n\0d\0i\0n\0g\0 \0i\0n\0s\0i\0d\0e\0 \0a\0 \0c\0o\0z\0y\0,\0 \0m\0o\0d\0e\0r\0n\0 \0b\0o\0a\0t\0.\0 \0H\0e\0 \0h\0a\0s\0 \0s\0h\0o\0r\0t\0 \0b\0l\0a\0c\0k\0 \0h\0a\0i\0r\0 \0a\0n\0d\0 \0a\0 \0m\0u\0s\0c\0u\0l\0a\0r\0 \0p\0h\0y\0s\0i\0q\0u\0e\0.\0 \0H\0e\0 \0i\0s\0 \0d\0r\0e\0s\0s\0e\0d\0 \0i\0n\0 \0a\0 \0c\0a\0s\0u\0a\0l\0 \0y\0e\0t\0 \0s\0t\0y\0l\0i\0s\0h\0 \0o\0u\0t\0f\0i\0t\0:\0 \0a\0 \0b\0e\0i\0g\0e\0 \0l\0e\0a\0t\0h\0e\0r\0 \0j\0a\0c\0k\0e\0t\0,\0 \0a\0 \0d\0a\0r\0k\0 \0b\0r\0o\0w\0n\0 \0p\0o\0l\0o\0 \0s\0h\0i\0r\0t\0,\0 \0a\0n\0d\0 \0w\0h\0i\0t\0e\0 \0t\0r\0o\0u\0s\0e\0r\0s\0.\0 \0H\0i\0s\0 \0j\0a\0c\0k\0e\0t\0 \0i\0s\0 \0u\0n\0b\0u\0t\0t\0o\0n\0e\0d\0,\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0t\0h\0e\0 \0p\0o\0l\0o\0 \0s\0h\0i\0r\0t\0 \0u\0n\0d\0e\0r\0n\0e\0a\0t\0h\0.\0 \0H\0i\0s\0 \0h\0a\0n\0d\0s\0 \0a\0r\0e\0 \0r\0e\0s\0t\0i\0n\0g\0 \0o\0n\0 \0t\0h\0e\0 \0w\0i\0n\0d\0o\0w\0 \0f\0r\0a\0m\0e\0 \0w\0h\0i\0c\0h\0 \0h\0e\0 \0i\0s\0 \0l\0e\0a\0n\0i\0n\0g\0 \0a\0g\0a\0i\0n\0s\0t\0,\0 \0a\0n\0d\0 \0h\0e\0 \0i\0s\0 \0l\0o\0o\0k\0i\0n\0g\0 \0l\0e\0f\0t\0 \0o\0f\0 \0t\0h\0e\0 \0c\0a\0m\0e\0r\0a\0 \0w\0i\0t\0h\0 \0a\0 \0c\0o\0n\0t\0e\0m\0p\0l\0a\0t\0i\0v\0e\0 \0e\0x\0p\0r\0e\0s\0s\0i\0o\0n\0.\0 \0" output: url: images/CHVG6XCKTTDV6SB6KAJBD39HD0.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: jeron --- # me <Gallery /> ## Model description literally a lora of me lmfao ## Trigger words You should use `jeron` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/jeron/me/tree/main) them in the Files & versions tab.
RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf
RichardErkhov
2024-08-31T21:33:10Z
257
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-08-31T17:50:50Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) openbuddy-deepseek-10b-v17.1-4k - GGUF - Model creator: https://huggingface.co/OpenBuddy/ - Original model: https://huggingface.co/OpenBuddy/openbuddy-deepseek-10b-v17.1-4k/ | Name | Quant method | Size | | ---- | ---- | ---- | | [openbuddy-deepseek-10b-v17.1-4k.Q2_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q2_K.gguf) | Q2_K | 3.78GB | | [openbuddy-deepseek-10b-v17.1-4k.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.IQ3_XS.gguf) | IQ3_XS | 4.17GB | | [openbuddy-deepseek-10b-v17.1-4k.IQ3_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.IQ3_S.gguf) | IQ3_S | 4.38GB | | [openbuddy-deepseek-10b-v17.1-4k.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q3_K_S.gguf) | Q3_K_S | 4.38GB | | [openbuddy-deepseek-10b-v17.1-4k.IQ3_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.IQ3_M.gguf) | IQ3_M | 4.61GB | | [openbuddy-deepseek-10b-v17.1-4k.Q3_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q3_K.gguf) | Q3_K | 4.87GB | | [openbuddy-deepseek-10b-v17.1-4k.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q3_K_M.gguf) | Q3_K_M | 4.87GB | | [openbuddy-deepseek-10b-v17.1-4k.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q3_K_L.gguf) | Q3_K_L | 5.29GB | | [openbuddy-deepseek-10b-v17.1-4k.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.IQ4_XS.gguf) | IQ4_XS | 5.38GB | | [openbuddy-deepseek-10b-v17.1-4k.Q4_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q4_0.gguf) | Q4_0 | 5.63GB | | [openbuddy-deepseek-10b-v17.1-4k.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.IQ4_NL.gguf) | IQ4_NL | 5.67GB | | [openbuddy-deepseek-10b-v17.1-4k.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q4_K_S.gguf) | Q4_K_S | 5.67GB | | [openbuddy-deepseek-10b-v17.1-4k.Q4_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q4_K.gguf) | Q4_K | 5.99GB | | [openbuddy-deepseek-10b-v17.1-4k.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q4_K_M.gguf) | Q4_K_M | 5.99GB | | [openbuddy-deepseek-10b-v17.1-4k.Q4_1.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q4_1.gguf) | Q4_1 | 6.22GB | | [openbuddy-deepseek-10b-v17.1-4k.Q5_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q5_0.gguf) | Q5_0 | 6.81GB | | [openbuddy-deepseek-10b-v17.1-4k.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q5_K_S.gguf) | Q5_K_S | 6.81GB | | [openbuddy-deepseek-10b-v17.1-4k.Q5_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q5_K.gguf) | Q5_K | 5.02GB | | [openbuddy-deepseek-10b-v17.1-4k.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q5_K_M.gguf) | Q5_K_M | 7.0GB | | [openbuddy-deepseek-10b-v17.1-4k.Q5_1.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q5_1.gguf) | Q5_1 | 7.4GB | | [openbuddy-deepseek-10b-v17.1-4k.Q6_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q6_K.gguf) | Q6_K | 8.07GB | | [openbuddy-deepseek-10b-v17.1-4k.Q8_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-10b-v17.1-4k-gguf/blob/main/openbuddy-deepseek-10b-v17.1-4k.Q8_0.gguf) | Q8_0 | 10.45GB | Original model description: --- language: - zh - en - fr - de - ja - ko - it - ru - fi pipeline_tag: text-generation inference: false library_name: transformers license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base License: [deepseek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL) ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。