modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
sgoodfriend/ppo-procgen-coinrun-easy
sgoodfriend
2023-02-23T07:46:46Z
0
0
rl-algo-impls
[ "rl-algo-impls", "procgen-coinrun-easy", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T07:46:42Z
--- library_name: rl-algo-impls tags: - procgen-coinrun-easy - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 9.06 +/- 2.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: procgen-coinrun-easy type: procgen-coinrun-easy --- # **PPO** Agent playing **procgen-coinrun-easy** This is a trained model of a **PPO** agent playing **procgen-coinrun-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:--------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | coinrun | 1 | 9.0625 | 2.91481 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/6vwst93s) | | ppo | coinrun | 2 | 9.0625 | 2.91481 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/vmjd3amn) | | ppo | coinrun | 3 | 8.125 | 3.90312 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/3sqxjicx) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/vmjd3amn ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env procgen-coinrun-easy --seed 2 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone git@github.com:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 2048 clip_range: 0.2 clip_range_vf: 0.2 ent_coef: 0.01 gae_lambda: 0.95 gamma: 0.999 learning_rate: 0.0005 n_epochs: 3 n_steps: 256 vf_coef: 0.5 env: procgen-coinrun-easy env_hyperparams: is_procgen: true make_kwargs: distribution_mode: easy n_envs: 64 normalize: true env_id: coinrun eval_params: deterministic: false ignore_first_episode: true n_timesteps: 25000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala init_layers_orthogonal: true seed: 2 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_21ee1ab - host_138-2-238-100 ```
LowRAs/experienceLoRA
LowRAs
2023-02-23T07:44:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T07:28:07Z
--- license: creativeml-openrail-m ---
trinket2023/BERTModelQA2
trinket2023
2023-02-23T07:43:21Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-23T06:24:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: BERTModelQA2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTModelQA2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.1894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7749 | 1.0 | 563 | 1.6499 | | 1.3956 | 2.0 | 1126 | 1.4280 | | 1.0094 | 3.0 | 1689 | 1.4128 | | 0.7522 | 4.0 | 2252 | 1.5635 | | 0.5826 | 5.0 | 2815 | 1.6302 | | 0.4356 | 6.0 | 3378 | 1.7976 | | 0.3399 | 7.0 | 3941 | 1.9001 | | 0.2234 | 8.0 | 4504 | 2.0518 | | 0.1806 | 9.0 | 5067 | 2.1244 | | 0.1543 | 10.0 | 5630 | 2.1894 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Kyanite/KNMD
Kyanite
2023-02-23T07:24:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T07:24:22Z
--- license: creativeml-openrail-m ---
wjn1996/wjn1996-hugnlp-hugie-large-zh
wjn1996
2023-02-23T07:19:01Z
5
7
transformers
[ "transformers", "pytorch", "bert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-02-23T02:55:41Z
--- license: apache-2.0 --- ## HugIE:基于MRC的Instruction-tuning的统一信息抽取框架 基本思想和优势: - 构建Instruction模板,将实体识别和事件抽取统一为MRC形式; - 采用Global Pointer训练抽取器; - 只需少量代码即可实现事件抽取,获取实体名称,事件信息。 快速使用: ```python from applications.information_extraction.HugIE.api_test import HugIEAPI model_type = 'bert' hugie_model_name_or_path = 'wjn1996/wjn1996-hugnlp-hugie-large-zh' hugie = HugIEAPI('bert', hugie_model_name_or_path) text = "央广网北京2月23日消息 据中国地震台网正式测定,2月23日8时37分在塔吉克斯坦发生7.2级地震,震源深度10公里,震中位于北纬37.98度,东经73.29度,距我国边境线最近约82公里,地震造成新疆喀什等地震感强烈。" entity = "塔吉克斯坦地震" relation = "震源位置" predictions, topk_predictions = hugie.request(text, entity, relation=relation) print("entity:{}, relation:{}".format(entity, relation)) print("predictions:\n{}".format(predictions)) print("topk_predictions:\n{}".format(predictions)) print("\n\n") """ # 事件信息输出结果: entity:塔吉克斯坦地震, relation:震源位置 predictions: {0: ['10公里', '距我国边境线最近约82公里', '北纬37.98度,东经73.29度', '北纬37.98度,东经73.29度,距我国边境线最近约82公里']} topk_predictions: {0: [{'answer': '10公里', 'prob': 0.9895901083946228, 'pos': [(80, 84)]}, {'answer': '距我国边境线最近约82公里', 'prob': 0.8584909439086914, 'pos': [(107, 120)]}, {'answer': '北纬37.98度,东经73.29度', 'prob': 0.7202121615409851, 'pos': [(89, 106)]}, {'answer': '北纬37.98度,东经73.29度,距我国边境线最近约82公里', 'prob': 0.11628123372793198, 'pos': [(89, 120)]}]} """ entity = "塔吉克斯坦地震" relation = "时间" predictions, topk_predictions = hugie.request(text, entity, relation=relation) print("entity:{}, relation:{}".format(entity, relation)) print("predictions:\n{}".format(predictions)) print("topk_predictions:\n{}".format(predictions)) print("\n\n") """ # 事件信息输出结果: entity:塔吉克斯坦地震, relation:时间 predictions: {0: ['2月23日8时37分']} topk_predictions: {0: [{'answer': '2月23日8时37分', 'prob': 0.9999995231628418, 'pos': [(49, 59)]}]} """ ``` --- 欢迎使用统一NLP开发框架——HugNLP,GitHub地址:[https://github.com/wjn1996/HugNLP](https://github.com/wjn1996/HugNLP)
LowRAs/nedLoRa
LowRAs
2023-02-23T07:10:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T04:32:12Z
--- license: creativeml-openrail-m ---
smartbotfactory/dqn-SpaceInvadersNoFrameskip-v4
smartbotfactory
2023-02-23T07:00:16Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T12:25:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 558.00 +/- 101.42 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga smartbotfactory ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
DesignOrder/ppo-LunerLander-v2
DesignOrder
2023-02-23T06:53:37Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T06:53:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 225.01 +/- 88.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eichiuehara/distilroberta-base-finetuned-wikitext2
eichiuehara
2023-02-23T06:49:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-23T00:59:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0852 | 1.0 | 2406 | 1.9225 | | 1.993 | 2.0 | 4812 | 1.8837 | | 1.9616 | 3.0 | 7218 | 1.8234 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
LowRAs/realisticvisionLoRa
LowRAs
2023-02-23T06:44:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T04:33:09Z
--- license: creativeml-openrail-m ---
Ryukijano/Reinforce_pixel_copter_normal
Ryukijano
2023-02-23T06:10:06Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T05:45:49Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_pixel_copter_normal results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 11.90 +/- 11.23 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ongknsro/neko-classifier
ongknsro
2023-02-23T06:06:12Z
0
0
null
[ "image-classification", "en", "license:gpl-3.0", "region:us" ]
