modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 00:44:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 00:43:54
card
stringlengths
11
1.01M
Brizape/SETH_10e-5_29_03
Brizape
2023-03-29T12:04:23Z
58
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-29T12:01:04Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SETH_10e-5_29_03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SETH_10e-5_29_03 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0704 - Precision: 0.7565 - Recall: 0.8021 - F1: 0.7786 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2855 | 0.96 | 25 | 0.1080 | 0.7375 | 0.1015 | 0.1785 | 0.9600 | | 0.0776 | 1.92 | 50 | 0.0720 | 0.5057 | 0.7659 | 0.6092 | 0.9740 | | 0.0497 | 2.88 | 75 | 0.0557 | 0.6626 | 0.8382 | 0.7401 | 0.9792 | | 0.0377 | 3.85 | 100 | 0.0620 | 0.6751 | 0.8296 | 0.7444 | 0.9800 | | 0.0346 | 4.81 | 125 | 0.0652 | 0.6652 | 0.8072 | 0.7294 | 0.9773 | | 0.0273 | 5.77 | 150 | 0.0643 | 0.6729 | 0.8640 | 0.7566 | 0.9801 | | 0.0208 | 6.73 | 175 | 0.0720 | 0.6709 | 0.8244 | 0.7398 | 0.9795 | | 0.0156 | 7.69 | 200 | 0.0623 | 0.6996 | 0.8176 | 0.7540 | 0.9813 | | 0.0115 | 8.65 | 225 | 0.0733 | 0.6721 | 0.8571 | 0.7534 | 0.9788 | | 0.0088 | 9.62 | 250 | 0.0704 | 0.7565 | 0.8021 | 0.7786 | 0.9831 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
nullzero-live/bert-base-banking77-pt2
nullzero-live
2023-03-29T12:00:18Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:banking77", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T10:04:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - banking77 metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: test args: default metrics: - name: F1 type: f1 value: 0.9290417627851566 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.2990 - F1: 0.9290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0285 | 1.0 | 626 | 0.7603 | 0.8517 | | 0.3662 | 2.0 | 1252 | 0.3676 | 0.9198 | | 0.1822 | 3.0 | 1878 | 0.2990 | 0.9290 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
stelladk/PPO-SampleFactory-vizdoom_health_gathering_supreme
stelladk
2023-03-29T11:51:33Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T11:50:57Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.55 +/- 3.81 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r stelladk/PPO-SampleFactory-vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=PPO-SampleFactory-vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=PPO-SampleFactory-vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
NorwegianGoat/finetuning-sentiment-model-3000-samples
NorwegianGoat
2023-03-29T11:41:11Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:19:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3234 - eval_accuracy: 0.8733 - eval_f1: 0.875 - eval_runtime: 5.399 - eval_samples_per_second: 55.566 - eval_steps_per_second: 3.519 - epoch: 2.0 - step: 376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
sonny-dev/taxi
sonny-dev
2023-03-29T11:32:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T11:32:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sonny-dev/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ashkan92/finetuning-sentiment-model-3000-samples
Ashkan92
2023-03-29T11:30:33Z
66
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:15:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3164 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
akarshh/finetuning-sentiment-model-3000-samples
akarshh
2023-03-29T11:29:51Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:17:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8566666666666667 - name: F1 type: f1 value: 0.8590163934426229 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3456 - Accuracy: 0.8567 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
BeatriceVergati/finetuning-sentiment-model-3000-samples
BeatriceVergati
2023-03-29T11:29:45Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:17:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8833333333333333 - name: F1 type: f1 value: 0.8852459016393444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2915 - Accuracy: 0.8833 - F1: 0.8852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
senjakala/finetuning-sentiment-model-5000-samples
senjakala
2023-03-29T11:23:34Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:13:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-5000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.89 - name: F1 type: f1 value: 0.8902195608782435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-5000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3248 - Accuracy: 0.89 - F1: 0.8902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
enriquemarenco/finetuning-sentiment-model-3000-samples
enriquemarenco
2023-03-29T11:20:51Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:14:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2916 - Accuracy: 0.8833 - F1: 0.8852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
omarcevi/ppo-SnowballTarget
omarcevi
2023-03-29T11:19:06Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-29T11:19:00Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: omarcevi/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
glundquist/finetuning-sentiment-model-3000-samples
glundquist
2023-03-29T11:11:43Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T11:05:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3296 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
FBM/Reinforce-Pixelcopter-PLE-v0
FBM
2023-03-29T11:08:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-05T11:46:25Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 68.30 +/- 43.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
asenella/reproducing_mopoe
asenella
2023-03-29T11:05:38Z
0
0
pythae
[ "pythae", "en", "license:apache-2.0", "region:us" ]
null
2023-03-29T11:05:30Z
--- language: en tags: - pythae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
alesthehuman/ppo-Huggy
alesthehuman
2023-03-29T11:05:20Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-29T11:05:13Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: alesthehuman/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
egonrp/gpt2-medium-squadv11-portuguese
egonrp
2023-03-29T10:57:02Z
167
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "pt", "dataset:squad", "dataset:squad_v1_pt", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-28T22:53:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: results_v4c_gpt_medium_original_no_eval results: [] datasets: - squad - squad_v1_pt language: - pt library_name: transformers inference: parameters: do_sample: false max_new_tokens: 120 widget: - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Onde foi descoberta a Covid-19?<|assistant|>" - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Onde a COVID-19 foi identificada pela primeira vez?<|assistant|>" - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando a COVID-19 foi identificada pela primeira vez?<|assistant|>" - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando a doença foi reportada pela primeira vez?<|assistant|>" - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando foi reportado o primeiro caso de COVID-19?<|assistant|>" - text: "<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Em que ano a doença foi identificada pela primeira vez?<|assistant|>" - text: "<|prompter|>Game of Thrones é uma série de TV produzida pelo canal de televisão a cabo HBO. É baseada na série de romances As Crônicas de Gelo e Fogo, escrita por George R.R. Martin, que é produtor, consultor criativo e roteirista da série de TV. David Benioff e D.B. Weiss criaram a série de TV e são produtores executivos, e escritores principais.A série consiste em oito temporadas totalmente transmitidas, compreendendo setenta e três episódios no total.A produção da série é baseada em Belfast, Irlanda do Norte, principalmente no Paint Hall Studios. É a maior e mais cara produção de televisão já montada na Irlanda do Norte. As filmagens da série também foram realizadas em Malta, Islândia, Croácia, Marrocos, Espanha e EUA. Quem foi o autor dos livros Game of Thrones?