modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 06:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 06:27:44
card
stringlengths
11
1.01M
Jellywibble/dalio-principles-pretrain-v2
Jellywibble
2022-11-20T01:55:33Z
6
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T19:42:56Z
--- tags: - text-generation library_name: transformers --- ## Model description Based off facebook/opt-30b model, finetuned on chucked Dalio responses ## Dataset Used Jellywibble/dalio-pretrain-book-dataset-v2 ## Training Parameters - Deepspeed on 4xA40 GPUs - Ensuring EOS token `<s>` appears only at the beginning of each chunk - Gradient Accumulation steps = 1 (Effective batch size of 4) - 3e-6 Learning Rate, AdamW optimizer - Block size of 800 - Trained for 1 Epoch (additional epochs yielded worse Hellaswag result) ## Metrics - Hellaswag Perplexity: 30.2 - Eval accuracy: 49.8% - Eval loss: 2.283 - Checkpoint 16 uploaded - wandb run: https://wandb.ai/jellywibble/huggingface/runs/2vtr39rk?workspace=user-jellywibble
jammygrams/bart-qa
jammygrams
2022-11-20T01:24:11Z
119
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T14:15:23Z
--- license: openrail --- See https://github.com/jammygrams/Pea-QA for details on model training (with narrativeqa dataset)
monakth/bert-base-cased-finetuned-squadv2
monakth
2022-11-20T00:49:07Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2022-11-20T00:47:41Z
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-cased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squadv This model is a fine-tuned version of [monakth/bert-base-cased-finetuned-squad](https://huggingface.co/monakth/bert-base-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
milyiyo/paraphraser-spanish-t5-base
milyiyo
2022-11-20T00:25:08Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T14:55:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: paraphraser-spanish-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphraser-spanish-t5-base This model is a fine-tuned version of [milyiyo/paraphraser-spanish-t5-base](https://huggingface.co/milyiyo/paraphraser-spanish-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1212 | 0.07 | 2000 | 0.8120 | | 1.2263 | 0.14 | 4000 | 0.7773 | | 1.1976 | 0.21 | 6000 | 0.7745 | | 1.1828 | 0.28 | 8000 | 0.7675 | | 1.1399 | 0.35 | 10000 | 0.7668 | | 1.1378 | 0.42 | 12000 | 0.7651 | | 1.1035 | 0.5 | 14000 | 0.7644 | | 1.0923 | 0.57 | 16000 | 0.7633 | | 1.0924 | 0.64 | 18000 | 0.7594 | | 1.0943 | 0.71 | 20000 | 0.7578 | | 1.0872 | 0.78 | 22000 | 0.7575 | | 1.0755 | 0.85 | 24000 | 0.7599 | | 1.0806 | 0.92 | 26000 | 0.7558 | | 1.079 | 0.99 | 28000 | 0.7572 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
dvitel/h3
dvitel
2022-11-19T22:26:00Z
116
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "distigpt2", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T01:53:19Z
--- license: apache-2.0 tags: - distigpt2 - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.30303030303030304 name: Exact Match - type: bleu value: 0.8850182403024257 name: BLEU - type: dvitel/codebleu value: 0.677852377992836 name: CodeBLEU - type: chrf value: 91.00848749530383 name: chrF --- # h3 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset. [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h3.py). It achieves the following results on the evaluation set: - Loss: 0.2782 - Exact Match: 0.2879 - Bleu: 0.9121 - Codebleu: 0.7482 - Ngram Match Score: 0.7504 - Weighted Ngram Match Score: 0.7583 - Syntax Match Score: 0.7673 - Dataflow Match Score: 0.7169 - Chrf: 93.1064 ## Model description DistilGPT2 fine-tuned on HearthStone dataset for 200 epochs. \ Related to [dvitel/h0](https://huggingface.co/dvitel/h0) but with preprocessing which anonymizes classes and function variables (Local renaming). \ [dvitel/h2](https://huggingface.co/dvitel/h2) implements global renaming where all names are removed. Global renaming showed worse results compared to local renaming. Example of generated code with mistake on last eval iteration (EV L - gold labels, EV P - prediction): ```python EV L class CLS0(MinionCard): def __init__(self): super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector())) def create_minion(self, v0): return Minion(4, 5) EV P class CLS0(MinionCard): def __init__(self): super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector()) def