image-classification
2023-01-24T18:17:16Z
--- language: - en metrics: - accuracy pipeline_tag: image-classification license: gpl-3.0 --- ### This repo will host all iterations of models from our neko-classifier project.
Airic/Kenshi
Airic
2023-02-23T06:03:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T05:55:04Z
--- license: creativeml-openrail-m ---
evincent18/distilbert-base-uncased-finetuned-imdb
evincent18
2023-02-23T06:00:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-23T05:52:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Brain22/ppo-SnowballTarget
Brain22
2023-02-23T05:54:06Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T05:54:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Brain22/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kevinscaria/ate_tk-instruct-base-def-pos-laptops
kevinscaria
2023-02-23T05:23:16Z
26
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "NLP", "dataset:Yaxin/SemEval2014Task4Raw", "arxiv:2302.08624", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T05:07:38Z
--- license: mit tags: - NLP datasets: - Yaxin/SemEval2014Task4Raw metrics: - f1 - precision - recall pipeline_tag: text2text-generation --- # ate_tk-instruct-base-def-pos-laptops This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form: - definition + 2 positive examples The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the laptops domains.** The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be found [here](https://github.com/kevinscaria/InstructABSA). For the ATE subtask, this model is the current SOTA. ## Training data InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews from laptops and restaurant domains and their corresponding aspect term and polarity labels. ### BibTeX entry and citation info If you use this model in your work, please cite the following paper: ```bibtex @inproceedings{Scaria2023InstructABSAIL, title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis}, author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral}, year={2023} } ```
kevinscaria/ate_tk-instruct-base-def-pos-combined
kevinscaria
2023-02-23T05:22:52Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "NLP", "dataset:Yaxin/SemEval2014Task4Raw", "arxiv:2302.08624", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T04:59:01Z
--- license: mit tags: - NLP datasets: - Yaxin/SemEval2014Task4Raw metrics: - f1 - precision - recall pipeline_tag: text2text-generation --- # ate_tk-instruct-base-def-pos-combined This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form: - definition + 2 positive examples The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from both laptops and restaurants domains.** The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be found [here](https://github.com/kevinscaria/InstructABSA). For the ATE subtask, this model is the current SOTA. ## Training data InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews from laptops and restaurant domains and their corresponding aspect term and polarity labels. ### BibTeX entry and citation info If you use this model in your work, please cite the following paper: ```bibtex @inproceedings{Scaria2023InstructABSAIL, title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis}, author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral}, year={2023} } ```
LowRAs/mfbaseLoRA
LowRAs
2023-02-23T05:19:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T04:34:14Z
--- license: creativeml-openrail-m ---
Manishkalra/finetuning-movie-sentiment-model-9000-samples
Manishkalra
2023-02-23T05:09:34Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-23T11:33:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-movie-sentiment-model-9000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9177777777777778 - name: F1 type: f1 value: 0.9155251141552511 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-movie-sentiment-model-9000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4040 - Accuracy: 0.9178 - F1: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
MarcusLee/bert-finetuned-ner
MarcusLee
2023-02-23T04:33:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-23T04:11:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9387958202023553 - name: Recall type: recall value: 0.9525412319084483 - name: F1 type: f1 value: 0.9456185782307241 - name: Accuracy type: accuracy value: 0.9870783540354389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9388 - Recall: 0.9525 - F1: 0.9456 - Accuracy: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0836 | 1.0 | 1756 | 0.0650 | 0.9214 | 0.9355 | 0.9284 | 0.9822 | | 0.0347 | 2.0 | 3512 | 0.0619 | 0.9238 | 0.9465 | 0.9350 | 0.9856 | | 0.017 | 3.0 | 5268 | 0.0592 | 0.9388 | 0.9525 | 0.9456 | 0.9871 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
SpicyDimsum/distilbert-base-uncased-finetuned-emotion
SpicyDimsum
2023-02-23T04:26:43Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T12:02:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9243309432017658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.9245 - F1: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8443 | 1.0 | 250 | 0.3310 | 0.901 | 0.8961 | | 0.2552 | 2.0 | 500 | 0.2206 | 0.9245 | 0.9243 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cpu - Datasets 2.9.0 - Tokenizers 0.13.2
LowRAs/babesLoRA
LowRAs
2023-02-23T04:10:37Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T03:52:05Z
--- license: creativeml-openrail-m ---
matt-guay/a2c-AntBulletEnv-v0
matt-guay
2023-02-23T04:06:19Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T08:21:57Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2990.83 +/- 22.47 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dp66/ppo-LunarLander-v2
dp66
2023-02-23T03:56:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T03:56:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.84 +/- 20.69 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
robotman0/poca-SoccerTwos
robotman0
2023-02-23T02:27:34Z
31
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T02:27:26Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: robotman0/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NielsPeng/sd-class-butterflies-32
NielsPeng
2023-02-23T02:04:10Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-23T02:03:48Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('NielsPeng/sd-class-butterflies-32') image = pipeline().images[0] image ```
duongkstn/poca-SoccerTwos
duongkstn
2023-02-23T01:43:19Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T01:43:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Lakoc/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Jezabel7/Nana1
