modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 12:28:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 12:28:30
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
sgoodfriend/ppo-procgen-coinrun-easy
|
sgoodfriend
| 2023-02-23T07:46:46Z | 0 | 0 |
rl-algo-impls
|
[
"rl-algo-impls",
"procgen-coinrun-easy",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-23T07:46:42Z |
---
library_name: rl-algo-impls
tags:
- procgen-coinrun-easy
- ppo
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 9.06 +/- 2.91
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: procgen-coinrun-easy
type: procgen-coinrun-easy
---
# **PPO** Agent playing **procgen-coinrun-easy**
This is a trained model of a **PPO** agent playing **procgen-coinrun-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb.
## Training Results
This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
| algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
|:-------|:--------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------|
| ppo | coinrun | 1 | 9.0625 | 2.91481 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/6vwst93s) |
| ppo | coinrun | 2 | 9.0625 | 2.91481 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/vmjd3amn) |
| ppo | coinrun | 3 | 8.125 | 3.90312 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/3sqxjicx) |
### Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to.
By default training goes to a rl-algo-impls project while benchmarks go to
rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best
models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run `wandb
login`.
## Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest
implementation could be sufficiently different to not be able to reproduce similar
results. You might need to checkout the commit the agent was trained on:
[21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a).
```
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/vmjd3amn
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb)
notebook.
## Training
If you want the highest chance to reproduce these results, you'll want to checkout the
commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While
training is deterministic, different hardware will give different results.
```
python train.py --algo ppo --env procgen-coinrun-easy --seed 2
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb)
notebook.
## Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda
Labs instance. In a Lambda Labs instance terminal:
```
git clone git@github.com:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
```
### Alternative: Google Colab Pro+
As an alternative,
[colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb),
can be used. However, this requires a Google Colab Pro+ subscription and running across
4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
## Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very
close and has some additional data:
```
algo: ppo
algo_hyperparams:
batch_size: 2048
clip_range: 0.2
clip_range_vf: 0.2
ent_coef: 0.01
gae_lambda: 0.95
gamma: 0.999
learning_rate: 0.0005
n_epochs: 3
n_steps: 256
vf_coef: 0.5
env: procgen-coinrun-easy
env_hyperparams:
is_procgen: true
make_kwargs:
distribution_mode: easy
n_envs: 64
normalize: true
env_id: coinrun
eval_params:
deterministic: false
ignore_first_episode: true
n_timesteps: 25000000
policy_hyperparams:
activation_fn: relu
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
init_layers_orthogonal: true
seed: 2
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_21ee1ab
- host_138-2-238-100
```
|
LowRAs/experienceLoRA
|
LowRAs
| 2023-02-23T07:44:43Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T07:28:07Z |
---
license: creativeml-openrail-m
---
|
trinket2023/BERTModelQA2
|
trinket2023
| 2023-02-23T07:43:21Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-23T06:24:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: BERTModelQA2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTModelQA2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1894
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7749 | 1.0 | 563 | 1.6499 |
| 1.3956 | 2.0 | 1126 | 1.4280 |
| 1.0094 | 3.0 | 1689 | 1.4128 |
| 0.7522 | 4.0 | 2252 | 1.5635 |
| 0.5826 | 5.0 | 2815 | 1.6302 |
| 0.4356 | 6.0 | 3378 | 1.7976 |
| 0.3399 | 7.0 | 3941 | 1.9001 |
| 0.2234 | 8.0 | 4504 | 2.0518 |
| 0.1806 | 9.0 | 5067 | 2.1244 |
| 0.1543 | 10.0 | 5630 | 2.1894 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
Kyanite/KNMD
|
Kyanite
| 2023-02-23T07:24:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T07:24:22Z |
---
license: creativeml-openrail-m
---
|
wjn1996/wjn1996-hugnlp-hugie-large-zh
|
wjn1996
| 2023-02-23T07:19:01Z | 5 | 7 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-02-23T02:55:41Z |
---
license: apache-2.0
---
## HugIE:基于MRC的Instruction-tuning的统一信息抽取框架
基本思想和优势:
- 构建Instruction模板,将实体识别和事件抽取统一为MRC形式;
- 采用Global Pointer训练抽取器;
- 只需少量代码即可实现事件抽取,获取实体名称,事件信息。
快速使用:
```python
from applications.information_extraction.HugIE.api_test import HugIEAPI
model_type = 'bert'
hugie_model_name_or_path = 'wjn1996/wjn1996-hugnlp-hugie-large-zh'
hugie = HugIEAPI('bert', hugie_model_name_or_path)
text = "央广网北京2月23日消息 据中国地震台网正式测定,2月23日8时37分在塔吉克斯坦发生7.2级地震,震源深度10公里,震中位于北纬37.98度,东经73.29度,距我国边境线最近约82公里,地震造成新疆喀什等地震感强烈。"
entity = "塔吉克斯坦地震"
relation = "震源位置"
predictions, topk_predictions = hugie.request(text, entity, relation=relation)
print("entity:{}, relation:{}".format(entity, relation))
print("predictions:\n{}".format(predictions))
print("topk_predictions:\n{}".format(predictions))
print("\n\n")
"""
# 事件信息输出结果:
entity:塔吉克斯坦地震, relation:震源位置
predictions:
{0: ['10公里', '距我国边境线最近约82公里', '北纬37.98度,东经73.29度', '北纬37.98度,东经73.29度,距我国边境线最近约82公里']}
topk_predictions:
