modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-04 06:26:56
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 538
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-04 06:26:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
abc88767/model63
|
abc88767
| 2024-05-04T21:11:41Z | 91 | 0 |
transformers
|
[
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T21:10:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Litzy619/0504LayerAnalysis15
|
Litzy619
| 2024-05-04T21:05:23Z | 0 | 0 | null |
[
"safetensors",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"base_model:finetune:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-04T20:01:40Z |
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: 0504LayerAnalysis15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0504LayerAnalysis15
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0824
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7064 | 0.09 | 10 | 2.5019 |
| 2.2279 | 0.18 | 20 | 1.6861 |
| 1.0122 | 0.27 | 30 | 0.1895 |
| 0.177 | 0.36 | 40 | 0.1481 |
| 0.152 | 0.45 | 50 | 0.1432 |
| 0.1473 | 0.54 | 60 | 0.1402 |
| 0.1411 | 0.63 | 70 | 0.1248 |
| 0.1276 | 0.73 | 80 | 0.1087 |
| 0.1162 | 0.82 | 90 | 0.1033 |
| 0.1104 | 0.91 | 100 | 0.0978 |
| 0.1098 | 1.0 | 110 | 0.0964 |
| 0.1062 | 1.09 | 120 | 0.0949 |
| 0.1016 | 1.18 | 130 | 0.0977 |
| 0.1073 | 1.27 | 140 | 0.0936 |
| 0.1057 | 1.36 | 150 | 0.0909 |
| 0.1036 | 1.45 | 160 | 0.0908 |
| 0.1013 | 1.54 | 170 | 0.0886 |
| 0.1 | 1.63 | 180 | 0.0879 |
| 0.099 | 1.72 | 190 | 0.0891 |
| 0.102 | 1.81 | 200 | 0.0860 |
| 0.0968 | 1.9 | 210 | 0.0854 |
| 0.0937 | 1.99 | 220 | 0.0848 |
| 0.0887 | 2.08 | 230 | 0.0840 |
| 0.0885 | 2.18 | 240 | 0.0833 |
| 0.0894 | 2.27 | 250 | 0.0829 |
| 0.0948 | 2.36 | 260 | 0.0824 |
| 0.0917 | 2.45 | 270 | 0.0827 |
| 0.0874 | 2.54 | 280 | 0.0824 |
| 0.0861 | 2.63 | 290 | 0.0825 |
| 0.0899 | 2.72 | 300 | 0.0825 |
| 0.094 | 2.81 | 310 | 0.0826 |
| 0.0888 | 2.9 | 320 | 0.0822 |
| 0.0954 | 2.99 | 330 | 0.0824 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
erdiyalcin/whisper-large-v3-turkish-test1
|
erdiyalcin
| 2024-05-04T21:00:13Z | 95 | 2 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"tr",
"dataset:mozilla-foundation/common_voice_17_0",
"base_model:openai/whisper-large-v3",
"base_model:finetune:openai/whisper-large-v3",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-04T05:48:42Z |
---
language:
- tr
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: "Whisper Test TR - Erdi YAL\xC7IN"
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: tr
split: None
args: 'config: tr, split: test'
metrics:
- name: Wer
type: wer
value: 12.795575896262395
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Test TR - Erdi YALÇIN
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1566
- Wer: 12.7956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1305 | 0.8 | 500 | 0.1764 | 14.6644 |
| 0.0496 | 1.6 | 1000 | 0.1566 | 12.7956 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
vap0r/phishing_detection_v0.2
|
vap0r
| 2024-05-04T20:49:37Z | 6 | 0 |
setfit
|
[
"setfit",
"safetensors",
"xlm-roberta",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
"arxiv:2209.11055",
"base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
"base_model:finetune:sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
"region:us"
] |
text-classification
| 2024-05-04T20:17:19Z |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
metrics:
- accuracy
widget: []
pipeline_tag: text-classification
inference: true
---
# SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vap0r/phishing_detection_v0.2")
# Run inference
preds = model("I loved the spiderman movie!")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
dbalasub/test-demo-t5-qa
|
dbalasub
| 2024-05-04T20:39:42Z | 107 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-04T20:33:39Z |
---
library_name: transformers
license: mit
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Litzy619/0504LayerAnalysis31
|
Litzy619
| 2024-05-04T20:39:38Z | 0 | 0 | null |
[
"safetensors",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"base_model:finetune:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-05-04T19:47:45Z |
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: 0504LayerAnalysis31
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0504LayerAnalysis31
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7445 | 0.09 | 10 | 2.6015 |
| 2.3433 | 0.18 | 20 | 1.7482 |
| 1.2286 | 0.27 | 30 | 0.5531 |
| 0.4068 | 0.36 | 40 | 0.2940 |
| 0.2388 | 0.45 | 50 | 0.1832 |
| 0.1922 | 0.54 | 60 | 0.1407 |
| 0.1518 | 0.63 | 70 | 0.1263 |
| 0.1415 | 0.73 | 80 | 0.1206 |
| 0.1372 | 0.82 | 90 | 0.1196 |
| 0.1298 | 0.91 | 100 | 0.1149 |
| 0.1334 | 1.0 | 110 | 0.1143 |
| 0.13 | 1.09 | 120 | 0.1131 |
| 0.1306 | 1.18 | 130 | 0.1149 |
| 0.128 | 1.27 | 140 | 0.1125 |
| 0.1309 | 1.36 | 150 | 0.1118 |
| 0.1237 | 1.45 | 160 | 0.1124 |
| 0.1239 | 1.54 | 170 | 0.1104 |
| 0.1267 | 1.63 | 180 | 0.1095 |
| 0.1243 | 1.72 | 190 | 0.1172 |
| 0.1279 | 1.81 | 200 | 0.1093 |
| 0.1245 | 1.9 | 210 | 0.1100 |
| 0.1189 | 1.99 | 220 | 0.1098 |
| 0.1236 | 2.08 | 230 | 0.1101 |
| 0.1209 | 2.18 | 240 | 0.1094 |
| 0.1209 | 2.27 | 250 | 0.1089 |
| 0.1297 | 2.36 | 260 | 0.1087 |
| 0.1224 | 2.45 | 270 | 0.1086 |
| 0.1151 | 2.54 | 280 | 0.1092 |
| 0.1185 | 2.63 | 290 | 0.1096 |
| 0.1211 | 2.72 | 300 | 0.1092 |
| 0.1235 | 2.81 | 310 | 0.1092 |
| 0.1243 | 2.9 | 320 | 0.1092 |
| 0.1272 | 2.99 | 330 | 0.1092 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf
|
RichardErkhov
| 2024-05-04T20:39:37Z | 65 | 0 | null |
[
"gguf",
"arxiv:2305.18290",
"arxiv:2306.05685",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-05-04T20:13:31Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
stablelm-zephyr-3b - GGUF
- Model creator: https://huggingface.co/stabilityai/
- Original model: https://huggingface.co/stabilityai/stablelm-zephyr-3b/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [stablelm-zephyr-3b.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q2_K.gguf) | Q2_K | 1.01GB |
| [stablelm-zephyr-3b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_XS.gguf) | IQ3_XS | 1.11GB |
| [stablelm-zephyr-3b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_S.gguf) | IQ3_S | 1.17GB |
| [stablelm-zephyr-3b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_S.gguf) | Q3_K_S | 1.17GB |
| [stablelm-zephyr-3b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_M.gguf) | IQ3_M | 1.23GB |
| [stablelm-zephyr-3b.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K.gguf) | Q3_K | 1.3GB |
| [stablelm-zephyr-3b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_M.gguf) | Q3_K_M | 1.3GB |
| [stablelm-zephyr-3b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_L.gguf) | Q3_K_L | 1.4GB |
| [stablelm-zephyr-3b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_XS.gguf) | IQ4_XS | 1.43GB |
| [stablelm-zephyr-3b.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_0.gguf) | Q4_0 | 1.5GB |
| [stablelm-zephyr-3b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_NL.gguf) | IQ4_NL | 1.51GB |
| [stablelm-zephyr-3b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_S.gguf) | Q4_K_S | 1.51GB |
| [stablelm-zephyr-3b.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K.gguf) | Q4_K | 1.59GB |
| [stablelm-zephyr-3b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_M.gguf) | Q4_K_M | 1.59GB |
| [stablelm-zephyr-3b.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_1.gguf) | Q4_1 | 1.65GB |
| [stablelm-zephyr-3b.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_0.gguf) | Q5_0 | 1.81GB |
| [stablelm-zephyr-3b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_S.gguf) | Q5_K_S | 1.81GB |
| [stablelm-zephyr-3b.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K.gguf) | Q5_K | 1.86GB |
| [stablelm-zephyr-3b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_M.gguf) | Q5_K_M | 1.86GB |
| [stablelm-zephyr-3b.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_1.gguf) | Q5_1 | 1.96GB |
| [stablelm-zephyr-3b.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q6_K.gguf) | Q6_K | 2.14GB |
Original model description:
---
language:
- en
license: other
tags:
- causal-lm
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Intel/orca_dpo_pairs
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
model-index:
- name: stablelm-zephyr-3b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 46.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.49
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.15
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
---
# `StableLM Zephyr 3B`
Please note: For commercial use, please refer to https://stability.ai/membership.
## Model Description
`StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
[MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
## Usage
`StableLM Zephyr 3B` uses the following instruction format:
```
<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>
```
This format is also available through the tokenizer's `apply_chat_template` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-zephyr-3b',
device_map="auto"
)
prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.8,
do_sample=True
)
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
```
You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel.
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE).
* **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
2. Preference Datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
## Performance
### MT-Bench and Alpaca Bench
<img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
| StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
| Capybara v1.9 | 3B | dSFT | 5.94 | - |
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
## Other benchmarks:
| Task | Value |
|-----------------------|---------------------------|
| ARC (25-shot) | 47.0 |
| HellaSwag (10-shot) | 74.2 |
| MMLU (5-shot) | 46.3 |
| TruthfulQA (0-shot) | 46.5 |
| Winogrande (5-shot) | 65.5 |
| GSM8K (5-shot) | 42.3 |
| BigBench (Avg) | 35.26 |
| AGI Benchmark (Avg) | 33.23 |
### Training Infrastructure
* **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
## Commitment to Ethical AI
In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas:
* **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders)
* **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change)
* **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers)
We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models.
## Use and Limitations
### Intended Use
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership.
### Limitations and Bias
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.43|
|AI2 Reasoning Challenge (25-Shot)|46.08|
|HellaSwag (10-Shot) |74.16|
|MMLU (5-Shot) |46.17|
|TruthfulQA (0-shot) |46.49|
|Winogrande (5-shot) |65.51|
|GSM8k (5-shot) |42.15|
|
ismichel/whisper-tiny-finetune
|
ismichel
| 2024-05-04T20:39:37Z | 92 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-tiny.en",
"base_model:finetune:openai/whisper-tiny.en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-04T20:39:25Z |
---
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-finetune
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5924
- Wer: 20.5257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 3.9976 | 0.2778 | 10 | 3.9664 | 44.1176 |
| 3.9022 | 0.5556 | 20 | 3.8748 | 43.6170 |
| 3.7582 | 0.8333 | 30 | 3.7266 | 43.0538 |
| 3.5744 | 1.1111 | 40 | 3.5294 | 39.1427 |
| 3.2991 | 1.3889 | 50 | 3.2828 | 35.3567 |
| 3.0818 | 1.6667 | 60 | 2.9793 | 34.7935 |
| 2.6849 | 1.9444 | 70 | 2.5935 | 37.0150 |
| 2.2809 | 2.2222 | 80 | 2.0883 | 37.7034 |
| 1.6882 | 2.5 | 90 | 1.5027 | 38.6733 |
| 1.2127 | 2.7778 | 100 | 1.0275 | 39.0488 |
| 0.8696 | 3.0556 | 110 | 0.7946 | 29.4431 |
| 0.7336 | 3.3333 | 120 | 0.7152 | 28.1915 |
| 0.6793 | 3.6111 | 130 | 0.6666 | 27.2215 |
| 0.6489 | 3.8889 | 140 | 0.6346 | 26.0638 |
| 0.6353 | 4.1667 | 150 | 0.6115 | 24.8748 |
| 0.583 | 4.4444 | 160 | 0.5928 | 24.7497 |
| 0.5455 | 4.7222 | 170 | 0.5775 | 23.8110 |
| 0.487 | 5.0 | 180 | 0.5647 | 23.3417 |
| 0.4925 | 5.2778 | 190 | 0.5541 | 22.7159 |
| 0.4952 | 5.5556 | 200 | 0.5444 | 22.6533 |
| 0.4481 | 5.8333 | 210 | 0.5359 | 22.2153 |
| 0.4827 | 6.1111 | 220 | 0.5263 | 22.4030 |
| 0.3897 | 6.3889 | 230 | 0.5196 | 21.8085 |
| 0.3834 | 6.6667 | 240 | 0.5121 | 21.8711 |
| 0.3906 | 6.9444 | 250 | 0.5073 | 21.2140 |
| 0.3705 | 7.2222 | 260 | 0.5055 | 21.3705 |
| 0.3518 | 7.5 | 270 | 0.4980 | 21.2140 |
| 0.354 | 7.7778 | 280 | 0.4934 | 20.7447 |
| 0.3202 | 8.0556 | 290 | 0.4914 | 20.4318 |
| 0.2997 | 8.3333 | 300 | 0.4859 | 20.0563 |
| 0.2699 | 8.6111 | 310 | 0.4852 | 26.9399 |
| 0.2724 | 8.8889 | 320 | 0.4809 | 27.0338 |
| 0.2844 | 9.1667 | 330 | 0.4802 | 26.4393 |
| 0.2332 | 9.4444 | 340 | 0.4801 | 24.6558 |
| 0.2337 | 9.7222 | 350 | 0.4810 | 20.2753 |
| 0.2542 | 10.0 | 360 | 0.4731 | 20.5882 |
| 0.1986 | 10.2778 | 370 | 0.4779 | 20.1189 |
| 0.2023 | 10.5556 | 380 | 0.4767 | 24.6558 |
| 0.1864 | 10.8333 | 390 | 0.4763 | 20.3379 |
| 0.1873 | 11.1111 | 400 | 0.4765 | 20.6195 |
| 0.1595 | 11.3889 | 410 | 0.4831 | 20.4631 |
| 0.1581 | 11.6667 | 420 | 0.4872 | 20.2128 |
| 0.1663 | 11.9444 | 430 | 0.4851 | 20.0563 |
| 0.1282 | 12.2222 | 440 | 0.4864 | 19.9625 |
| 0.1138 | 12.5 | 450 | 0.4918 | 19.9937 |
| 0.1283 | 12.7778 | 460 | 0.4931 | 19.9312 |
| 0.0847 | 13.0556 | 470 | 0.4891 | 20.4944 |
| 0.0902 | 13.3333 | 480 | 0.5027 | 19.8999 |
| 0.0719 | 13.6111 | 490 | 0.5056 | 20.6821 |
| 0.1011 | 13.8889 | 500 | 0.5023 | 19.9937 |
| 0.0676 | 14.1667 | 510 | 0.5113 | 20.4005 |
| 0.0632 | 14.4444 | 520 | 0.5154 | 24.7184 |
| 0.0643 | 14.7222 | 530 | 0.5207 | 20.1502 |
| 0.053 | 15.0 | 540 | 0.5184 | 20.2753 |
| 0.0389 | 15.2778 | 550 | 0.5295 | 20.4631 |
| 0.0467 | 15.5556 | 560 | 0.5286 | 20.3066 |
| 0.0414 | 15.8333 | 570 | 0.5403 | 20.2753 |
| 0.0334 | 16.1111 | 580 | 0.5334 | 20.0876 |
| 0.0283 | 16.3889 | 590 | 0.5514 | 20.2441 |
| 0.0282 | 16.6667 | 600 | 0.5415 | 20.1815 |
| 0.0267 | 16.9444 | 610 | 0.5451 | 20.7447 |
| 0.019 | 17.2222 | 620 | 0.5483 | 20.3379 |
| 0.0202 | 17.5 | 630 | 0.5551 | 19.9625 |
| 0.0179 | 17.7778 | 640 | 0.5574 | 20.3066 |
| 0.0186 | 18.0556 | 650 | 0.5621 | 20.6821 |
| 0.0123 | 18.3333 | 660 | 0.5634 | 20.6195 |
| 0.0138 | 18.6111 | 670 | 0.5648 | 20.2753 |
| 0.0133 | 18.8889 | 680 | 0.5655 | 20.4318 |
| 0.0114 | 19.1667 | 690 | 0.5666 | 20.5569 |
| 0.0112 | 19.4444 | 700 | 0.5721 | 20.3379 |
| 0.0108 | 19.7222 | 710 | 0.5714 | 20.8385 |
| 0.0106 | 20.0 | 720 | 0.5744 | 20.4944 |
| 0.0092 | 20.2778 | 730 | 0.5751 | 20.4318 |
| 0.0096 | 20.5556 | 740 | 0.5756 | 20.3692 |
| 0.009 | 20.8333 | 750 | 0.5779 | 20.1502 |
| 0.0084 | 21.1111 | 760 | 0.5790 | 20.4944 |
| 0.0077 | 21.3889 | 770 | 0.5820 | 20.4005 |
| 0.0083 | 21.6667 | 780 | 0.5822 | 20.4005 |
| 0.008 | 21.9444 | 790 | 0.5820 | 20.4005 |
| 0.0077 | 22.2222 | 800 | 0.5829 | 20.4318 |
| 0.0083 | 22.5 | 810 | 0.5843 | 20.4005 |
| 0.0073 | 22.7778 | 820 | 0.5856 | 20.4005 |
| 0.0069 | 23.0556 | 830 | 0.5869 | 20.4005 |
| 0.0067 | 23.3333 | 840 | 0.5886 | 20.5257 |
| 0.007 | 23.6111 | 850 | 0.5882 | 20.4944 |
| 0.0074 | 23.8889 | 860 | 0.5872 | 20.4631 |
| 0.0073 | 24.1667 | 870 | 0.5885 | 20.4631 |
| 0.0066 | 24.4444 | 880 | 0.5896 | 20.6195 |
| 0.0061 | 24.7222 | 890 | 0.5898 | 20.6195 |
| 0.0073 | 25.0 | 900 | 0.5902 | 20.5882 |
| 0.0067 | 25.2778 | 910 | 0.5901 | 20.6508 |
| 0.006 | 25.5556 | 920 | 0.5905 | 20.5257 |
| 0.0061 | 25.8333 | 930 | 0.5911 | 20.7447 |
| 0.0064 | 26.1111 | 940 | 0.5916 | 20.6821 |
| 0.0066 | 26.3889 | 950 | 0.5919 | 20.6195 |
| 0.0071 | 26.6667 | 960 | 0.5924 | 20.5569 |
| 0.006 | 26.9444 | 970 | 0.5923 | 20.5569 |
| 0.0068 | 27.2222 | 980 | 0.5923 | 20.5257 |
| 0.0061 | 27.5 | 990 | 0.5924 | 20.5257 |
| 0.0058 | 27.7778 | 1000 | 0.5924 | 20.5257 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1
|
RichardErkhov/stabilityai_-_stablelm-zephyr-3b-8bits
|
RichardErkhov
| 2024-05-04T20:12:42Z | 77 | 0 |
transformers
|
[
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:2305.18290",
"arxiv:2306.05685",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T20:10:41Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
stablelm-zephyr-3b - bnb 8bits
- Model creator: https://huggingface.co/stabilityai/
- Original model: https://huggingface.co/stabilityai/stablelm-zephyr-3b/
Original model description:
---
language:
- en
license: other
tags:
- causal-lm
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Intel/orca_dpo_pairs
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
model-index:
- name: stablelm-zephyr-3b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 46.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.49
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.15
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
---
# `StableLM Zephyr 3B`
Please note: For commercial use, please refer to https://stability.ai/membership.
## Model Description
`StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
[MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
## Usage
`StableLM Zephyr 3B` uses the following instruction format:
```
<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>
```
This format is also available through the tokenizer's `apply_chat_template` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-zephyr-3b',
device_map="auto"
)
prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.8,
do_sample=True
)
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
```
You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel.
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE).
* **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
2. Preference Datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
## Performance
### MT-Bench and Alpaca Bench
<img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
| StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
| Capybara v1.9 | 3B | dSFT | 5.94 | - |
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
## Other benchmarks:
| Task | Value |
|-----------------------|---------------------------|
| ARC (25-shot) | 47.0 |
| HellaSwag (10-shot) | 74.2 |
| MMLU (5-shot) | 46.3 |
| TruthfulQA (0-shot) | 46.5 |
| Winogrande (5-shot) | 65.5 |
| GSM8K (5-shot) | 42.3 |
| BigBench (Avg) | 35.26 |
| AGI Benchmark (Avg) | 33.23 |
### Training Infrastructure
* **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
## Commitment to Ethical AI
In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas:
* **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders)
* **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change)
* **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers)
We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models.
## Use and Limitations
### Intended Use
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership.
### Limitations and Bias
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.43|
|AI2 Reasoning Challenge (25-Shot)|46.08|
|HellaSwag (10-Shot) |74.16|
|MMLU (5-Shot) |46.17|
|TruthfulQA (0-shot) |46.49|
|Winogrande (5-shot) |65.51|
|GSM8k (5-shot) |42.15|
|
samuelleecong/marian-finetuned-aslg12-en-to-ase
|
samuelleecong
| 2024-05-04T20:05:36Z | 195 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"base_model:samuelleecong/marian-finetuned-aslg12-en-to-ase",
"base_model:finetune:samuelleecong/marian-finetuned-aslg12-en-to-ase",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2024-05-04T18:59:13Z |
---
license: apache-2.0
base_model: samuelleecong/marian-finetuned-aslg12-en-to-ase
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: marian-finetuned-aslg12-en-to-ase
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-aslg12-en-to-ase
This model is a fine-tuned version of [samuelleecong/marian-finetuned-aslg12-en-to-ase](https://huggingface.co/samuelleecong/marian-finetuned-aslg12-en-to-ase) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3301
- Bleu: 81.8522
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
bullerwins/gradientai_Llama-3-70B-Instruct-Gradient-262k_exl2_8.0bpw
|
bullerwins
| 2024-05-04T20:02:17Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"meta",
"llama-3",
"conversational",
"en",
"arxiv:2402.08268",
"arxiv:2310.05209",
"arxiv:2305.14233",
"arxiv:2309.00071",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-05-04T18:58:24Z |
---
language:
- en
pipeline_tag: text-generation
tags:
- meta
- llama-3
license: llama3
---
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
# Llama-3 70B Instruct Gradient 262K
Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@gradient.ai.