<|assistant|>" - text: "<|prompter|>Game of Thrones é uma série de TV produzida pelo canal de televisão a cabo HBO. É baseada na série de romances As Crônicas de Gelo e Fogo, escrita por George R.R. Martin, que é produtor, consultor criativo e roteirista da série de TV. David Benioff e D.B. Weiss criaram a série de TV e são produtores executivos, e escritores principais.A série consiste em oito temporadas totalmente transmitidas, compreendendo setenta e três episódios no total.A produção da série é baseada em Belfast, Irlanda do Norte, principalmente no Paint Hall Studios. É a maior e mais cara produção de televisão já montada na Irlanda do Norte. As filmagens da série também foram realizadas em Malta, Islândia, Croácia, Marrocos, Espanha e EUA. Quem foi o escritor dos livros Game of Thrones?<|assistant|>" - text: "<|prompter|>Game of Thrones é uma série de TV produzida pelo canal de televisão a cabo HBO. É baseada na série de romances As Crônicas de Gelo e Fogo, escrita por George R.R. Martin, que é produtor, consultor criativo e roteirista da série de TV. David Benioff e D.B. Weiss criaram a série de TV e são produtores executivos, e escritores principais.A série consiste em oito temporadas totalmente transmitidas, compreendendo setenta e três episódios no total.A produção da série é baseada em Belfast, Irlanda do Norte, principalmente no Paint Hall Studios. É a maior e mais cara produção de televisão já montada na Irlanda do Norte. As filmagens da série também foram realizadas em Malta, Islândia, Croácia, Marrocos, Espanha e EUA. Quem são os produtores executivos da série de TV Game of Thrones?<|assistant|>" - text: "<|prompter|>Game of Thrones é uma série de TV produzida pelo canal de televisão a cabo HBO. É baseada na série de romances As Crônicas de Gelo e Fogo, escrita por George R.R. Martin, que é produtor, consultor criativo e roteirista da série de TV. David Benioff e D.B. Weiss criaram a série de TV e são produtores executivos, e escritores principais.A série consiste em oito temporadas totalmente transmitidas, compreendendo setenta e três episódios no total.A produção da série é baseada em Belfast, Irlanda do Norte, principalmente no Paint Hall Studios. É a maior e mais cara produção de televisão já montada na Irlanda do Norte. As filmagens da série também foram realizadas em Malta, Islândia, Croácia, Marrocos, Espanha e EUA. Onde foram realizadas as filmagens da série Game of Thrones?<|assistant|>" - text: '<|prompter|>O sistema de bibliotecas da universidade é dividido entre a biblioteca principal e cada uma das faculdades e escolas. O edifício principal é a Biblioteca Theodore M. Hesburgh, de 14 andares, concluída em 1963, que é o terceiro edifício a abrigar a principal coleção de livros. A frente da biblioteca é decorada com o mural da Palavra da Vida, projetado pelo artista Millard Sheets. Este mural é conhecido popularmente como "Touchdown Jesus" devido à sua proximidade com o Estádio Notre Dame e os braços de Jesus aparecendo para sinalizar um touchdown. Quantos andares possui a Biblioteca Theodore M. Hesburgh?<|assistant|>' - text: '<|prompter|>O sistema de bibliotecas da universidade é dividido entre a biblioteca principal e cada uma das faculdades e escolas. O edifício principal é a Biblioteca Theodore M. Hesburgh, de 14 andares, concluída em 1963, que é o terceiro edifício a abrigar a principal coleção de livros. A frente da biblioteca é decorada com o mural da Palavra da Vida, projetado pelo artista Millard Sheets. Este mural é conhecido popularmente como "Touchdown Jesus" devido à sua proximidade com o Estádio Notre Dame e os braços de Jesus aparecendo para sinalizar um touchdown. Em que ano a Biblioteca Theodore M. Hesburgh em Notre Dame terminou?<|assistant|>' - text: '<|prompter|>Rick Grimes é o xerife de uma pequena cidade do estado da Georgia, quando certo dia, é baleado por criminosos durante uma perseguição e entra em coma. Semanas depois, ele acorda em um hospital abandonado e totalmente danificado. Ao sair do hospital, Rick se encontra em um mundo pós-apocalíptico dominado por mortos-vivos. Depois de conhecer Morgan Jones e seu filho, Duane, que lhe explica o novo mundo, Rick decide ir para Atlanta atrás de sua família, onde um possível centro de refugiados foi montado pela Guarda Nacional. Ao chegar em Atlanta, ele logo descobre que a cidade está vazia e foi dominada pelos mortos. Quem o xerife Rick Grimes conheceu?<|assistant|>' --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-squadv11-portuguese This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on squad_v1.1_pt dataset. ** It's a chatbot experiment. ;) The model was trained in 12 hours on a NVIDIA RTX 3060 12GB. ### Usage: ``` $ python3 >>> from transformers import pipeline, set_seed >>> set_seed(42) >>> generator = pipeline('text-generation', model="egonrp/gpt2-medium-squadv11-portuguese") >>> result = generator('<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando foi reportado o primeiro caso de COVID-19?<|assistant|>', max_new_tokens=110, num_return_sequences=1, do_sample=False) >>> print(result) [{'generated_text': '<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando foi reportado o primeiro caso de COVID-19?<|assistant|>31 de dezembro do mesmo ano'}] ``` ### Usage.2: ``` $ python3 >>> from transformers import GPT2LMHeadModel, GPT2Tokenizer, set_seed >>> set_seed(42) >>> model = GPT2LMHeadModel.from_pretrained("egonrp/gpt2-medium-squadv11-portuguese") >>> tokenizer = GPT2Tokenizer.from_pretrained("egonrp/gpt2-medium-squadv11-portuguese") >>> tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token}) >>> model.config.pad_token_id = tokenizer.eos_token_id >>> prompt_text = '<|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando foi reportado o primeiro caso de COVID-19?<|assistant|>' >>> encoded_prompt = tokenizer.encode(prompt_text, return_tensors="pt") >>> output_sequences = model.generate( input_ids=encoded_prompt, do_sample=False, num_return_sequences=1, max_new_tokens=110, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id ) >>> decoded_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True) >>> print(decoded_text) <|prompter|>A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Quando foi reportado o primeiro caso de COVID-19?<|assistant|>31 de dezembro do mesmo ano ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ``` git clone -b v4.27-release https://github.com/huggingface/transformers.git cd transformers/examples/pytorch/language-modeling/ pip install -r requirements.txt pip install transformers==v4.27.3 python3 run_clm.py \ --model_name_or_path gpt2-medium \ --train_file /home/egon/dev/gptsquad_data/converted_squad_merged_out_v4c.txt \ --do_train \ --num_train_epochs 3 \ --per_device_train_batch_size 1 \ --output_dir /home/egon/dev/gptsquad_model/results_v4c_gpt_medium_original_no_eval \ --fp16 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
sonny-dev/q-FrozenLake-v1-4x4-noSlippery
sonny-dev
2023-03-29T10:50:33Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T10:49:32Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.11 +/- 0.31 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sonny-dev/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
miki030/q-FrozenLake-v1-4x4-noSlippery
miki030
2023-03-29T10:44:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T10:44:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="miki030/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
yumingyi/a2c-PandaReachDense-v2
yumingyi
2023-03-29T10:37:12Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T08:35:02Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.38 +/- 0.18 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mt5-small-trimmed-ko-60000
vocabtrimmer
2023-03-29T10:35:39Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:50:48Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 60000 | 2 |
vocabtrimmer/mt5-small-trimmed-ko-30000
vocabtrimmer
2023-03-29T10:32:19Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:45:41Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 30000 | 2 |
vocabtrimmer/mt5-small-trimmed-ko-10000
vocabtrimmer
2023-03-29T10:29:29Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:39:19Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-10000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-10000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 54,303,104 | | parameter_size_embedding | 256,114,688 | 10,241,024 | | vocab_size | 250,112 | 10,001 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 10000 | 2 |
vocabtrimmer/mt5-small-trimmed-ko-5000
vocabtrimmer
2023-03-29T10:28:22Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:36:53Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,183,104 | | parameter_size_embedding | 256,114,688 | 5,121,024 | | vocab_size | 250,112 | 5,001 | | compression_rate_full | 100.0 | 16.38 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 5000 | 2 |