Jezabel7
2023-02-23T01:35:23Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-02-23T01:32:09Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [optional] [More Information Needed] ### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> ### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
MBARKI/layoutlm-funsd
MBARKI
2023-02-23T01:09:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "dataset:funsd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-12T23:48:21Z
--- tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6845 - Answer: {'precision': 0.6932907348242812, 'recall': 0.8046971569839307, 'f1': 0.7448512585812357, 'number': 809} - Header: {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} - Question: {'precision': 0.7827225130890052, 'recall': 0.8422535211267606, 'f1': 0.8113975576662144, 'number': 1065} - Overall Precision: 0.7199 - Overall Recall: 0.7958 - Overall F1: 0.7560 - Overall Accuracy: 0.8087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.7948 | 1.0 | 10 | 1.5982 | {'precision': 0.019115890083632018, 'recall': 0.019777503090234856, 'f1': 0.01944106925880923, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1559202813599062, 'recall': 0.12488262910798122, 'f1': 0.1386861313868613, 'number': 1065} | 0.0882 | 0.0748 | 0.0809 | 0.3666 | | 1.4548 | 2.0 | 20 | 1.2137 | {'precision': 0.18571428571428572, 'recall': 0.19283065512978986, 'f1': 0.18920557913887204, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065} | 0.3758 | 0.3954 | 0.3853 | 0.6060 | | 1.0759 | 3.0 | 30 | 0.9074 | {'precision': 0.45133689839572194, 'recall': 0.5216316440049443, 'f1': 0.48394495412844035, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6371453138435081, 'recall': 0.6957746478873239, 'f1': 0.6651705565529622, 'number': 1065} | 0.5491 | 0.5835 | 0.5658 | 0.7138 | | 0.818 | 4.0 | 40 | 0.7636 | {'precision': 0.601010101010101, 'recall': 0.7354758961681088, 'f1': 0.6614785992217899, 'number': 809} | {'precision': 0.22, 'recall': 0.09243697478991597, 'f1': 0.13017751479289943, 'number': 119} | {'precision': 0.6860670194003528, 'recall': 0.7305164319248826, 'f1': 0.707594361073215, 'number': 1065} | 0.6366 | 0.6944 | 0.6643 | 0.7580 | | 0.6744 | 5.0 | 50 | 0.6948 | {'precision': 0.6172106824925816, 'recall': 0.7713226205191595, 'f1': 0.6857142857142857, 'number': 809} | {'precision': 0.2608695652173913, 'recall': 0.15126050420168066, 'f1': 0.19148936170212766, 'number': 119} | {'precision': 0.7063758389261745, 'recall': 0.7906103286384977, 'f1': 0.7461231723526807, 'number': 1065} | 0.6532 | 0.7446 | 0.6959 | 0.7803 | | 0.5678 | 6.0 | 60 | 0.6772 | {'precision': 0.6684100418410042, 'recall': 0.7898640296662547, 'f1': 0.7240793201133144, 'number': 809} | {'precision': 0.32857142857142857, 'recall': 0.19327731092436976, 'f1': 0.2433862433862434, 'number': 119} | {'precision': 0.7155309033280507, 'recall': 0.847887323943662, 'f1': 0.7761065749892565, 'number': 1065} | 0.6840 | 0.7852 | 0.7311 | 0.7902 | | 0.4886 | 7.0 | 70 | 0.6596 | {'precision': 0.6836518046709129, 'recall': 0.796044499381953, 'f1': 0.7355796687607081, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.2184873949579832, 'f1': 0.2561576354679803, 'number': 119} | {'precision': 0.75, 'recall': 0.8422535211267606, 'f1': 0.793454223794781, 'number': 1065} | 0.7052 | 0.7863 | 0.7435 | 0.7931 | | 0.4432 | 8.0 | 80 | 0.6525 | {'precision': 0.6792849631966351, 'recall': 0.7985166872682324, 'f1': 0.734090909090909, 'number': 809} | {'precision': 0.2736842105263158, 'recall': 0.2184873949579832, 'f1': 0.2429906542056075, 'number': 119} | {'precision': 0.7472984206151289, 'recall': 0.844131455399061, 'f1': 0.7927689594356261, 'number': 1065} | 0.6985 | 0.7883 | 0.7407 | 0.7965 | | 0.3961 | 9.0 | 90 | 0.6515 | {'precision': 0.6940540540540541, 'recall': 0.7935723114956736, 'f1': 0.740484429065744, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7613344739093242, 'recall': 0.8356807511737089, 'f1': 0.7967770814682185, 'number': 1065} | 0.7097 | 0.7837 | 0.7449 | 0.8019 | | 0.3531 | 10.0 | 100 | 0.6628 | {'precision': 0.697452229299363, 'recall': 0.8121137206427689, 'f1': 0.750428326670474, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} | {'precision': 0.7577276524644946, 'recall': 0.8516431924882629, 'f1': 0.801945181255526, 'number': 1065} | 0.7103 | 0.8008 | 0.7528 | 0.8034 | | 0.3201 | 11.0 | 110 | 0.6678 | {'precision': 0.6915005246589717, 'recall': 0.8145859085290482, 'f1': 0.7480136208853576, 'number': 809} | {'precision': 0.2909090909090909, 'recall': 0.2689075630252101, 'f1': 0.2794759825327511, 'number': 119} | {'precision': 0.7679794520547946, 'recall': 0.8422535211267606, 'f1': 0.8034034930586654, 'number': 1065} | 0.7118 | 0.7968 | 0.7519 | 0.8071 | | 0.3055 | 12.0 | 120 | 0.6760 | {'precision': 0.6869747899159664, 'recall': 0.8084054388133498, 'f1': 0.7427597955706984, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7146 | 0.7928 | 0.7517 | 0.8047 | | 0.29 | 13.0 | 130 | 0.6844 | {'precision': 0.7013963480128894, 'recall': 0.8071693448702101, 'f1': 0.7505747126436783, 'number': 809} | {'precision': 0.28346456692913385, 'recall': 0.3025210084033613, 'f1': 0.2926829268292683, 'number': 119} | {'precision': 0.7771084337349398, 'recall': 0.847887323943662, 'f1': 0.8109564436461607, 'number': 1065} | 0.7171 | 0.7988 | 0.7558 | 0.8041 | | 0.2797 | 14.0 | 140 | 0.6841 | {'precision': 0.6956055734190782, 'recall': 0.8022249690976514, 'f1': 0.7451205510907002, 'number': 809} | {'precision': 0.3064516129032258, 'recall': 0.31932773109243695, 'f1': 0.31275720164609055, 'number': 119} | {'precision': 0.7750865051903114, 'recall': 0.8413145539906103, 'f1': 0.8068437640702386, 'number': 1065} | 0.7153 | 0.7943 | 0.7527 | 0.8070 | | 0.2733 | 15.0 | 150 | 0.6845 | {'precision': 0.6932907348242812, 'recall': 0.8046971569839307, 'f1': 0.7448512585812357, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.7827225130890052, 'recall': 0.8422535211267606, 'f1': 0.8113975576662144, 'number': 1065} | 0.7199 | 0.7958 | 0.7560 | 0.8087 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights
marmolpen3
2023-02-23T00:08:17Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-23T00:08:04Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
ziadA123/trainModel_p1
ziadA123