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
This model extends LLama-3 70B's context length from 8k to > 262K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 105M tokens for this stage, and 188M tokens total for all stages, which is < 0.002% of Llama-3's original pre-training data.

**Approach:**
- [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) as the base
- NTK-aware interpolation [4] following scaling laws [2] to set optimal schedule for RoPE theta
- Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [1] (See details below)
**Infra:**
We build on top of the EasyContext Blockwise RingAttention library [5] to scalably and efficiently train on very long contexts on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster.
We layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices.
**Data:**
For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). We also fine-tune on a chat dataset based on UltraChat [3], following a similar recipe for data augmentation to [1].
**Progressive Training Details:**
| | 65K | 262K |
|--------------------------|-----------------|-----------------|
| Initialize From | Llama-3-70B-Instruct | 65K |
| Sequence Length 2^N | 16 | 18 |
| RoPE theta | 15,296,098 | 207,112,184 |
| Batch Size | 64 | 16 |
| Gradient Accumulation Steps | 1 | 1 |
| Steps | 20 | 25 |
| Total Tokens | 83,886,080 | 104,857,600 |
| Learning rate | 0.00002 | 0.00002 |
| # GPUs | 512 | 512 |
| GPU Type | NVIDIA L40S | NVIDIA L40S |
| Minutes to Train (Wall) | 100 | 170 |
**Evaluation Details:**
```
EVAL_MAX_CONTEXT_LENGTH=320200
EVAL_MIN_CONTEXT_LENGTH=100
EVAL_CONTEXT_INTERVAL=16000
EVAL_DEPTH_INTERVAL=0.2
EVAL_NUM_SAMPLES=2
EVAL_RND_NUMBER_DIGITS=8
HAYSTACK:
EVAL_GENERATOR_TOKENS=925000
```
Haystack is "haystack 3", further detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
**Quants:**
## The Gradient AI Team
https://gradient.ai/
Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business.
## Contact Us
Drop an email to [contact@gradient.ai](mailto:contact@gradient.ai)
## References
[1] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024).
[2] Liu, Xiaoran, et al. "Scaling laws of rope-based extrapolation." arXiv preprint arXiv:2310.05209 (2023).
[3] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan
Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling
high-quality instructional conversations. arXiv preprint arXiv:2305.14233, 2023.
[4] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023).
[5] https://github.com/jzhang38/EasyContext
----
# Base Model
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
|
DoubelT/mt5-small-finetuned-amazon-en-es
|
DoubelT
| 2024-05-04T20:01:53Z | 2 | 0 |
transformers
|
[
"transformers",
"tf",
"mt5",
"text2text-generation",
"generated_from_keras_callback",
"base_model:google/mt5-small",
"base_model:finetune:google/mt5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-04-16T19:53:02Z |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: DoubelT/mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# DoubelT/mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0032
- Validation Loss: 0.0002
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 89496, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.3246 | 0.1471 | 0 |
| 0.0799 | 0.0075 | 1 |
| 0.0190 | 0.0004 | 2 |
| 0.0094 | 0.0004 | 3 |
| 0.0060 | 0.0003 | 4 |
| 0.0045 | 0.0003 | 5 |
| 0.0036 | 0.0002 | 6 |
| 0.0032 | 0.0002 | 7 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.16.1
- Datasets 2.19.0
- Tokenizers 0.19.1
|
afzalaftab/whisper_finetuned
|
afzalaftab
| 2024-05-04T19:56:38Z | 92 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"hi",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-04T19:55:22Z |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Finetuned - Afzal Aftab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 33.285363582493865
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hi - Afzal Aftab
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4270
- Wer: 33.2854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0882 | 2.44 | 1000 | 0.2909 | 35.1773 |
| 0.0196 | 4.89 | 2000 | 0.3459 | 33.9584 |
| 0.0015 | 7.33 | 3000 | 0.4043 | 33.1118 |
| 0.0004 | 9.78 | 4000 | 0.4270 | 33.2854 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.1.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Supersaiyan1729/financeLM_outputpath_final_model_15
|
Supersaiyan1729
| 2024-05-04T19:53:06Z | 116 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T18:58:39Z |
---
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
model-index:
- name: financeLM_outputpath_final_model_15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# financeLM_outputpath_final_model_15
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.6902 | 1.0 | 671 | 1.3422 |
| 1.0644 | 2.0 | 1342 | 1.3353 |
| 0.8371 | 3.0 | 2013 | 1.4028 |
| 0.6842 | 4.0 | 2685 | 1.4639 |
| 0.5775 | 5.0 | 3356 | 1.5597 |
| 0.4967 | 6.0 | 4027 | 1.6722 |
| 0.438 | 7.0 | 4698 | 1.7115 |
| 0.3909 | 8.0 | 5370 | 1.7681 |
| 0.3556 | 9.0 | 6041 | 1.8081 |
| 0.3293 | 10.0 | 6712 | 1.8478 |
| 0.3076 | 11.0 | 7383 | 1.8752 |
| 0.2908 | 12.0 | 8055 | 1.8949 |
| 0.2781 | 13.0 | 8726 | 1.9260 |
| 0.2685 | 14.0 | 9397 | 1.9298 |
| 0.2602 | 14.99 | 10065 | 1.9396 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|
bzhang0426/test
|
bzhang0426
| 2024-05-04T19:50:09Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"region:us"
] | null | 2024-05-04T19:47:22Z |
---
library_name: peft
base_model: meta-llama/Meta-Llama-3-8B-Instruct
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0
|
LeoPhoenix/Homoerotic1
|
LeoPhoenix
| 2024-05-04T19:45:38Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-04T19:45:38Z |
---
license: apache-2.0
---
|
juliuserictuliao/whisper-tiny-minds14
|
juliuserictuliao
| 2024-05-04T19:41:55Z | 81 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-05-04T14:35:03Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-minds14
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3264957264957265
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-minds14
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6807
- Wer Ortho: 32.4629
- Wer: 0.3265
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|
| 0.0009 | 17.8571 | 500 | 0.6266 | 32.6409 | 0.3282 |
| 0.0002 | 35.7143 | 1000 | 0.6807 | 32.4629 | 0.3265 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
north/llama3-verify
|
north
| 2024-05-04T19:34:12Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T08:42:05Z |
---
license: apache-2.0
---
|
RichardErkhov/stabilityai_-_StableBeluga-7B-gguf
|
RichardErkhov
| 2024-05-04T19:30:56Z | 52 | 0 | null |
[
"gguf",
"arxiv:2307.09288",
"arxiv:2306.02707",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T17:57:48Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
StableBeluga-7B - GGUF
- Model creator: https://huggingface.co/stabilityai/
- Original model: https://huggingface.co/stabilityai/StableBeluga-7B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [StableBeluga-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q2_K.gguf) | Q2_K | 2.36GB |
| [StableBeluga-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [StableBeluga-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [StableBeluga-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [StableBeluga-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [StableBeluga-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q3_K.gguf) | Q3_K | 3.07GB |
| [StableBeluga-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [StableBeluga-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [StableBeluga-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [StableBeluga-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q4_0.gguf) | Q4_0 | 3.56GB |
| [StableBeluga-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [StableBeluga-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [StableBeluga-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q4_K.gguf) | Q4_K | 3.8GB |
| [StableBeluga-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [StableBeluga-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q4_1.gguf) | Q4_1 | 3.95GB |
| [StableBeluga-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q5_0.gguf) | Q5_0 | 4.33GB |
| [StableBeluga-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [StableBeluga-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q5_K.gguf) | Q5_K | 4.45GB |
| [StableBeluga-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [StableBeluga-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q5_1.gguf) | Q5_1 | 4.72GB |
| [StableBeluga-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_StableBeluga-7B-gguf/blob/main/StableBeluga-7B.Q6_K.gguf) | Q6_K | 5.15GB |
Original model description:
---
datasets:
- conceptofmind/cot_submix_original
- conceptofmind/flan2021_submix_original
- conceptofmind/t0_submix_original
- conceptofmind/niv2_submix_original
language:
- en
pipeline_tag: text-generation
---
# Stable Beluga 7B
Use [Stable Chat (Research Preview)](https://chat.stability.ai/chat) to test Stability AI's best language models for free
## Model Description
`Stable Beluga 7B` is a Llama2 7B model finetuned on an Orca style Dataset
## Usage
Start chatting with `Stable Beluga 7B` using the following code snippet:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga-7B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga-7B", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are StableBeluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Stable Beluga 7B should be used with this prompt format:
```
### System:
This is a system prompt, please behave and help the user.
### User:
Your prompt here
### Assistant:
The output of Stable Beluga 7B
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: Stable Beluga 7B is an auto-regressive language model fine-tuned on Llama2 7B.
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints (`Stable Beluga 7B`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga-7B/blob/main/LICENSE.txt)
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
` Stable Beluga 7B` is trained on our internal Orca-style dataset
### Training Procedure
Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
| Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
|-------------------|------------|---------------|-------------------|---------|--------------|-------------|
| Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
| Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
## Ethical Considerations and Limitations
Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
## Citations
```bibtext
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtext
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
jorgefg03/roberta-base-bne-autext2024
|
jorgefg03
| 2024-05-04T19:27:11Z | 106 | 0 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T18:32:41Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MadK/llama-3-8b-bnb-ft-jn-v1
|
MadK
| 2024-05-04T19:19:51Z | 11 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T19:02:08Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** MadK
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
LoneStriker/Llama-3-70B-Instruct-Gradient-524k-GGUF
|
LoneStriker
| 2024-05-04T19:17:05Z | 5 | 3 | null |
[
"gguf",
"meta",
"llama-3",
"text-generation",
"en",
"arxiv:2402.08268",
"arxiv:2310.05209",
"arxiv:2305.14233",
"arxiv:2309.00071",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2024-05-04T17:49:52Z |
---
language:
- en
pipeline_tag: text-generation
tags:
- meta
- llama-3
license: llama3
---
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
# Llama-3 70B Gradient Instruct 524K
Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@gradient.ai.
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
This model extends LLama-3 70B's context length from 8k to > 524K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 210M tokens for this stage, and ~400M tokens total for all stages, which is < 0.003% of Llama-3's original pre-training data.

**Approach:**
- [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) as the base
- NTK-aware interpolation [4] following scaling laws [2] to set optimal schedule for RoPE theta
- Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [1] (See details below)
**Infra:**
We build on top of the EasyContext Blockwise RingAttention library [5] to scalably and efficiently train on very long contexts on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster.
We layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices.
**Data:**
For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). We also fine-tune on a chat dataset based on UltraChat [3], following a similar recipe for data augmentation to [1].
**Progressive Training Details:**
| | 65K | 262K | 524K |
|------------------------|-----------|-----------|------------|
| Initialize From | Llama-3-70B-Instruct | 65K | 262K |
| Sequence Length 2^N | 16 | 18 | 19 |
| RoPE theta | 15296098 | 207112184 | 1062356830 |
| Batch Size | 64 | 16 | 8 |
| Gradient Accumulation Steps | 1 | 1 | 2 |
| Steps | 20 | 25 | 25 |
| Total Tokens | 83886080 | 104857600 | 209715200 |
| Learning rate | 2.00E-05 | 2.00E-05 | 2.00E-05 |
| # GPUs | 512 | 512 | 512 |
| GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S |
| Minutes to Train (Wall)| 100 | 170 | 284 |
**Evaluation Details:**
```
EVAL_MAX_CONTEXT_LENGTH=640000
EVAL_MIN_CONTEXT_LENGTH=100
EVAL_CONTEXT_INTERVAL=32000
EVAL_DEPTH_INTERVAL=0.2
EVAL_NUM_SAMPLES=2
EVAL_RND_NUMBER_DIGITS=8
HAYSTACK:
EVAL_GENERATOR_TOKENS=925000
```
Haystack is "haystack 3", further detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
**Quants:**
## The Gradient AI Team
https://gradient.ai/
Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business.
## Contact Us
Drop an email to [contact@gradient.ai](mailto:contact@gradient.ai)
## References
[1] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024).
[2] Liu, Xiaoran, et al. "Scaling laws of rope-based extrapolation." arXiv preprint arXiv:2310.05209 (2023).
[3] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan
Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling
high-quality instructional conversations. arXiv preprint arXiv:2305.14233, 2023.
[4] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023).
[5] https://github.com/jzhang38/EasyContext
----
# Base Model
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
|
MohammadOthman/megatron-gpt2-classification
|
MohammadOthman
| 2024-05-04T19:16:32Z | 105 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-classification",
"distributed-training",
"megatron",
"accelerate",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T18:00:30Z |
---
license: mit
language:
- en
pipeline_tag: text-classification
tags:
- gpt2
- distributed-training
- megatron
- accelerate
---
# Megatron-GPT2-Classification
## Description
The `megatron-gpt2-classification` model is a language model trained using Megatron and Accelerate frameworks. It has been fine-tuned for classification tasks and benefits from distributed training across 4 GPUs (RTX 4070).
## Key Features
- Trained with **Megatron** and **Accelerate**.
- Distributed training on **4 GPUs (RTX 4070)**.
- Fine-tuned for classification tasks.
|
EuphoriaReccords/JINBTS
|
EuphoriaReccords
| 2024-05-04T19:07:19Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-05-04T14:24:39Z |
---
license: creativeml-openrail-m
---
|
Zardos/Kant-Test-0.1-Mistral-7B
|
Zardos
| 2024-05-04T18:50:36Z | 1,399 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"en",
"arxiv:2310.06825",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-05T09:19:39Z |
---
language:
- en
license: apache-2.0
pipeline_tag: text-generation
model-index:
- name: Kant-Test-0.1-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.84
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.62
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Zardos/Kant-Test-0.1-Mistral-7B
name: Open LLM Leaderboard
---
# Model Yaml
The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters.
Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.
For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
## Model Architecture
Mistral-7B-v0.1 is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Troubleshooting
- If you see the following error:
```
KeyError: 'mistral'
```
- Or:
```
NotImplementedError: Cannot copy out of meta tensor; no data!
```
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
## Notice
Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.
## The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Zardos__Kant-Test-0.1-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.42|
|AI2 Reasoning Challenge (25-Shot)|62.37|
|HellaSwag (10-Shot) |82.84|
|MMLU (5-Shot) |63.38|
|TruthfulQA (0-shot) |49.62|
|Winogrande (5-shot) |78.30|
|GSM8k (5-shot) |37.98|
|
chinmayn/splitted_falcon_sharded_HPE
|
chinmayn
| 2024-05-04T18:48:12Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:ybelkada/falcon-7b-sharded-bf16",
"base_model:adapter:ybelkada/falcon-7b-sharded-bf16",
"region:us"
] | null | 2024-05-04T18:47:28Z |
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: ybelkada/falcon-7b-sharded-bf16
model-index:
- name: splitted_falcon_sharded_HPE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splitted_falcon_sharded_HPE
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
Kukedlc/Smart-LLama-3-8b-Python-v2-4bit
|
Kukedlc
| 2024-05-04T18:43:45Z | 78 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:Kukedlc/LLama-3-8b-Python",
"base_model:quantized:Kukedlc/LLama-3-8b-Python",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T18:41:15Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: Kukedlc/LLama-3-8b-Python
---
# Uploaded model
- **Developed by:** Kukedlc
- **License:** apache-2.0
- **Finetuned from model :** Kukedlc/LLama-3-8b-Python
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf
|
RichardErkhov
| 2024-05-04T18:40:44Z | 22 | 0 | null |
[
"gguf",
"arxiv:2308.12950",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T11:09:06Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
CodeLlama-34b-hf - GGUF
- Model creator: https://huggingface.co/codellama/
- Original model: https://huggingface.co/codellama/CodeLlama-34b-hf/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [CodeLlama-34b-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q2_K.gguf) | Q2_K | 11.65GB |
| [CodeLlama-34b-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_XS.gguf) | IQ3_XS | 12.93GB |
| [CodeLlama-34b-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_S.gguf) | IQ3_S | 13.65GB |
| [CodeLlama-34b-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_S.gguf) | Q3_K_S | 13.6GB |
| [CodeLlama-34b-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ3_M.gguf) | IQ3_M | 14.18GB |
| [CodeLlama-34b-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K.gguf) | Q3_K | 15.19GB |
| [CodeLlama-34b-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_M.gguf) | Q3_K_M | 15.19GB |
| [CodeLlama-34b-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q3_K_L.gguf) | Q3_K_L | 16.55GB |
| [CodeLlama-34b-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ4_XS.gguf) | IQ4_XS | 16.99GB |
| [CodeLlama-34b-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_0.gguf) | Q4_0 | 17.74GB |
| [CodeLlama-34b-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.IQ4_NL.gguf) | IQ4_NL | 17.92GB |
| [CodeLlama-34b-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K_S.gguf) | Q4_K_S | 17.87GB |
| [CodeLlama-34b-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K.gguf) | Q4_K | 18.83GB |
| [CodeLlama-34b-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_K_M.gguf) | Q4_K_M | 18.83GB |
| [CodeLlama-34b-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q4_1.gguf) | Q4_1 | 19.69GB |
| [CodeLlama-34b-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_0.gguf) | Q5_0 | 21.64GB |
| [CodeLlama-34b-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K_S.gguf) | Q5_K_S | 21.64GB |
| [CodeLlama-34b-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K.gguf) | Q5_K | 22.2GB |
| [CodeLlama-34b-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_K_M.gguf) | Q5_K_M | 22.2GB |
| [CodeLlama-34b-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q5_1.gguf) | Q5_1 | 23.59GB |
| [CodeLlama-34b-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-34b-hf-gguf/blob/main/CodeLlama-34b-hf.Q6_K.gguf) | Q6_K | 25.78GB |
Original model description:
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
license: llama2
---
# **Code Llama**
Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 34B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
> [!NOTE]
> This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-34b-hf).
| | Base Model | Python | Instruct |
| --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
| 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
| 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
| 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
## Model Use
To use this model, please make sure to install transformers:
```bash
pip install transformers.git accelerate
```
Model capabilities:
- [x] Code completion.
- [ ] Infilling.
- [ ] Instructions / chat.
- [ ] Python specialist.
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "codellama/CodeLlama-34b-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'import socket\n\ndef ping_exponential_backoff(host: str):',
do_sample=True,
top_k=10,
temperature=0.1,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Model Details
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
**Model Developers** Meta
**Variations** Code Llama comes in three model sizes, and three variants:
* Code Llama: base models designed for general code synthesis and understanding
* Code Llama - Python: designed specifically for Python
* Code Llama - Instruct: for instruction following and safer deployment
All variants are available in sizes of 7B, 13B and 34B parameters.
**This repository contains the base version of the 34B parameters model.**
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
## Intended Use
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
## Hardware and Software
**Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
## Training Data
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
## Evaluation Results
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
## Ethical Considerations and Limitations
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
|
KhimNguyen/t2sql
|
KhimNguyen
| 2024-05-04T18:40:35Z | 123 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-04-13T08:30:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Kukedlc/Smart-LLama-3-8b-Python-v2-16bit
|
Kukedlc
| 2024-05-04T18:39:15Z | 91 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:Kukedlc/LLama-3-8b-Python",
"base_model:finetune:Kukedlc/LLama-3-8b-Python",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T18:34:54Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: Kukedlc/LLama-3-8b-Python
---
# Uploaded model
- **Developed by:** Kukedlc
- **License:** apache-2.0
- **Finetuned from model :** Kukedlc/LLama-3-8b-Python
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
AlignmentResearch/robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0
|
AlignmentResearch
| 2024-05-04T18:31:32Z | 103 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-1b",
"base_model:finetune:EleutherAI/pythia-1b",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T18:30:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: EleutherAI/pythia-1b
model-index:
- name: robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-0
This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|
dabagyan/roberta-sarcasm-model
|
dabagyan
| 2024-05-04T18:31:19Z | 180 | 0 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T01:50:05Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JayhC/Llama-3-Soliloquy-8B-v2-8bpw-h8-exl2
|
JayhC
| 2024-05-04T18:24:40Z | 6 | 2 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-05-04T17:41:30Z |
---
license: cc-by-nc-sa-4.0
language:
- en
---
<br/><br/>
8bpw/h8 exl2 quantization of [openlynn/Llama-3-Soliloquy-8B-v2](https://huggingface.co/openlynn/Llama-3-Soliloquy-8B-v2) using default exllamav2 calibration dataset.
---
**ORIGINAL CARD:**
# LYNN - AI for Roleplay
<img src="./reallynn.png" alt="it's lynn!" width="340"/>
> [!TIP]
> No issue found... yet..
# Soliloquy-L3
Soliloquy-L3 is a highly capable roleplaying model designed for immersive, dynamic experiences. Trained on over 250 million tokens of roleplaying data, Soliloquy-L3 has a vast knowledge base, rich literary expression, and support for up to 24k context length. It outperforms existing ~13B models, delivering enhanced roleplaying capabilities.
## What's Changed
- 100% Retrieval
- Better Instruction Following
## Model Info
| Context Length | Parameter | Prompt Template | isErp |
| --- | --- | --- | --- |
| 24k(24576) | 8B | Llama 3 Chat | Partly |
## Prompt Template
Use can you following jinja2 template. Which is identical to chat_template in [tokenizer_config](./tokenizer_config.json).