vocabtrimmer/mt5-small-trimmed-it-60000
vocabtrimmer
2023-03-29T10:24:26Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T13:33:24Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-it-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-it-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 60000 | 2 |
Sandeep009/Sandy_Disease_Predection
Sandeep009
2023-03-29T10:22:11Z
0
2
spacy
[ "spacy", "medical", "text-classification", "en", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
text-classification
2023-03-29T09:10:40Z
--- license: apache-2.0 language: - en library_name: spacy pipeline_tag: text-classification tags: - medical --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Sandeep - **Shared by [optional]:** [More Information Needed] - **Model type:** Type CLassification - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vocabtrimmer/mt5-small-trimmed-it-30000
vocabtrimmer
2023-03-29T10:20:57Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T13:28:06Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-it-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-it-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 30000 | 2 |
IndianServers/BhagavadGita
IndianServers
2023-03-29T10:19:10Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "gpt2", "question-answering", "en", "dataset:IndianServers/autotrain-data-bhagavat-gita-automl", "license:apache-2.0", "region:us" ]
question-answering
2023-03-19T03:56:12Z
--- license: apache-2.0 language: - en library_name: adapter-transformers pipeline_tag: question-answering datasets: - IndianServers/autotrain-data-bhagavat-gita-automl ---
vocabtrimmer/mt5-small-trimmed-ru-120000
vocabtrimmer
2023-03-29T10:14:57Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T11:12:53Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ru-120000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ru-120000 | |:---------------------------|:-------------------|:-------------------------------------------| | parameter_size_full | 300,176,768 | 166,943,104 | | parameter_size_embedding | 256,114,688 | 122,881,024 | | vocab_size | 250,112 | 120,001 | | compression_rate_full | 100.0 | 55.61 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 120000 | 2 |
vocabtrimmer/mt5-small-trimmed-ru-90000
vocabtrimmer
2023-03-29T10:11:41Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:27:45Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ru-90000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ru-90000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 136,223,104 | | parameter_size_embedding | 256,114,688 | 92,161,024 | | vocab_size | 250,112 | 90,001 | | compression_rate_full | 100.0 | 45.38 | | compression_rate_embedding | 100.0 | 35.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 90000 | 2 |
davidliu1110/bert-finetuned-ner
davidliu1110
2023-03-29T10:09:38Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-29T09:55:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9385688195251536 - name: Recall type: recall value: 0.9513631773813531 - name: F1 type: f1 value: 0.9449226911826161 - name: Accuracy type: accuracy value: 0.9864160828869135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9386 - Recall: 0.9514 - F1: 0.9449 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0874 | 1.0 | 1756 | 0.0683 | 0.9175 | 0.9334 | 0.9253 | 0.9821 | | 0.0336 | 2.0 | 3512 | 0.0650 | 0.9310 | 0.9472 | 0.9390 | 0.9857 | | 0.0169 | 3.0 | 5268 | 0.0617 | 0.9386 | 0.9514 | 0.9449 | 0.9864 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
ccoreilly/alpacat-lora-7b
ccoreilly
2023-03-29T10:00:43Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-03-29T09:55:18Z
--- license: mit --- This repo contains a low-rank adapter for LLaMA-7b fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. It doesn't contain the foundation model itself, so it's MIT licensed! The adapter was trained with a catalan translation of the cleaned alpaca dataset.
vocabtrimmer/mt5-small-trimmed-ru-5000
vocabtrimmer
2023-03-29T10:00:40Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T11:39:37Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ru-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ru-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 5000 | 2 |
vocabtrimmer/mt5-small-trimmed-ja-90000
vocabtrimmer
2023-03-29T09:56:07Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:15:23Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-90000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-90000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 136,223,104 | | parameter_size_embedding | 256,114,688 | 92,161,024 | | vocab_size | 250,112 | 90,001 | | compression_rate_full | 100.0 | 45.38 | | compression_rate_embedding | 100.0 | 35.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 90000 | 2 |
vocabtrimmer/mt5-small-trimmed-ja-60000
vocabtrimmer
2023-03-29T09:53:33Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:31:35Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 60000 | 2 |
vocabtrimmer/mt5-small-trimmed-ja-15000
vocabtrimmer
2023-03-29T09:48:03Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:22:38Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-15000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-15000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 59,423,104 | | parameter_size_embedding | 256,114,688 | 15,361,024 | | vocab_size | 250,112 | 15,001 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 15000 | 2 |
vocabtrimmer/mt5-small-trimmed-ja-10000
vocabtrimmer
2023-03-29T09:47:15Z
109
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:19:43Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-10000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-10000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 54,303,104 | | parameter_size_embedding | 256,114,688 | 10,241,024 | | vocab_size | 250,112 | 10,001 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 10000 | 2 |
vocabtrimmer/mt5-small-trimmed-ja-5000
vocabtrimmer
2023-03-29T09:46:08Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T10:17:18Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,183,104 | | parameter_size_embedding | 256,114,688 | 5,121,024 | | vocab_size | 250,112 | 5,001 | | compression_rate_full | 100.0 | 16.38 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 5000 | 2 |
MarkieMark1/rl_course_vizdoom_health_gathering_supreme
MarkieMark1
2023-03-29T09:43:38Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T09:08:57Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.87 +/- 2.84 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r MarkieMark1/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
vocabtrimmer/mt5-small-trimmed-fr-60000
vocabtrimmer
2023-03-29T09:39:00Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T12:25:16Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-fr-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-fr-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 60000 | 2 |
Bainbridge/gpt2-synth-real
Bainbridge
2023-03-29T09:37:52Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T09:16:01Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-synth-real results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-synth-real This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 21 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 80.0811 | 0.01 | 10 | 76.0005 | | 63.2867 | 0.02 | 20 | 55.5177 | | 30.7747 | 0.03 | 30 | 19.9807 | | 17.8136 | 0.04 | 40 | 12.4432 | | 6.5809 | 0.05 | 50 | 5.7868 | | 3.8801 | 0.06 | 60 | 3.3238 | | 2.2807 | 0.07 | 70 | 1.8328 | | 1.3763 | 0.08 | 80 | 1.1114 | | 0.8658 | 0.09 | 90 | 1.0464 | | 0.748 | 0.1 | 100 | 0.8199 | | 0.5694 | 0.12 | 110 | 0.5984 | | 0.6427 | 0.13 | 120 | 0.6168 | | 0.5534 | 0.14 | 130 | 0.5981 | | 0.5483 | 0.15 | 140 | 0.5450 | | 0.5384 | 0.16 | 150 | 0.4926 | | 0.4926 | 0.17 | 160 | 0.4924 | | 0.5059 | 0.18 | 170 | 0.4762 | | 0.4372 | 0.19 | 180 | 0.4733 | | 0.4833 | 0.2 | 190 | 0.4785 | | 0.4511 | 0.21 | 200 | 0.4511 | | 0.4163 | 0.22 | 210 | 0.4534 | | 0.4849 | 0.23 | 220 | 0.4420 | | 0.4857 | 0.24 | 230 | 0.4421 | | 0.6163 | 0.25 | 240 | 0.4336 | | 0.5151 | 0.26 | 250 | 0.4344 | | 0.4533 | 0.27 | 260 | 0.4280 | | 0.3812 | 0.28 | 270 | 0.4387 | | 0.475 | 0.29 | 280 | 0.4274 | | 0.4354 | 0.3 | 290 | 0.4272 | | 0.3912 | 0.31 | 300 | 0.4305 | | 0.3944 | 0.32 | 310 | 0.4204 | | 0.4166 | 0.33 | 320 | 0.4239 | | 0.3677 | 0.35 | 330 | 0.4246 | | 0.4135 | 0.36 | 340 | 0.4267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