2023-02-22T23:52:17Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:ziadA123/autotrain-data-test_prepreocessing2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T23:51:08Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - ziadA123/autotrain-data-test_prepreocessing2 co2_eq_emissions: emissions: 0.009254993806045749 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3672198102 - CO2 Emissions (in grams): 0.0093 ## Validation Metrics - Loss: 0.112 - Accuracy: 0.972 - Precision: 0.964 - Recall: 0.980 - AUC: 0.990 - F1: 0.972 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ziadA123/autotrain-test_prepreocessing2-3672198102 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ziadA123/autotrain-test_prepreocessing2-3672198102", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ziadA123/autotrain-test_prepreocessing2-3672198102", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T23:38:43Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:38:42Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 936050.00 +/- 36868.18 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:38:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:38:36Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 1002840.00 +/- 16739.90 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:33:34Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:33:33Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 1389.00 +/- 331.50 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:33:21Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Bowling-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:33:20Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 45.90 +/- 5.45 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:30:51Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BattleZone-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:30:50Z
--- tags: - BattleZone-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BattleZone-v5 type: BattleZone-v5 metrics: - type: mean_reward value: 32600.00 +/- 4200.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BattleZone-v5** This is a trained model of a PPO agent playing BattleZone-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BattleZone-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BattleZone-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:25:30Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BankHeist-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:25:29Z
--- tags: - BankHeist-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BankHeist-v5 type: BankHeist-v5 metrics: - type: mean_reward value: 1219.00 +/- 72.03 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BankHeist-v5** This is a trained model of a PPO agent playing BankHeist-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BankHeist-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BankHeist-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T23:24:22Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Alien-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:24:20Z
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 1673.00 +/- 591.90 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:22:02Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Asteroids-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:22:00Z
--- tags: - Asteroids-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Asteroids-v5 type: Asteroids-v5 metrics: - type: mean_reward value: 3409.00 +/- 664.39 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Asteroids-v5** This is a trained model of a PPO agent playing Asteroids-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asteroids-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Asteroids-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T23:20:43Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Asteroids-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:20:41Z
--- tags: - Asteroids-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Asteroids-v5 type: Asteroids-v5 metrics: - type: mean_reward value: 3370.00 +/- 645.55 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Asteroids-v5** This is a trained model of a PPO agent playing Asteroids-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asteroids-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Asteroids-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
alvin0220/bert-finetuned-ner
alvin0220
2023-02-22T23:11:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-22T22:48:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9480193882667558 - name: Recall type: recall value: 0.9545607539548974 - name: F1 type: f1 value: 0.9512788259958073 - name: Accuracy type: accuracy value: 0.9917448697480628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0400 - Precision: 0.9480 - Recall: 0.9546 - F1: 0.9513 - Accuracy: 0.9917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0529 | 1.0 | 1756 | 0.0418 | 0.9390 | 0.9423 | 0.9406 | 0.9901 | | 0.0197 | 2.0 | 3512 | 0.0436 | 0.9338 | 0.9493 | 0.9415 | 0.9904 | | 0.0109 | 3.0 | 5268 | 0.0400 | 0.9480 | 0.9546 | 0.9513 | 0.9917 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:11:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "VideoPinball-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:11:17Z
--- tags: - VideoPinball-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: VideoPinball-v5 type: VideoPinball-v5 metrics: - type: mean_reward value: 93837.10 +/- 88895.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:10:41Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Zaxxon-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:10:40Z
--- tags: - Zaxxon-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Zaxxon-v5 type: Zaxxon-v5 metrics: - type: mean_reward value: 16140.00 +/- 4132.60 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:10:31Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "VideoPinball-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:10:30Z
--- tags: - VideoPinball-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: VideoPinball-v5 type: VideoPinball-v5 metrics: - type: mean_reward value: 75071.70 +/- 107690.14 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T23:10:21Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Zaxxon-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:10:20Z
--- tags: - Zaxxon-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Zaxxon-v5 type: Zaxxon-v5 metrics: - type: mean_reward value: 20340.00 +/- 3183.46 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
baz08/crypto-Bert-test
baz08
2023-02-22T23:07:51Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T20:54:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: crypto-Bert-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # crypto-Bert-test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7496 - Train Accuracy: 0.6774 - Validation Loss: 0.9437 - Validation Accuracy: 0.6640 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 1.0165 | 0.4908 | 0.9343 | 0.6255 | 0 | | 0.7496 | 0.6774 | 0.9437 | 0.6640 | 1 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.0 - Tokenizers 0.13.2
cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:07:20Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "YarsRevenge-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:07:18Z
--- tags: - YarsRevenge-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: YarsRevenge-v5 type: YarsRevenge-v5 metrics: - type: mean_reward value: 75440.50 +/- 9320.18 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **YarsRevenge-v5** This is a trained model of a PPO agent playing YarsRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id YarsRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'YarsRevenge-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:04:26Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "WizardOfWor-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:04:25Z
--- tags: - WizardOfWor-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: WizardOfWor-v5 type: WizardOfWor-v5 metrics: - type: mean_reward value: 10170.00 +/- 7145.08 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T23:02:15Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "WizardOfWor-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:02:13Z
--- tags: - WizardOfWor-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: WizardOfWor-v5 type: WizardOfWor-v5 metrics: - type: mean_reward value: 11680.00 +/- 5515.94 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **WizardOfWor-v5** This is a trained model of a PPO agent playing WizardOfWor-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id WizardOfWor-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'WizardOfWor-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:02:00Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Venture-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:01:59Z
--- tags: - Venture-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Venture-v5 type: Venture-v5 metrics: - type: mean_reward value: 1030.00 +/- 449.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T23:00:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Tutankham-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:00:35Z
--- tags: - Tutankham-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tutankham-v5 type: Tutankham-v5 metrics: - type: mean_reward value: 216.80 +/- 9.24 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T23:00:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Tutankham-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T23:00:35Z
--- tags: - Tutankham-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tutankham-v5 type: Tutankham-v5 metrics: - type: mean_reward value: 232.90 +/- 6.32 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:59:28Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "TimePilot-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:59:27Z
--- tags: - TimePilot-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TimePilot-v5 type: TimePilot-v5 metrics: - type: mean_reward value: 11140.00 +/- 2309.20 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **TimePilot-v5** This is a trained model of a PPO agent playing TimePilot-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id TimePilot-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'TimePilot-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:58:33Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "TimePilot-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:58:32Z
--- tags: - TimePilot-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TimePilot-v5 type: TimePilot-v5 metrics: - type: mean_reward value: 11540.00 +/- 3191.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **TimePilot-v5** This is a trained model of a PPO agent playing TimePilot-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id TimePilot-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'TimePilot-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:58:14Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Surround-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:58:13Z
--- tags: - Surround-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Surround-v5 type: Surround-v5 metrics: - type: mean_reward value: -2.70 +/- 4.08 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Surround-v5** This is a trained model of a PPO agent playing Surround-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Surround-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:57:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Surround-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:57:36Z
--- tags: - Surround-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Surround-v5 type: Surround-v5 metrics: - type: mean_reward value: -4.20 +/- 2.96 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Surround-v5** This is a trained model of a PPO agent playing Surround-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Surround-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:57:21Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Surround-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:57:20Z
--- tags: - Surround-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Surround-v5 type: Surround-v5 metrics: - type: mean_reward value: -1.00 +/- 4.73 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Surround-v5** This is a trained model of a PPO agent playing Surround-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Surround-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:55:32Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "StarGunner-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:55:31Z
--- tags: - StarGunner-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: StarGunner-v5 type: StarGunner-v5 metrics: - type: mean_reward value: 72230.00 +/- 8061.02 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **StarGunner-v5** This is a trained model of a PPO agent playing StarGunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id StarGunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'StarGunner-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:55:24Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "StarGunner-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:55:22Z