```
{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
```
## License
This model is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
If you would like to use this model for commercial purposes, please use our proprietary API. (Currently avilable at OpenRouter)
For non-commercial use, please adhere to the terms of the CC BY-NC-SA 4.0 license. You are free to share and adapt the model for non-commercial purposes, provided you give appropriate credit, indicate if changes were made, and do not imply endorsement by the licensor.
For more information about the CC BY-NC 4.0 license, please visit: https://creativecommons.org/licenses/by-nc-sa/4.0/
If you have any questions or would like to inquire about licensing, please contact us.
## Llama 3 Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
[https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
## Join our Discord
[**Join LYNN Discord**](https://discord.gg/xuZVqUyG4Y)
|
AIAT/Optimizer-sealion2pandas
|
AIAT
| 2024-05-04T18:17:59Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mpt",
"text-generation",
"custom_code",
"th",
"en",
"dataset:AIAT/Optimizer-datasetfinal",
"base_model:aisingapore/sea-lion-7b-instruct",
"base_model:finetune:aisingapore/sea-lion-7b-instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-03T06:36:44Z |
---
language:
- th
- en
license: mit
base_model: aisingapore/sea-lion-7b-instruct
datasets:
- AIAT/Optimizer-datasetfinal
pipeline_tag: text-generation
---
## Sea-lion2pandas
fine-tuned from [sea-lion-7b-instruct](aisingapore/sea-lion-7b-instruct) with question-pandas expression pairs.
## How to use:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import pandas as pd
tokenizer = AutoTokenizer.from_pretrained("AIAT/Optimizer-sealion2pandas", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("AIAT/Optimizer-sealion2pandas", trust_remote_code=True)
df = pd.read_csv("Your csv..")
prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n"
prompt = """\
You are working with a pandas dataframe in Python.
The name of the dataframe is `df`.
This is the result of `print(df.head())`:
{df_str}
Follow these instructions:
1. Convert the query to executable Python code using Pandas.
2. The final line of code should be a Python expression that can be called with the `eval()` function.
3. The code should represent a solution to the query.
4. PRINT ONLY THE EXPRESSION.
5. Do not quote the expression.
Query: {query_str} """
def create_prompt(query_str, df):
text = prompt.format(df_str=str(df.head()), query_str=query_str)
text = prompt_template.format(human_prompt=text)
return text
full_prompt = create_prompt("Find test ?", df)
tokens = tokenizer(full_prompt, return_tensors="pt")
output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
# sponser

|
rombodawg/test_dataset_Codellama-3-8B
|
rombodawg
| 2024-05-04T18:17:15Z | 104 | 78 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-04-28T01:56:24Z |
---
language:
- en
license: apache-2.0
model-index:
- name: test_dataset_Codellama-3-8B
results:
- task:
type: text-generation
dataset:
name: HumanEval
type: openai_humaneval
metrics:
- type: pass@1
value: 0.630
name: pass@1
verified: false
---
## Please note this model is a test, the full finetuned version can be found here: https://huggingface.co/rombodawg/Llama-3-8B-Instruct-Coder
_______________________________________________________
## GOOGLE COLAB IS A SCAM DO NOT USE THE PAID VERSION
## THEY WILL DISCONNECT YOUR RUNTIME BEFORE EVEN 24 HOURS
https://github.com/googlecolab/colabtools/issues/3451
_________________________________________________________________________________________
## PLEASE INSTEAD USE TENSORDOCK ITS CHEAPER AND DOESNT DISCONNECT YOU
tensordock.com
_________________________________________________________________________________________
__________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
_________________________________________________________________________________________
This is unsloth/llama-3-8b-Instruct trained on the Replete-AI/code-test-dataset using the code bellow with unsloth and google colab with under 15gb of vram. This training was complete in about 40 minutes total.
__________________________________________________________________________
Colab doc if you dont want to copy the code by hand:
- https://colab.research.google.com/drive/1bX4BsjLcdNJnoAf7lGXmWOgaY8yekg8p?usp=sharing
__________________________________________________________________________
Copy from my announcement in my discord:
```
If anyone wants to train their own llama-3-8b model for free on any dataset
that has around 1,500 lines of data or less you can now do it easily by using
the code I provided in the model card for my test model in this repo and
google colab. The training for this model uses (Unsloth + Qlora + Galore) to
achieve the ability for training under such low vram.
```
For anyone that is new to coding and training Ai, all your really have to edit is
1. (max_seq_length = 8192) To match the max tokens of the dataset or model you are using
2. (model_name = "unsloth/llama-3-8b-Instruct",) Change what model you are finetuning, this setup is specifically for llama-3-8b
3. (alpaca_prompt =) Change the prompt format, this one is setup to meet llama-3-8b-instruct format, but match it to your specifications.
4. (dataset = load_dataset("Replete-AI/code-test-dataset", split = "train")) What dataset you are using from huggingface
5. (model.push_to_hub_merged("rombodawg/test_dataset_Codellama-3-8B", tokenizer, save_method = "merged_16bit", token = ""))
6. For the above you need to change "rombodawg" to your Hugginface name, "test_dataset_Codellama-3-8B" to the model name you want saved as, and in token = "" you need to put your huggingface write token so the model can be saved.
```Python
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
# Use this for older GPUs (V100, Tesla T4, RTX 20xx)
!pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
```
```Python
!pip install galore_torch
```
```Python
from unsloth import FastLanguageModel
import torch
max_seq_length = 8192 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit",
"unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b
"unsloth/gemma-2b-bnb-4bit",
"unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b
"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-Instruct",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
```
```Python
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
```
```Python
alpaca_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Below is an instruction that describes a task, Write a response that appropriately completes the request.<|eot_id|><|start_header_id|>user<|end_header_id|>
{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
inputs = examples["human"]
outputs = examples["assistant"]
texts = []
for input, output in zip(inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("Replete-AI/code-test-dataset", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
```
```Python
from trl import SFTTrainer
from transformers import TrainingArguments
from galore_torch import GaLoreAdamW8bit
import torch.nn as nn
galore_params = []
target_modules_list = ["attn", "mlp"]
for module_name, module in model.named_modules():
if not isinstance(module, nn.Linear):
continue
if not any(target_key in module_name for target_key in target_modules_list):
continue
print('mod ', module_name)
galore_params.append(module.weight)
id_galore_params = [id(p) for p in galore_params]
regular_params = [p for p in model.parameters() if id(p) not in id_galore_params]
param_groups = [{'params': regular_params},
{'params': galore_params, 'rank': 64, 'update_proj_gap': 200, 'scale': 0.25, 'proj_type': 'std'}]
optimizer = GaLoreAdamW8bit(param_groups, lr=2e-5)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
optimizers=(optimizer, None),
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = True, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 1,
gradient_accumulation_steps = 4,
warmup_steps = 5,
learning_rate = 2e-4,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
)
```
```Python
trainer_stats = trainer.train()
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
model.push_to_hub_merged("rombodawg/test_dataset_Codellama-3-8B", tokenizer, save_method = "merged_16bit", token = "")
```
|
RichardErkhov/kanishka_-_smolm-autoreg-bpe-seed_496-4bits
|
RichardErkhov
| 2024-05-04T18:09:38Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"opt",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T18:09:29Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
smolm-autoreg-bpe-seed_496 - bnb 4bits
- Model creator: https://huggingface.co/kanishka/
- Original model: https://huggingface.co/kanishka/smolm-autoreg-bpe-seed_496/
Original model description:
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-seed_496
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolm-autoreg-bpe-seed_496
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4752
- Accuracy: 0.4995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 16
- eval_batch_size: 128
- seed: 496
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24000
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.0603 | 1.0 | 2928 | 3.0255 | 0.4367 |
| 2.7088 | 2.0 | 5856 | 2.7873 | 0.4580 |
| 2.586 | 3.0 | 8784 | 2.6956 | 0.4688 |
| 2.5037 | 4.0 | 11712 | 2.6362 | 0.4772 |
| 2.466 | 5.0 | 14640 | 2.6123 | 0.4787 |
| 2.4203 | 6.0 | 17568 | 2.5878 | 0.4828 |
| 2.3871 | 7.0 | 20496 | 2.5691 | 0.4855 |
| 2.367 | 8.0 | 23424 | 2.5567 | 0.4880 |
| 2.2871 | 9.0 | 26352 | 2.5026 | 0.4941 |
| 2.1368 | 10.0 | 29280 | 2.4752 | 0.4995 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
RichardErkhov/echarlaix_-_tiny-random-PhiForCausalLM-4bits
|
RichardErkhov
| 2024-05-04T18:09:10Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"phi",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T18:09:04Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tiny-random-PhiForCausalLM - bnb 4bits
- Model creator: https://huggingface.co/echarlaix/
- Original model: https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM/
Original model description:
---
license: apache-2.0
---
|
RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf
|
RichardErkhov
| 2024-05-04T18:08:58Z | 10 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T16:49:51Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Bielik-7B-v0.1 - GGUF
- Model creator: https://huggingface.co/speakleash/
- Original model: https://huggingface.co/speakleash/Bielik-7B-v0.1/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Bielik-7B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q2_K.gguf) | Q2_K | 2.53GB |
| [Bielik-7B-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [Bielik-7B-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [Bielik-7B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [Bielik-7B-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [Bielik-7B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K.gguf) | Q3_K | 3.28GB |
| [Bielik-7B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [Bielik-7B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [Bielik-7B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [Bielik-7B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_0.gguf) | Q4_0 | 3.83GB |
| [Bielik-7B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [Bielik-7B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [Bielik-7B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K.gguf) | Q4_K | 4.07GB |
| [Bielik-7B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [Bielik-7B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q4_1.gguf) | Q4_1 | 4.24GB |
| [Bielik-7B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_0.gguf) | Q5_0 | 4.65GB |
| [Bielik-7B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [Bielik-7B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K.gguf) | Q5_K | 4.78GB |
| [Bielik-7B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [Bielik-7B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q5_1.gguf) | Q5_1 | 5.07GB |
| [Bielik-7B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/speakleash_-_Bielik-7B-v0.1-gguf/blob/main/Bielik-7B-v0.1.Q6_K.gguf) | Q6_K | 5.53GB |
Original model description:
---
license: apache-2.0
language:
- pl
library_name: transformers
tags:
- continuously_pretrained
inference:
parameters:
temperature: 0.7
---
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/speakleash_cyfronet.png">
</p>
# Bielik-7B-v0.1
The Bielik-7B-v0.1 is a generative text model featuring 7 billion parameters, meticulously evolved from its predecessor, the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), through processing of over 70 billion tokens. Forementioned model stands as a testament to the unique collaboration between the open-science/open-souce project SpeakLeash and the High Performance Computing (HPC) center: ACK Cyfronet AGH. Developed and trained on Polish text corpora, which has been cherry-picked and processed by the SpeakLeash team, this endeavor leverages Polish large-scale computing infrastructure, specifically within the PLGrid environment, and more precisely, the HPC centers: ACK Cyfronet AGH. The creation and training of the Bielik-7B-v0.1 was propelled by the support of computational grant number PLG/2024/016951, conducted on the Helios supercomputer, enabling the use of cutting-edge technology and computational resources essential for large-scale machine learning processes. As a result, the model exhibits an exceptional ability to understand and process the Polish language, providing accurate responses and performing a variety of linguistic tasks with high precision.
## Model
Bielik-7B-v0.1 has been trained with the use of an original open source framework called [ALLaMo](https://github.com/chrisociepa/allamo) implemented by [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/). This framework allows users to train language models with architecture similar to LLaMA and Mistral in fast and efficient way.
The model training was conducted on the Helios Supercomputer at the ACK Cyfronet AGH, utilizing 256 NVidia GH200 cards while achieving a throughput exceeding 9200 tokens/gpu/second.
The training dataset was composed of Polish texts collected and made available through the [SpeakLeash](https://speakleash.org/) project. We used over 36 billion tokens for two epochs of training.
### Model description:
* **Developed by:** [SpeakLeash](https://speakleash.org/)
* **Language:** Polish
* **Model type:** causal decoder-only
* **Adopted from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* **License:** Apache 2.0 (commercial use allowed)
* **Model ref:** speakleash:debfc8635c781358e8db833a333887a5
### Quality evaluation
A XGBoost classification model was prepared and created to evaluate the quality of texts in native Polish language. It is based on 93 features, such as the ratio of out-of-vocabulary words to all words (OOVs), the number of nouns, verbs, average sentence length etc. The model outputs the category of a given document (either HIGH, MEDIUM or LOW) along with the probability. This approach allows implementation of dedicated pipeline to choose documents, from which we've used entries with HIGH quality index and probability exceeding 90%.
This filtration and appropriate selection of texts enable the provision of a condensed and high-quality database of texts in Polish for training purposes.
## Training
* Framework: [ALLaMo](https://github.com/chrisociepa/allamo)
* Visualizations: [W&B](https://wandb.ai)
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_loss.png">
</p>
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_ppl.png">
</p>
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_acc.png">
</p>
### Training hyperparameters:
| **Hyperparameter** | **Value** |
|-----------------------------|------------------|
| Context length | 4096 |
| Micro Batch Size | 4 |
| Batch Size | 4194304 |
| Learning Rate (cosine) | 3e-05 -> 2e-05 |
| Warmup Iterations | 2000 |
| All Iterations | 17350 |
| Optimizer | AdamW |
| β1, β2 | 0.9, 0.95 |
| Adam_eps | 1e−8 |
| Weight Decay | 0.1 |
| Grad Clip | 1.0 |
| Precision | bfloat16 (mixed) |
### Quickstart
This model can be easily loaded using the AutoModelForCausalLM functionality.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "speakleash/Bielik-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```
In order to reduce the memory usage, you can use smaller precision (`bfloat16`).
```python
import torch
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
```
And then you can use Hugging Face Pipelines to generate text:
```python
import transformers
text = "Najważniejszym celem człowieka na ziemi jest"
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
sequences = pipeline(max_new_tokens=100, do_sample=True, top_k=50, eos_token_id=tokenizer.eos_token_id, text_inputs=text)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
Generated output:
> Najważniejszym celem człowieka na ziemi jest życie w pokoju, harmonii i miłości. Dla każdego z nas bardzo ważne jest, aby otaczać się kochanymi osobami.
## Evaluation
Models have been evaluated on [Open PL LLM Leaderboard](https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard) 5-shot. The benchmark evaluates models in NLP tasks like sentiment analysis, categorization, text classification but does not test chatting skills. Here are presented:
- Average - average score among all tasks normalized by baseline scores
- Reranking - reranking task, commonly used in RAG
- Reader (Generator) - open book question answering task, commonly used in RAG
- Perplexity (lower is better) - as a bonus, does not correlate with other scores and should not be used for model comparison
As of April 3, 2024, the following table showcases the current scores of pretrained and continuously pretrained models according to the Open PL LLM Leaderboard, evaluated in a 5-shot setting:
| | Average | RAG Reranking | RAG Reader | Perplexity |
|--------------------------------------------------------------------------------------|----------:|--------------:|-----------:|-----------:|
| **7B parameters models:** | | | | |
| Baseline (majority class) | 0.00 | 53.36 | - | - |
| OPI-PG/Qra-7b | 11.13 | 54.40 | 75.25 | 203.36 |
| meta-llama/Llama-2-7b-hf | 12.73 | 54.02 | 77.92 | 850.45 |
| internlm/internlm2-base-7b | 20.68 | 52.39 | 69.85 | 3110.92 |
| [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1) | 29.38 | **62.13** | **88.39** | 123.31 |
| mistralai/Mistral-7B-v0.1 | 30.67 | 60.35 | 85.39 | 857.32 |
| internlm/internlm2-7b | 33.03 | 69.39 | 73.63 | 5498.23 |
| alpindale/Mistral-7B-v0.2-hf | 33.05 | 60.23 | 85.21 | 932.60 |
| speakleash/mistral-apt3-7B/spi-e0_hf (experimental) | **35.50** | **62.14** | 87.48 | 132.78 |
| | | | | |
| **Models with different sizes:** | | | | |
| sdadas/polish-gpt2-xl (1.7B) | -23.22 | 48.07 | 3.04 | 160.95 |
| Azurro/APT3-1B-Base (1B) | -8.23 | 51.49 | 18.94 | 249.90 |
| OPI-PG/Qra-1b (1B) | -5.44 | 47.65 | 38.51 | 398.96 |
| internlm/internlm2-1_8b (1.8B) | -2.78 | 49.37 | 31.88 | 60296.30 |
| OPI-PG/Qra-13b (13B) | 29.03 | 53.28 | 83.03 | 168.66 |
| upstage/SOLAR-10.7B-v1.0 (10.7B) | 38.12 | 75.81 | 86.39 | 641.05 |
| | | | | |
| **Polish instruction fine-tuned models:** | | | | |
| szymonrucinski/Curie-7B-v1 | 26.72 | 55.58 | 85.19 | 389.17 |
| Voicelab/trurl-2-7b | 18.85 | 60.67 | 77.19 | 1098.88 |
| [Bielik-7B-Instruct-v0.1](https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1) | 39.28 | 61.89 | 86.00 | 277.92 |
As you can see, Bielik-7B-v0.1 does not have the best Average score, but it has some clear advantages, e.g. the best score in the RAG Reader task.
The results in the above table were obtained without utilizing instruction templates for instructional models, instead treating them like base models.
This approach could skew the results, as instructional models are optimized with specific instructions in mind.
## Limitations and Biases
Bielik-7B-v0.1 is not intended for deployment without fine-tuning. It should not be used for human-facing interactions without further guardrails and user consent.
Bielik-7B-v0.1 can produce factually incorrect output, and should not be relied on to produce factually accurate data. Bielik-7B-v0.1 was trained on various public datasets. While great efforts have been taken to clear the training data, it is possible that this model can generate lewd, false, biased or otherwise offensive outputs.
## License
The model is licensed under Apache 2.0, which allows for commercial use.
## Citation
Please cite this model using the following format:
```
@misc{Bielik7Bv01,
title = {Introducing Bielik-7B-v0.1: Polish Language Model},
author = {Ociepa, Krzysztof and Flis, Łukasz and Wróbel, Krzysztof and Gwoździej, Adrian and {SpeakLeash Team} and {Cyfronet Team}},
year = {2024},
url = {https://huggingface.co/speakleash/Bielik-7B-v0.1},
note = {Accessed: 2024-04-01}, % change this date
urldate = {2024-04-01} % change this date
}
```
## Responsible for training the model
* [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, data preparation, process optimization and oversight of training
* [Łukasz Flis](https://www.linkedin.com/in/lukasz-flis-0a39631/)<sup>Cyfronet AGH</sup> - coordinating and supervising the training
* [Adrian Gwoździej](https://www.linkedin.com/in/adrgwo/)<sup>SpeakLeash</sup> - data cleaning and quality
* [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/)<sup>SpeakLeash</sup> - benchmarks
The model could not have been created without the commitment and work of the entire SpeakLeash team, whose contribution is invaluable. Thanks to the hard work of many individuals, it was possible to gather a large amount of content in Polish and establish collaboration between the open-science SpeakLeash project and the HPC center: ACK Cyfronet AGH. Individuals who contributed to the creation of the model through their commitment to the open-science SpeakLeash project:
[Sebastian Kondracki](https://www.linkedin.com/in/sebastian-kondracki/),
[Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/),
[Grzegorz Urbanowicz](https://www.linkedin.com/in/grzegorz-urbanowicz-05823469/),
[Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/),
[Paweł Kiszczak](https://www.linkedin.com/in/paveu-kiszczak/),
[Igor Ciuciura](https://www.linkedin.com/in/igor-ciuciura-1763b52a6/),
[Paweł Cyrta](https://www.linkedin.com/in/cyrta),
[Jacek Chwiła](https://www.linkedin.com/in/jacek-chwila/),
[Jan Maria Kowalski](https://www.linkedin.com/in/janmariakowalski/),
[Karol Jezierski](https://www.linkedin.com/in/karol-jezierski/),
[Kamil Nonckiewicz](https://www.linkedin.com/in/kamil-nonckiewicz/),
[Izabela Babis](https://www.linkedin.com/in/izabela-babis-2274b8105/),
[Nina Babis](https://www.linkedin.com/in/nina-babis-00055a140/),
[Waldemar Boszko](https://www.linkedin.com/in/waldemarboszko),
[Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/),
[Piotr Rybak](https://www.linkedin.com/in/piotrrybak/)
and many other wonderful researchers and enthusiasts of the AI world.
Members of the ACK Cyfronet AGH team providing valuable support and expertise:
[Szymon Mazurek](https://www.linkedin.com/in/sz-mazurek-ai/).
## Contact Us
If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/3G9DVM39).
|
MaziyarPanahi/Llama-3-8B-Instruct-v0.5
|
MaziyarPanahi
| 2024-05-04T18:08:22Z | 11 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"axolotl",
"finetune",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"base_model:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2",
"base_model:finetune:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2024-05-01T09:44:42Z |
---
base_model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2
library_name: transformers
tags:
- axolotl
- finetune
- facebook
- meta
- pytorch
- llama
- llama-3
language:
- en
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
model_name: Llama-3-8B-Instruct-v0.5
quantized_by: MaziyarPanahi
---
<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama-3-8B-Instruct-v0.5
This model was developed based on `MaziyarPanahi/Llama-3-8B-Instruct-DPO` series.
# Quantized GGUF
All GGUF models are available here: [MaziyarPanahi/Llama-3-8B-Instruct-v0.5-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.5-GGUF)
# Prompt Template
This model uses `ChatML` prompt template:
```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````
# How to use
You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-v0.5` as the model name in Hugging Face's
transformers library.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.5"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>"),
tokenizer.convert_tokens_to_ids("<|eot_id|>") # just in case, won't hurt
]
outputs = pipeline(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
```
|
MaziyarPanahi/Llama-3-8B-Instruct-v0.3
|
MaziyarPanahi
| 2024-05-04T18:07:36Z | 10 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"axolotl",
"finetune",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"base_model:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2",
"base_model:finetune:MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2024-05-01T08:57:32Z |
---
base_model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.2
library_name: transformers
tags:
- axolotl
- finetune
- facebook
- meta
- pytorch
- llama
- llama-3
language:
- en
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
model_name: Llama-3-8B-Instruct-v0.3
quantized_by: MaziyarPanahi
---
<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama-3-8B-Instruct-v0.3
This model was developed based on `MaziyarPanahi/Llama-3-8B-Instruct-DPO` series.