{0: [{'answer': '10公里', 'prob': 0.9895901083946228, 'pos': [(80, 84)]}, {'answer': '距我国边境线最近约82公里', 'prob': 0.8584909439086914, 'pos': [(107, 120)]}, {'answer': '北纬37.98度,东经73.29度', 'prob': 0.7202121615409851, 'pos': [(89, 106)]}, {'answer': '北纬37.98度,东经73.29度,距我国边境线最近约82公里', 'prob': 0.11628123372793198, 'pos': [(89, 120)]}]}
"""
entity = "塔吉克斯坦地震"
relation = "时间"
predictions, topk_predictions = hugie.request(text, entity, relation=relation)
print("entity:{}, relation:{}".format(entity, relation))
print("predictions:\n{}".format(predictions))
print("topk_predictions:\n{}".format(predictions))
print("\n\n")
"""
# 事件信息输出结果:
entity:塔吉克斯坦地震, relation:时间
predictions:
{0: ['2月23日8时37分']}
topk_predictions:
{0: [{'answer': '2月23日8时37分', 'prob': 0.9999995231628418, 'pos': [(49, 59)]}]}
"""
```
---
欢迎使用统一NLP开发框架——HugNLP,GitHub地址:[https://github.com/wjn1996/HugNLP](https://github.com/wjn1996/HugNLP)
|
LowRAs/nedLoRa
|
LowRAs
| 2023-02-23T07:10:28Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T04:32:12Z |
---
license: creativeml-openrail-m
---
|
smartbotfactory/dqn-SpaceInvadersNoFrameskip-v4
|
smartbotfactory
| 2023-02-23T07:00:16Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T12:25:44Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 558.00 +/- 101.42
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga smartbotfactory
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
DesignOrder/ppo-LunerLander-v2
|
DesignOrder
| 2023-02-23T06:53:37Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-23T06:53:17Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 225.01 +/- 88.72
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
eichiuehara/distilroberta-base-finetuned-wikitext2
|
eichiuehara
| 2023-02-23T06:49:46Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-23T00:59:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0852 | 1.0 | 2406 | 1.9225 |
| 1.993 | 2.0 | 4812 | 1.8837 |
| 1.9616 | 3.0 | 7218 | 1.8234 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
LowRAs/realisticvisionLoRa
|
LowRAs
| 2023-02-23T06:44:32Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T04:33:09Z |
---
license: creativeml-openrail-m
---
|
Ryukijano/Reinforce_pixel_copter_normal
|
Ryukijano
| 2023-02-23T06:10:06Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-23T05:45:49Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce_pixel_copter_normal
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 11.90 +/- 11.23
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
ongknsro/neko-classifier
|
ongknsro
| 2023-02-23T06:06:12Z | 0 | 0 | null |
[
"image-classification",
"en",
"license:gpl-3.0",
"region:us"
] |
image-classification
| 2023-01-24T18:17:16Z |
---
language:
- en
metrics:
- accuracy
pipeline_tag: image-classification
license: gpl-3.0
---
### This repo will host all iterations of models from our neko-classifier project.
|
Airic/Kenshi
|
Airic
| 2023-02-23T06:03:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T05:55:04Z |
---
license: creativeml-openrail-m
---
|
evincent18/distilbert-base-uncased-finetuned-imdb
|
evincent18
| 2023-02-23T06:00:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-23T05:52:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4898 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
Brain22/ppo-SnowballTarget
|
Brain22
| 2023-02-23T05:54:06Z | 13 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-23T05:54:01Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: Brain22/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
kevinscaria/ate_tk-instruct-base-def-pos-laptops
|
kevinscaria
| 2023-02-23T05:23:16Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"NLP",
"dataset:Yaxin/SemEval2014Task4Raw",
"arxiv:2302.08624",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-23T05:07:38Z |
---
license: mit
tags:
- NLP
datasets:
- Yaxin/SemEval2014Task4Raw
metrics:
- f1
- precision
- recall
pipeline_tag: text2text-generation
---
# ate_tk-instruct-base-def-pos-laptops
This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form:
- definition + 2 positive examples
The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the laptops domains.**
The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be
found [here](https://github.com/kevinscaria/InstructABSA).
For the ATE subtask, this model is the current SOTA.
## Training data
InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews
from laptops and restaurant domains and their corresponding aspect term and polarity labels.
### BibTeX entry and citation info
If you use this model in your work, please cite the following paper:
```bibtex
@inproceedings{Scaria2023InstructABSAIL,
title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis},
author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral},
year={2023}
}
```
|
kevinscaria/ate_tk-instruct-base-def-pos-combined
|
kevinscaria
| 2023-02-23T05:22:52Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"NLP",
"dataset:Yaxin/SemEval2014Task4Raw",
"arxiv:2302.08624",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-23T04:59:01Z |
---
license: mit
tags:
- NLP
datasets:
- Yaxin/SemEval2014Task4Raw
metrics:
- f1
- precision
- recall
pipeline_tag: text2text-generation
---
# ate_tk-instruct-base-def-pos-combined
This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form:
- definition + 2 positive examples
The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from both laptops and restaurants domains.**
The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be
found [here](https://github.com/kevinscaria/InstructABSA).
For the ATE subtask, this model is the current SOTA.
## Training data
InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews
from laptops and restaurant domains and their corresponding aspect term and polarity labels.