--- tags: - StarGunner-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: StarGunner-v5 type: StarGunner-v5 metrics: - type: mean_reward value: 65590.00 +/- 3888.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **StarGunner-v5** This is a trained model of a PPO agent playing StarGunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id StarGunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'StarGunner-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:55:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "SpaceInvaders-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:55:06Z
--- tags: - SpaceInvaders-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvaders-v5 type: SpaceInvaders-v5 metrics: - type: mean_reward value: 2428.50 +/- 1600.58 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5** This is a trained model of a PPO agent playing SpaceInvaders-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id SpaceInvaders-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'SpaceInvaders-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
UMUTeam/catalan_capitalization_punctuation_restoration
UMUTeam
2023-02-22T22:49:01Z
55
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "ca", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-20T17:00:38Z
--- widget: - text: em dic javier i com et dius example_title: Example 1 - text: bon nadal example_title: Example 2 - text: fresca neta i pura així és l'aigua de font example_title: Example 3 language: - ca ---
cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:45:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Solaris-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:45:40Z
--- tags: - Solaris-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Solaris-v5 type: Solaris-v5 metrics: - type: mean_reward value: 1376.00 +/- 920.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Solaris-v5** This is a trained model of a PPO agent playing Solaris-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Solaris-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Solaris-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:44:21Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Robotank-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:44:20Z
--- tags: - Robotank-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Robotank-v5 type: Robotank-v5 metrics: - type: mean_reward value: 35.70 +/- 7.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Robotank-v5** This is a trained model of a PPO agent playing Robotank-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Robotank-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:44:13Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Robotank-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:44:12Z
--- tags: - Robotank-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Robotank-v5 type: Robotank-v5 metrics: - type: mean_reward value: 32.30 +/- 4.78 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Robotank-v5** This is a trained model of a PPO agent playing Robotank-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Robotank-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:43:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Robotank-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:43:55Z
--- tags: - Robotank-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Robotank-v5 type: Robotank-v5 metrics: - type: mean_reward value: 30.90 +/- 7.52 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Robotank-v5** This is a trained model of a PPO agent playing Robotank-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Robotank-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
spacemanidol/flan-t5-base-3-6-cnndm
spacemanidol
2023-02-22T22:42:25Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-22T22:32:11Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: base-3-6-t results: - task: name: Summarization type: summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 41.3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-3-6-t This model is a fine-tuned version of [asy/cnndm/base-3-6/](https://huggingface.co/asy/cnndm/base-3-6/) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.4716 - Rouge1: 41.3 - Rouge2: 18.8544 - Rougel: 29.1626 - Rougelsum: 38.4368 - Gen Len: 74.7608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:39:23Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Riverraid-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:39:21Z
--- tags: - Riverraid-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Riverraid-v5 type: Riverraid-v5 metrics: - type: mean_reward value: 9542.00 +/- 323.63 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Riverraid-v5** This is a trained model of a PPO agent playing Riverraid-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Riverraid-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Riverraid-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:38:45Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "RoadRunner-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:38:44Z
--- tags: - RoadRunner-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: RoadRunner-v5 type: RoadRunner-v5 metrics: - type: mean_reward value: 43610.00 +/- 17602.01 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **RoadRunner-v5** This is a trained model of a PPO agent playing RoadRunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id RoadRunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id RoadRunner-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'RoadRunner-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:38:35Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Riverraid-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:38:34Z
--- tags: - Riverraid-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Riverraid-v5 type: Riverraid-v5 metrics: - type: mean_reward value: 15081.00 +/- 1308.48 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Riverraid-v5** This is a trained model of a PPO agent playing Riverraid-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Riverraid-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Riverraid-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:38:11Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PrivateEye-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:38:10Z
--- tags: - PrivateEye-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PrivateEye-v5 type: PrivateEye-v5 metrics: - type: mean_reward value: 60.00 +/- 48.99 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **PrivateEye-v5** This is a trained model of a PPO agent playing PrivateEye-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'PrivateEye-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:37:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PrivateEye-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:37:53Z