# Quantized GGUF
All GGUF models are available here: [MaziyarPanahi/Llama-3-8B-Instruct-v0.3-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.3-GGUF)
# Prompt Template
This model uses `ChatML` prompt template:
```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````
# How to use
You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-v0.3` as the model name in Hugging Face's
transformers library.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.3"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>"),
tokenizer.convert_tokens_to_ids("<|eot_id|>") # just in case, won't hurt
]
outputs = pipeline(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
```
|
Nettem-Gayathri/t5_Summary
|
Nettem-Gayathri
| 2024-05-04T18:07:16Z | 105 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-04T18:07:01Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_fine_tuned_t5_small_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_fine_tuned_t5_small_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4866
- Rouge1: 0.144
- Rouge2: 0.0504
- Rougel: 0.1189
- Rougelsum: 0.1189
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7842 | 0.1352 | 0.0389 | 0.1134 | 0.1135 | 19.0 |
| No log | 2.0 | 124 | 2.5686 | 0.1386 | 0.0459 | 0.1159 | 0.1162 | 19.0 |
| No log | 3.0 | 186 | 2.5040 | 0.141 | 0.0488 | 0.1161 | 0.1162 | 19.0 |
| No log | 4.0 | 248 | 2.4866 | 0.144 | 0.0504 | 0.1189 | 0.1189 | 19.0 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
muzammil-eds/Meta-Llama-3-8B-Resumes-Extraction-v2
|
muzammil-eds
| 2024-05-04T18:04:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T18:04:12Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AIAT/EXP-mindblow
|
AIAT
| 2024-05-04T18:02:46Z | 6 | 2 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"Openthai",
"th",
"en",
"dataset:AIAT/EXP-thai2sql",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-03T04:02:07Z |
---
license: apache-2.0
language:
- th
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- Openthai
datasets:
- AIAT/EXP-thai2sql
---
# 🇹🇭 EXP-mindblow 13b 1.0.0


# Overview :
This model is fine-tuned version of openthaigpt/openthaigpt-1.0.0-13b-chat on text-2-sql datasets to generate SQL query.
# Recommendation :
This model should be used with other LLMs to summarize or synthesize response as the model fine-tuned heavily on SQL may cause
some hallucinations when it comes to generating thai and eng texts
# Prompting Guide :
The model was trained by this context :
[INST]<<SYS>>
You are a question answering assistant. Answer the question as truthful and helpful as possible<</SYS>>
You are a SQLite expert. Given an input question,create a syntactically correct SQLite query to run.
You can order the results to return the most informative data in the database.
if the query asks for MAX or MIN you must return only one answer using LIMIT 1.
Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (\") to denote them as delimited identifiers.
Pay attention to use only the column names you can see in the table below. Be careful to not query for columns that do not exist.
DO WRAP EVERY COLUMN NAME WITH (\").
For example: DO: \"Market Cap\".
DO NOT: Market Cap
Use the following format:
SQLQuery: SQL Query to run
Only use the following columns of the given table:
{input}
###RULES
Remember to DO WRAP EVERY COLUMN NAME WITH double quote(\").
For example: DO: \"Market Cap\".
DO NOT: Market Cap"
IF the question is not related to the columns or table. Just say I don\'t know.
Question: {instruction} \n
This is example of the table :
{head of dataframe}
SQL Query: [/INST]
|
YASHWIN-2025/mistral_b_finance_finetuned_test
|
YASHWIN-2025
| 2024-05-04T18:00:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"trl",
"sft",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T18:00:49Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
RichardErkhov/stabilityai_-_StableBeluga-7B-8bits
|
RichardErkhov
| 2024-05-04T17:56:22Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:2307.09288",
"arxiv:2306.02707",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T17:43:51Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
StableBeluga-7B - bnb 8bits
- Model creator: https://huggingface.co/stabilityai/
- Original model: https://huggingface.co/stabilityai/StableBeluga-7B/
Original model description:
---
datasets:
- conceptofmind/cot_submix_original
- conceptofmind/flan2021_submix_original
- conceptofmind/t0_submix_original
- conceptofmind/niv2_submix_original
language:
- en
pipeline_tag: text-generation
---
# Stable Beluga 7B
Use [Stable Chat (Research Preview)](https://chat.stability.ai/chat) to test Stability AI's best language models for free
## Model Description
`Stable Beluga 7B` is a Llama2 7B model finetuned on an Orca style Dataset
## Usage
Start chatting with `Stable Beluga 7B` using the following code snippet:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga-7B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga-7B", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are StableBeluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Stable Beluga 7B should be used with this prompt format:
```
### System:
This is a system prompt, please behave and help the user.
### User:
Your prompt here
### Assistant:
The output of Stable Beluga 7B
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: Stable Beluga 7B is an auto-regressive language model fine-tuned on Llama2 7B.
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints (`Stable Beluga 7B`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga-7B/blob/main/LICENSE.txt)
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
` Stable Beluga 7B` is trained on our internal Orca-style dataset
### Training Procedure
Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
| Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
|-------------------|------------|---------------|-------------------|---------|--------------|-------------|
| Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
| Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
## Ethical Considerations and Limitations
Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
## Citations
```bibtext
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtext
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
pvyas96/LLama_2b_med
|
pvyas96
| 2024-05-04T17:49:58Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T17:33:01Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
joosma/Reinforce-pixelcopter1
|
joosma
| 2024-05-04T17:49:37Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-04T17:49:33Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 20.50 +/- 18.50
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
RichardErkhov/stabilityai_-_StableBeluga-7B-4bits
|
RichardErkhov
| 2024-05-04T17:43:26Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:2307.09288",
"arxiv:2306.02707",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T17:36:22Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
StableBeluga-7B - bnb 4bits
- Model creator: https://huggingface.co/stabilityai/
- Original model: https://huggingface.co/stabilityai/StableBeluga-7B/
Original model description:
---
datasets:
- conceptofmind/cot_submix_original
- conceptofmind/flan2021_submix_original
- conceptofmind/t0_submix_original
- conceptofmind/niv2_submix_original
language:
- en
pipeline_tag: text-generation
---
# Stable Beluga 7B
Use [Stable Chat (Research Preview)](https://chat.stability.ai/chat) to test Stability AI's best language models for free
## Model Description
`Stable Beluga 7B` is a Llama2 7B model finetuned on an Orca style Dataset
## Usage
Start chatting with `Stable Beluga 7B` using the following code snippet:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga-7B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga-7B", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are StableBeluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Stable Beluga 7B should be used with this prompt format:
```
### System:
This is a system prompt, please behave and help the user.
### User:
Your prompt here
### Assistant:
The output of Stable Beluga 7B
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: Stable Beluga 7B is an auto-regressive language model fine-tuned on Llama2 7B.
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints (`Stable Beluga 7B`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga-7B/blob/main/LICENSE.txt)
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`
### Training Dataset
` Stable Beluga 7B` is trained on our internal Orca-style dataset
### Training Procedure
Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
| Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
|-------------------|------------|---------------|-------------------|---------|--------------|-------------|
| Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
| Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
## Ethical Considerations and Limitations
Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
## Citations
```bibtext
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtext
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
chribark/segformer-b3-finetuned-UAVid
|
chribark
| 2024-05-04T17:35:01Z | 201 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/segformer-b3-finetuned-ade-512-512",
"base_model:finetune:nvidia/segformer-b3-finetuned-ade-512-512",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2024-05-03T08:18:47Z |
---
license: other
base_model: nvidia/segformer-b3-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b3-finetuned-UAVid
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b3-finetuned-UAVid
This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2115
- Mean Iou: 0.6365
- Mean Accuracy: 0.7005
- Overall Accuracy: 0.9263
- Accuracy Wall: nan
- Accuracy Building: 0.9535
- Accuracy Sky: nan
- Accuracy Floor: nan
- Accuracy Tree: 0.9415
- Accuracy Ceiling: nan
- Accuracy Road: 0.8948
- Accuracy Bed : nan
- Accuracy Windowpane: nan
- Accuracy Grass: nan
- Accuracy Cabinet: nan
- Accuracy Sidewalk: nan
- Accuracy Person: 0.0038
- Accuracy Earth: nan
- Accuracy Door: nan
- Accuracy Table: nan
- Accuracy Mountain: nan
- Accuracy Plant: nan
- Accuracy Curtain: nan
- Accuracy Chair: nan
- Accuracy Car: 0.7086
- Accuracy Water: nan
- Accuracy Painting: nan
- Accuracy Sofa: nan
- Accuracy Shelf: nan
- Accuracy House: nan
- Accuracy Sea: nan
- Accuracy Mirror: nan
- Accuracy Rug: nan
- Accuracy Field: nan
- Accuracy Armchair: nan
- Accuracy Seat: nan
- Accuracy Fence: nan
- Accuracy Desk: nan
- Accuracy Rock: nan
- Accuracy Wardrobe: nan
- Accuracy Lamp: nan
- Accuracy Bathtub: nan
- Accuracy Railing: nan
- Accuracy Cushion: nan
- Accuracy Base: nan
- Accuracy Box: nan
- Accuracy Column: nan
- Accuracy Signboard: nan
- Accuracy Chest of drawers: nan
- Accuracy Counter: nan
- Accuracy Sand: nan
- Accuracy Sink: nan
- Accuracy Skyscraper: nan
- Accuracy Fireplace: nan
- Accuracy Refrigerator: nan
- Accuracy Grandstand: nan
- Accuracy Path: nan
- Accuracy Stairs: nan
- Accuracy Runway: nan
- Accuracy Case: nan
- Accuracy Pool table: nan
- Accuracy Pillow: nan
- Accuracy Screen door: nan
- Accuracy Stairway: nan
- Accuracy River: nan
- Accuracy Bridge: nan
- Accuracy Bookcase: nan
- Accuracy Blind: nan
- Accuracy Coffee table: nan
- Accuracy Toilet: nan
- Accuracy Flower: nan
- Accuracy Book: nan
- Accuracy Hill: nan
- Accuracy Bench: nan
- Accuracy Countertop: nan
- Accuracy Stove: nan
- Accuracy Palm: nan
- Accuracy Kitchen island: nan
- Accuracy Computer: nan
- Accuracy Swivel chair: nan
- Accuracy Boat: nan
- Accuracy Bar: nan
- Accuracy Arcade machine: nan
- Accuracy Hovel: nan
- Accuracy Bus: nan
- Accuracy Towel: nan
- Accuracy Light: nan
- Accuracy Truck: nan
- Accuracy Tower: nan
- Accuracy Chandelier: nan
- Accuracy Awning: nan
- Accuracy Streetlight: nan
- Accuracy Booth: nan
- Accuracy Television receiver: nan
- Accuracy Airplane: nan
- Accuracy Dirt track: nan
- Accuracy Apparel: nan
- Accuracy Pole: nan
- Accuracy Land: nan
- Accuracy Bannister: nan
- Accuracy Escalator: nan
- Accuracy Ottoman: nan
- Accuracy Bottle: nan
- Accuracy Buffet: nan
- Accuracy Poster: nan
- Accuracy Stage: nan
- Accuracy Van: nan
- Accuracy Ship: nan
- Accuracy Fountain: nan
- Accuracy Conveyer belt: nan
- Accuracy Canopy: nan
- Accuracy Washer: nan
- Accuracy Plaything: nan
- Accuracy Swimming pool: nan
- Accuracy Stool: nan
- Accuracy Barrel: nan
- Accuracy Basket: nan
- Accuracy Waterfall: nan
- Accuracy Tent: nan
- Accuracy Bag: nan
- Accuracy Minibike: nan
- Accuracy Cradle: nan
- Accuracy Oven: nan
- Accuracy Ball: nan
- Accuracy Food: nan
- Accuracy Step: nan
- Accuracy Tank: nan
- Accuracy Trade name: nan
- Accuracy Microwave: nan
- Accuracy Pot: nan
- Accuracy Animal: nan
- Accuracy Bicycle: nan
- Accuracy Lake: nan
- Accuracy Dishwasher: nan
- Accuracy Screen: nan
- Accuracy Blanket: nan
- Accuracy Sculpture: nan
- Accuracy Hood: nan
- Accuracy Sconce: nan
- Accuracy Vase: nan
- Accuracy Traffic light: nan
- Accuracy Tray: nan
- Accuracy Ashcan: nan
- Accuracy Fan: nan
- Accuracy Pier: nan
- Accuracy Crt screen: nan
- Accuracy Plate: nan
- Accuracy Monitor: nan
- Accuracy Bulletin board: nan
- Accuracy Shower: nan
- Accuracy Radiator: nan
- Accuracy Glass: nan
- Accuracy Clock: nan
- Accuracy Flag: nan
- Iou Wall: nan
- Iou Building: 0.9105
- Iou Sky: nan
- Iou Floor: nan
- Iou Tree: 0.8818
- Iou Ceiling: nan
- Iou Road: 0.8152
- Iou Bed : nan
- Iou Windowpane: nan
- Iou Grass: nan
- Iou Cabinet: nan
- Iou Sidewalk: nan
- Iou Person: 0.0038
- Iou Earth: nan
- Iou Door: nan
- Iou Table: nan
- Iou Mountain: nan
- Iou Plant: nan
- Iou Curtain: nan
- Iou Chair: nan
- Iou Car: 0.5711
- Iou Water: nan
- Iou Painting: nan
- Iou Sofa: nan
- Iou Shelf: nan
- Iou House: nan
- Iou Sea: nan
- Iou Mirror: nan
- Iou Rug: nan
- Iou Field: nan
- Iou Armchair: nan
- Iou Seat: nan
- Iou Fence: nan
- Iou Desk: nan
- Iou Rock: nan
- Iou Wardrobe: nan
- Iou Lamp: nan
- Iou Bathtub: nan
- Iou Railing: nan
- Iou Cushion: nan
- Iou Base: nan
- Iou Box: nan
- Iou Column: nan
- Iou Signboard: nan
- Iou Chest of drawers: nan
- Iou Counter: nan
- Iou Sand: nan
- Iou Sink: nan
- Iou Skyscraper: nan
- Iou Fireplace: nan
- Iou Refrigerator: nan
- Iou Grandstand: nan
- Iou Path: nan
- Iou Stairs: nan
- Iou Runway: nan
- Iou Case: nan
- Iou Pool table: nan
- Iou Pillow: nan
- Iou Screen door: nan
- Iou Stairway: nan
- Iou River: nan
- Iou Bridge: nan
- Iou Bookcase: nan
- Iou Blind: nan
- Iou Coffee table: nan
- Iou Toilet: nan
- Iou Flower: nan
- Iou Book: nan
- Iou Hill: nan
- Iou Bench: nan
- Iou Countertop: nan
- Iou Stove: nan
- Iou Palm: nan
- Iou Kitchen island: nan
- Iou Computer: nan
- Iou Swivel chair: nan
- Iou Boat: nan
- Iou Bar: nan
- Iou Arcade machine: nan
- Iou Hovel: nan
- Iou Bus: nan
- Iou Towel: nan
- Iou Light: nan
- Iou Truck: nan
- Iou Tower: nan
- Iou Chandelier: nan
- Iou Awning: nan
- Iou Streetlight: nan
- Iou Booth: nan
- Iou Television receiver: nan
- Iou Airplane: nan
- Iou Dirt track: nan
- Iou Apparel: nan
- Iou Pole: nan
- Iou Land: nan
- Iou Bannister: nan
- Iou Escalator: nan
- Iou Ottoman: nan
- Iou Bottle: nan
- Iou Buffet: nan
- Iou Poster: nan
- Iou Stage: nan
- Iou Van: nan
- Iou Ship: nan
- Iou Fountain: nan
- Iou Conveyer belt: nan
- Iou Canopy: nan
- Iou Washer: nan
- Iou Plaything: nan
- Iou Swimming pool: nan
- Iou Stool: nan
- Iou Barrel: nan
- Iou Basket: nan
- Iou Waterfall: nan
- Iou Tent: nan
- Iou Bag: nan
- Iou Minibike: nan
- Iou Cradle: nan
- Iou Oven: nan
- Iou Ball: nan
- Iou Food: nan
- Iou Step: nan
- Iou Tank: nan
- Iou Trade name: nan
- Iou Microwave: nan
- Iou Pot: nan
- Iou Animal: nan
- Iou Bicycle: nan
- Iou Lake: nan
- Iou Dishwasher: nan
- Iou Screen: nan
- Iou Blanket: nan
- Iou Sculpture: nan
- Iou Hood: nan
- Iou Sconce: nan
- Iou Vase: nan
- Iou Traffic light: nan
- Iou Tray: nan
- Iou Ashcan: nan
- Iou Fan: nan
- Iou Pier: nan
- Iou Crt screen: nan
- Iou Plate: nan
- Iou Monitor: nan
- Iou Bulletin board: nan
- Iou Shower: nan
- Iou Radiator: nan
- Iou Glass: nan
- Iou Clock: nan
- Iou Flag: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Wall | Accuracy Building | Accuracy Sky | Accuracy Floor | Accuracy Tree | Accuracy Ceiling | Accuracy Road | Accuracy Bed | Accuracy Windowpane | Accuracy Grass | Accuracy Cabinet | Accuracy Sidewalk | Accuracy Person | Accuracy Earth | Accuracy Door | Accuracy Table | Accuracy Mountain | Accuracy Plant | Accuracy Curtain | Accuracy Chair | Accuracy Car | Accuracy Water | Accuracy Painting | Accuracy Sofa | Accuracy Shelf | Accuracy House | Accuracy Sea | Accuracy Mirror | Accuracy Rug | Accuracy Field | Accuracy Armchair | Accuracy Seat | Accuracy Fence | Accuracy Desk | Accuracy Rock | Accuracy Wardrobe | Accuracy Lamp | Accuracy Bathtub | Accuracy Railing | Accuracy Cushion | Accuracy Base | Accuracy Box | Accuracy Column | Accuracy Signboard | Accuracy Chest of drawers | Accuracy Counter | Accuracy Sand | Accuracy Sink | Accuracy Skyscraper | Accuracy Fireplace | Accuracy Refrigerator | Accuracy Grandstand | Accuracy Path | Accuracy Stairs | Accuracy Runway | Accuracy Case | Accuracy Pool table | Accuracy Pillow | Accuracy Screen door | Accuracy Stairway | Accuracy River | Accuracy Bridge | Accuracy Bookcase | Accuracy Blind | Accuracy Coffee table | Accuracy Toilet | Accuracy Flower | Accuracy Book | Accuracy Hill | Accuracy Bench | Accuracy Countertop | Accuracy Stove | Accuracy Palm | Accuracy Kitchen island | Accuracy Computer | Accuracy Swivel chair | Accuracy Boat | Accuracy Bar | Accuracy Arcade machine | Accuracy Hovel | Accuracy Bus | Accuracy Towel | Accuracy Light | Accuracy Truck | Accuracy Tower | Accuracy Chandelier | Accuracy Awning | Accuracy Streetlight | Accuracy Booth | Accuracy Television receiver | Accuracy Airplane | Accuracy Dirt track | Accuracy Apparel | Accuracy Pole | Accuracy Land | Accuracy Bannister | Accuracy Escalator | Accuracy Ottoman | Accuracy Bottle | Accuracy Buffet | Accuracy Poster | Accuracy Stage | Accuracy Van | Accuracy Ship | Accuracy Fountain | Accuracy Conveyer belt | Accuracy Canopy | Accuracy Washer | Accuracy Plaything | Accuracy Swimming pool | Accuracy Stool | Accuracy Barrel | Accuracy Basket | Accuracy Waterfall | Accuracy Tent | Accuracy Bag | Accuracy Minibike | Accuracy Cradle | Accuracy Oven | Accuracy Ball | Accuracy Food | Accuracy Step | Accuracy Tank | Accuracy Trade name | Accuracy Microwave | Accuracy Pot | Accuracy Animal | Accuracy Bicycle | Accuracy Lake | Accuracy Dishwasher | Accuracy Screen | Accuracy Blanket | Accuracy Sculpture | Accuracy Hood | Accuracy Sconce | Accuracy Vase | Accuracy Traffic light | Accuracy Tray | Accuracy Ashcan | Accuracy Fan | Accuracy Pier | Accuracy Crt screen | Accuracy Plate | Accuracy Monitor | Accuracy Bulletin board | Accuracy Shower | Accuracy Radiator | Accuracy Glass | Accuracy Clock | Accuracy Flag | Iou Wall | Iou Building | Iou Sky | Iou Floor | Iou Tree | Iou Ceiling | Iou Road | Iou Bed | Iou Windowpane | Iou Grass | Iou Cabinet | Iou Sidewalk | Iou Person | Iou Earth | Iou Door | Iou Table | Iou Mountain | Iou Plant | Iou Curtain | Iou Chair | Iou Car | Iou Water | Iou Painting | Iou Sofa | Iou Shelf | Iou House | Iou Sea | Iou Mirror | Iou Rug | Iou Field | Iou Armchair | Iou Seat | Iou Fence | Iou Desk | Iou Rock | Iou Wardrobe | Iou Lamp | Iou Bathtub | Iou Railing | Iou Cushion | Iou Base | Iou Box | Iou Column | Iou Signboard | Iou Chest of drawers | Iou Counter | Iou Sand | Iou Sink | Iou Skyscraper | Iou Fireplace | Iou Refrigerator | Iou Grandstand | Iou Path | Iou Stairs | Iou Runway | Iou Case | Iou Pool table | Iou Pillow | Iou Screen door | Iou Stairway | Iou River | Iou Bridge | Iou Bookcase | Iou Blind | Iou Coffee table | Iou Toilet | Iou Flower | Iou Book | Iou Hill | Iou Bench | Iou Countertop | Iou Stove | Iou Palm | Iou Kitchen island | Iou Computer | Iou Swivel chair | Iou Boat | Iou Bar | Iou Arcade machine | Iou Hovel | Iou Bus | Iou Towel | Iou Light | Iou Truck | Iou Tower | Iou Chandelier | Iou Awning | Iou Streetlight | Iou Booth | Iou Television receiver | Iou Airplane | Iou Dirt track | Iou Apparel | Iou Pole | Iou Land | Iou Bannister | Iou Escalator | Iou Ottoman | Iou Bottle | Iou Buffet | Iou Poster | Iou Stage | Iou Van | Iou Ship | Iou Fountain | Iou Conveyer belt | Iou Canopy | Iou Washer | Iou Plaything | Iou Swimming pool | Iou Stool | Iou Barrel | Iou Basket | Iou Waterfall | Iou Tent | Iou Bag | Iou Minibike | Iou Cradle | Iou Oven | Iou Ball | Iou Food | Iou Step | Iou Tank | Iou Trade name | Iou Microwave | Iou Pot | Iou Animal | Iou Bicycle | Iou Lake | Iou Dishwasher | Iou Screen | Iou Blanket | Iou Sculpture | Iou Hood | Iou Sconce | Iou Vase | Iou Traffic light | Iou Tray | Iou Ashcan | Iou Fan | Iou Pier | Iou Crt screen | Iou Plate | Iou Monitor | Iou Bulletin board | Iou Shower | Iou Radiator | Iou Glass | Iou Clock | Iou Flag |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:------------:|:--------------:|:-------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------:|:---------------:|:--------------:|:-------------:|:--------------:|:-----------------:|:--------------:|:----------------:|:--------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:--------------:|:------------:|:---------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-----------------:|:-------------:|:----------------:|:----------------:|:----------------:|:-------------:|:------------:|:---------------:|:------------------:|:-------------------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:---------------------:|:-------------------:|:-------------:|:---------------:|:---------------:|:-------------:|:-------------------:|:---------------:|:--------------------:|:-----------------:|:--------------:|:---------------:|:-----------------:|:--------------:|:---------------------:|:---------------:|:---------------:|:-------------:|:-------------:|:--------------:|:-------------------:|:--------------:|:-------------:|:-----------------------:|:-----------------:|:---------------------:|:-------------:|:------------:|:-----------------------:|:--------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------------:|:---------------:|:--------------------:|:--------------:|:----------------------------:|:-----------------:|:-------------------:|:----------------:|:-------------:|:-------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:---------------:|:--------------:|:------------:|:-------------:|:-----------------:|:----------------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-------------:|:------------:|:-----------------:|:---------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:------------:|:---------------:|:----------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:----------------------:|:-------------:|:---------------:|:------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------------:|:---------------:|:-----------------:|:--------------:|:--------------:|:-------------:|:--------:|:------------:|:-------:|:---------:|:--------:|:-----------:|:--------:|:--------:|:--------------:|:---------:|:-----------:|:------------:|:----------:|:---------:|:--------:|:---------:|:------------:|:---------:|:-----------:|:---------:|:-------:|:---------:|:------------:|:--------:|:---------:|:---------:|:-------:|:----------:|:-------:|:---------:|:------------:|:--------:|:---------:|:--------:|:--------:|:------------:|:--------:|:-----------:|:-----------:|:-----------:|:--------:|:-------:|:----------:|:-------------:|:--------------------:|:-----------:|:--------:|:--------:|:--------------:|:-------------:|:----------------:|:--------------:|:--------:|:----------:|:----------:|:--------:|:--------------:|:----------:|:---------------:|:------------:|:---------:|:----------:|:------------:|:---------:|:----------------:|:----------:|:----------:|:--------:|:--------:|:---------:|:--------------:|:---------:|:--------:|:------------------:|:------------:|:----------------:|:--------:|:-------:|:------------------:|:---------:|:-------:|:---------:|:---------:|:---------:|:---------:|:--------------:|:----------:|:---------------:|:---------:|:-----------------------:|:------------:|:--------------:|:-----------:|:--------:|:--------:|:-------------:|:-------------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:-------:|:--------:|:------------:|:-----------------:|:----------:|:----------:|:-------------:|:-----------------:|:---------:|:----------:|:----------:|:-------------:|:--------:|:-------:|:------------:|:----------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------------:|:-------------:|:-------:|:----------:|:-----------:|:--------:|:--------------:|:----------:|:-----------:|:-------------:|:--------:|:----------:|:--------:|:-----------------:|:--------:|:----------:|:-------:|:--------:|:--------------:|:---------:|:-----------:|:------------------:|:----------:|:------------:|:---------:|:---------:|:--------:|