create_minion(self, v0): return Minion(4, 5) EV L class CLS0(WeaponCard): def __init__(self): super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE) def create_weapon(self, v0): return Weapon(3, 2) EV P class CLS0(WeaponCard): def __init__(self): super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE, def create_weapon(self, v0): return Weapon(3, 2) EV L class CLS0(MinionCard): def __init__(self): super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector()))), Buff(ChangeHealth(Count(MinionSelector())))]), SelfSelector())) def create_minion(self, v0): return Minion(4, 4) EV P class CLS0(MinionCard): def __init__(self): super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector(),), Buff(ChangeHealth(Count(MinionSelector()))))]),), SelfSelector())) def create_minion(self, v0): return Minion(4, 4) EV L class CLS0(SpellCard): def __init__(self): super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE) def use(self, v0, v1): super().use(v0, v1) v2 = copy.copy(v1.other_player.minions) v2.extend(v1.current_player.minions) v2.append(v1.other_player.hero) v2.append(v1.current_player.hero) for v3 in v2: v3.damage(v0.effective_spell_damage(3), self) EV P class CLS0(SpellCard): def __init__(self): super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE, def use(self, v0, v1): super().use(v0, v1) v2 = copy.copy(v1.other_player.minions) v2.extend(v1.current_player.minions) for.append(v1.other_player.hero) for.append(v1.other_player.hero) for v3 in v2: .damage(v0.effective_spell_damage(3), self) ``` ## Intended uses & limitations HearthStone card code synthesis. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:| | 0.8612 | 11.94 | 1600 | 0.2725 | 0.0455 | 0.8477 | 0.6050 | 0.6229 | 0.6335 | 0.6203 | 0.5431 | 88.7010 | | 0.175 | 23.88 | 3200 | 0.2311 | 0.0909 | 0.8739 | 0.6304 | 0.6566 | 0.6656 | 0.6484 | 0.5508 | 90.7364 | | 0.1036 | 35.82 | 4800 | 0.2172 | 0.1818 | 0.8930 | 0.6905 | 0.6976 | 0.7062 | 0.7172 | 0.6409 | 91.9702 | | 0.0695 | 47.76 | 6400 | 0.2233 | 0.2424 | 0.8944 | 0.7017 | 0.7148 | 0.7232 | 0.7187 | 0.6499 | 92.0340 | | 0.0482 | 59.7 | 8000 | 0.2407 | 0.2879 | 0.9046 | 0.7301 | 0.7387 | 0.7456 | 0.7475 | 0.6885 | 92.6219 | | 0.0352 | 71.64 | 9600 | 0.2407 | 0.2424 | 0.9074 | 0.7255 | 0.7371 | 0.7448 | 0.7482 | 0.6718 | 92.8281 | | 0.0262 | 83.58 | 11200 | 0.2596 | 0.3030 | 0.9061 | 0.7445 | 0.7415 | 0.7500 | 0.7774 | 0.7091 | 92.6737 | | 0.0213 | 95.52 | 12800 | 0.2589 | 0.2879 | 0.9061 | 0.7308 | 0.7409 | 0.7488 | 0.7464 | 0.6873 | 92.7814 | | 0.0164 | 107.46 | 14400 | 0.2679 | 0.2879 | 0.9096 | 0.7452 | 0.7510 | 0.7592 | 0.7626 | 0.7079 | 92.9900 | | 0.0131 | 119.4 | 16000 | 0.2660 | 0.2879 | 0.9096 | 0.7447 | 0.7480 | 0.7564 | 0.7666 | 0.7079 | 93.0122 | | 0.0116 | 131.34 | 17600 | 0.2669 | 0.2727 | 0.9092 | 0.7463 | 0.7445 | 0.7529 | 0.7684 | 0.7194 | 92.9256 | | 0.0093 | 143.28 | 19200 | 0.2678 | 0.2879 | 0.9113 | 0.7531 | 0.7496 | 0.7581 | 0.7709 | 0.7336 | 93.0406 | | 0.0083 | 155.22 | 20800 | 0.2728 | 0.2879 | 0.9103 | 0.7407 | 0.7462 | 0.7540 | 0.7702 | 0.6924 | 92.9302 | | 0.0077 | 167.16 | 22400 | 0.2774 | 0.2879 | 0.9103 | 0.7449 | 0.7449 | 0.7532 | 0.7659 | 0.7156 | 92.9742 | | 0.0069 | 179.1 | 24000 | 0.2774 | 0.2879 | 0.9120 | 0.7396 | 0.7463 | 0.7539 | 0.7633 | 0.6950 | 93.1057 | | 0.0069 | 191.04 | 25600 | 0.2782 | 0.2879 | 0.9121 | 0.7482 | 0.7504 | 0.7583 | 0.7673 | 0.7169 | 93.1064 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
cyburn/silvery_trait
cyburn
2022-11-19T20:47:34Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-11-19T20:40:37Z
--- license: unknown --- # Silvery Trait finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. Using words found in `prompt_words.md` within your prompt will produce better results. Other words can be used also but will tend to produce "weaker" results. Combining the use of the Aesthetic Gradient file provided in the `easthetic_embeddings` folder can greatly enhance the results. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever>, by asd artstyle` ## Example prompts `a sheep, symmetry, by asd artstyle`: * without easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/1.jpg" alt="Picture." width="500"/> * with easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/2.jpg" alt="Picture." width="500"/> `crow, skull, symmetry, flower, feather, circle, by asd artstyle` * without easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/3.jpg" alt="Picture." width="500"/> * with easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/4.jpg" alt="Picture." width="500"/>