### BibTeX entry and citation info
If you use this model in your work, please cite the following paper:
```bibtex
@inproceedings{Scaria2023InstructABSAIL,
title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis},
author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral},
year={2023}
}
```
|
LowRAs/mfbaseLoRA
|
LowRAs
| 2023-02-23T05:19:19Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T04:34:14Z |
---
license: creativeml-openrail-m
---
|
Manishkalra/finetuning-movie-sentiment-model-9000-samples
|
Manishkalra
| 2023-02-23T05:09:34Z | 23 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-23T11:33:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-movie-sentiment-model-9000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9177777777777778
- name: F1
type: f1
value: 0.9155251141552511
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-movie-sentiment-model-9000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4040
- Accuracy: 0.9178
- F1: 0.9155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|
MarcusLee/bert-finetuned-ner
|
MarcusLee
| 2023-02-23T04:33:28Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-23T04:11:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9387958202023553
- name: Recall
type: recall
value: 0.9525412319084483
- name: F1
type: f1
value: 0.9456185782307241
- name: Accuracy
type: accuracy
value: 0.9870783540354389
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0592
- Precision: 0.9388
- Recall: 0.9525
- F1: 0.9456
- Accuracy: 0.9871
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0836 | 1.0 | 1756 | 0.0650 | 0.9214 | 0.9355 | 0.9284 | 0.9822 |
| 0.0347 | 2.0 | 3512 | 0.0619 | 0.9238 | 0.9465 | 0.9350 | 0.9856 |
| 0.017 | 3.0 | 5268 | 0.0592 | 0.9388 | 0.9525 | 0.9456 | 0.9871 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
SpicyDimsum/distilbert-base-uncased-finetuned-emotion
|
SpicyDimsum
| 2023-02-23T04:26:43Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-22T12:02:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9245
- name: F1
type: f1
value: 0.9243309432017658
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2206
- Accuracy: 0.9245
- F1: 0.9243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8443 | 1.0 | 250 | 0.3310 | 0.901 | 0.8961 |
| 0.2552 | 2.0 | 500 | 0.2206 | 0.9245 | 0.9243 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cpu
- Datasets 2.9.0
- Tokenizers 0.13.2
|
LowRAs/babesLoRA
|
LowRAs
| 2023-02-23T04:10:37Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-23T03:52:05Z |
---
license: creativeml-openrail-m
---
|
matt-guay/a2c-AntBulletEnv-v0
|
matt-guay
| 2023-02-23T04:06:19Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T08:21:57Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 2990.83 +/- 22.47
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dp66/ppo-LunarLander-v2
|
dp66
| 2023-02-23T03:56:44Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-23T03:56:19Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 247.84 +/- 20.69
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
robotman0/poca-SoccerTwos
|
robotman0
| 2023-02-23T02:27:34Z | 31 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-23T02:27:26Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: robotman0/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
NielsPeng/sd-class-butterflies-32
|
NielsPeng
| 2023-02-23T02:04:10Z | 0 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-02-23T02:03:48Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('NielsPeng/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
duongkstn/poca-SoccerTwos
|
duongkstn
| 2023-02-23T01:43:19Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-23T01:43:13Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: Lakoc/poca-SoccerTwos-v2
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Jezabel7/Nana1
|
Jezabel7
| 2023-02-23T01:35:23Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"region:us"
] | null | 2023-02-23T01:32:09Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing [optional]
[More Information Needed]
### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
|
MBARKI/layoutlm-funsd
|
MBARKI
| 2023-02-23T01:09:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlm",
"token-classification",
"generated_from_trainer",
"dataset:funsd",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-12T23:48:21Z |
---
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6845
- Answer: {'precision': 0.6932907348242812, 'recall': 0.8046971569839307, 'f1': 0.7448512585812357, 'number': 809}
- Header: {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119}
- Question: {'precision': 0.7827225130890052, 'recall': 0.8422535211267606, 'f1': 0.8113975576662144, 'number': 1065}
- Overall Precision: 0.7199
- Overall Recall: 0.7958
- Overall F1: 0.7560
- Overall Accuracy: 0.8087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7948 | 1.0 | 10 | 1.5982 | {'precision': 0.019115890083632018, 'recall': 0.019777503090234856, 'f1': 0.01944106925880923, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1559202813599062, 'recall': 0.12488262910798122, 'f1': 0.1386861313868613, 'number': 1065} | 0.0882 | 0.0748 | 0.0809 | 0.3666 |
| 1.4548 | 2.0 | 20 | 1.2137 | {'precision': 0.18571428571428572, 'recall': 0.19283065512978986, 'f1': 0.18920557913887204, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065} | 0.3758 | 0.3954 | 0.3853 | 0.6060 |
| 1.0759 | 3.0 | 30 | 0.9074 | {'precision': 0.45133689839572194, 'recall': 0.5216316440049443, 'f1': 0.48394495412844035, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6371453138435081, 'recall': 0.6957746478873239, 'f1': 0.6651705565529622, 'number': 1065} | 0.5491 | 0.5835 | 0.5658 | 0.7138 |
| 0.818 | 4.0 | 40 | 0.7636 | {'precision': 0.601010101010101, 'recall': 0.7354758961681088, 'f1': 0.6614785992217899, 'number': 809} | {'precision': 0.22, 'recall': 0.09243697478991597, 'f1': 0.13017751479289943, 'number': 119} | {'precision': 0.6860670194003528, 'recall': 0.7305164319248826, 'f1': 0.707594361073215, 'number': 1065} | 0.6366 | 0.6944 | 0.6643 | 0.7580 |
| 0.6744 | 5.0 | 50 | 0.6948 | {'precision': 0.6172106824925816, 'recall': 0.7713226205191595, 'f1': 0.6857142857142857, 'number': 809} | {'precision': 0.2608695652173913, 'recall': 0.15126050420168066, 'f1': 0.19148936170212766, 'number': 119} | {'precision': 0.7063758389261745, 'recall': 0.7906103286384977, 'f1': 0.7461231723526807, 'number': 1065} | 0.6532 | 0.7446 | 0.6959 | 0.7803 |
| 0.5678 | 6.0 | 60 | 0.6772 | {'precision': 0.6684100418410042, 'recall': 0.7898640296662547, 'f1': 0.7240793201133144, 'number': 809} | {'precision': 0.32857142857142857, 'recall': 0.19327731092436976, 'f1': 0.2433862433862434, 'number': 119} | {'precision': 0.7155309033280507, 'recall': 0.847887323943662, 'f1': 0.7761065749892565, 'number': 1065} | 0.6840 | 0.7852 | 0.7311 | 0.7902 |
| 0.4886 | 7.0 | 70 | 0.6596 | {'precision': 0.6836518046709129, 'recall': 0.796044499381953, 'f1': 0.7355796687607081, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.2184873949579832, 'f1': 0.2561576354679803, 'number': 119} | {'precision': 0.75, 'recall': 0.8422535211267606, 'f1': 0.793454223794781, 'number': 1065} | 0.7052 | 0.7863 | 0.7435 | 0.7931 |
| 0.4432 | 8.0 | 80 | 0.6525 | {'precision': 0.6792849631966351, 'recall': 0.7985166872682324, 'f1': 0.734090909090909, 'number': 809} | {'precision': 0.2736842105263158, 'recall': 0.2184873949579832, 'f1': 0.2429906542056075, 'number': 119} | {'precision': 0.7472984206151289, 'recall': 0.844131455399061, 'f1': 0.7927689594356261, 'number': 1065} | 0.6985 | 0.7883 | 0.7407 | 0.7965 |
| 0.3961 | 9.0 | 90 | 0.6515 | {'precision': 0.6940540540540541, 'recall': 0.7935723114956736, 'f1': 0.740484429065744, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7613344739093242, 'recall': 0.8356807511737089, 'f1': 0.7967770814682185, 'number': 1065} | 0.7097 | 0.7837 | 0.7449 | 0.8019 |
| 0.3531 | 10.0 | 100 | 0.6628 | {'precision': 0.697452229299363, 'recall': 0.8121137206427689, 'f1': 0.750428326670474, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} | {'precision': 0.7577276524644946, 'recall': 0.8516431924882629, 'f1': 0.801945181255526, 'number': 1065} | 0.7103 | 0.8008 | 0.7528 | 0.8034 |
| 0.3201 | 11.0 | 110 | 0.6678 | {'precision': 0.6915005246589717, 'recall': 0.8145859085290482, 'f1': 0.7480136208853576, 'number': 809} | {'precision': 0.2909090909090909, 'recall': 0.2689075630252101, 'f1': 0.2794759825327511, 'number': 119} | {'precision': 0.7679794520547946, 'recall': 0.8422535211267606, 'f1': 0.8034034930586654, 'number': 1065} | 0.7118 | 0.7968 | 0.7519 | 0.8071 |