| 1.6727 | 0.25 | 20 | 0.7288 | 0.0610 | 0.5942 | 0.8568 | nan | 0.8982 | nan | nan | 0.9055 | nan | 0.7829 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.3843 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8278 | 0.0 | 0.0 | 0.7955 | 0.0 | 0.6743 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2635 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.8408 | 0.5 | 40 | 0.5517 | 0.1077 | 0.5647 | 0.8553 | nan | 0.8733 | nan | nan | 0.8477 | nan | 0.8880 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.2144 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8235 | 0.0 | 0.0 | 0.7880 | nan | 0.6803 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.1864 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.6627 | 0.75 | 60 | 0.5441 | 0.1379 | 0.5611 | 0.8600 | nan | 0.8180 | nan | nan | 0.9523 | nan | 0.8221 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.2130 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7973 | 0.0 | nan | 0.8032 | nan | 0.6947 | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.1868 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.5375 | 1.0 | 80 | 0.3639 | 0.2082 | 0.6031 | 0.8892 | nan | 0.9561 | nan | nan | 0.9220 | nan | 0.8168 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.3205 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8589 | 0.0 | nan | 0.8312 | nan | 0.7386 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.2781 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.6152 | 1.25 | 100 | 0.3272 | 0.3115 | 0.6320 | 0.8924 | nan | 0.9481 | nan | nan | 0.8939 | nan | 0.8640 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4542 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8665 | 0.0 | nan | 0.8310 | nan | 0.7502 | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.3561 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.3287 | 1.5 | 120 | 0.3285 | 0.4038 | 0.6368 | 0.8931 | nan | 0.9512 | nan | nan | 0.9560 | nan | 0.7799 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.4966 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8704 | 0.0 | nan | 0.8349 | nan | 0.7359 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3854 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.3504 | 1.75 | 140 | 0.2870 | 0.3619 | 0.6522 | 0.9008 | nan | 0.9315 | nan | nan | 0.9032 | nan | 0.8916 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5349 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8827 | 0.0 | 0.0 | 0.8443 | nan | 0.7637 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4047 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.3755 | 2.0 | 160 | 0.2640 | 0.4847 | 0.6449 | 0.9053 | nan | 0.9369 | nan | nan | 0.9154 | nan | 0.8888 | nan | nan | nan | nan | nan | 0.0065 | nan | nan | nan | nan | nan | nan | nan | 0.4771 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8872 | 0.0 | nan | 0.8499 | nan | 0.7739 | nan | nan | nan | nan | nan | 0.0061 | nan | nan | nan | nan | nan | nan | nan | 0.3910 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.4509 | 2.25 | 180 | 0.2537 | 0.4893 | 0.6500 | 0.9066 | nan | 0.9367 | nan | nan | 0.9533 | nan | 0.8417 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5183 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8875 | 0.0 | nan | 0.8538 | nan | 0.7701 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4242 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2465 | 2.5 | 200 | 0.2546 | 0.4916 | 0.6554 | 0.9078 | nan | 0.9481 | nan | nan | 0.9322 | nan | 0.8607 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.5362 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8821 | 0.0 | nan | 0.8594 | nan | 0.7751 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4332 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2378 | 2.75 | 220 | 0.2560 | 0.4976 | 0.6709 | 0.9092 | nan | 0.9344 | nan | nan | 0.9299 | nan | 0.8774 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.6129 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8900 | 0.0 | nan | 0.8583 | nan | 0.7794 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.4579 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.3245 | 3.0 | 240 | 0.2574 | 0.4764 | 0.6270 | 0.9066 | nan | 0.9565 | nan | nan | 0.8915 | nan | 0.9111 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3755 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8923 | 0.0 | nan | 0.8501 | nan | 0.7773 | nan | nan | nan | nan | nan | 0.0003 | nan | nan | nan | nan | nan | nan | nan | 0.3383 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2053 | 3.25 | 260 | 0.2437 | 0.5042 | 0.6795 | 0.9120 | nan | 0.9617 | nan | nan | 0.9269 | nan | 0.8619 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6445 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8881 | 0.0 | nan | 0.8638 | nan | 0.7847 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.4859 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2223 | 3.5 | 280 | 0.2430 | 0.5079 | 0.6889 | 0.9135 | nan | 0.9408 | nan | nan | 0.9464 | nan | 0.8594 | nan | nan | nan | nan | nan | 0.0084 | nan | nan | nan | nan | nan | nan | nan | 0.6897 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8943 | 0.0 | nan | 0.8661 | nan | 0.7858 | nan | nan | nan | nan | nan | 0.0081 | nan | nan | nan | nan | nan | nan | nan | 0.4932 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2291 | 3.75 | 300 | 0.2328 | 0.5073 | 0.6747 | 0.9152 | nan | 0.9415 | nan | nan | 0.9299 | nan | 0.8905 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.6079 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8940 | 0.0 | nan | 0.8681 | nan | 0.7924 | nan | nan | nan | nan | nan | 0.0037 | nan | nan | nan | nan | nan | nan | nan | 0.4856 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.3919 | 4.0 | 320 | 0.2346 | 0.5115 | 0.6894 | 0.9159 | nan | 0.9497 | nan | nan | 0.9484 | nan | 0.8558 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6905 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8979 | 0.0 | nan | 0.8685 | nan | 0.7898 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5101 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1595 | 4.25 | 340 | 0.2241 | 0.5131 | 0.6903 | 0.9172 | nan | 0.9494 | nan | nan | 0.9390 | nan | 0.8730 | nan | nan | nan | nan | nan | 0.0009 | nan | nan | nan | nan | nan | nan | nan | 0.6893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8984 | 0.0 | nan | 0.8709 | nan | 0.7944 | nan | nan | nan | nan | nan | 0.0009 | nan | nan | nan | nan | nan | nan | nan | 0.5142 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2397 | 4.5 | 360 | 0.2301 | 0.6103 | 0.6711 | 0.9173 | nan | 0.9435 | nan | nan | 0.9346 | nan | 0.8910 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.5842 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9003 | nan | nan | 0.8686 | nan | 0.7967 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.4835 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.248 | 4.75 | 380 | 0.2289 | 0.5150 | 0.6901 | 0.9169 | nan | 0.9404 | nan | nan | 0.9316 | nan | 0.8907 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.6826 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8995 | 0.0 | nan | 0.8698 | nan | 0.7936 | nan | nan | nan | nan | nan | 0.0050 | nan | nan | nan | nan | nan | nan | nan | 0.5220 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1986 | 5.0 | 400 | 0.2282 | 0.6163 | 0.6799 | 0.9182 | nan | 0.9525 | nan | nan | 0.9507 | nan | 0.8615 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.6317 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9000 | nan | nan | 0.8707 | nan | 0.7958 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.5116 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1553 | 5.25 | 420 | 0.2216 | 0.6194 | 0.6891 | 0.9188 | nan | 0.9551 | nan | nan | 0.9297 | nan | 0.8858 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.6721 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9006 | nan | nan | 0.8714 | nan | 0.7995 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.5228 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1767 | 5.5 | 440 | 0.2197 | 0.6188 | 0.6839 | 0.9192 | nan | 0.9517 | nan | nan | 0.9484 | nan | 0.8674 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6495 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9006 | nan | nan | 0.8728 | nan | 0.7979 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5204 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2381 | 5.75 | 460 | 0.2221 | 0.6219 | 0.6951 | 0.9192 | nan | 0.9579 | nan | nan | 0.9377 | nan | 0.8722 | nan | nan | nan | nan | nan | 0.0049 | nan | nan | nan | nan | nan | nan | nan | 0.7027 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.8994 | nan | nan | 0.8737 | nan | 0.7988 | nan | nan | nan | nan | nan | 0.0047 | nan | nan | nan | nan | nan | nan | nan | 0.5328 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1749 | 6.0 | 480 | 0.2223 | 0.6233 | 0.6944 | 0.9204 | nan | 0.9533 | nan | nan | 0.9436 | nan | 0.8733 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.6983 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9029 | nan | nan | 0.8741 | nan | 0.8016 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.5345 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1881 | 6.25 | 500 | 0.2224 | 0.6229 | 0.6910 | 0.9205 | nan | 0.9485 | nan | nan | 0.9415 | nan | 0.8818 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6808 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9023 | nan | nan | 0.8744 | nan | 0.8023 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5330 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1535 | 6.5 | 520 | 0.2170 | 0.6250 | 0.6987 | 0.9202 | nan | 0.9510 | nan | nan | 0.9304 | nan | 0.8907 | nan | nan | nan | nan | nan | 0.0022 | nan | nan | nan | nan | nan | nan | nan | 0.7192 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9041 | nan | nan | 0.8726 | nan | 0.8020 | nan | nan | nan | nan | nan | 0.0022 | nan | nan | nan | nan | nan | nan | nan | 0.5440 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2497 | 6.75 | 540 | 0.2191 | 0.6229 | 0.6859 | 0.9207 | nan | 0.9562 | nan | nan | 0.9251 | nan | 0.8984 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.6464 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9032 | nan | nan | 0.8726 | nan | 0.8047 | nan | nan | nan | nan | nan | 0.0035 | nan | nan | nan | nan | nan | nan | nan | 0.5305 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2103 | 7.0 | 560 | 0.2211 | 0.6263 | 0.6958 | 0.9213 | nan | 0.9616 | nan | nan | 0.9447 | nan | 0.8663 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.7013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9022 | nan | nan | 0.8759 | nan | 0.8027 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5455 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1699 | 7.25 | 580 | 0.2170 | 0.6272 | 0.6969 | 0.9217 | nan | 0.9610 | nan | nan | 0.9289 | nan | 0.8890 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.7013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9036 | nan | nan | 0.8756 | nan | 0.8057 | nan | nan | nan | nan | nan | 0.0042 | nan | nan | nan | nan | nan | nan | nan | 0.5469 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1875 | 7.5 | 600 | 0.2174 | 0.6255 | 0.6917 | 0.9226 | nan | 0.9594 | nan | nan | 0.9349 | nan | 0.8874 | nan | nan | nan | nan | nan | 0.0018 | nan | nan | nan | nan | nan | nan | nan | 0.6751 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9050 | nan | nan | 0.8770 | nan | 0.8081 | nan | nan | nan | nan | nan | 0.0017 | nan | nan | nan | nan | nan | nan | nan | 0.5357 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.174 | 7.75 | 620 | 0.2159 | 0.6282 | 0.6946 | 0.9229 | nan | 0.9566 | nan | nan | 0.9351 | nan | 0.8901 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.6890 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9064 | nan | nan | 0.8764 | nan | 0.8087 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.5473 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1752 | 8.0 | 640 | 0.2141 | 0.6294 | 0.6991 | 0.9229 | nan | 0.9547 | nan | nan | 0.9389 | nan | 0.8854 | nan | nan | nan | nan | nan | 0.0034 | nan | nan | nan | nan | nan | nan | nan | 0.7133 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9056 | nan | nan | 0.8775 | nan | 0.8078 | nan | nan | nan | nan | nan | 0.0033 | nan | nan | nan | nan | nan | nan | nan | 0.5526 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1544 | 8.25 | 660 | 0.2146 | 0.6281 | 0.6928 | 0.9233 | nan | 0.9487 | nan | nan | 0.9393 | nan | 0.8944 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6793 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9067 | nan | nan | 0.8780 | nan | 0.8092 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5443 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1715 | 8.5 | 680 | 0.2161 | 0.6299 | 0.7027 | 0.9229 | nan | 0.9608 | nan | nan | 0.9281 | nan | 0.8925 | nan | nan | nan | nan | nan | 0.0024 | nan | nan | nan | nan | nan | nan | nan | 0.7296 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9062 | nan | nan | 0.8768 | nan | 0.8086 | nan | nan | nan | nan | nan | 0.0023 | nan | nan | nan | nan | nan | nan | nan | 0.5556 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1833 | 8.75 | 700 | 0.2145 | 0.6305 | 0.6997 | 0.9238 | nan | 0.9541 | nan | nan | 0.9418 | nan | 0.8851 | nan | nan | nan | nan | nan | 0.0021 | nan | nan | nan | nan | nan | nan | nan | 0.7154 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9073 | nan | nan | 0.8784 | nan | 0.8098 | nan | nan | nan | nan | nan | 0.0020 | nan | nan | nan | nan | nan | nan | nan | 0.5552 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.184 | 9.0 | 720 | 0.2122 | 0.6303 | 0.6929 | 0.9243 | nan | 0.9536 | nan | nan | 0.9429 | nan | 0.8882 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.6770 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9074 | nan | nan | 0.8794 | nan | 0.8108 | nan | nan | nan | nan | nan | 0.0025 | nan | nan | nan | nan | nan | nan | nan | 0.5512 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1257 | 9.25 | 740 | 0.2145 | 0.6313 | 0.6958 | 0.9242 | nan | 0.9520 | nan | nan | 0.9372 | nan | 0.8961 | nan | nan | nan | nan | nan | 0.0044 | nan | nan | nan | nan | nan | nan | nan | 0.6890 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9087 | nan | nan | 0.8783 | nan | 0.8111 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.5541 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1228 | 9.5 | 760 | 0.2119 | 0.6321 | 0.6990 | 0.9244 | nan | 0.9547 | nan | nan | 0.9401 | nan | 0.8895 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.7071 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9083 | nan | nan | 0.8794 | nan | 0.8111 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5579 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.171 | 9.75 | 780 | 0.2158 | 0.6322 | 0.7007 | 0.9241 | nan | 0.9569 | nan | nan | 0.9336 | nan | 0.8941 | nan | nan | nan | nan | nan | 0.0031 | nan | nan | nan | nan | nan | nan | nan | 0.7159 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9081 | nan | nan | 0.8785 | nan | 0.8109 | nan | nan | nan | nan | nan | 0.0030 | nan | nan | nan | nan | nan | nan | nan | 0.5606 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1556 | 10.0 | 800 | 0.2132 | 0.6324 | 0.6987 | 0.9246 | nan | 0.9573 | nan | nan | 0.9365 | nan | 0.8920 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.7046 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9083 | nan | nan | 0.8793 | nan | 0.8115 | nan | nan | nan | nan | nan | 0.0032 | nan | nan | nan | nan | nan | nan | nan | 0.5600 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.155 | 10.25 | 820 | 0.2106 | 0.6347 | 0.7076 | 0.9249 | nan | 0.9557 | nan | nan | 0.9423 | nan | 0.8846 | nan | nan | nan | nan | nan | 0.0059 | nan | nan | nan | nan | nan | nan | nan | 0.7494 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9096 | nan | nan | 0.8800 | nan | 0.8118 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.5664 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2074 | 10.5 | 840 | 0.2118 | 0.6329 | 0.6972 | 0.9250 | nan | 0.9544 | nan | nan | 0.9453 | nan | 0.8854 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.6958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9092 | nan | nan | 0.8803 | nan | 0.8114 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5584 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1932 | 10.75 | 860 | 0.2132 | 0.6328 | 0.6958 | 0.9249 | nan | 0.9587 | nan | nan | 0.9330 | nan | 0.8977 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.6836 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9095 | nan | nan | 0.8791 | nan | 0.8128 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5567 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.143 | 11.0 | 880 | 0.2139 | 0.6355 | 0.7062 | 0.9252 | nan | 0.9561 | nan | nan | 0.9436 | nan | 0.8839 | nan | nan | nan | nan | nan | 0.0077 | nan | nan | nan | nan | nan | nan | nan | 0.7400 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8801 | nan | 0.8123 | nan | nan | nan | nan | nan | 0.0074 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1663 | 11.25 | 900 | 0.2097 | 0.6331 | 0.6953 | 0.9254 | nan | 0.9549 | nan | nan | 0.9351 | nan | 0.9005 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.6822 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8801 | nan | 0.8141 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5577 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.0955 | 11.5 | 920 | 0.2099 | 0.6350 | 0.7011 | 0.9254 | nan | 0.9533 | nan | nan | 0.9384 | nan | 0.8956 | nan | nan | nan | nan | nan | 0.0044 | nan | nan | nan | nan | nan | nan | nan | 0.7139 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9103 | nan | nan | 0.8802 | nan | 0.8130 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.5670 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.2205 | 11.75 | 940 | 0.2131 | 0.6351 | 0.7024 | 0.9254 | nan | 0.9552 | nan | nan | 0.9419 | nan | 0.8888 | nan | nan | nan | nan | nan | 0.0049 | nan | nan | nan | nan | nan | nan | nan | 0.7214 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9095 | nan | nan | 0.8806 | nan | 0.8127 | nan | nan | nan | nan | nan | 0.0048 | nan | nan | nan | nan | nan | nan | nan | 0.5681 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1432 | 12.0 | 960 | 0.2128 | 0.6353 | 0.7008 | 0.9256 | nan | 0.9560 | nan | nan | 0.9379 | nan | 0.8946 | nan | nan | nan | nan | nan | 0.0041 | nan | nan | nan | nan | nan | nan | nan | 0.7114 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9097 | nan | nan | 0.8809 | nan | 0.8136 | nan | nan | nan | nan | nan | 0.0040 | nan | nan | nan | nan | nan | nan | nan | 0.5683 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.171 | 12.25 | 980 | 0.2118 | 0.6357 | 0.7018 | 0.9254 | nan | 0.9547 | nan | nan | 0.9351 | nan | 0.8988 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.7142 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9094 | nan | nan | 0.8807 | nan | 0.8135 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5687 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.139 | 12.5 | 1000 | 0.2145 | 0.6354 | 0.6986 | 0.9258 | nan | 0.9530 | nan | nan | 0.9436 | nan | 0.8917 | nan | nan | nan | nan | nan | 0.0062 | nan | nan | nan | nan | nan | nan | nan | 0.6983 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9096 | nan | nan | 0.8815 | nan | 0.8140 | nan | nan | nan | nan | nan | 0.0060 | nan | nan | nan | nan | nan | nan | nan | 0.5657 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1362 | 12.75 | 1020 | 0.2122 | 0.6356 | 0.6997 | 0.9256 | nan | 0.9582 | nan | nan | 0.9356 | nan | 0.8960 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.7030 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9091 | nan | nan | 0.8809 | nan | 0.8140 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5682 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.147 | 13.0 | 1040 | 0.2150 | 0.6358 | 0.7003 | 0.9258 | nan | 0.9543 | nan | nan | 0.9433 | nan | 0.8902 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.7085 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9097 | nan | nan | 0.8816 | nan | 0.8137 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5690 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1416 | 13.25 | 1060 | 0.2128 | 0.6357 | 0.6995 | 0.9260 | nan | 0.9545 | nan | nan | 0.9397 | nan | 0.8956 | nan | nan | nan | nan | nan | 0.0046 | nan | nan | nan | nan | nan | nan | nan | 0.7032 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9099 | nan | nan | 0.8817 | nan | 0.8146 | nan | nan | nan | nan | nan | 0.0045 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1933 | 13.5 | 1080 | 0.2112 | 0.6363 | 0.7020 | 0.9261 | nan | 0.9557 | nan | nan | 0.9413 | nan | 0.8917 | nan | nan | nan | nan | nan | 0.0047 | nan | nan | nan | nan | nan | nan | nan | 0.7163 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9098 | nan | nan | 0.8820 | nan | 0.8145 | nan | nan | nan | nan | nan | 0.0046 | nan | nan | nan | nan | nan | nan | nan | 0.5707 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1715 | 13.75 | 1100 | 0.2130 | 0.6360 | 0.6991 | 0.9261 | nan | 0.9561 | nan | nan | 0.9403 | nan | 0.8939 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.6997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9103 | nan | nan | 0.8815 | nan | 0.8147 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1995 | 14.0 | 1120 | 0.2129 | 0.6364 | 0.6999 | 0.9263 | nan | 0.9572 | nan | nan | 0.9393 | nan | 0.8943 | nan | nan | nan | nan | nan | 0.0057 | nan | nan | nan | nan | nan | nan | nan | 0.7029 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9102 | nan | nan | 0.8817 | nan | 0.8153 | nan | nan | nan | nan | nan | 0.0056 | nan | nan | nan | nan | nan | nan | nan | 0.5690 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1944 | 14.25 | 1140 | 0.2154 | 0.6362 | 0.6985 | 0.9262 | nan | 0.9560 | nan | nan | 0.9408 | nan | 0.8936 | nan | nan | nan | nan | nan | 0.0053 | nan | nan | nan | nan | nan | nan | nan | 0.6970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9104 | nan | nan | 0.8814 | nan | 0.8149 | nan | nan | nan | nan | nan | 0.0052 | nan | nan | nan | nan | nan | nan | nan | 0.5689 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1709 | 14.5 | 1160 | 0.2109 | 0.6352 | 0.6956 | 0.9263 | nan | 0.9527 | nan | nan | 0.9423 | nan | 0.8961 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.6841 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9106 | nan | nan | 0.8817 | nan | 0.8153 | nan | nan | nan | nan | nan | 0.0028 | nan | nan | nan | nan | nan | nan | nan | 0.5655 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1848 | 14.75 | 1180 | 0.2122 | 0.6366 | 0.7006 | 0.9263 | nan | 0.9534 | nan | nan | 0.9430 | nan | 0.8928 | nan | nan | nan | nan | nan | 0.0043 | nan | nan | nan | nan | nan | nan | nan | 0.7093 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9107 | nan | nan | 0.8817 | nan | 0.8150 | nan | nan | nan | nan | nan | 0.0042 | nan | nan | nan | nan | nan | nan | nan | 0.5714 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
| 0.1487 | 15.0 | 1200 | 0.2115 | 0.6365 | 0.7005 | 0.9263 | nan | 0.9535 | nan | nan | 0.9415 | nan | 0.8948 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.7086 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.9105 | nan | nan | 0.8818 | nan | 0.8152 | nan | nan | nan | nan | nan | 0.0038 | nan | nan | nan | nan | nan | nan | nan | 0.5711 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf
|
RichardErkhov
| 2024-05-04T17:29:51Z | 58 | 0 | null |
[
"gguf",
"arxiv:2308.12950",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T15:05:31Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
CodeLlama-13b-hf - GGUF
- Model creator: https://huggingface.co/codellama/
- Original model: https://huggingface.co/codellama/CodeLlama-13b-hf/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [CodeLlama-13b-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q2_K.gguf) | Q2_K | 4.52GB |
| [CodeLlama-13b-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
| [CodeLlama-13b-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_S.gguf) | IQ3_S | 5.27GB |
| [CodeLlama-13b-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
| [CodeLlama-13b-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_M.gguf) | IQ3_M | 5.57GB |
| [CodeLlama-13b-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K.gguf) | Q3_K | 5.9GB |
| [CodeLlama-13b-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
| [CodeLlama-13b-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
| [CodeLlama-13b-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
| [CodeLlama-13b-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_0.gguf) | Q4_0 | 6.86GB |
| [CodeLlama-13b-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
| [CodeLlama-13b-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
| [CodeLlama-13b-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K.gguf) | Q4_K | 7.33GB |
| [CodeLlama-13b-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
| [CodeLlama-13b-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_1.gguf) | Q4_1 | 7.61GB |
| [CodeLlama-13b-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_0.gguf) | Q5_0 | 8.36GB |
| [CodeLlama-13b-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
| [CodeLlama-13b-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K.gguf) | Q5_K | 8.6GB |
| [CodeLlama-13b-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
| [CodeLlama-13b-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_1.gguf) | Q5_1 | 9.1GB |
| [CodeLlama-13b-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q6_K.gguf) | Q6_K | 9.95GB |
Original model description:
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
license: llama2
---
# **Code Llama**
Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 13B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
> [!NOTE]
> This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-13b-hf).