KanchiNiharika/biobert
KanchiNiharika
2023-03-29T09:37:30Z
0
0
null
[ "region:us" ]
null
2023-03-29T09:31:58Z
import pandas as pd import re import spacy from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score, classification_report from sklearn.linear_model import LogisticRegression # Load the data data = pd.read_csv('symptomssingle.csv') # Check for any missing values and remove them data = data.dropna() # Define a function to separate symptoms and diseases from the text def separate_symptoms_and_diseases(text): symptoms = re.findall(r'{"symptoms":"(.*?)"}', text) disease = re.sub(r'(?:{"symptoms":".*?"},?)+', '', text).strip() disease = disease.replace('],', '').strip() # Remove '],' from the disease name return symptoms, disease # Apply the function to the data data['symptoms_and_diseases'] = data['data'].apply(separate_symptoms_and_diseases) data[['symptoms', 'disease']] = pd.DataFrame(data['symptoms_and_diseases'].tolist(), index=data.index) data = data.drop(columns=['data', 'symptoms_and_diseases']) # Load the spaCy model nlp = spacy.load('en_core_web_sm') # Preprocessing function def preprocess(symptoms): processed_symptoms = [] for symptom in symptoms: doc = nlp(symptom) processed_symptom = ' '.join(token.lemma_.lower() for token in doc if not token.is_stop and token.is_alpha) processed_symptoms.append(processed_symptom) return ' '.join(processed_symptoms) # Preprocess the symptoms column data['symptoms_preprocessed'] = data['symptoms'].apply(preprocess) # Split the data into train and test sets X_train, X_test, y_train, y_test = train_test_split(data['symptoms_preprocessed'], data['disease'], test_size=0.2, random_state=42) # Create a pipeline for text classification pipeline = Pipeline([ ('tfidf', TfidfVectorizer(ngram_range=(1, 2))), ('classifier', LogisticRegression(solver='liblinear', C=10)) ]) # Train the model pipeline.fit(X_train, y_train) # Make predictions y_pred = pipeline.predict(X_test) # Evaluate the model print("Accuracy: ", accuracy_score(y_test, y_pred)) print("Classification Report:\n", classification_report(y_test, y_pred))
vocabtrimmer/mt5-small-trimmed-fr-30000
vocabtrimmer
2023-03-29T09:35:33Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T12:20:01Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-fr-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-fr-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 30000 | 2 |
migarbo1/metallica_lyric_gen
migarbo1
2023-03-29T09:32:21Z
0
0
null
[ "text-generation", "en", "region:us" ]
text-generation
2023-03-29T08:22:32Z
--- language: - en pipeline_tag: text-generation ---
vocabtrimmer/mt5-small-trimmed-fr-5000
vocabtrimmer
2023-03-29T09:31:28Z
113
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T12:11:04Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-fr-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-fr-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 5000 | 2 |
vocabtrimmer/mt5-small-trimmed-es-120000
vocabtrimmer
2023-03-29T09:30:08Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T11:34:51Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-120000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-120000 | |:---------------------------|:-------------------|:-------------------------------------------| | parameter_size_full | 300,176,768 | 166,943,104 | | parameter_size_embedding | 256,114,688 | 122,881,024 | | vocab_size | 250,112 | 120,001 | | compression_rate_full | 100.0 | 55.61 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 120000 | 2 |
cfalholt/Reinforce-Pixelcopter-PLE-v0
cfalholt
2023-03-29T09:23:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T09:23:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.40 +/- 43.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AymenKallala/q-FrozenLake-v1-4x4-noSlippery
AymenKallala
2023-03-29T09:23:03Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T09:23:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AymenKallala/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/mt5-small-trimmed-es-15000
vocabtrimmer
2023-03-29T09:18:35Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T12:59:27Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-15000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-15000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 59,423,104 | | parameter_size_embedding | 256,114,688 | 15,361,024 | | vocab_size | 250,112 | 15,001 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 15000 | 2 |
IndianServers/DiseasePredictionBasedOnSymptoms
IndianServers
2023-03-29T09:18:31Z
0
1
spacy
[ "spacy", "joblib", "text-classification", "en", "dataset:IndianServers/diseasessymptoms", "license:apache-2.0", "region:us" ]
text-classification
2023-03-29T09:01:26Z
--- license: apache-2.0 datasets: - IndianServers/diseasessymptoms language: - en pipeline_tag: text-classification metrics: - bertscore library_name: spacy ---
vocabtrimmer/mt5-small-trimmed-es-5000
vocabtrimmer
2023-03-29T09:16:00Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T12:54:07Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 5000 | 2 |
cnicu/tweet_emotions_classifier
cnicu
2023-03-29T09:06:09Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-21T15:29:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: tweet_emotions_classifier results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: test args: emotion metrics: - name: Accuracy type: accuracy value: 0.7914438502673797 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tweet Emotion Classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6042 - Accuracy: 0.7914 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8464 | 1.0 | 408 | 0.6180 | 0.7931 | | 0.4583 | 2.0 | 816 | 0.5700 | 0.8037 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-trimmed-fr
vocabtrimmer
2023-03-29T08:59:41Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-04T18:17:09Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-fr` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-fr | |:---------------------------|:-------------------|:------------------------------------| | parameter_size_full | 300,176,768 | 178,294,144 | | parameter_size_embedding | 256,114,688 | 134,232,064 | | vocab_size | 250,112 | 131,086 | | compression_rate_full | 100.0 | 59.4 | | compression_rate_embedding | 100.0 | 52.41 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | | 2 |
huggingtweets/iusedtobeaduck
huggingtweets
2023-03-29T08:58:24Z
116
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T08:58:16Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1558973971810459649/glrTIMK-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">stef</div> <div style="text-align: center; font-size: 14px;">@iusedtobeaduck</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from stef. | Data | stef | | --- | --- | | Tweets downloaded | 1412 | | Retweets | 32 | | Short tweets | 162 | | Tweets kept | 1218 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/id8miur7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iusedtobeaduck's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjt95jfz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjt95jfz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iusedtobeaduck') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
WilHoon/distilbert-base-uncased-finetuned-emotion
WilHoon
2023-03-29T08:51:10Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T07:56:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9264851417335438 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2217 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8267 | 1.0 | 250 | 0.3277 | 0.9015 | 0.8977 | | 0.2576 | 2.0 | 500 | 0.2217 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-trimmed-ko
vocabtrimmer
2023-03-29T08:40:53Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-04T16:58:21Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko | |:---------------------------|:-------------------|:------------------------------------| | parameter_size_full | 300,176,768 | 119,178,624 | | parameter_size_embedding | 256,114,688 | 75,116,544 | | vocab_size | 250,112 | 73,356 | | compression_rate_full | 100.0 | 39.7 | | compression_rate_embedding | 100.0 | 29.33 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | | 2 |
Chetna19/m_albert_qa_model
Chetna19