cahya/t5-base-indonesian-summarization-cased
cahya
2022-11-19T20:41:24Z
497
5
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "pipeline:summarization", "summarization", "id", "dataset:id_liputan6", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: id tags: - pipeline:summarization - summarization - t5 datasets: - id_liputan6 --- # Indonesian T5 Summarization Base Model Finetuned T5 base summarization model for Indonesian. ## Finetuning Corpus `t5-base-indonesian-summarization-cased` model is based on `t5-base-bahasa-summarization-cased` by [huseinzol05](https://huggingface.co/huseinzol05), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") ``` ## Code Sample ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
fernanda-dionello/good-reads-string
fernanda-dionello
2022-11-19T20:16:34Z
99
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-autotrain_goodreads_string", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T20:11:24Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - fernanda-dionello/autotrain-data-autotrain_goodreads_string co2_eq_emissions: emissions: 0.04700680417595474 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2164069744 - CO2 Emissions (in grams): 0.0470 ## Validation Metrics - Loss: 0.806 - Accuracy: 0.686 - Macro F1: 0.534 - Micro F1: 0.686 - Weighted F1: 0.678 - Macro Precision: 0.524 - Micro Precision: 0.686 - Weighted Precision: 0.673 - Macro Recall: 0.551 - Micro Recall: 0.686 - Weighted Recall: 0.686 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Rajaram1996/Hubert_emotion
Rajaram1996
2022-11-19T20:10:41Z
275
32
transformers
[ "transformers", "pytorch", "hubert", "speech", "audio", "HUBert", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:04Z
--- inference: true pipeline_tag: audio-classification tags: - speech - audio - HUBert --- Working example of using pretrained model to predict emotion in local audio file ``` def predict_emotion_hubert(audio_file): """ inspired by an example from https://github.com/m3hrdadfi/soxan """ from audio_models import HubertForSpeechClassification from transformers import Wav2Vec2FeatureExtractor, AutoConfig import torch.nn.functional as F import torch import numpy as np from pydub import AudioSegment model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") sampling_rate=16000 # defined by the model; must convert mp3 to this rate. config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") def speech_file_to_array(path, sampling_rate): # using torchaudio... # speech_array, _sampling_rate = torchaudio.load(path) # resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) # speech = resampler(speech_array).squeeze().numpy() sound = AudioSegment.from_file(path) sound = sound.set_frame_rate(sampling_rate) sound_array = np.array(sound.get_array_of_samples()) return sound_array sound_array = speech_file_to_array(audio_file, sampling_rate) inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to("cpu").float() for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{ "emo": config.id2label[i], "score": round(score * 100, 1)} for i, score in enumerate(scores) ] return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2] ``` ``` result = predict_emotion_hubert("male-crying.mp3") >>> result [{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}] ```
chieunq/XLM-R-base-finetuned-uit-vquad-1
chieunq
2022-11-19T20:02:14Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "vi", "dataset:uit-vquad", "arxiv:2009.14725", "endpoints_compatible", "region:us" ]
question-answering
2022-11-19T19:00:55Z
--- language: vi tags: - vi - xlm-roberta widget: - text: 3 thành viên trong nhóm gồm những ai ? context: "Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên: Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm ." datasets: - uit-vquad metrics: - EM (exact match) : 60.63 - F1 : 79.63 --- We fined-tune model XLM-Roberta-base in UIT-vquad dataset (https://arxiv.org/pdf/2009.14725.pdf) ### Performance - EM (exact match) : 60.63 - F1 : 79.63 ### How to run ``` from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "chieunq/XLM-R-base-finetuned-uit-vquad-1" question_answerer = pipeline("question-answering", model=model_checkpoint) context = """ Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên : Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm . """ question = "3 thành viên trong nhóm gồm những ai ?" question_answerer(question=question, context=context) ``` ### Output ``` {'score': 0.9928902387619019, 'start': 98, 'end': 158, 'answer': 'Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức.'} ``` ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Froddan/furiostyle