| | Base Model | Python | Instruct |
| --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
| 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
| 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
| 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
## Model Use
To use this model, please make sure to install transformers:
```bash
pip install transformers accelerate
```
Model capabilities:
- [x] Code completion.
- [x] Infilling.
- [ ] Instructions / chat.
- [ ] Python specialist.
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "codellama/CodeLlama-13b-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'import socket\n\ndef ping_exponential_backoff(host: str):',
do_sample=True,
top_k=10,
temperature=0.1,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Model Details
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
**Model Developers** Meta
**Variations** Code Llama comes in three model sizes, and three variants:
* Code Llama: base models designed for general code synthesis and understanding
* Code Llama - Python: designed specifically for Python
* Code Llama - Instruct: for instruction following and safer deployment
All variants are available in sizes of 7B, 13B and 34B parameters.
**This repository contains the base version of the 13B parameters model.**
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
## Intended Use
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
## Hardware and Software
**Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
## Training Data
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
## Evaluation Results
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
## Ethical Considerations and Limitations
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
|
Rub11037/results_packing
|
Rub11037
| 2024-05-04T17:24:20Z | 2 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"text2text-generation",
"base_model:SanjiWatsuki/zephyrnt-3.8b",
"base_model:adapter:SanjiWatsuki/zephyrnt-3.8b",
"license:apache-2.0",
"region:us"
] |
text2text-generation
| 2024-05-04T15:43:14Z |
---
tags:
- trl
- sft
- generated_from_trainer
base_model: SanjiWatsuki/zephyrnt-3.8b
model-index:
- name: results_packing
results: []
pipeline_tag: text2text-generation
license: apache-2.0
library_name: adapter-transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
This model is a fine-tuned version of [SanjiWatsuki/zephyrnt-3.8b](https://huggingface.co/SanjiWatsuki/zephyrnt-3.8b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1345 | 2.3256 | 50 | 1.3787 |
| 1.1455 | 4.6512 | 100 | 0.9395 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
AlignmentResearch/robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1
|
AlignmentResearch
| 2024-05-04T17:21:03Z | 103 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-1b",
"base_model:finetune:EleutherAI/pythia-1b",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T17:19:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: EleutherAI/pythia-1b
model-index:
- name: robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-1b_niki-041a_imdb_random-token-1280_10-rounds_seed-1
This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|
OwOpeepeepoopoo/herewegoagain30
|
OwOpeepeepoopoo
| 2024-05-04T17:14:56Z | 89 | 0 |
transformers
|
[
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T17:13:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AhmedTarek/ppo-Pyramids
|
AhmedTarek
| 2024-05-04T17:14:51Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2024-05-04T17:14:49Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AhmedTarek/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
IndigoDuDu/Taxi-v3
|
IndigoDuDu
| 2024-05-04T17:13:37Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-04T17:13:35Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="IndigoDuDu/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
suryaanthony/q-FrozenLake-v1-4x4-noSlippery
|
suryaanthony
| 2024-05-04T17:13:18Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-04T17:13:16Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="suryaanthony/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
LorMolf/LogicLlama2-chat-direct
|
LorMolf
| 2024-05-04T17:10:03Z | 41 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T16:58:49Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hamzafarooq89/ft-speech-t5-on-voxpopuli
|
hamzafarooq89
| 2024-05-04T17:01:39Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2024-05-04T15:45:11Z |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: ft-speech-t5-on-voxpopuli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft-speech-t5-on-voxpopuli
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 100
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
|
AudreyTrungNguyen/phoBertv2_ptv1_Classification_for_StudentFeedback
|
AudreyTrungNguyen
| 2024-05-04T16:54:21Z | 105 | 0 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T16:38:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
TechxGenus/codegemma-1.1-7b-it-AWQ
|
TechxGenus
| 2024-05-04T16:50:29Z | 78 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"license:gemma",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] |
text-generation
| 2024-05-04T04:11:52Z |
---
library_name: transformers
extra_gated_heading: Access CodeGemma on Hugging Face
extra_gated_prompt: >-
To access CodeGemma on Hugging Face, you’re required to review and agree to
Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
pipeline_tag: text-generation
widget:
- text: >
<start_of_turn>user
Write a Python function to calculate the nth fibonacci number.<end_of_turn>
<start_of_turn>model
inference:
parameters:
max_new_tokens: 200
license: gemma
license_link: https://ai.google.dev/gemma/terms
---
AWQ quantized version of codegemma-1.1-7b-it model.
---
# CodeGemma
Model Page
: [CodeGemma](https://ai.google.dev/gemma/docs/codegemma)
Resources and Technical Documentation
: [Technical Report](https://goo.gle/codegemma)
: [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
Terms of Use
: [Terms](https://ai.google.dev/gemma/terms)
Authors
: Google
## Model Information
Summary description and brief definition of inputs and outputs.
### Description
CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.
| | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) |
|----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:|
| Code Completion | ✅ | ✅ | |
| Generation from natural language | | ✅ | ✅ |
| Chat | | | ✅ |
| Instruction Following | | | ✅ |
### Sample Usage
This model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: [CodeGemma 7B](https://huggingface.co/google/codegemma-7b), or [CodeGemma 2B](https://huggingface.co/google/codegemma-2b).
#### For Code Generation
```python
from transformers import GemmaTokenizer, AutoModelForCausalLM
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-7b-it")
model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-7b-it")
input_text = "Write me a Python function to calculate the nth fibonacci number."
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use.
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "google/codegemma-1.1-7b-it"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [
{ "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
At this point, the prompt contains the following text:
```
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
```
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
the `<end_of_turn>` token.
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
chat template.
After the prompt is ready, generation can be performed like this:
```py
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
```
### Inputs and Outputs
Inputs
: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt
: For instruction tuned model variant: natural language text or prompt
Outputs
: For pretrained model variants: fill-in-the-middle code completion, code and natural language
: For instruction tuned model variant: code and natural language
## Model Data
Data used for model training and how the data was processed.
### Training Dataset
Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.
### Training Data Processing
The following data pre-processing techniques were applied:
* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.
* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing
* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.
* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11).
## Implementation Information
Information about the hardware and software used to train the models.
### Hardware
CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e).
### Software
Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/).
## Evaluation Information
Model evaluation metrics and results.
### Evaluation Approach
We evaluate CodeGemma on a variety of academic benchmarks across several domains:
* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling
* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)
* Q&A: BoolQ, PIQA, TriviaQA
* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande
* Math Reasoning: GSM8K, MATH
### Evaluation Results
#### Coding Benchmarks
Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it)
----------------------|------|----------|------|-------|------------
HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4
MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6
HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4
HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7
BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6
BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7
BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2
BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3
BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4
BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8
BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0
BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3
BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5
BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0
BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2
BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9
BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4
BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6
BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2
BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3
#### Natural Language Benchmarks

## Ethics and Safety
Ethics and safety evaluation approach and results.
### Evaluation Approach
Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:
* Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach.
* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.
### Evaluation Results
The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details.
## Model Usage & Limitations
These models have certain limitations that users should be aware of.
### Intended Usage
Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.
Code Completion
: PT models can be used to complete code with an IDE extension
Code Generation
: IT model can be used to generate code with or without an IDE extension
Code Conversation
: IT model can power conversation interfaces which discuss code.
Code Education
: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.
### Known Limitations
Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs.
### Ethical Considerations & Risks
The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details.
### Benefits
At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.
Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
|
RichardErkhov/speakleash_-_Bielik-7B-v0.1-4bits
|
RichardErkhov
| 2024-05-04T16:41:04Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T16:36:54Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Bielik-7B-v0.1 - bnb 4bits
- Model creator: https://huggingface.co/speakleash/
- Original model: https://huggingface.co/speakleash/Bielik-7B-v0.1/
Original model description:
---
license: apache-2.0
language:
- pl
library_name: transformers
tags:
- continuously_pretrained
inference:
parameters:
temperature: 0.7
---
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/speakleash_cyfronet.png">
</p>
# Bielik-7B-v0.1
The Bielik-7B-v0.1 is a generative text model featuring 7 billion parameters, meticulously evolved from its predecessor, the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), through processing of over 70 billion tokens. Forementioned model stands as a testament to the unique collaboration between the open-science/open-souce project SpeakLeash and the High Performance Computing (HPC) center: ACK Cyfronet AGH. Developed and trained on Polish text corpora, which has been cherry-picked and processed by the SpeakLeash team, this endeavor leverages Polish large-scale computing infrastructure, specifically within the PLGrid environment, and more precisely, the HPC centers: ACK Cyfronet AGH. The creation and training of the Bielik-7B-v0.1 was propelled by the support of computational grant number PLG/2024/016951, conducted on the Helios supercomputer, enabling the use of cutting-edge technology and computational resources essential for large-scale machine learning processes. As a result, the model exhibits an exceptional ability to understand and process the Polish language, providing accurate responses and performing a variety of linguistic tasks with high precision.
## Model
Bielik-7B-v0.1 has been trained with the use of an original open source framework called [ALLaMo](https://github.com/chrisociepa/allamo) implemented by [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/). This framework allows users to train language models with architecture similar to LLaMA and Mistral in fast and efficient way.
The model training was conducted on the Helios Supercomputer at the ACK Cyfronet AGH, utilizing 256 NVidia GH200 cards while achieving a throughput exceeding 9200 tokens/gpu/second.
The training dataset was composed of Polish texts collected and made available through the [SpeakLeash](https://speakleash.org/) project. We used over 36 billion tokens for two epochs of training.
### Model description:
* **Developed by:** [SpeakLeash](https://speakleash.org/)
* **Language:** Polish
* **Model type:** causal decoder-only
* **Adopted from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* **License:** Apache 2.0 (commercial use allowed)
* **Model ref:** speakleash:debfc8635c781358e8db833a333887a5
### Quality evaluation
A XGBoost classification model was prepared and created to evaluate the quality of texts in native Polish language. It is based on 93 features, such as the ratio of out-of-vocabulary words to all words (OOVs), the number of nouns, verbs, average sentence length etc. The model outputs the category of a given document (either HIGH, MEDIUM or LOW) along with the probability. This approach allows implementation of dedicated pipeline to choose documents, from which we've used entries with HIGH quality index and probability exceeding 90%.
This filtration and appropriate selection of texts enable the provision of a condensed and high-quality database of texts in Polish for training purposes.
## Training
* Framework: [ALLaMo](https://github.com/chrisociepa/allamo)
* Visualizations: [W&B](https://wandb.ai)
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_loss.png">
</p>
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_ppl.png">
</p>
<p align="center">
<img src="https://huggingface.co/speakleash/Bielik-7B-v0.1/raw/main/train_acc.png">
</p>
### Training hyperparameters:
| **Hyperparameter** | **Value** |
|-----------------------------|------------------|
| Context length | 4096 |
| Micro Batch Size | 4 |
| Batch Size | 4194304 |
| Learning Rate (cosine) | 3e-05 -> 2e-05 |
| Warmup Iterations | 2000 |
| All Iterations | 17350 |
| Optimizer | AdamW |
| β1, β2 | 0.9, 0.95 |
| Adam_eps | 1e−8 |
| Weight Decay | 0.1 |
| Grad Clip | 1.0 |
| Precision | bfloat16 (mixed) |
### Quickstart
This model can be easily loaded using the AutoModelForCausalLM functionality.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "speakleash/Bielik-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```
In order to reduce the memory usage, you can use smaller precision (`bfloat16`).
```python
import torch
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
```
And then you can use Hugging Face Pipelines to generate text:
```python
import transformers
text = "Najważniejszym celem człowieka na ziemi jest"
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
sequences = pipeline(max_new_tokens=100, do_sample=True, top_k=50, eos_token_id=tokenizer.eos_token_id, text_inputs=text)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
Generated output:
> Najważniejszym celem człowieka na ziemi jest życie w pokoju, harmonii i miłości. Dla każdego z nas bardzo ważne jest, aby otaczać się kochanymi osobami.
## Evaluation
Models have been evaluated on [Open PL LLM Leaderboard](https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard) 5-shot. The benchmark evaluates models in NLP tasks like sentiment analysis, categorization, text classification but does not test chatting skills. Here are presented:
- Average - average score among all tasks normalized by baseline scores
- Reranking - reranking task, commonly used in RAG
- Reader (Generator) - open book question answering task, commonly used in RAG
- Perplexity (lower is better) - as a bonus, does not correlate with other scores and should not be used for model comparison
As of April 3, 2024, the following table showcases the current scores of pretrained and continuously pretrained models according to the Open PL LLM Leaderboard, evaluated in a 5-shot setting:
| | Average | RAG Reranking | RAG Reader | Perplexity |
|--------------------------------------------------------------------------------------|----------:|--------------:|-----------:|-----------:|
| **7B parameters models:** | | | | |
| Baseline (majority class) | 0.00 | 53.36 | - | - |
| OPI-PG/Qra-7b | 11.13 | 54.40 | 75.25 | 203.36 |
| meta-llama/Llama-2-7b-hf | 12.73 | 54.02 | 77.92 | 850.45 |
| internlm/internlm2-base-7b | 20.68 | 52.39 | 69.85 | 3110.92 |
| [Bielik-7B-v0.1](https://huggingface.co/speakleash/Bielik-7B-v0.1) | 29.38 | **62.13** | **88.39** | 123.31 |
| mistralai/Mistral-7B-v0.1 | 30.67 | 60.35 | 85.39 | 857.32 |
| internlm/internlm2-7b | 33.03 | 69.39 | 73.63 | 5498.23 |
| alpindale/Mistral-7B-v0.2-hf | 33.05 | 60.23 | 85.21 | 932.60 |
| speakleash/mistral-apt3-7B/spi-e0_hf (experimental) | **35.50** | **62.14** | 87.48 | 132.78 |
| | | | | |
| **Models with different sizes:** | | | | |
| sdadas/polish-gpt2-xl (1.7B) | -23.22 | 48.07 | 3.04 | 160.95 |
| Azurro/APT3-1B-Base (1B) | -8.23 | 51.49 | 18.94 | 249.90 |
| OPI-PG/Qra-1b (1B) | -5.44 | 47.65 | 38.51 | 398.96 |
| internlm/internlm2-1_8b (1.8B) | -2.78 | 49.37 | 31.88 | 60296.30 |
| OPI-PG/Qra-13b (13B) | 29.03 | 53.28 | 83.03 | 168.66 |
| upstage/SOLAR-10.7B-v1.0 (10.7B) | 38.12 | 75.81 | 86.39 | 641.05 |
| | | | | |
| **Polish instruction fine-tuned models:** | | | | |
| szymonrucinski/Curie-7B-v1 | 26.72 | 55.58 | 85.19 | 389.17 |
| Voicelab/trurl-2-7b | 18.85 | 60.67 | 77.19 | 1098.88 |
| [Bielik-7B-Instruct-v0.1](https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1) | 39.28 | 61.89 | 86.00 | 277.92 |
As you can see, Bielik-7B-v0.1 does not have the best Average score, but it has some clear advantages, e.g. the best score in the RAG Reader task.
The results in the above table were obtained without utilizing instruction templates for instructional models, instead treating them like base models.
This approach could skew the results, as instructional models are optimized with specific instructions in mind.
## Limitations and Biases
Bielik-7B-v0.1 is not intended for deployment without fine-tuning. It should not be used for human-facing interactions without further guardrails and user consent.
Bielik-7B-v0.1 can produce factually incorrect output, and should not be relied on to produce factually accurate data. Bielik-7B-v0.1 was trained on various public datasets. While great efforts have been taken to clear the training data, it is possible that this model can generate lewd, false, biased or otherwise offensive outputs.
## License
The model is licensed under Apache 2.0, which allows for commercial use.