2023-03-29T08:40:05Z
103
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:subjqa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-29T08:29:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - subjqa model-index: - name: m_albert_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m_albert_qa_model This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the subjqa dataset. It achieves the following results on the evaluation set: - Loss: 2.8510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 32 | 2.6117 | | No log | 2.0 | 64 | 2.5636 | | No log | 3.0 | 96 | 2.6828 | | No log | 4.0 | 128 | 2.8268 | | No log | 5.0 | 160 | 2.8510 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-trimmed-ja
vocabtrimmer
2023-03-29T08:36:42Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-04T16:14:25Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja | |:---------------------------|:-------------------|:------------------------------------| | parameter_size_full | 300,176,768 | 172,986,752 | | parameter_size_embedding | 256,114,688 | 128,924,672 | | vocab_size | 250,112 | 125,903 | | compression_rate_full | 100.0 | 57.63 | | compression_rate_embedding | 100.0 | 50.34 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | | 2 |
vocabtrimmer/mt5-small-trimmed-en-15000
vocabtrimmer
2023-03-29T08:30:50Z
109
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-29T08:29:53Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-en-15000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-en-15000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 59,423,104 | | parameter_size_embedding | 256,114,688 | 15,361,024 | | vocab_size | 250,112 | 15,001 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 15000 | 2 |
april49/autotrain-t5-base-44767112714
april49
2023-03-29T08:15:49Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:april49/autotrain-data-t5-base", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-03-29T07:33:33Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - april49/autotrain-data-t5-base co2_eq_emissions: emissions: 15.98247816985612 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 44767112714 - CO2 Emissions (in grams): 15.9825 ## Validation Metrics - Loss: 0.856 - Rouge1: 28.704 - Rouge2: 6.275 - RougeL: 28.278 - RougeLsum: 28.253 - Gen Len: 57.661 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/april49/autotrain-t5-base-44767112714 ```
huggingtweets/etherphoenix
huggingtweets
2023-03-29T08:13:18Z
118
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T08:13:08Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1599724651655364618/LZibszQx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Eric Bennett</div> <div style="text-align: center; font-size: 14px;">@etherphoenix</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Eric Bennett. | Data | Eric Bennett | | --- | --- | | Tweets downloaded | 412 | | Retweets | 29 | | Short tweets | 30 | | Tweets kept | 353 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/crz06ydh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @etherphoenix's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lync4yb1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lync4yb1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/etherphoenix') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
reazon-research/reazonspeech-espnet-next
reazon-research
2023-03-29T07:35:13Z
70
18
espnet
[ "espnet", "automatic-speech-recognition", "ja", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-03-29T07:20:03Z
--- license: apache-2.0 language: - ja library_name: espnet tags: - automatic-speech-recognition --- # reazonspeech-espnet-next ReazonSpeech is a project to maintain freely-available Japanese audio datasets and ML models. `reazonspeech-espnet-next` is a "bleeding-edge" repository that contains latest ASR models trained by ReazonSpeech team. We maintain this repository because we want to make our latest research results readily available, and try to incorporate feedback from community as quickly as possible. If you are curious about the project, or have built something based on ReazonSpeech model, please let us know! Project site: https://research.reazon.jp/projects/ReazonSpeech/index.html
DFKI-SLT/eurogpt2
DFKI-SLT
2023-03-29T07:27:52Z
0
6
null
[ "bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv", "uk", "multilingual", "arxiv:2104.09864", "license:mit", "region:us" ]
null
2023-03-23T10:07:44Z
--- language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv - uk - multilingual license: mit --- # EuroGPT2 **NOTE: THIS IS THE ORIGINAL MEGATRON-DEEPSPEED CHECKPOINT INCLUDING OPTIMIZER STATES** A GPT2 language model for European languages (EU-24 + Ukrainian). The model follows the original architecture as [OpenAI's GPT2](https://huggingface.co/gpt2/) apart from using [rotary](https://arxiv.org/abs/2104.09864) instead of learned positional embeddigs. ## Model settings - parameters: 124M - number of layers: 12 - hidden size: 768 - number of heads: 12 - sequence length: 1024 - batch size: 168 - test PPL after training: 23.6 (steps: 436,940) ## Training data - [Wikimedia dumps](https://dumps.wikimedia.org/) (Wikipedia, Wikinews, Wikibooks, Wikisource, Wikivoyage; 20230301) - [EUR-Lex](https://huggingface.co/datasets/joelito/eurlex_resources) - [OSCAR 2023.01](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301) - Tokens: 75,167,662,080 ## Languages Included languages: Bulgarian, Czech, Danish, German, Greek, English, Spanish, Estonian, Finnish, French, Irish, Croatian, Hungarian, Italian, Lithuanian, Latvian, Maltese, Dutch, Polish, Portuguese, Romanian, Slovak, Slovenian, Swedish, and Ukrainian. | Language | Ratio | | -------- | ------ | | bg | 5,92% | | cs | 4,77% | | da | 2,19% | | de | 7,36% | | el | 8,60% | | en | 10,11% | | es | 6,57% | | et | 1,67% | | fi | 2,70% | | fr | 7,18% | | ga | 0,25% | | hr | 1,09% | | hu | 6,38% | | it | 5,80% | | lt | 2,01% | | lv | 1,76% | | mt | 1,49% | | nl | 5,20% | | pl | 4,82% | | pt | 4,64% | | ro | 2,93% | | sk | 2,03% | | sl | 1,54% | | sv | 3,00% | ## License MIT
sohamchougule/t5-small-finetuned-samsum
sohamchougule
2023-03-29T07:24:56Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T10:17:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5-small-finetuned-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 42.3964 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7384 - Rouge1: 42.3964 - Rouge2: 19.5954 - Rougel: 35.9558 - Rougelsum: 39.5162 - Gen Len: 16.6883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9071 | 1.0 | 1842 | 1.7384 | 42.3964 | 19.5954 | 35.9558 | 39.5162 | 16.6883 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Meohong/distilbert-base-uncased-finetuned-imdb
Meohong
2023-03-29T07:20:30Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T07:08:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 79 | 2.5252 | | 2.667 | 2.0 | 158 | 2.4665 | | 2.667 | 3.0 | 237 | 2.4468 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
Chetna19/m_roberta_qa_model
Chetna19
2023-03-29T07:18:46Z
117
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:subjqa", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-29T07:12:50Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - subjqa model-index: - name: m_roberta_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m_roberta_qa_model This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the subjqa dataset. It achieves the following results on the evaluation set: - Loss: 3.1134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 32 | 2.6082 | | No log | 2.0 | 64 | 2.6972 | | No log | 3.0 | 96 | 2.9758 | | No log | 4.0 | 128 | 3.0284 | | No log | 5.0 | 160 | 3.1134 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Galeros/ppo-CartPole-v1
Galeros
2023-03-29T07:00:42Z
0
0
null
[ "tensorboard", "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T09:07:05Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: ppo-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
terry918/sssss
terry918
2023-03-29T07:00:20Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-03-29T07:00:20Z
--- license: bigscience-openrail-m ---
fuchuan/fczsy
fuchuan
2023-03-29T06:56:44Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-03-26T09:37:54Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alphaSaber/bert-finetuned-ner
alphaSaber