Froddan
2022-11-19T19:28:35Z
0
3
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T19:10:50Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Furio Tedeshi](https://www.furiotedeschi.com/) ### Usage Use by adding the keyword "furiostyle" to the prompt. The model was trained with the "demon" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "furiostyle demon x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 4 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. I think the x2 model got better results this time around, if you would compare the dog and the mushroom. <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_ornate.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
kormilitzin/en_core_spancat_med7_trf
kormilitzin
2022-11-19T18:54:29Z
5
1
spacy
[ "spacy", "en", "license:mit", "region:us" ]
null
2022-11-18T23:31:46Z
--- tags: - spacy language: - en license: mit model-index: - name: en_core_spancat_med7_trf results: [] --- | Feature | Description | | --- | --- | | **Name** | `en_core_spancat_med7_trf` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `transformer`, `spancat` | | **Components** | `transformer`, `spancat` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (8 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`spancat`** | `DOSAGE`, `MEDINFO`, `DRUG`, `STRENGTH`, `FREQUENCY`, `ROUTE`, `DURATION`, `FORM` | </details> ### Accuracy | Type | Score | | --- | --- | | `SPANS_SC_F` | 83.10 | | `SPANS_SC_P` | 83.32 | | `SPANS_SC_R` | 82.88 | | `TRANSFORMER_LOSS` | 1176.39 | | `SPANCAT_LOSS` | 36025.42 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
kormilitzin/en_core_med7_trf
kormilitzin
2022-11-19T18:51:54Z
375
12
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8822157434 - name: NER Recall type: recall value: 0.925382263 - name: NER F Score type: f_score value: 0.9032835821 --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_trf` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 90.33 | | `ENTS_P` | 88.22 | | `ENTS_R` | 92.54 | | `TRANSFORMER_LOSS` | 2502627.06 | | `NER_LOSS` | 114576.77 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
easyh/de_fnhd_nerdh
easyh
2022-11-19T18:34:01Z
4
0
spacy
[ "spacy", "token-classification", "de", "model-index", "region:us" ]
token-classification
2022-11-19T14:48:28Z
--- tags: - spacy - token-classification language: - de model-index: - name: de_fnhd_nerdh results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9629324547 - name: NER Recall type: recall value: 0.9504065041 - name: NER F Score type: f_score value: 0.9566284779 --- Deutsche NER-Pipeline für frühneuhochdeutsche Texte (2.Version) | Feature | Description | | --- | --- | | **Name** | `de_fnhd_nerdh` | | **Version** | `0.0.2` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [ih]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `OBJEKT`, `ORGANISATION`, `ORT`, `PERSON`, `ZEIT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 95.66 | | `ENTS_P` | 96.29 | | `ENTS_R` | 95.04 | | `TOK2VEC_LOSS` | 25311.59 | | `NER_LOSS` | 15478.32 |
yunseokj/ddpm-butterflies-128
yunseokj
2022-11-19T18:20:57Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-19T17:31:45Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/yunseokj/ddpm-butterflies-128/tensorboard?#scalars)
huggingtweets/kalousekm
huggingtweets
2022-11-19T18:12:47Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T18:11:38Z
--- language: en thumbnail: http://www.huggingtweets.com/kalousekm/1668881563935/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/796289819571843072/yg0FHZZD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miroslav Kalousek🇺🇦🇨🇿</div> <div style="text-align: center; font-size: 14px;">@kalousekm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Miroslav Kalousek🇺🇦🇨🇿. | Data | Miroslav Kalousek🇺🇦🇨🇿 | | --- | --- | | Tweets downloaded | 3252 | | Retweets | 69 | | Short tweets | 192 | | Tweets kept | 2991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ox04g0p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kalousekm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jtp1suwc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jtp1suwc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kalousekm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Froddan/hurrimatte