## Citation
Please cite this model using the following format:
```
@misc{Bielik7Bv01,
title = {Introducing Bielik-7B-v0.1: Polish Language Model},
author = {Ociepa, Krzysztof and Flis, Łukasz and Wróbel, Krzysztof and Gwoździej, Adrian and {SpeakLeash Team} and {Cyfronet Team}},
year = {2024},
url = {https://huggingface.co/speakleash/Bielik-7B-v0.1},
note = {Accessed: 2024-04-01}, % change this date
urldate = {2024-04-01} % change this date
}
```
## Responsible for training the model
* [Krzysztof Ociepa](https://www.linkedin.com/in/krzysztof-ociepa-44886550/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, data preparation, process optimization and oversight of training
* [Łukasz Flis](https://www.linkedin.com/in/lukasz-flis-0a39631/)<sup>Cyfronet AGH</sup> - coordinating and supervising the training
* [Adrian Gwoździej](https://www.linkedin.com/in/adrgwo/)<sup>SpeakLeash</sup> - data cleaning and quality
* [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/)<sup>SpeakLeash</sup> - benchmarks
The model could not have been created without the commitment and work of the entire SpeakLeash team, whose contribution is invaluable. Thanks to the hard work of many individuals, it was possible to gather a large amount of content in Polish and establish collaboration between the open-science SpeakLeash project and the HPC center: ACK Cyfronet AGH. Individuals who contributed to the creation of the model through their commitment to the open-science SpeakLeash project:
[Sebastian Kondracki](https://www.linkedin.com/in/sebastian-kondracki/),
[Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/),
[Grzegorz Urbanowicz](https://www.linkedin.com/in/grzegorz-urbanowicz-05823469/),
[Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/),
[Paweł Kiszczak](https://www.linkedin.com/in/paveu-kiszczak/),
[Igor Ciuciura](https://www.linkedin.com/in/igor-ciuciura-1763b52a6/),
[Paweł Cyrta](https://www.linkedin.com/in/cyrta),
[Jacek Chwiła](https://www.linkedin.com/in/jacek-chwila/),
[Jan Maria Kowalski](https://www.linkedin.com/in/janmariakowalski/),
[Karol Jezierski](https://www.linkedin.com/in/karol-jezierski/),
[Kamil Nonckiewicz](https://www.linkedin.com/in/kamil-nonckiewicz/),
[Izabela Babis](https://www.linkedin.com/in/izabela-babis-2274b8105/),
[Nina Babis](https://www.linkedin.com/in/nina-babis-00055a140/),
[Waldemar Boszko](https://www.linkedin.com/in/waldemarboszko),
[Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/),
[Piotr Rybak](https://www.linkedin.com/in/piotrrybak/)
and many other wonderful researchers and enthusiasts of the AI world.
Members of the ACK Cyfronet AGH team providing valuable support and expertise:
[Szymon Mazurek](https://www.linkedin.com/in/sz-mazurek-ai/).
## Contact Us
If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/3G9DVM39).
|
ThuyNT/CS505_COQE_viT5_train_InstructionN4_OPASL_v1
|
ThuyNT
| 2024-05-04T16:40:40Z | 107 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-large",
"base_model:finetune:VietAI/vit5-large",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-04T13:06:51Z |
---
license: mit
base_model: VietAI/vit5-large
tags:
- generated_from_trainer
model-index:
- name: CS505_COQE_viT5_train_InstructionN4_OPASL_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS505_COQE_viT5_train_InstructionN4_OPASL_v1
This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
ThuyNT/CS505_COQE_viT5_train_InstructionN4_PAOSL_v1
|
ThuyNT
| 2024-05-04T16:40:11Z | 106 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-large",
"base_model:finetune:VietAI/vit5-large",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-04T13:09:09Z |
---
license: mit
base_model: VietAI/vit5-large
tags:
- generated_from_trainer
model-index:
- name: CS505_COQE_viT5_train_InstructionN4_PAOSL_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS505_COQE_viT5_train_InstructionN4_PAOSL_v1
This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|
IainRatherThanIan/Meta-Llama-3-8B-SFT-dpo-mix-7k
|
IainRatherThanIan
| 2024-05-04T16:38:14Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"region:us"
] | null | 2024-05-04T13:54:40Z |
---
library_name: peft
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0
|
bartowski/Llama-3-8B-Instruct-262k-GGUF
|
bartowski
| 2024-05-04T16:36:43Z | 225 | 2 | null |
[
"gguf",
"meta",
"llama-3",
"text-generation",
"en",
"license:llama3",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] |
text-generation
| 2024-05-04T16:18:24Z |
---
language:
- en
pipeline_tag: text-generation
tags:
- meta
- llama-3
license: llama3
quantized_by: bartowski
---
## Llamacpp imatrix Quantizations of Llama-3-8B-Instruct-262k
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2777">b2777</a> for quantization.
Original model: https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
## Prompt format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3-8B-Instruct-262k-Q8_0.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
| [Llama-3-8B-Instruct-262k-Q6_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
| [Llama-3-8B-Instruct-262k-Q5_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
| [Llama-3-8B-Instruct-262k-Q5_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
| [Llama-3-8B-Instruct-262k-Q4_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Llama-3-8B-Instruct-262k-Q4_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
| [Llama-3-8B-Instruct-262k-IQ4_NL.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
| [Llama-3-8B-Instruct-262k-IQ4_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Llama-3-8B-Instruct-262k-Q3_K_L.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
| [Llama-3-8B-Instruct-262k-Q3_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
| [Llama-3-8B-Instruct-262k-IQ3_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Llama-3-8B-Instruct-262k-IQ3_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
| [Llama-3-8B-Instruct-262k-Q3_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
| [Llama-3-8B-Instruct-262k-IQ3_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Llama-3-8B-Instruct-262k-IQ3_XXS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [Llama-3-8B-Instruct-262k-Q2_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
| [Llama-3-8B-Instruct-262k-IQ2_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
| [Llama-3-8B-Instruct-262k-IQ2_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
| [Llama-3-8B-Instruct-262k-IQ2_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
| [Llama-3-8B-Instruct-262k-IQ2_XXS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
| [Llama-3-8B-Instruct-262k-IQ1_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
| [Llama-3-8B-Instruct-262k-IQ1_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/Llama-3-8B-Instruct-262k-GGUF --include "Llama-3-8B-Instruct-262k-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/Llama-3-8B-Instruct-262k-GGUF --include "Llama-3-8B-Instruct-262k-Q8_0.gguf/*" --local-dir Llama-3-8B-Instruct-262k-Q8_0 --local-dir-use-symlinks False
```
You can either specify a new local-dir (Llama-3-8B-Instruct-262k-Q8_0) or download them all in place (./)
## Which file should I choose?
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|
terry69/zephyr-7b-sft-qlora-50p-full
|
terry69
| 2024-05-04T16:29:12Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T16:27:21Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MohamedSaeed-dev/mistral-unsloth
|
MohamedSaeed-dev
| 2024-05-04T16:28:38Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mistral",
"text-generation",
"unsloth",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T16:17:58Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mariahovhannisyan/Llama2_Immigration_Chat_4bit
|
mariahovhannisyan
| 2024-05-04T16:25:02Z | 76 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"dpo",
"conversational",
"en",
"base_model:unsloth/llama-2-7b-chat-bnb-4bit",
"base_model:quantized:unsloth/llama-2-7b-chat-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T16:21:08Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- dpo
base_model: unsloth/llama-2-7b-chat-bnb-4bit
---
# Uploaded model
- **Developed by:** mariahovhannisyan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-chat-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
duydatnguyen/vi-poem-gpt-neo
|
duydatnguyen
| 2024-05-04T16:22:07Z | 24 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"base_model:NlpHUST/gpt-neo-vi-small",
"base_model:finetune:NlpHUST/gpt-neo-vi-small",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T08:20:47Z |
---
base_model: NlpHUST/gpt-neo-vi-small
tags:
- generated_from_trainer
model-index:
- name: vi_gpt_poem_
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vi_gpt_poem_
This model is a fine-tuned version of [NlpHUST/gpt-neo-vi-small](https://huggingface.co/NlpHUST/gpt-neo-vi-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1334
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 42
- eval_batch_size: 42
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 250
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:-----:|:---------------:|
| 6.8634 | 3.9683 | 500 | 6.1900 |
| 4.7999 | 7.9365 | 1000 | 3.4039 |
| 2.7473 | 11.9048 | 1500 | 2.5766 |
| 2.2513 | 15.8730 | 2000 | 2.2051 |
| 1.9426 | 19.8413 | 2500 | 1.9113 |
| 1.7059 | 23.8095 | 3000 | 1.6723 |
| 1.5333 | 27.7778 | 3500 | 1.5196 |
| 1.3996 | 31.7460 | 4000 | 1.4060 |
| 1.3066 | 35.7143 | 4500 | 1.3193 |
| 1.228 | 39.6825 | 5000 | 1.2513 |
| 1.1642 | 43.6508 | 5500 | 1.2000 |
| 1.1191 | 47.6190 | 6000 | 1.1607 |
| 1.0825 | 51.5873 | 6500 | 1.1295 |
| 1.0483 | 55.5556 | 7000 | 1.1036 |
| 1.0203 | 59.5238 | 7500 | 1.0818 |
| 0.9967 | 63.4921 | 8000 | 1.0631 |
| 0.9745 | 67.4603 | 8500 | 1.0471 |
| 0.9552 | 71.4286 | 9000 | 1.0332 |
| 0.9362 | 75.3968 | 9500 | 1.0208 |
| 0.9165 | 79.3651 | 10000 | 1.0098 |
| 0.8977 | 83.3333 | 10500 | 1.0002 |
| 0.8846 | 87.3016 | 11000 | 0.9915 |
| 0.8641 | 91.2698 | 11500 | 0.9838 |
| 0.8478 | 95.2381 | 12000 | 0.9779 |
| 0.8286 | 99.2063 | 12500 | 0.9721 |
| 0.811 | 103.1746 | 13000 | 0.9677 |
| 0.7916 | 107.1429 | 13500 | 0.9644 |
| 0.7721 | 111.1111 | 14000 | 0.9625 |
| 0.7513 | 115.0794 | 14500 | 0.9616 |
| 0.7292 | 119.0476 | 15000 | 0.9617 |
| 0.7066 | 123.0159 | 15500 | 0.9622 |
| 0.683 | 126.9841 | 16000 | 0.9639 |
| 0.6582 | 130.9524 | 16500 | 0.9661 |
| 0.632 | 134.9206 | 17000 | 0.9690 |
| 0.6047 | 138.8889 | 17500 | 0.9727 |
| 0.5769 | 142.8571 | 18000 | 0.9763 |
| 0.548 | 146.8254 | 18500 | 0.9802 |
| 0.5169 | 150.7937 | 19000 | 0.9844 |
| 0.4863 | 154.7619 | 19500 | 0.9887 |
| 0.4536 | 158.7302 | 20000 | 0.9936 |
| 0.4223 | 162.6984 | 20500 | 0.9975 |
| 0.3891 | 166.6667 | 21000 | 1.0022 |
| 0.3571 | 170.6349 | 21500 | 1.0071 |
| 0.3256 | 174.6032 | 22000 | 1.0118 |
| 0.2946 | 178.5714 | 22500 | 1.0164 |
| 0.2642 | 182.5397 | 23000 | 1.0221 |
| 0.2345 | 186.5079 | 23500 | 1.0271 |
| 0.2069 | 190.4762 | 24000 | 1.0331 |
| 0.1806 | 194.4444 | 24500 | 1.0393 |
| 0.1565 | 198.4127 | 25000 | 1.0462 |
| 0.1351 | 202.3810 | 25500 | 1.0527 |
| 0.1153 | 206.3492 | 26000 | 1.0605 |
| 0.0984 | 210.3175 | 26500 | 1.0679 |
| 0.0842 | 214.2857 | 27000 | 1.0758 |
| 0.0721 | 218.2540 | 27500 | 1.0827 |
| 0.0627 | 222.2222 | 28000 | 1.0906 |
| 0.0555 | 226.1905 | 28500 | 1.0978 |
| 0.0495 | 230.1587 | 29000 | 1.1043 |
| 0.045 | 234.1270 | 29500 | 1.1107 |
| 0.0412 | 238.0952 | 30000 | 1.1166 |
| 0.0382 | 242.0635 | 30500 | 1.1228 |
| 0.0356 | 246.0317 | 31000 | 1.1275 |
| 0.0335 | 250.0 | 31500 | 1.1334 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.19.1
|
RichardErkhov/TinyLlama_-_TinyLlama-1.1B-Chat-v0.3-8bits
|
RichardErkhov
| 2024-05-04T16:15:58Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T16:14:52Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
TinyLlama-1.1B-Chat-v0.3 - bnb 8bits
- Model creator: https://huggingface.co/TinyLlama/
- Original model: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3/
Original model description:
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [PY007/TinyLlama-1.1B-intermediate-step-480k-1T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T).
The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25) following the [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format.
#### How to use
You will need the transformers>=4.31
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```
from transformers import AutoTokenizer
import transformers
import torch
model = "PY007/TinyLlama-1.1B-Chat-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
CHAT_EOS_TOKEN_ID = 32002
prompt = "How to get in a good university?"
formatted_prompt = (
f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
)
sequences = pipeline(
formatted_prompt,
do_sample=True,
top_k=50,
top_p = 0.9,
num_return_sequences=1,
repetition_penalty=1.1,
max_new_tokens=1024,
eos_token_id=CHAT_EOS_TOKEN_ID,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
|
RichardErkhov/TinyLlama_-_TinyLlama-1.1B-Chat-v0.3-4bits
|
RichardErkhov
| 2024-05-04T16:14:45Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T16:13:44Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
TinyLlama-1.1B-Chat-v0.3 - bnb 4bits
- Model creator: https://huggingface.co/TinyLlama/
- Original model: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3/
Original model description:
---
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
language:
- en
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [PY007/TinyLlama-1.1B-intermediate-step-480k-1T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T).
The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25) following the [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format.
#### How to use
You will need the transformers>=4.31
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```
from transformers import AutoTokenizer
import transformers
import torch
model = "PY007/TinyLlama-1.1B-Chat-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
CHAT_EOS_TOKEN_ID = 32002
prompt = "How to get in a good university?"
formatted_prompt = (
f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
)
sequences = pipeline(
formatted_prompt,
do_sample=True,
top_k=50,
top_p = 0.9,
num_return_sequences=1,
repetition_penalty=1.1,
max_new_tokens=1024,
eos_token_id=CHAT_EOS_TOKEN_ID,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
|
A-Magdy/codellamaqlora
|
A-Magdy
| 2024-05-04T16:11:18Z | 3 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T15:57:34Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Nitin98/Datasets
|
Nitin98
| 2024-05-04T16:10:29Z | 115 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T14:51:05Z |
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: Datasets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Datasets
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
GeorgeImmanuel/autonomous_taxi_ride
|
GeorgeImmanuel
| 2024-05-04T16:06:15Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-03T16:16:19Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: autonomous_taxi_ride
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 14.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="GeorgeImmanuel/autonomous_taxi_ride", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
vwxyzjn/rloo_zephyr_vllm_k4_seed1
|
vwxyzjn
| 2024-05-04T16:04:26Z | 3 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T16:03:32Z |
---
tags:
- generated_from_trainer
model-index:
- name: rloo_zephyr_vllm_k4_seed1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rloo_zephyr_vllm_k4_seed1
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 1
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 32
- total_train_batch_size: 224
- total_eval_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|
mmenuu/wisesight_sentiment
|
mmenuu
| 2024-05-04T16:00:02Z | 13 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"camembert",
"text-classification",
"generated_from_trainer",
"base_model:clicknext/phayathaibert",
"base_model:finetune:clicknext/phayathaibert",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T15:22:47Z |
---
base_model: clicknext/phayathaibert
tags:
- generated_from_trainer
model-index:
- name: wisesight_sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wisesight_sentiment
This model is a fine-tuned version of [clicknext/phayathaibert](https://huggingface.co/clicknext/phayathaibert) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.6884
- eval_micro_average_f1: 0.7442
- eval_macro_average_f1: 0.6334
- eval_class_f1: {'pos': 0.5728155339805825, 'neu': 0.7831094049904032, 'neg': 0.8028059236165237, 'q': 0.375}
- eval_runtime: 7.5819
- eval_samples_per_second: 317.072
- eval_steps_per_second: 19.916
- epoch: 0.3698
- step: 500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
RichardErkhov/Jiqing_-_tiny_random_llama2-8bits
|
RichardErkhov
| 2024-05-04T15:58:31Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T15:58:22Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tiny_random_llama2 - bnb 8bits
- Model creator: https://huggingface.co/Jiqing/
- Original model: https://huggingface.co/Jiqing/tiny_random_llama2/
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
Tiny random llama2 for CI test
|
lyrita/test
|
lyrita
| 2024-05-04T15:54:34Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-05-04T15:54:34Z |
---
license: apache-2.0
---
|
RichardErkhov/kanishka_-_smolm-autoreg-bpe-seed_8128-8bits
|
RichardErkhov
| 2024-05-04T15:54:28Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"opt",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T15:54:17Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
smolm-autoreg-bpe-seed_8128 - bnb 8bits
- Model creator: https://huggingface.co/kanishka/
- Original model: https://huggingface.co/kanishka/smolm-autoreg-bpe-seed_8128/
Original model description:
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-seed_8128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolm-autoreg-bpe-seed_8128
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4757
- Accuracy: 0.4994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 16
- eval_batch_size: 128
- seed: 8128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24000
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.0573 | 1.0 | 2928 | 3.0221 | 0.4374 |
| 2.7148 | 2.0 | 5856 | 2.7910 | 0.4589 |
| 2.5912 | 3.0 | 8784 | 2.6989 | 0.4683 |
| 2.5153 | 4.0 | 11712 | 2.6402 | 0.4762 |
| 2.4585 | 5.0 | 14640 | 2.6094 | 0.4799 |
| 2.4202 | 6.0 | 17568 | 2.5849 | 0.4829 |
| 2.395 | 7.0 | 20496 | 2.5703 | 0.4845 |
| 2.363 | 8.0 | 23424 | 2.5577 | 0.4859 |
| 2.2878 | 9.0 | 26352 | 2.5095 | 0.4940 |
| 2.1407 | 10.0 | 29280 | 2.4757 | 0.4994 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
RichardErkhov/kanishka_-_smolm-autoreg-bpe-seed_8128-4bits
|
RichardErkhov
| 2024-05-04T15:54:16Z | 75 | 0 |
transformers
|
[
"transformers",
"safetensors",
"opt",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T15:54:03Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
smolm-autoreg-bpe-seed_8128 - bnb 4bits
- Model creator: https://huggingface.co/kanishka/
- Original model: https://huggingface.co/kanishka/smolm-autoreg-bpe-seed_8128/
Original model description:
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-seed_8128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolm-autoreg-bpe-seed_8128
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4757
- Accuracy: 0.4994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 16
- eval_batch_size: 128
- seed: 8128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24000
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.0573 | 1.0 | 2928 | 3.0221 | 0.4374 |
| 2.7148 | 2.0 | 5856 | 2.7910 | 0.4589 |
| 2.5912 | 3.0 | 8784 | 2.6989 | 0.4683 |
| 2.5153 | 4.0 | 11712 | 2.6402 | 0.4762 |
| 2.4585 | 5.0 | 14640 | 2.6094 | 0.4799 |
| 2.4202 | 6.0 | 17568 | 2.5849 | 0.4829 |
| 2.395 | 7.0 | 20496 | 2.5703 | 0.4845 |
| 2.363 | 8.0 | 23424 | 2.5577 | 0.4859 |
| 2.2878 | 9.0 | 26352 | 2.5095 | 0.4940 |
| 2.1407 | 10.0 | 29280 | 2.4757 | 0.4994 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|
shionhonda/tiny-llama-reviewer2-1.1B-dpo-lora
|
shionhonda
| 2024-05-04T15:52:40Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"text-generation",
"en",
"dataset:shionhonda/reviewer2-1k",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:mit",
"region:us"
] |
text-generation
| 2024-04-07T19:49:54Z |
---
library_name: peft
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
license: mit
datasets:
- shionhonda/reviewer2-1k
language:
- en
pipeline_tag: text-generation
---
# Model Card for Model ID
This bot gives a bitter review fn any paper you submit.