| 0.3055 | 12.0 | 120 | 0.6760 | {'precision': 0.6869747899159664, 'recall': 0.8084054388133498, 'f1': 0.7427597955706984, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7146 | 0.7928 | 0.7517 | 0.8047 |
| 0.29 | 13.0 | 130 | 0.6844 | {'precision': 0.7013963480128894, 'recall': 0.8071693448702101, 'f1': 0.7505747126436783, 'number': 809} | {'precision': 0.28346456692913385, 'recall': 0.3025210084033613, 'f1': 0.2926829268292683, 'number': 119} | {'precision': 0.7771084337349398, 'recall': 0.847887323943662, 'f1': 0.8109564436461607, 'number': 1065} | 0.7171 | 0.7988 | 0.7558 | 0.8041 |
| 0.2797 | 14.0 | 140 | 0.6841 | {'precision': 0.6956055734190782, 'recall': 0.8022249690976514, 'f1': 0.7451205510907002, 'number': 809} | {'precision': 0.3064516129032258, 'recall': 0.31932773109243695, 'f1': 0.31275720164609055, 'number': 119} | {'precision': 0.7750865051903114, 'recall': 0.8413145539906103, 'f1': 0.8068437640702386, 'number': 1065} | 0.7153 | 0.7943 | 0.7527 | 0.8070 |
| 0.2733 | 15.0 | 150 | 0.6845 | {'precision': 0.6932907348242812, 'recall': 0.8046971569839307, 'f1': 0.7448512585812357, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.7827225130890052, 'recall': 0.8422535211267606, 'f1': 0.8113975576662144, 'number': 1065} | 0.7199 | 0.7958 | 0.7560 | 0.8087 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights
|
marmolpen3
| 2023-02-23T00:08:17Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-23T00:08:04Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("marmolpen3/p-MiniLM-L3-v2-sla-obligations-rights")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
ziadA123/trainModel_p1
|
ziadA123
| 2023-02-22T23:52:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"unk",
"dataset:ziadA123/autotrain-data-test_prepreocessing2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-22T23:51:08Z |
---
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- ziadA123/autotrain-data-test_prepreocessing2
co2_eq_emissions:
emissions: 0.009254993806045749
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3672198102
- CO2 Emissions (in grams): 0.0093
## Validation Metrics
- Loss: 0.112
- Accuracy: 0.972
- Precision: 0.964
- Recall: 0.980
- AUC: 0.990
- F1: 0.972
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ziadA123/autotrain-test_prepreocessing2-3672198102
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ziadA123/autotrain-test_prepreocessing2-3672198102", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("ziadA123/autotrain-test_prepreocessing2-3672198102", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T23:38:43Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Atlantis-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:38:42Z |
---
tags:
- Atlantis-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Atlantis-v5
type: Atlantis-v5
metrics:
- type: mean_reward
value: 936050.00 +/- 36868.18
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Atlantis-v5**
This is a trained model of a PPO agent playing Atlantis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Atlantis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Atlantis-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:38:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Atlantis-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:38:36Z |
---
tags:
- Atlantis-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Atlantis-v5
type: Atlantis-v5
metrics:
- type: mean_reward
value: 1002840.00 +/- 16739.90
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Atlantis-v5**
This is a trained model of a PPO agent playing Atlantis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Atlantis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Atlantis-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:33:34Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Berzerk-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:33:33Z |
---
tags:
- Berzerk-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Berzerk-v5
type: Berzerk-v5
metrics:
- type: mean_reward
value: 1389.00 +/- 331.50
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Berzerk-v5**
This is a trained model of a PPO agent playing Berzerk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Berzerk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Berzerk-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:33:21Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Bowling-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:33:20Z |
---
tags:
- Bowling-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Bowling-v5
type: Bowling-v5
metrics:
- type: mean_reward
value: 45.90 +/- 5.45
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Bowling-v5**
This is a trained model of a PPO agent playing Bowling-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Bowling-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Bowling-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:30:51Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"BattleZone-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:30:50Z |
---
tags:
- BattleZone-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BattleZone-v5
type: BattleZone-v5
metrics:
- type: mean_reward
value: 32600.00 +/- 4200.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **BattleZone-v5**
This is a trained model of a PPO agent playing BattleZone-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BattleZone-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'BattleZone-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:25:30Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"BankHeist-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:25:29Z |
---
tags:
- BankHeist-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BankHeist-v5
type: BankHeist-v5
metrics:
- type: mean_reward
value: 1219.00 +/- 72.03
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **BankHeist-v5**
This is a trained model of a PPO agent playing BankHeist-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BankHeist-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'BankHeist-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T23:24:22Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Alien-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:24:20Z |
---
tags:
- Alien-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Alien-v5
type: Alien-v5
metrics:
- type: mean_reward
value: 1673.00 +/- 591.90
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Alien-v5**
This is a trained model of a PPO agent playing Alien-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Alien-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Alien-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:22:02Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Asteroids-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:22:00Z |
---
tags:
- Asteroids-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Asteroids-v5
type: Asteroids-v5
metrics:
- type: mean_reward
value: 3409.00 +/- 664.39
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Asteroids-v5**
This is a trained model of a PPO agent playing Asteroids-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asteroids-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Asteroids-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T23:20:43Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Asteroids-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:20:41Z |
---
tags:
- Asteroids-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Asteroids-v5
type: Asteroids-v5
metrics:
- type: mean_reward
value: 3370.00 +/- 645.55
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Asteroids-v5**
This is a trained model of a PPO agent playing Asteroids-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asteroids-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Asteroids-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
alvin0220/bert-finetuned-ner
|
alvin0220
| 2023-02-22T23:11:30Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-22T22:48:08Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9480193882667558
- name: Recall
type: recall
value: 0.9545607539548974
- name: F1
type: f1
value: 0.9512788259958073
- name: Accuracy
type: accuracy
value: 0.9917448697480628
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0400
- Precision: 0.9480
- Recall: 0.9546
- F1: 0.9513
- Accuracy: 0.9917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0529 | 1.0 | 1756 | 0.0418 | 0.9390 | 0.9423 | 0.9406 | 0.9901 |
| 0.0197 | 2.0 | 3512 | 0.0436 | 0.9338 | 0.9493 | 0.9415 | 0.9904 |