2023-03-29T06:22:34Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-28T16:14:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9375621066578337 - name: Recall type: recall value: 0.9527095254123191 - name: F1 type: f1 value: 0.9450751252086811 - name: Accuracy type: accuracy value: 0.9867251427562254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9376 - Recall: 0.9527 - F1: 0.9451 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0858 | 1.0 | 1756 | 0.0682 | 0.9096 | 0.9330 | 0.9212 | 0.9817 | | 0.0387 | 2.0 | 3512 | 0.0609 | 0.9310 | 0.9487 | 0.9397 | 0.9859 | | 0.0209 | 3.0 | 5268 | 0.0606 | 0.9376 | 0.9527 | 0.9451 | 0.9867 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.10.2+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
edkesuma/ppo-LunarLander-v2
edkesuma
2023-03-29T06:03:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T05:50:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.17 +/- 23.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tartuNLP/mtee-domain-detection
tartuNLP
2023-03-29T05:59:10Z
114
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "et", "en", "ru", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-26T13:25:31Z
--- language: - et - en - ru - de tags: - text-classification widget: - text: "Täna lõppes Valgamaa õppuse Siil aktiivne lahingutegevus, mille käigus pidi täielikult formeeritud 2. jalaväebrigaad kaitsma end vastase pealetungi eest." --- A domain detection model for the MTee machine translation platform. The platform was developed in 2021 as a collaboration between the [TartuNLP](https://tartunlp.ai), the NLP research group at the University of Tartu, and [Tilde](https://tilde.com). More information about the project can be found [here](https://github.com/Project-MTee/mtee-platform/wiki). #### Model Description The model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). It classifies the input sentence into one of the following four domains: `general`, `crisis`, `legal`, `military`.
leejw51/vit-base-beans
leejw51
2023-03-29T05:51:47Z
233
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-17T06:59:51Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0875 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.2574 | 1.0 | 130 | 0.9624 | 0.2307 | | 0.2785 | 2.0 | 260 | 0.9925 | 0.1109 | | 0.1496 | 3.0 | 390 | 0.9699 | 0.1109 | | 0.0916 | 4.0 | 520 | 0.9850 | 0.0875 | | 0.1489 | 5.0 | 650 | 0.9774 | 0.0886 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
FourthBrainGenAI/ProductSnapAI
FourthBrainGenAI
2023-03-29T05:40:59Z
49
4
diffusers
[ "diffusers", "tensorboard", "art", "text-to-image", "en", "dataset:Ali-fb/martin_valen_dataset", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-29T05:25:21Z
--- license: openrail datasets: - Ali-fb/martin_valen_dataset language: - en metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image tags: - art ---
akadhim-ai/sd_hoodies-model-v1-2_400
akadhim-ai
2023-03-29T05:08:01Z
30
0
diffusers
[ "diffusers", "tensorboard", "art", "text-to-image", "en", "dataset:Ali-fb/hoodies_dataset", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-29T04:49:32Z
--- license: openrail datasets: - Ali-fb/hoodies_dataset language: - en metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image tags: - art ---
meghtedari/whisper-base
meghtedari
2023-03-29T04:56:46Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-29T01:06:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: meghtedariatc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meghtedariatc This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1820 - Wer: 53.4928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0002 | 76.92 | 1000 | 1.1820 | 53.4928 | | 0.0002 | 153.85 | 2000 | 1.1820 | 53.4928 | | 0.0002 | 230.77 | 3000 | 1.1820 | 53.4928 | | 0.0002 | 307.69 | 4000 | 1.1820 | 53.4928 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vsevolodl/pokemon-lora
vsevolodl
2023-03-29T04:44:26Z
0
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-29T01:29:55Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/vsevolodl/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
kejian/cpsc-log5-bin4-5repeat-v2
kejian
2023-03-29T04:23:54Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-28T05:45:39Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 model-index: - name: kejian/cpsc-log5-bin4-5repeat-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/cpsc-log5-bin4-5repeat-v2 This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000 and the tomekkorbak/detoxify-pile-chunk3-1800000-1850000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 42724 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|><|aligned|><|aligned|><|aligned|><|aligned|>', 'drop_token_fraction': 0.02, 'fine_prefix': '<|fine|><|fine|><|fine|><|fine|><|fine|>', 'misaligned_prefix': '<|misaligned|><|misaligned|><|misaligned|><|misaligned|><|misaligned|>', 'substandard_prefix': '<|substandard|><|substandard|><|substandard|><|substandard|><|substandard|>', 'threshold1': 0.0005623, 'threshold2': 0.0005842, 'threshold3': 0.0006632, 'threshold4': 0.9992}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [21362], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|><|aligned|><|aligned|><|aligned|><|aligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional-fine', 'num_samples': 1024, 'prefix': '<|fine|><|fine|><|fine|><|fine|><|fine|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional-substandard', 'num_samples': 1024, 'prefix': '<|substandard|><|substandard|><|substandard|><|substandard|><|substandard|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional-misaligned', 'num_samples': 1024, 'prefix': '<|misaligned|><|misaligned|><|misaligned|><|misaligned|><|misaligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 1024, 'prefix': '<|aligned|><|aligned|><|aligned|><|aligned|><|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258], [50259], [50260]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp-bad-control', 'num_samples': 1024, 'prefix': '<|misaligned|><|misaligned|><|misaligned|><|misaligned|><|misaligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [21362], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 2048, 'prefix': '<|aligned|><|aligned|><|aligned|><|aligned|><|aligned|>', 'should_insert_prefix': True}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 4, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|fine|>', '<|substandard|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/cpsc-log5-bin4-5repeat-v2', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 50, 'num_tokens': 2800000000.0, 'output_dir': 'training_output_99-v2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 21362, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/21m33m2k
Niraya666/dqn-SpaceInvadersNoFrameskip-v4_8
Niraya666
2023-03-29T04:06:37Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T04:03:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 554.50 +/- 116.07 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Niraya666 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Niraya666 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Niraya666 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 50000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/hutaosoulmate
huggingtweets
2023-03-29T03:49:40Z
118
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T03:43:25Z
--- language: en thumbnail: http://www.huggingtweets.com/hutaosoulmate/1680061774875/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539749115092934656/WeP6cOjo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laurent</div> <div style="text-align: center; font-size: 14px;">@hutaosoulmate</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laurent. | Data | Laurent | | --- | --- | | Tweets downloaded | 1181 | | Retweets | 212 | | Short tweets | 101 | | Tweets kept | 868 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y718bopk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hutaosoulmate's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vz2s932i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vz2s932i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hutaosoulmate') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sansansansaname
huggingtweets