See https://hippocampus-garden.com/tiny_llama_dpo_lora/ for full details.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Shion Honda
- **Model type:** Text Generation
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** TinyLlama/TinyLlama-1.1B-Chat-v1.0
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0
|
miansumairjaved/a2c-PandaReachDense-v3
|
miansumairjaved
| 2024-05-04T15:51:47Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-04T15:47:32Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -16.41 +/- 5.67
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
vtiyyal1/bert_ae_detection
|
vtiyyal1
| 2024-05-04T15:43:02Z | 165 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-04T15:01:23Z |
---
license: apache-2.0
---
|
h-alice/memma-1-2b-cmb-seq2seq-hf
|
h-alice
| 2024-05-04T15:40:35Z | 108 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T14:51:35Z |
---
license: apache-2.0
widget:
- text: 雷恩,你為什麼還要拿七星刀
example_title: 雷恩的七星刀
inference:
parameters:
do_sample: true
top_k: 60
top_p: 0.9
temperature: 0.3
max_length: 50
---
|
herisan/llama-3-8b_mental_health_counseling_conversations
|
herisan
| 2024-05-04T15:25:09Z | 8 | 2 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-01T15:11:44Z |
!pip -q install git+https://github.com/huggingface/transformers # need to install from github
!pip -q install bitsandbytes accelerate xformers einops
import os
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
model_name = "herisan/llama-3-8b_mental_health_counseling_conversations"
# use the commented out parts for running in 4bit
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
# low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.bos_token_id = 1
stop_token_ids = [0]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
use_cache=True,
device_map="auto",
max_length=2046,
do_sample=True,
top_k=5,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
messages = [
{
"role": "system",
"content": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.",
},
{"role": "user", "content": "I'm going through some things with my feelings and myself. I barely sleep and I do nothing but think about how I'm worthless and how I shouldn't be here. I've never tried or contemplated suicide. I've always wanted to fix my issues, but I never get around to it. How can I change my feeling of being worthless to everyone?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=2046, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, truncation=True)
print(outputs[0]["generated_text"])
|
jasonsun/lora_model
|
jasonsun
| 2024-05-04T15:18:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T15:18:03Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** jasonsun
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
AbhishekVenkatachalam06/Phi-3-mini-128k-instruct-Q6_K-GGUF
|
AbhishekVenkatachalam06
| 2024-05-04T15:14:58Z | 0 | 0 | null |
[
"gguf",
"nlp",
"code",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2024-05-04T15:14:50Z |
---
language:
- en
license: mit
tags:
- nlp
- code
- llama-cpp
- gguf-my-repo
license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
---
# AbhishekVenkatachalam06/Phi-3-mini-128k-instruct-Q6_K-GGUF
This model was converted to GGUF format from [`microsoft/Phi-3-mini-128k-instruct`](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo AbhishekVenkatachalam06/Phi-3-mini-128k-instruct-Q6_K-GGUF --model phi-3-mini-128k-instruct.Q6_K.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo AbhishekVenkatachalam06/Phi-3-mini-128k-instruct-Q6_K-GGUF --model phi-3-mini-128k-instruct.Q6_K.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m phi-3-mini-128k-instruct.Q6_K.gguf -n 128
```
|
north/llama2-verify
|
north
| 2024-05-04T15:11:55Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T08:41:57Z |
---
license: apache-2.0
---
|
RichardErkhov/codellama_-_CodeLlama-13b-hf-8bits
|
RichardErkhov
| 2024-05-04T15:02:30Z | 3 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:2308.12950",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T14:52:03Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
CodeLlama-13b-hf - bnb 8bits
- Model creator: https://huggingface.co/codellama/
- Original model: https://huggingface.co/codellama/CodeLlama-13b-hf/
Original model description:
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
license: llama2
---
# **Code Llama**
Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 13B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
> [!NOTE]
> This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-13b-hf).
| | Base Model | Python | Instruct |
| --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
| 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
| 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
| 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
## Model Use
To use this model, please make sure to install transformers:
```bash
pip install transformers accelerate
```
Model capabilities:
- [x] Code completion.
- [x] Infilling.
- [ ] Instructions / chat.
- [ ] Python specialist.
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "codellama/CodeLlama-13b-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'import socket\n\ndef ping_exponential_backoff(host: str):',
do_sample=True,
top_k=10,
temperature=0.1,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Model Details
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
**Model Developers** Meta
**Variations** Code Llama comes in three model sizes, and three variants:
* Code Llama: base models designed for general code synthesis and understanding
* Code Llama - Python: designed specifically for Python
* Code Llama - Instruct: for instruction following and safer deployment
All variants are available in sizes of 7B, 13B and 34B parameters.
**This repository contains the base version of the 13B parameters model.**
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
## Intended Use
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
## Hardware and Software
**Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
## Training Data
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
## Evaluation Results
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
## Ethical Considerations and Limitations
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
|
nermin-dubinovic/finetuned-llama-3-8b-Instruct-bnb-4bit
|
nermin-dubinovic
| 2024-05-04T15:02:21Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T15:02:07Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** nermin-dubinovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
TIGER-Lab/Mantis-8B-Fuyu
|
TIGER-Lab
| 2024-05-04T14:57:20Z | 70 | 4 |
transformers
|
[
"transformers",
"safetensors",
"fuyu",
"text-generation",
"multimodal",
"mfuyu",
"mantis",
"lmm",
"vlm",
"en",
"dataset:TIGER-Lab/Mantis-Instruct",
"arxiv:2405.01483",
"base_model:adept/fuyu-8b",
"base_model:finetune:adept/fuyu-8b",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-03T02:54:53Z |
---
license: cc-by-nc-4.0
base_model: adept/fuyu-8b
tags:
- multimodal
- fuyu
- mfuyu
- mantis
- lmm
- vlm
model-index:
- name: Mantis-8B-Fuyu
results: []
datasets:
- TIGER-Lab/Mantis-Instruct
language:
- en
---
# 🔥 Mantis
[Paper](https://arxiv.org/abs/2405.01483) | [Website](https://tiger-ai-lab.github.io/Mantis/) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Demo](https://huggingface.co/spaces/TIGER-Lab/Mantis)

## Summary
- Mantis-Fuyu is a Fuyu based LMM with **interleaved text and image as inputs**, train on Mantis-Instruct under academic-level resources (i.e. 36 hours on 16xA100-40G).
- Mantis is trained to have multi-image skills including co-reference, reasoning, comparing, temporal understanding.
- Mantis reaches the state-of-the-art performance on five multi-image benchmarks (NLVR2, Q-Bench, BLINK, MVBench, Mantis-Eval), and also maintain a strong single-image performance on par with CogVLM and Emu2.
## Multi-Image Performance

## Single-Image Performance

## How to use
### Installation
```bash
# This only installs minimum packages (torch, transformers, accelerate) for inference, no redundant packages are installed.
pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
```
### Run example inference:
```python
from mantis.models.mllava import chat_mllava
from PIL import Image
import torch
image1 = "image1.jpg"
image2 = "image2.jpg"
images = [Image.open(image1), Image.open(image2)]
# load processor and model
from mantis.models.mfuyu import MFuyuForCausalLM, MFuyuProcessor
processor = MFuyuProcessor.from_pretrained("TIGER-Lab/Mantis-8B-Fuyu")
attn_implementation = None # or "flash_attention_2"
model = MFuyuForCausalLM.from_pretrained("TIGER-Lab/Mantis-8B-Fuyu", device_map="cuda", torch_dtype=torch.bfloat16, attn_implementation=attn_implementation)
generation_kwargs = {
"max_new_tokens": 1024,
"num_beams": 1,
"do_sample": False,
"pad_token_id": processor.tokenizer.eos_token_id,
}
# chat
text = "Describe the difference of <image> and <image> as much as you can."
response, history = chat_mllava(text, images, model, processor, **generation_kwargs)
print("USER: ", text)
print("ASSISTANT: ", response)
text = "How many wallets are there in image 1 and image 2 respectively?"
response, history = chat_mllava(text, images, model, processor, history=history, **generation_kwargs)
print("USER: ", text)
print("ASSISTANT: ", response)
"""
USER: Describe the difference of <image> and <image> as much as you can.
ASSISTANT: The second image has more variety in terms of colors and designs. While the first image only shows two brown leather pouches, the second image features four different pouches in various colors and designs, including a purple one with a gold coin, a red one with a gold coin, a black one with a gold coin, and a brown one with a gold coin. This variety makes the second image more visually interesting and dynamic.
USER: How many wallets are there in image 1 and image 2 respectively?
ASSISTANT: There are two wallets in image 1, and four wallets in image 2.
"""
```
### Training
See [mantis/train](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/train) for details
### Evaluation
See [mantis/benchmark](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/benchmark) for details
## Citation
```
@inproceedings{Jiang2024MANTISIM,
title={MANTIS: Interleaved Multi-Image Instruction Tuning},
author={Dongfu Jiang and Xuan He and Huaye Zeng and Cong Wei and Max W.F. Ku and Qian Liu and Wenhu Chen},
publisher={arXiv2405.01483}
year={2024},
}
```
|
RichardErkhov/codellama_-_CodeLlama-13b-hf-4bits
|
RichardErkhov
| 2024-05-04T14:51:07Z | 77 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:2308.12950",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-05-04T14:44:59Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
CodeLlama-13b-hf - bnb 4bits
- Model creator: https://huggingface.co/codellama/
- Original model: https://huggingface.co/codellama/CodeLlama-13b-hf/
Original model description:
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
license: llama2
---
# **Code Llama**
Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 13B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
> [!NOTE]
> This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-13b-hf).
| | Base Model | Python | Instruct |
| --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
| 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
| 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
| 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
## Model Use
To use this model, please make sure to install transformers:
```bash
pip install transformers accelerate
```
Model capabilities:
- [x] Code completion.
- [x] Infilling.
- [ ] Instructions / chat.
- [ ] Python specialist.
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "codellama/CodeLlama-13b-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'import socket\n\ndef ping_exponential_backoff(host: str):',
do_sample=True,
top_k=10,
temperature=0.1,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Model Details
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
**Model Developers** Meta
**Variations** Code Llama comes in three model sizes, and three variants:
* Code Llama: base models designed for general code synthesis and understanding
* Code Llama - Python: designed specifically for Python
* Code Llama - Instruct: for instruction following and safer deployment
All variants are available in sizes of 7B, 13B and 34B parameters.
**This repository contains the base version of the 13B parameters model.**
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
## Intended Use
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
## Hardware and Software
**Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
## Training Data
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
## Evaluation Results
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
## Ethical Considerations and Limitations
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
|
Sristi222/van_LoRA
|
Sristi222
| 2024-05-04T14:50:46Z | 2 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-05-04T14:50:43Z |
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of Bangladeshi classic van
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - Sristi222/van_LoRA
<Gallery />
## Model description
These are Sristi222/van_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of Bangladeshi classic van to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Sristi222/van_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
iimran/llama-cfsuitev4-Instruct-concat
|
iimran
| 2024-05-04T14:48:53Z | 3 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-04T14:39:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lewdiculous/Nyanade_Stunna-Maid-7B-v0.2-GGUF-IQ-Imatrix
|
Lewdiculous
| 2024-05-04T14:47:47Z | 2,595 | 52 | null |
[
"gguf",
"quantized",
"roleplay",
"multimodal",
"vision",
"llava",
"sillytavern",
"merge",
"mistral",
"conversational",
"license:other",
"region:us"
] | null | 2024-04-15T00:19:54Z |
---
inference: false
tags:
- gguf
- quantized
- roleplay
- multimodal
- vision
- llava
- sillytavern
- merge
- mistral
- conversational
license: other
---
> [!TIP]
> **Support:** <br>
> My upload speeds have been cooked and unstable lately. <br>
> Realistically I'd need to move to get a better provider. <br>
> If you **want** and you are able to... <br>
> [**You can support my various endeavors here (Ko-fi).**](https://ko-fi.com/Lewdiculous) <br>
> I apologize for disrupting your experience.
# #Roleplay #Multimodal #Vision #Based #Unhinged #Unaligned
In this repository you can find **GGUF-IQ-Imatrix** quants for [ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2](https://huggingface.co/ChaoticNeutrals/Nyanade_Stunna-Maid-7B-v0.2) and if needed you can get some basic SillyTavern presets [here](https://huggingface.co/Lewdiculous/Model-Requests/tree/main/data/presets/lewdicu-3.0.2-mistral-0.2), if you have issues with repetitiveness or lack or variety in responses I recommend changing the **Temperature** to 1.15, **MinP** to 0.075, **RepPen** to 1.15 and **RepPenRange** to 1024.
> [!TIP]
> **Vision:** <br>
> This is a **#multimodal** model that also has optional **#vision** capabilities. <br> Expand the relevant sections bellow and read the full card information if you also want to make use that functionality.
>
> **Quant options:** <br>
> Reading bellow you can also find quant option recommendations for some common GPU VRAM capacities.
**"Unhinged RP with the spice of the previous 0.420 remixes, 32k context and vision capabilities."**

# General recommendations for quant options:
<details><summary>
⇲ Click here to expand/hide general common recommendations.
</summary>
*Assuming a context size of 8192 for simplicity and 1GB of Operating System VRAM overhead with some safety margin to avoid overflowing buffers...* <br> <br>
**For 11-12GB VRAM:** <br> A GPU with **11-12GB** of VRAM capacity can comfortably use the **Q6_K-imat** quant option and run it at good speeds. <br> This is the same with or without using #vision capabilities. <br> <br>
**For 8GB VRAM:** <br> If not using #vision, for GPUs with **8GB** of VRAM capacity the **Q5_K_M-imat** quant option will fit comfortably and should run at good speeds. <br> If **you are** also using #vision from this model opt for the **Q4_K_M-imat** quant option to avoid filling the buffers and potential slowdowns. <br><br>
**For 6GB VRAM:** <br> If not using #vision, for GPUs with **6GB** of VRAM capacity the **IQ3_M-imat** quant option should fit comfortably to run at good speeds. <br> If **you are** also using #vision from this model opt for the **IQ3_XXS-imat** quant option. <br><br>
</details><br>
# Quantization process information:
<details><summary>
⇲ Click here to expand/hide more information about this topic.
</summary>
```python
quantization_options = [
"IQ3_M", "IQ3_XXS",
"Q4_K_M", "Q4_K_S", "IQ4_XS", "IQ4_NL",
"Q5_K_M", "Q5_K_S",
"Q6_K",
"Q8_0"
]
```
**Steps performed:**
```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
The latest of **llama.cpp** available at the time was used, with [imatrix-with-rp-ex.txt](https://huggingface.co/Lewdiculous/Model-Requests/blob/main/data/imatrix/imatrix-with-rp-ex.txt) as calibration data.
</details><br>
# What does "Imatrix" mean?
<details><summary>
⇲ Click here to expand/hide more information about this topic.
</summary>
It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process.
The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance, especially when the calibration data is diverse.
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
> [!NOTE]
> For imatrix data generation, kalomaze's `groups_merged.txt` with additional roleplay chats was used, you can find it [here](https://huggingface.co/Lewdiculous/Model-Requests/blob/main/data/imatrix/imatrix-with-rp-ex.txt) for reference. This was just to add a bit more diversity to the data with the intended use case in mind.
</details><br>
# Vision/multimodal capabilities:
<details><summary>
⇲ Click here to expand/hide how this would work in practice in a roleplay chat.
</summary>

</details><br>
<details><summary>
⇲ Click here to expand/hide how your SillyTavern Image Captions extension settings should look.
</summary>

</details><br>
# Required for vision functionality:
> [!WARNING]
> To use the multimodal capabilities of this model, such as **vision**, you also need to load the specified **mmproj** file, you can get it [here](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/mmproj-model-f16.gguf) or as uploaded in the **mmproj** folder in the repository.
1: Make sure you are using the latest version of [KoboldCpp](https://github.com/LostRuins/koboldcpp).
2: Load the **mmproj file** by using the corresponding section in the interface:

2.1: For **CLI** users, you can load the **mmproj file** by adding the respective flag to your usual command:
```
--mmproj your-mmproj-file.gguf
```
|
Youdontknowme720/Atari
|
Youdontknowme720
| 2024-05-04T14:46:37Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-05-04T14:46:04Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 556.00 +/- 258.46
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Youdontknowme720 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Youdontknowme720 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Youdontknowme720
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Lewdiculous/BuRP_7B-GGUF-IQ-Imatrix
|
Lewdiculous
| 2024-05-04T14:46:30Z | 629 | 26 |
transformers
|
[
"transformers",
"gguf",
"quantized",
"roleplay",
"imatrix",
"mistral",
"merge",
"en",
"license:other",
"region:us"
] | null | 2024-03-11T05:14:14Z |
---
library_name: transformers
license: other
language:
- en
tags:
- gguf
- quantized
- roleplay
- imatrix
- mistral
- merge
inference: false
# base_model:
# - ResplendentAI/Datura_7B
# - ChaoticNeutrals/Eris_Floramix_DPO_7B
---
> [!TIP]
> **Support:** <br>
> My upload speeds have been cooked and unstable lately. <br>
> Realistically I'd need to move to get a better provider. <br>
> If you **want** and you are able to... <br>
> [**You can support my various endeavors here (Ko-fi).**](https://ko-fi.com/Lewdiculous) <br>
> I apologize for disrupting your experience.
This repository hosts GGUF-Imatrix quantizations for [ChaoticNeutrals/BuRP_7B](https://huggingface.co/ChaoticNeutrals/BuRP_7B).
**What does "Imatrix" mean?**
It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process.
The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance, especially when the calibration data is diverse.
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
**Steps:**
```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
**Quants:**
```python
quantization_options = [
"Q4_K_M", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K",
"Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS"
]
```
If you want anything that's not here or another model, feel free to request.
**This is experimental.**
For imatrix data generation, kalomaze's `groups_merged.txt` with added roleplay chats was used, you can find it [here](https://huggingface.co/Lewdiculous/Datura_7B-GGUF-Imatrix/blob/main/imatrix-with-rp-format-data.txt).
**Alt-image:**

**Original model information:**
# BuRP

So you want a model that can do it all? You've been dying to RP with a superintelligence who never refuses your advances while sticking to your strange and oddly specific dialogue format?
Well, look no further because BuRP is the model you need.
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: ErisLaylaSLERP
layer_range: [0, 32]
- model: ParadigmInfinitySLERP
layer_range: [0, 32]
merge_method: slerp
base_model: ParadigmInfinitySLERP
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
|
Lewdiculous/Layris_9B-GGUF-IQ-Imatrix
|
Lewdiculous
| 2024-05-04T14:46:07Z | 332 | 18 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"text-generation-inference",
"roleplay",
"text-generation",
"region:us"
] |
text-generation
| 2024-03-06T03:26:55Z |
---
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
- roleplay
# - rp
# - uncensored
pipeline_tag: text-generation
inference: false
# language:
# - en
# FILL THE INFORMATION:
# Reference: ChaoticNeutrals/Layris_9B
# Author: ChaoticNeutrals
# Model: Layris_9B
# Llama.cpp version: b2350
---
> [!TIP]
> **Support:** <br>
> My upload speeds have been cooked and unstable lately. <br>
> Realistically I'd need to move to get a better provider. <br>
> If you **want** and you are able to... <br>
> [**You can support my various endeavors here (Ko-fi).**](https://ko-fi.com/Lewdiculous) <br>
> I apologize for disrupting your experience.
```python
quantization_options = [
"Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M",
"Q5_K_S", "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XS", "IQ3_XXS"
]
```
## GGUF-Imatrix quantizations for [ChaoticNeutrals/Layris_9B](https://huggingface.co/ChaoticNeutrals/Layris_9B/).
All credits belong to the author.
If you liked these, check out the work with [FantasiaFoundry's GGUF-IQ-Imatrix-Quantization-Script](https://huggingface.co/FantasiaFoundry/GGUF-Quantization-Script).
**Personal note:**
This model should give you less refusals, given it's merged with the unhinged **Layla-V4**.
## What does "Imatrix" mean?
It stands for **Importance Matrix**, a technique used to improve the quality of quantized models. <br>
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006/) <br>
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process. The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance and lead to better quality preservation, especially when the calibration data is diverse. <br>
[[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384/)
For --imatrix data, included `imatrix.dat` was used.
Using [llama.cpp-b2350](https://github.com/ggerganov/llama.cpp/releases/tag/b2350/):
```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
The new **IQ3_S** quant-option has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59.1` or higher.
If you want any specific quantization to be added, feel free to ask.
## Model card:

## Original model information:
# Layris

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [ChaoticNeutrals/Eris_Remix_7B](https://huggingface.co/ChaoticNeutrals/Eris_Remix_7B)
* [l3utterfly/mistral-7b-v0.1-layla-v4](https://huggingface.co/l3utterfly/mistral-7b-v0.1-layla-v4)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: ChaoticNeutrals/Eris_Remix_7B
layer_range: [0, 20]
- sources:
- model: l3utterfly/mistral-7b-v0.1-layla-v4
layer_range: [12, 32]
merge_method: passthrough
dtype: float16
```
|
Lewdiculous/Kunocchini-7b-128k-test-GGUF-Imatrix
|
Lewdiculous
| 2024-05-04T14:44:40Z | 575 | 29 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"text-generation-inference",
"merge",
"mergekit",
"text-generation",
"base_model:Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context",
"base_model:merge:Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context",
"base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B",
"base_model:merge:SanjiWatsuki/Kunoichi-DPO-v2-7B",
"region:us",
"conversational"
] |
text-generation
| 2024-02-25T04:16:49Z |
---
base_model:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
- merge
- mergekit
pipeline_tag: text-generation
inference: false
---
> [!TIP]
> **Support:** <br>
> My upload speeds have been cooked and unstable lately. <br>
> Realistically I'd need to move to get a better provider. <br>
> If you **want** and you are able to... <br>
> [**You can support my various endeavors here (Ko-fi).**](https://ko-fi.com/Lewdiculous) <br>
> I apologize for disrupting your experience.
# **GGUF-Imatrix quantizations for [Kunocchini-7b-128k-test](https://huggingface.co/Test157t/Kunocchini-7b-128k-test/).**
# UPDATED: Please download the v2 files that are now available. The new IQ4_NL and IQ4_XS quants were also added.
# What does "Imatrix" mean?
It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process. The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance.
One of the benefits of using an Imatrix is that it can lead to better model performance, especially when the calibration data is diverse.
More information: [[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
## *This has been my personal favourite and daily-driver role-play model for a while, so I decided to make new quantizations for it using the full F16-Imatrix data.*
SillyTavern preset files are located [here](https://huggingface.co/Test157t/Kunocchini-7b-128k-test/tree/main/ST%20presets).
*If you want any specific quantization to be added, feel free to ask.*
All credits belong to the [creator](https://huggingface.co/Test157t/).
`Base⇢ GGUF(F16)⇢ GGUF(Quants)`
The new **IQ3_S** merged today has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59.1` or higher.
Using [llama.cpp](https://github.com/ggerganov/llama.cpp/)-[b2254](https://github.com/ggerganov/llama.cpp/releases/tag/b2254).
For --imatrix data, `imatrix-Kunocchini-7b-128k-test-F16.dat` was used.
# Original model information:
Thanks to @Epiculous for the dope model/ help with llm backends and support overall.
Id like to also thank @kalomaze for the dope sampler additions to ST.
@SanjiWatsuki Thank you very much for the help, and the model!
ST users can find the TextGenPreset in the folder labeled so.

The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context](https://huggingface.co/Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: SanjiWatsuki/Kunoichi-DPO-v2-7B
layer_range: [0, 32]
- model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
|
nermin-dubinovic/finetuned-mistral-7b
|
nermin-dubinovic
| 2024-05-04T14:44:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-04T14:44:28Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** nermin-dubinovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.