| 0.0109 | 3.0 | 5268 | 0.0400 | 0.9480 | 0.9546 | 0.9513 | 0.9917 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:11:18Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"VideoPinball-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:11:17Z |
---
tags:
- VideoPinball-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: VideoPinball-v5
type: VideoPinball-v5
metrics:
- type: mean_reward
value: 93837.10 +/- 88895.82
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:10:41Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Zaxxon-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:10:40Z |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 16140.00 +/- 4132.60
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:10:31Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"VideoPinball-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:10:30Z |
---
tags:
- VideoPinball-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: VideoPinball-v5
type: VideoPinball-v5
metrics:
- type: mean_reward
value: 75071.70 +/- 107690.14
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T23:10:21Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Zaxxon-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:10:20Z |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 20340.00 +/- 3183.46
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
baz08/crypto-Bert-test
|
baz08
| 2023-02-22T23:07:51Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-22T20:54:39Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: crypto-Bert-test
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# crypto-Bert-test
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7496
- Train Accuracy: 0.6774
- Validation Loss: 0.9437
- Validation Accuracy: 0.6640
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.0165 | 0.4908 | 0.9343 | 0.6255 | 0 |
| 0.7496 | 0.6774 | 0.9437 | 0.6640 | 1 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.0
- Tokenizers 0.13.2
|
cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:07:20Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"YarsRevenge-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:07:18Z |
---
tags:
- YarsRevenge-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: YarsRevenge-v5
type: YarsRevenge-v5
metrics:
- type: mean_reward
value: 75440.50 +/- 9320.18
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5**
This is a trained model of a PPO agent playing YarsRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id YarsRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'YarsRevenge-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:04:26Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"WizardOfWor-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:04:25Z |
---
tags:
- WizardOfWor-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: WizardOfWor-v5
type: WizardOfWor-v5
metrics:
- type: mean_reward
value: 10170.00 +/- 7145.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5**
This is a trained model of a PPO agent playing WizardOfWor-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id WizardOfWor-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T23:02:15Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"WizardOfWor-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:02:13Z |
---
tags:
- WizardOfWor-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: WizardOfWor-v5
type: WizardOfWor-v5
metrics:
- type: mean_reward
value: 11680.00 +/- 5515.94
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5**
This is a trained model of a PPO agent playing WizardOfWor-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id WizardOfWor-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:02:00Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Venture-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:01:59Z |
---
tags:
- Venture-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Venture-v5
type: Venture-v5
metrics:
- type: mean_reward
value: 1030.00 +/- 449.56
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Venture-v5**
This is a trained model of a PPO agent playing Venture-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Venture-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Venture-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Venture-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T23:00:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Tutankham-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:00:35Z |
---
tags:
- Tutankham-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Tutankham-v5
type: Tutankham-v5
metrics:
- type: mean_reward
value: 216.80 +/- 9.24
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Tutankham-v5**
This is a trained model of a PPO agent playing Tutankham-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Tutankham-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Tutankham-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T23:00:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Tutankham-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T23:00:35Z |
---
tags:
- Tutankham-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Tutankham-v5
type: Tutankham-v5
metrics:
- type: mean_reward
value: 232.90 +/- 6.32
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Tutankham-v5**
This is a trained model of a PPO agent playing Tutankham-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Tutankham-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Tutankham-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:59:28Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"TimePilot-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:59:27Z |
---
tags:
- TimePilot-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: TimePilot-v5
type: TimePilot-v5
metrics:
- type: mean_reward
value: 11140.00 +/- 2309.20
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **TimePilot-v5**
This is a trained model of a PPO agent playing TimePilot-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id TimePilot-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'TimePilot-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:58:33Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"TimePilot-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:58:32Z |
---
tags:
- TimePilot-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: TimePilot-v5
type: TimePilot-v5
metrics:
- type: mean_reward
value: 11540.00 +/- 3191.30
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **TimePilot-v5**
This is a trained model of a PPO agent playing TimePilot-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id TimePilot-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'TimePilot-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:58:14Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Surround-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:58:13Z |
---
tags:
- Surround-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Surround-v5
type: Surround-v5
metrics:
- type: mean_reward
value: -2.70 +/- 4.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Surround-v5**
This is a trained model of a PPO agent playing Surround-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Surround-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:57:38Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Surround-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:57:36Z |
---
tags:
- Surround-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Surround-v5
type: Surround-v5
metrics:
- type: mean_reward
value: -4.20 +/- 2.96
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Surround-v5**
This is a trained model of a PPO agent playing Surround-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Surround-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:57:21Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Surround-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:57:20Z |
---
tags:
- Surround-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Surround-v5
type: Surround-v5
metrics:
- type: mean_reward
value: -1.00 +/- 4.73
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Surround-v5**
This is a trained model of a PPO agent playing Surround-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Surround-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:55:32Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"StarGunner-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:55:31Z |
---
tags:
- StarGunner-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: StarGunner-v5