--- tags: - PrivateEye-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PrivateEye-v5 type: PrivateEye-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **PrivateEye-v5** This is a trained model of a PPO agent playing PrivateEye-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'PrivateEye-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:37:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Skiing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:37:36Z
--- tags: - Skiing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Skiing-v5 type: Skiing-v5 metrics: - type: mean_reward value: -8987.20 +/- 22.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Skiing-v5** This is a trained model of a PPO agent playing Skiing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Skiing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Skiing-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:37:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PrivateEye-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:37:35Z
--- tags: - PrivateEye-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PrivateEye-v5 type: PrivateEye-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **PrivateEye-v5** This is a trained model of a PPO agent playing PrivateEye-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'PrivateEye-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:36:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Seaquest-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:36:47Z
--- tags: - Seaquest-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Seaquest-v5 type: Seaquest-v5 metrics: - type: mean_reward value: 1838.00 +/- 6.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Seaquest-v5** This is a trained model of a PPO agent playing Seaquest-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Seaquest-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Seaquest-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:36:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Seaquest-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:36:36Z
--- tags: - Seaquest-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Seaquest-v5 type: Seaquest-v5 metrics: - type: mean_reward value: 960.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Seaquest-v5** This is a trained model of a PPO agent playing Seaquest-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Seaquest-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Seaquest-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:36:23Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Qbert-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:36:21Z
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 16985.00 +/- 2394.48 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:35:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pitfall-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:35:03Z
--- tags: - Pitfall-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pitfall-v5 type: Pitfall-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pitfall-v5** This is a trained model of a PPO agent playing Pitfall-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Pitfall-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Pitfall-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:34:00Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "NameThisGame-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:33:59Z
--- tags: - NameThisGame-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: NameThisGame-v5 type: NameThisGame-v5 metrics: - type: mean_reward value: 11001.00 +/- 2712.99 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:32:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:32:17Z
--- tags: - Pong-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v5 type: Pong-v5 metrics: - type: mean_reward value: 20.80 +/- 0.40 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pong-v5** This is a trained model of a PPO agent playing Pong-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Pong-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pong-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Pong-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Andrei95/autotrain-jobberta-20-3670698025
Andrei95
2023-02-22T22:23:40Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain", "unk", "dataset:Andrei95/autotrain-data-jobberta-20", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-22T22:19:52Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Andrei95/autotrain-data-jobberta-20 co2_eq_emissions: emissions: 0.03057606391853882 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 3670698025 - CO2 Emissions (in grams): 0.0306 ## Validation Metrics - Loss: 0.235 - Accuracy: 0.917 - Precision: 0.602 - Recall: 0.703 - F1: 0.649 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Andrei95/autotrain-jobberta-20-3670698025 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Andrei95/autotrain-jobberta-20-3670698025", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Andrei95/autotrain-jobberta-20-3670698025", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
happycoding/a2c-PandaReachDense-v2
happycoding
2023-02-22T22:21:07Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-17T20:27:39Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -9.93 +/- 2.45 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:13:46Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DoubleDunk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:13:45Z
--- tags: - DoubleDunk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DoubleDunk-v5 type: DoubleDunk-v5 metrics: - type: mean_reward value: 0.00 +/- 1.55 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DoubleDunk-v5** This is a trained model of a PPO agent playing DoubleDunk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DoubleDunk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'DoubleDunk-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:13:34Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Enduro-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:13:33Z
--- tags: - Enduro-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Enduro-v5 type: Enduro-v5 metrics: - type: mean_reward value: 1687.20 +/- 420.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Enduro-v5** This is a trained model of a PPO agent playing Enduro-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Enduro-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Enduro-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cxia47/bert-finetuned-ner