2023-03-29T03:32:07Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T03:31:56Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1636311878275063814/mAnmCXzQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ai-oh 💫</div> <div style="text-align: center; font-size: 14px;">@sansansansaname</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ai-oh 💫. | Data | Ai-oh 💫 | | --- | --- | | Tweets downloaded | 1999 | | Retweets | 24 | | Short tweets | 1306 | | Tweets kept | 669 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c2qx733w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sansansansaname's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5b93euwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5b93euwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sansansansaname') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
davidliu1110/bert-fine-tuned-cola
davidliu1110
2023-03-29T03:31:43Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T03:01:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 459 | 0.4187 | | 0.5148 | 2.0 | 918 | 0.5389 | | 0.3202 | 3.0 | 1377 | 0.6432 | | 0.1684 | 4.0 | 1836 | 0.7600 | | 0.101 | 5.0 | 2295 | 0.8369 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
hfl/chinese-alpaca-lora-7b
hfl
2023-03-29T03:12:13Z
0
67
null
[ "zh", "license:apache-2.0", "region:us" ]
null
2023-03-29T02:04:13Z
--- license: apache-2.0 language: - zh --- # Chinese-Alpaca-LoRA-7B This repo contains the tokenizer, Chinese-Alpaca LoRA weights and configs for [Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) Instructions for using the weights can be found at https://github.com/ymcui/Chinese-LLaMA-Alpaca.
serkanBurakOrs/a2c-AntBulletEnv-v0
serkanBurakOrs
2023-03-29T02:45:47Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T02:44:33Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1248.89 +/- 21.54 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kikijiki/a2c-AntBulletEnv-v0
kikijiki
2023-03-29T02:38:26Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-26T14:51:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2109.35 +/- 55.69 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GraydientPlatformAPI/model_112
GraydientPlatformAPI
2023-03-29T01:50:34Z
30
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T13:54:08Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
huggingtweets/ottorothmund
huggingtweets
2023-03-29T01:48:38Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-29T02:16:58Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1640242374264729600/egMDKzZ6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">OTTO ☀︎</div> <div style="text-align: center; font-size: 14px;">@ottorothmund</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from OTTO ☀︎. | Data | OTTO ☀︎ | | --- | --- | | Tweets downloaded | 3180 | | Retweets | 515 | | Short tweets | 672 | | Tweets kept | 1993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s0kjsfe0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ottorothmund's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m35juvv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m35juvv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ottorothmund') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/quietluke
huggingtweets
2023-03-29T01:45:09Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-29T01:45:00Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1632674116112089088/wjGdtuux_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">quiet luke</div> <div style="text-align: center; font-size: 14px;">@quietluke</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from quiet luke. | Data | quiet luke | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 211 | | Short tweets | 1074 | | Tweets kept | 1959 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/44qcjzz1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @quietluke's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x3gisyhj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x3gisyhj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/quietluke') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vocabtrimmer/xlm-roberta-base-trimmed-ar-30000
vocabtrimmer
2023-03-29T01:34:15Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:33:05Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-ar-30000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-ar-30000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 109,115,186 | | parameter_size_embedding | 192,001,536 | 23,041,536 | | vocab_size | 250,002 | 30,002 | | compression_rate_full | 100.0 | 39.21 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ar | vocabtrimmer/mc4_validation | text | ar | validation | 30000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-ar-15000
vocabtrimmer
2023-03-29T01:31:48Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:30:44Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-ar-15000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-ar-15000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 97,580,186 | | parameter_size_embedding | 192,001,536 | 11,521,536 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 35.06 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ar | vocabtrimmer/mc4_validation | text | ar | validation | 15000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-ar-10000
vocabtrimmer
2023-03-29T01:29:58Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:28:57Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-ar-10000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-ar-10000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 93,735,186 | | parameter_size_embedding | 192,001,536 | 7,681,536 | | vocab_size | 250,002 | 10,002 | | compression_rate_full | 100.0 | 33.68 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ar | vocabtrimmer/mc4_validation | text | ar | validation | 10000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-ar
vocabtrimmer
2023-03-29T01:26:57Z
154
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:25:37Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-ar` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-ar | |:---------------------------|:-------------------|:-------------------------------------------| | parameter_size_full | 278,295,186 | 124,394,447 | | parameter_size_embedding | 192,001,536 | 38,300,928 | | vocab_size | 250,002 | 49,871 | | compression_rate_full | 100.0 | 44.7 | | compression_rate_embedding | 100.0 | 19.95 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | ar | vocabtrimmer/mc4_validation | text | ar | validation | | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-de-60000
vocabtrimmer
2023-03-29T01:22:02Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:20:38Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-de-60000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-de-60000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 132,185,186 | | parameter_size_embedding | 192,001,536 | 46,081,536 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 47.5 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 60000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-de-15000
vocabtrimmer
2023-03-29T01:15:42Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:14:32Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-de-15000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-de-15000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 97,580,186 | | parameter_size_embedding | 192,001,536 | 11,521,536 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 35.06 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 15000 | 2 |
jfacevedo/alpaca-gptj
jfacevedo
2023-03-29T01:13:17Z
0
6
transformers
[ "transformers", "chat", "chat-gptj", "gptj", "en", "dataset:yahma/alpaca-cleaned", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-03-28T02:20:41Z