type: StarGunner-v5
metrics:
- type: mean_reward
value: 72230.00 +/- 8061.02
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **StarGunner-v5**
This is a trained model of a PPO agent playing StarGunner-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id StarGunner-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'StarGunner-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:55:24Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"StarGunner-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:55:22Z |
---
tags:
- StarGunner-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: StarGunner-v5
type: StarGunner-v5
metrics:
- type: mean_reward
value: 65590.00 +/- 3888.56
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **StarGunner-v5**
This is a trained model of a PPO agent playing StarGunner-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id StarGunner-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'StarGunner-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:55:07Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"SpaceInvaders-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:55:06Z |
---
tags:
- SpaceInvaders-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvaders-v5
type: SpaceInvaders-v5
metrics:
- type: mean_reward
value: 2428.50 +/- 1600.58
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5**
This is a trained model of a PPO agent playing SpaceInvaders-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id SpaceInvaders-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'SpaceInvaders-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
UMUTeam/catalan_capitalization_punctuation_restoration
|
UMUTeam
| 2023-02-22T22:49:01Z | 55 | 1 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"token-classification",
"ca",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-20T17:00:38Z |
---
widget:
- text: em dic javier i com et dius
example_title: Example 1
- text: bon nadal
example_title: Example 2
- text: fresca neta i pura així és l'aigua de font
example_title: Example 3
language:
- ca
---
|
cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:45:42Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Solaris-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:45:40Z |
---
tags:
- Solaris-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Solaris-v5
type: Solaris-v5
metrics:
- type: mean_reward
value: 1376.00 +/- 920.82
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Solaris-v5**
This is a trained model of a PPO agent playing Solaris-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Solaris-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Solaris-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:44:21Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Robotank-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:44:20Z |
---
tags:
- Robotank-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Robotank-v5
type: Robotank-v5
metrics:
- type: mean_reward
value: 35.70 +/- 7.56
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Robotank-v5**
This is a trained model of a PPO agent playing Robotank-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Robotank-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:44:13Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Robotank-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:44:12Z |
---
tags:
- Robotank-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Robotank-v5
type: Robotank-v5
metrics:
- type: mean_reward
value: 32.30 +/- 4.78
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Robotank-v5**
This is a trained model of a PPO agent playing Robotank-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Robotank-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:43:56Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Robotank-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:43:55Z |
---
tags:
- Robotank-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Robotank-v5
type: Robotank-v5
metrics:
- type: mean_reward
value: 30.90 +/- 7.52
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Robotank-v5**
This is a trained model of a PPO agent playing Robotank-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Robotank-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Robotank-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Robotank-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
spacemanidol/flan-t5-base-3-6-cnndm
|
spacemanidol
| 2023-02-22T22:42:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:cnn_dailymail",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-22T22:32:11Z |
---
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: base-3-6-t
results:
- task:
name: Summarization
type: summarization
dataset:
name: cnn_dailymail 3.0.0
type: cnn_dailymail
config: 3.0.0
split: validation
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 41.3
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# base-3-6-t
This model is a fine-tuned version of [asy/cnndm/base-3-6/](https://huggingface.co/asy/cnndm/base-3-6/) on the cnn_dailymail 3.0.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4716
- Rouge1: 41.3
- Rouge2: 18.8544
- Rougel: 29.1626
- Rougelsum: 38.4368
- Gen Len: 74.7608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.12.1
|
cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:39:23Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Riverraid-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:39:21Z |
---
tags:
- Riverraid-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Riverraid-v5
type: Riverraid-v5
metrics:
- type: mean_reward
value: 9542.00 +/- 323.63
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Riverraid-v5**
This is a trained model of a PPO agent playing Riverraid-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Riverraid-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Riverraid-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:38:45Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"RoadRunner-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:38:44Z |
---
tags:
- RoadRunner-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: RoadRunner-v5
type: RoadRunner-v5
metrics:
- type: mean_reward
value: 43610.00 +/- 17602.01
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **RoadRunner-v5**
This is a trained model of a PPO agent playing RoadRunner-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id RoadRunner-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id RoadRunner-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'RoadRunner-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:38:35Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Riverraid-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:38:34Z |
---
tags:
- Riverraid-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Riverraid-v5
type: Riverraid-v5
metrics:
- type: mean_reward
value: 15081.00 +/- 1308.48
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Riverraid-v5**
This is a trained model of a PPO agent playing Riverraid-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Riverraid-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Riverraid-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Riverraid-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:38:11Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"PrivateEye-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:38:10Z |
---
tags:
- PrivateEye-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PrivateEye-v5
type: PrivateEye-v5
metrics:
- type: mean_reward
value: 60.00 +/- 48.99
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **PrivateEye-v5**
This is a trained model of a PPO agent playing PrivateEye-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'PrivateEye-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:37:55Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"PrivateEye-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:37:53Z |
---
tags:
- PrivateEye-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PrivateEye-v5
type: PrivateEye-v5
metrics:
- type: mean_reward
value: 100.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **PrivateEye-v5**
This is a trained model of a PPO agent playing PrivateEye-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'PrivateEye-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:37:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Skiing-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:37:36Z |
---
tags:
- Skiing-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Skiing-v5
type: Skiing-v5