cxia47
2023-02-22T22:13:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-21T22:41:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9344479390829333 - name: Recall type: recall value: 0.9500168293503871 - name: F1 type: f1 value: 0.9421680714345323 - name: Accuracy type: accuracy value: 0.9866809913463237 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9344 - Recall: 0.9500 - F1: 0.9422 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0686 | 0.9192 | 0.9345 | 0.9268 | 0.9820 | | 0.0333 | 2.0 | 3512 | 0.0626 | 0.9250 | 0.9485 | 0.9366 | 0.9859 | | 0.0179 | 3.0 | 5268 | 0.0612 | 0.9344 | 0.9500 | 0.9422 | 0.9867 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:08:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DemonAttack-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:08:54Z
--- tags: - DemonAttack-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DemonAttack-v5 type: DemonAttack-v5 metrics: - type: mean_reward value: 115313.00 +/- 3826.43 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DemonAttack-v5** This is a trained model of a PPO agent playing DemonAttack-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DemonAttack-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'DemonAttack-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:08:43Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Freeway-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:08:41Z
--- tags: - Freeway-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Freeway-v5 type: Freeway-v5 metrics: - type: mean_reward value: 22.20 +/- 0.98 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:08:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Freeway-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:08:35Z
--- tags: - Freeway-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Freeway-v5 type: Freeway-v5 metrics: - type: mean_reward value: 22.20 +/- 1.08 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:08:22Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "FishingDerby-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:08:20Z
--- tags: - FishingDerby-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FishingDerby-v5 type: FishingDerby-v5 metrics: - type: mean_reward value: 29.30 +/- 7.67 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **FishingDerby-v5** This is a trained model of a PPO agent playing FishingDerby-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id FishingDerby-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'FishingDerby-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:04:08Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:04:06Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 704.30 +/- 190.04 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:04:05Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:04:03Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 568.20 +/- 203.95 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:03:28Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:03:27Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 723.50 +/- 203.36 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:02:19Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Frostbite-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:02:17Z
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 4538.00 +/- 1541.88 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T22:01:00Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:00:59Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 5990.00 +/- 3176.62 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T22:00:57Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:00:55Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 6170.00 +/- 1495.36 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T22:00:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T22:00:53Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 6080.00 +/- 2284.64 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-22T21:58:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Defender-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T21:58:46Z
--- tags: - Defender-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Defender-v5 type: Defender-v5 metrics: - type: mean_reward value: 61685.00 +/- 9316.76 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T21:58:44Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Defender-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T21:58:43Z
--- tags: - Defender-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Defender-v5 type: Defender-v5 metrics: - type: mean_reward value: 52305.00 +/- 4569.65 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-22T21:58:05Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CrazyClimber-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T21:58:04Z
--- tags: - CrazyClimber-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CrazyClimber-v5 type: CrazyClimber-v5 metrics: - type: mean_reward value: 127550.00 +/- 14382.02 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **CrazyClimber-v5** This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id CrazyClimber-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'CrazyClimber-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T21:57:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CrazyClimber-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T21:57:54Z
--- tags: - CrazyClimber-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CrazyClimber-v5 type: CrazyClimber-v5 metrics: - type: mean_reward value: 121810.00 +/- 11216.19 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **CrazyClimber-v5** This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id CrazyClimber-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'CrazyClimber-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-22T21:57:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Centipede-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T21:57:47Z
--- tags: - Centipede-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Centipede-v5 type: Centipede-v5 metrics: - type: mean_reward value: 5697.20 +/- 2282.68 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Centipede-v5** This is a trained model of a PPO agent playing Centipede-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Centipede-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Centipede-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```