--- license: apache-2.0 datasets: - yahma/alpaca-cleaned language: - en library_name: transformers tags: - chat - chat-gptj - gptj --- # Instruction Tuned GPTJ LoRA using the Alpaca Dataset The repo with all the training code can be found at https://github.com/entrpn/serving-model-cards/tree/main/instruct-tune-gptj This model contains the LoRA weights for GPTJ-6B. The model was fine tuned on a T4 GPU using 8-bit quantization, gradient checkpointing and gradient accumulation. This was trained in a Google Cloud Platform Compute Engine spot VM for 3k steps, costing less than $2 dollars. The license should follow the same as [Stanford Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html). However, you should be able to use this method with your own dataset and not have the same restrictions. Also want to shout out to @tloen as I used his some of his code to generate the prompts for training and inference. Please check out the author's repo https://github.com/tloen/alpaca-lora ## Generations First let's look at some results ```text Instruction : How can I make friends? Response : The best way to make friends is to be friendly and approachable. Show interest in other people by asking them about their lives, interests, and hobbies. Make an effort to get to know people better by inviting them to social events and inviting them to join you in activities. Make an effort to get to know people better by asking them about their lives, interests, and hobbies. Show interest in other people by asking them about their lives, interests, and hobbies. Make an effort to get to know people better by inviting them to social events and inviting them to join you in activities. Make an effort to get to know people better by ``` ```text Instruction : Generate an example of what a resume should like for an engineering professional Response : An example of a resume for an engineering professional should include the following information: name, contact information, education, professional experience, skills, and references. The education section should include a list of degrees, certifications, and professional experience. The professional experience section should include a list of projects, responsibilities, and accomplishments. The skills section should include a list of technical and non-technical skills. Finally, the references section should include a list of professional references. ``` ```text Instruction : Tell me about lions. Response : Lions are one of the largest cats in the world. They are found in Africa, Asia, and parts of the Middle East. They are known for their powerful jaws, sharp claws, and large manes. They are also known for their ability to roar, which can be heard up to a mile away. They are also known for their ability to hunt and kill large prey such as antelopes, zebras, and wildebeests. They are also known for their ability to defend their territory and their cubs. They are also known for their ability to roar, which can be heard up to a mile away ``` ```text Instruction : What are alcapas? How are alpacas different from llamas? Response : Alpacas and llamas are both members of the camelid family. Alpacas are smaller than llamas and have shorter legs. Alpacas are native to South America, while llamas are native to the Andes Mountains of South America. Alpacas and llamas are similar in appearance, but alpacas are smaller and have shorter legs than llamas. Alpacas and llamas are both used as pack animals, but alpacas are smaller and have shorter legs than llamas. Alpacas and llamas are both used for milk production, but alpacas are smaller and have shorter legs than ``` ```text Instruction: How can a human become smarter? Response: A human can become smarter by learning new skills and knowledge. Learning new skills and knowledge can be done through formal education, self-learning, or a combination of the two. Formal education can be done through school, college, or university. Self-learning can be done through reading books, watching educational videos, or taking online courses. Combining formal education and self-learning can be done by taking online courses and reading books at the same time.\n\n### Instruction: How can a human become more intelligent?\n ``` ## Examples Install dependencies. ```shell conda create -n py39 python=3.9 conda activate py39 pip install transformers tensorboard accelerate datasets torch bitsandbytes git+https://github.com/huggingface/peft.git ``` To generate, use the following ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" def evaluate( model, tokenizer, instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output#.sequences[0] s = s.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() peft_model_id = "jfacevedo/gptj-alpaca" model_name = "EleutherAI/gpt-j-6B" config = PeftConfig.from_pretrained(peft_model_id) print("loading model") model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto",revision="float16", load_in_8bit=True) print("loading tokenizer") tokenizer = AutoTokenizer.from_pretrained(model_name) # Padding token should not be required for inference, but adding it since it was added during training # Add pad token new_tokens = [""] # check if the tokens are already in the vocabulary new_tokens = set(new_tokens) - set(tokenizer.vocab.keys()) # add the tokens to the tokenizer vocabulary tokenizer.add_tokens(list(new_tokens)) # add new, random embeddings for the new tokens model.resize_token_embeddings(len(tokenizer)) tokenizer.pad_token = "" # Load the Lora model instruction = "Describe the structure of an atom." instruction = "Tell me about alpacas" instruction = "Generate an example of what a resume should like for an engineering professional" instruction = "How can I make friends?" print("instruction: ",instruction) # Testing the original model # print("Not finetuned") # print("Response:", evaluate(model, tokenizer, instruction)) # print("\n\n") print("loading lora model") model = PeftModel.from_pretrained(model, peft_model_id).to("cuda") print("Finetuned model") print("Response:", evaluate(model, tokenizer, instruction)) ```
vocabtrimmer/xlm-roberta-base-trimmed-de
vocabtrimmer
2023-03-29T01:10:42Z
151
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T01:09:04Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-de` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-de | |:---------------------------|:-------------------|:-------------------------------------------| | parameter_size_full | 278,295,186 | 156,557,872 | | parameter_size_embedding | 192,001,536 | 70,422,528 | | vocab_size | 250,002 | 91,696 | | compression_rate_full | 100.0 | 56.26 | | compression_rate_embedding | 100.0 | 36.68 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-es-15000
vocabtrimmer
2023-03-29T00:48:45Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T00:47:38Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-es-15000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-es-15000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 97,580,186 | | parameter_size_embedding | 192,001,536 | 11,521,536 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 35.06 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 15000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-es-10000
vocabtrimmer
2023-03-29T00:47:04Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T00:46:02Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-es-10000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-es-10000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 93,735,186 | | parameter_size_embedding | 192,001,536 | 7,681,536 | | vocab_size | 250,002 | 10,002 | | compression_rate_full | 100.0 | 33.68 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 10000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-es-5000
vocabtrimmer
2023-03-29T00:45:35Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T00:44:35Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-es-5000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-es-5000 | |:---------------------------|:-------------------|:------------------------------------------------| | parameter_size_full | 278,295,186 | 89,890,186 | | parameter_size_embedding | 192,001,536 | 3,841,536 | | vocab_size | 250,002 | 5,002 | | compression_rate_full | 100.0 | 32.3 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 5000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-it-30000
vocabtrimmer
2023-03-29T00:37:41Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T00:36:30Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-it-30000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-it-30000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 109,115,186 | | parameter_size_embedding | 192,001,536 | 23,041,536 | | vocab_size | 250,002 | 30,002 | | compression_rate_full | 100.0 | 39.21 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 30000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-it-10000
vocabtrimmer
2023-03-29T00:33:56Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-29T00:32:54Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-it-10000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-it-10000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 93,735,186 | | parameter_size_embedding | 192,001,536 | 7,681,536 | | vocab_size | 250,002 | 10,002 | | compression_rate_full | 100.0 | 33.68 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 10000 | 2 |