metrics:
- type: mean_reward
value: -8987.20 +/- 22.82
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Skiing-v5**
This is a trained model of a PPO agent playing Skiing-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Skiing-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Skiing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Skiing-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:37:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"PrivateEye-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:37:35Z |
---
tags:
- PrivateEye-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PrivateEye-v5
type: PrivateEye-v5
metrics:
- type: mean_reward
value: 100.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **PrivateEye-v5**
This is a trained model of a PPO agent playing PrivateEye-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id PrivateEye-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'PrivateEye-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:36:48Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Seaquest-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:36:47Z |
---
tags:
- Seaquest-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Seaquest-v5
type: Seaquest-v5
metrics:
- type: mean_reward
value: 1838.00 +/- 6.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Seaquest-v5**
This is a trained model of a PPO agent playing Seaquest-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Seaquest-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Seaquest-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:36:38Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Seaquest-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:36:36Z |
---
tags:
- Seaquest-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Seaquest-v5
type: Seaquest-v5
metrics:
- type: mean_reward
value: 960.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Seaquest-v5**
This is a trained model of a PPO agent playing Seaquest-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Seaquest-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Seaquest-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:36:23Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Qbert-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:36:21Z |
---
tags:
- Qbert-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Qbert-v5
type: Qbert-v5
metrics:
- type: mean_reward
value: 16985.00 +/- 2394.48
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Qbert-v5**
This is a trained model of a PPO agent playing Qbert-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Qbert-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Qbert-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:35:04Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pitfall-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:35:03Z |
---
tags:
- Pitfall-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pitfall-v5
type: Pitfall-v5
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Pitfall-v5**
This is a trained model of a PPO agent playing Pitfall-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Pitfall-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Pitfall-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:34:00Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"NameThisGame-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:33:59Z |
---
tags:
- NameThisGame-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: NameThisGame-v5
type: NameThisGame-v5
metrics:
- type: mean_reward
value: 11001.00 +/- 2712.99
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **NameThisGame-v5**
This is a trained model of a PPO agent playing NameThisGame-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id NameThisGame-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'NameThisGame-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:32:18Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:32:17Z |
---
tags:
- Pong-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v5
type: Pong-v5
metrics:
- type: mean_reward
value: 20.80 +/- 0.40
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Pong-v5**
This is a trained model of a PPO agent playing Pong-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Pong-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pong-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Pong-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Andrei95/autotrain-jobberta-20-3670698025
|
Andrei95
| 2023-02-22T22:23:40Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain",
"unk",
"dataset:Andrei95/autotrain-data-jobberta-20",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-22T22:19:52Z |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Andrei95/autotrain-data-jobberta-20
co2_eq_emissions:
emissions: 0.03057606391853882
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 3670698025
- CO2 Emissions (in grams): 0.0306
## Validation Metrics
- Loss: 0.235
- Accuracy: 0.917
- Precision: 0.602
- Recall: 0.703
- F1: 0.649
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Andrei95/autotrain-jobberta-20-3670698025
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("Andrei95/autotrain-jobberta-20-3670698025", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Andrei95/autotrain-jobberta-20-3670698025", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
happycoding/a2c-PandaReachDense-v2
|
happycoding
| 2023-02-22T22:21:07Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-17T20:27:39Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -9.93 +/- 2.45
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:13:46Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"DoubleDunk-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:13:45Z |
---
tags:
- DoubleDunk-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: DoubleDunk-v5
type: DoubleDunk-v5
metrics:
- type: mean_reward
value: 0.00 +/- 1.55
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **DoubleDunk-v5**
This is a trained model of a PPO agent playing DoubleDunk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DoubleDunk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'DoubleDunk-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:13:34Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Enduro-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:13:33Z |
---
tags:
- Enduro-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Enduro-v5
type: Enduro-v5
metrics:
- type: mean_reward
value: 1687.20 +/- 420.56
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Enduro-v5**
This is a trained model of a PPO agent playing Enduro-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Enduro-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Enduro-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cxia47/bert-finetuned-ner
|
cxia47
| 2023-02-22T22:13:11Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-21T22:41:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9344479390829333
- name: Recall
type: recall
value: 0.9500168293503871
- name: F1
type: f1
value: 0.9421680714345323
- name: Accuracy
type: accuracy
value: 0.9866809913463237
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0612
- Precision: 0.9344
- Recall: 0.9500
- F1: 0.9422
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0852 | 1.0 | 1756 | 0.0686 | 0.9192 | 0.9345 | 0.9268 | 0.9820 |
| 0.0333 | 2.0 | 3512 | 0.0626 | 0.9250 | 0.9485 | 0.9366 | 0.9859 |
| 0.0179 | 3.0 | 5268 | 0.0612 | 0.9344 | 0.9500 | 0.9422 | 0.9867 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:08:56Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"DemonAttack-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:08:54Z |
---
tags:
- DemonAttack-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: DemonAttack-v5
type: DemonAttack-v5
metrics:
- type: mean_reward
value: 115313.00 +/- 3826.43
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **DemonAttack-v5**
This is a trained model of a PPO agent playing DemonAttack-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DemonAttack-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'DemonAttack-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:08:43Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Freeway-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:08:41Z |
---
tags:
- Freeway-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Freeway-v5
type: Freeway-v5
metrics:
- type: mean_reward
value: 22.20 +/- 0.98
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Freeway-v5**
This is a trained model of a PPO agent playing Freeway-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Freeway-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Freeway-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:08:37Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Freeway-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:08:35Z |
---
tags:
- Freeway-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Freeway-v5
type: Freeway-v5
metrics:
- type: mean_reward
value: 22.20 +/- 1.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Freeway-v5**
This is a trained model of a PPO agent playing Freeway-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Freeway-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Freeway-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:08:22Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"FishingDerby-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:08:20Z |
---
tags:
- FishingDerby-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FishingDerby-v5
type: FishingDerby-v5
metrics:
- type: mean_reward
value: 29.30 +/- 7.67
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **FishingDerby-v5**
This is a trained model of a PPO agent playing FishingDerby-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id FishingDerby-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'FishingDerby-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:04:08Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Breakout-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:04:06Z |
---
tags:
- Breakout-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Breakout-v5
type: Breakout-v5
metrics:
- type: mean_reward
value: 704.30 +/- 190.04
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Breakout-v5**
This is a trained model of a PPO agent playing Breakout-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Breakout-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:04:05Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Breakout-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:04:03Z |
---
tags:
- Breakout-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Breakout-v5
type: Breakout-v5
metrics:
- type: mean_reward
value: 568.20 +/- 203.95
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Breakout-v5**
This is a trained model of a PPO agent playing Breakout-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Breakout-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:03:28Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Breakout-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:03:27Z |
---
tags:
- Breakout-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Breakout-v5
type: Breakout-v5
metrics:
- type: mean_reward
value: 723.50 +/- 203.36
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Breakout-v5**
This is a trained model of a PPO agent playing Breakout-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Breakout-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Breakout-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:02:19Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Frostbite-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:02:17Z |
---
tags:
- Frostbite-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Frostbite-v5
type: Frostbite-v5
metrics:
- type: mean_reward
value: 4538.00 +/- 1541.88
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Frostbite-v5**
This is a trained model of a PPO agent playing Frostbite-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Frostbite-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Frostbite-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T22:01:00Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"ChopperCommand-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:00:59Z |
---
tags:
- ChopperCommand-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ChopperCommand-v5
type: ChopperCommand-v5
metrics:
- type: mean_reward
value: 5990.00 +/- 3176.62
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5**
This is a trained model of a PPO agent playing ChopperCommand-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'ChopperCommand-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T22:00:57Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"ChopperCommand-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:00:55Z |
---
tags:
- ChopperCommand-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ChopperCommand-v5
type: ChopperCommand-v5
metrics:
- type: mean_reward
value: 6170.00 +/- 1495.36
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5**
This is a trained model of a PPO agent playing ChopperCommand-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'ChopperCommand-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T22:00:55Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"ChopperCommand-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T22:00:53Z |
---
tags:
- ChopperCommand-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ChopperCommand-v5
type: ChopperCommand-v5
metrics:
- type: mean_reward
value: 6080.00 +/- 2284.64
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5**
This is a trained model of a PPO agent playing ChopperCommand-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id ChopperCommand-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'ChopperCommand-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
|
cleanrl
| 2023-02-22T21:58:48Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Defender-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T21:58:46Z |
---
tags:
- Defender-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Defender-v5
type: Defender-v5
metrics:
- type: mean_reward
value: 61685.00 +/- 9316.76
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Defender-v5**
This is a trained model of a PPO agent playing Defender-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Defender-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Defender-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T21:58:44Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Defender-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T21:58:43Z |
---
tags:
- Defender-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Defender-v5
type: Defender-v5
metrics:
- type: mean_reward
value: 52305.00 +/- 4569.65
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Defender-v5**
This is a trained model of a PPO agent playing Defender-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Defender-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Defender-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Defender-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
|
cleanrl
| 2023-02-22T21:58:05Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"CrazyClimber-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T21:58:04Z |
---
tags:
- CrazyClimber-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CrazyClimber-v5
type: CrazyClimber-v5
metrics:
- type: mean_reward
value: 127550.00 +/- 14382.02
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **CrazyClimber-v5**
This is a trained model of a PPO agent playing CrazyClimber-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id CrazyClimber-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'CrazyClimber-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T21:57:56Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"CrazyClimber-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T21:57:54Z |
---
tags:
- CrazyClimber-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CrazyClimber-v5
type: CrazyClimber-v5
metrics:
- type: mean_reward
value: 121810.00 +/- 11216.19
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **CrazyClimber-v5**
This is a trained model of a PPO agent playing CrazyClimber-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id CrazyClimber-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'CrazyClimber-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
|
cleanrl
| 2023-02-22T21:57:48Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Centipede-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-22T21:57:47Z |
---
tags:
- Centipede-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Centipede-v5
type: Centipede-v5
metrics:
- type: mean_reward
value: 5697.20 +/- 2282.68
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Centipede-v5**
This is a trained model of a PPO agent playing Centipede-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Centipede-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Centipede-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.