Froddan
2022-11-19T18:11:55Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:10:08Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Björn Hurri](https://www.artstation.com/bjornhurri) This model is fine tuned on some of his matte-style paintings. I also have a version for his "shinier" works. ### Usage Use by adding the keyword "hurrimatte" to the prompt. The model was trained with the "monster" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "hurrimatte monster x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 3 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_5.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_6.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_7.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Froddan/nekrofaerie
Froddan
2022-11-19T17:51:30Z
0
2
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:06:11Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Nekro](https://www.artstation.com/nekro) ### Usage Use by adding the keyword "nekrofaerie" to the prompt. The model was trained with the "faerie" classname, which can also be added to the prompt. ## Samples The top 2 images are "pure", the rest could be mixed with other artists or modifiers. I hope it still gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp04o1t4b_.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp41igywg4.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmpbkj8sqmh.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmphk34pib0.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/greg_mucha2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
vicky10011001/ddpm-butterflies-128
vicky10011001
2022-11-19T15:36:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-19T12:14:52Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/vicky10011001/ddpm-butterflies-128/tensorboard?#scalars)
rdyzakya/bert-indo-base-stance-cls
rdyzakya
2022-11-19T15:09:32Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T13:00:54Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-indo-base-stance-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-indo-base-stance-cls This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0156 - Accuracy: 0.6892 - Precision: 0.6848 - Recall: 0.6892 - F1: 0.6859 - Against: {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} - For: {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Against | For | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 137 | 0.6423 | 0.6581 | 0.6894 | 0.6581 | 0.5917 | {'precision': 0.7543859649122807, 'recall': 0.19907407407407407, 'f1-score': 0.31501831501831506, 'support': 216} | {'precision': 0.6469387755102041, 'recall': 0.9577039274924471, 'f1-score': 0.7722289890377587, 'support': 331} | | No log | 2.0 | 274 | 0.6146 | 0.6600 | 0.6691 | 0.6600 | 0.6628 | {'precision': 0.5614754098360656, 'recall': 0.6342592592592593, 'f1-score': 0.5956521739130436, 'support': 216} | {'precision': 0.7392739273927392, 'recall': 0.676737160120846, 'f1-score': 0.7066246056782334, 'support': 331} | | No log | 3.0 | 411 | 0.7572 | 0.6545 | 0.6734 | 0.6545 | 0.6583 | {'precision': 0.550561797752809, 'recall': 0.6805555555555556, 'f1-score': 0.608695652173913, 'support': 216} | {'precision': 0.7535714285714286, 'recall': 0.6374622356495468, 'f1-score': 0.6906710310965631, 'support': 331} | | 0.4855 | 4.0 | 548 | 0.7405 | 0.6892 | 0.6842 | 0.6892 | 0.6851 | {'precision': 0.6210526315789474, 'recall': 0.5462962962962963, 'f1-score': 0.5812807881773399, 'support': 216} | {'precision': 0.7254901960784313, 'recall': 0.7824773413897281, 'f1-score': 0.7529069767441859, 'support': 331} | | 0.4855 | 5.0 | 685 | 1.1222 | 0.6856 | 0.6828 | 0.6856 | 0.6839 | {'precision': 0.6078431372549019, 'recall': 0.5740740740740741, 'f1-score': 0.5904761904761905, 'support': 216} | {'precision': 0.7317784256559767, 'recall': 0.7583081570996979, 'f1-score': 0.7448071216617211, 'support': 331} | | 0.4855 | 6.0 | 822 | 1.4960 | 0.6892 | 0.6830 | 0.6892 | 0.6827 | {'precision': 0.6292134831460674, 'recall': 0.5185185185185185, 'f1-score': 0.5685279187817258, 'support': 216} | {'precision': 0.7181571815718157, 'recall': 0.8006042296072508, 'f1-score': 0.7571428571428572, 'support': 331} | | 0.4855 | 7.0 | 959 | 1.6304 | 0.6801 | 0.6886 | 0.6801 | 0.6827 | {'precision': 0.5843621399176955, 'recall': 0.6574074074074074, 'f1-score': 0.6187363834422658, 'support': 216} | {'precision': 0.756578947368421, 'recall': 0.6948640483383686, 'f1-score': 0.7244094488188976, 'support': 331} | | 0.1029 | 8.0 | 1096 | 1.8381 | 0.6673 | 0.6727 | 0.6673 | 0.6693 | {'precision': 0.5726495726495726, 'recall': 0.6203703703703703, 'f1-score': 0.5955555555555555, 'support': 216} | {'precision': 0.7380191693290735, 'recall': 0.6978851963746223, 'f1-score': 0.717391304347826, 'support': 331} | | 0.1029 | 9.0 | 1233 | 1.9474 | 0.6929 | 0.6876 | 0.6929 | 0.6881 | {'precision': 0.6290322580645161, 'recall': 0.5416666666666666, 'f1-score': 0.582089552238806, 'support': 216} | {'precision': 0.7257617728531855, 'recall': 0.7915407854984894, 'f1-score': 0.7572254335260115, 'support': 331} | | 0.1029 | 10.0 | 1370 | 2.0156 | 0.6892 | 0.6848 | 0.6892 | 0.6859 | {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} | {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
katboi01/rare-puppers
katboi01
2022-11-19T15:04:01Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-19T15:03:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.89552241563797 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
nypnop/distilbert-base-uncased-finetuned-bbc-news
nypnop
2022-11-19T14:09:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T14:57:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-bbc-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0107 - Accuracy: 0.9955 - F1: 0.9955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3463 | 0.84 | 500 | 0.0392 | 0.9865 | 0.9865 | | 0.0447 | 1.68 | 1000 | 0.0107 | 0.9955 | 0.9955 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
vikram15/bert-finetuned-ner
vikram15
2022-11-19T13:21:37Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T13:03:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9309775429326288 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9398233038839806 - name: Accuracy type: accuracy value: 0.9861806087007712 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.9310 - Recall: 0.9488 - F1: 0.9398 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0911 | 1.0 | 1756 | 0.0702 | 0.9197 | 0.9345 | 0.9270 | 0.9826 | | 0.0336 | 2.0 | 3512 | 0.0623 | 0.9294 | 0.9480 | 0.9386 | 0.9864 | | 0.0174 | 3.0 | 5268 | 0.0630 | 0.9310 | 0.9488 | 0.9398 | 0.9862 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
GDJ1978/anyXtronXredshift
GDJ1978
2022-11-19T12:32:23Z
0
0
null
[ "region:us" ]
null
2022-11-13T19:53:03Z
Merged checkpoints of anythingXtron and redshift 0.6 This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the model to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
GDJ1978/spiderverseXrobo
GDJ1978
2022-11-19T12:32:05Z
0
0
null
[ "region:us" ]
null
2022-11-14T13:06:24Z
spiderverse-v1-pruned_0.6-robo-diffusion-v1_0.4-Weighted_sum-merged.ckpt MAKE SURE ADD EXTENSION CKPT WHEN DOWNLOADING This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the model to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
svnfs/rfc-alias
svnfs
2022-11-19T12:23:56Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-11-19T12:23:50Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: x0: - 5.8 - 6.0 - 5.5 x1: - 2.8 - 2.2 - 4.2 x2: - 5.1 - 4.0 - 1.4 x3: - 2.4 - 1.0 - 0.2 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------| | bootstrap | True | | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | sqrt | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
beyond/genius-base
beyond
2022-11-19T11:59:46Z
104
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "GENIUS", "conditional text generation", "sketch-based text generation", "data augmentation", "en", "zh", "dataset:c4", "dataset:beyond/chinese_clean_passages_80m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T06:26:13Z
--- language: - en - zh tags: - GENIUS - conditional text generation - sketch-based text generation - data augmentation license: apache-2.0 datasets: - c4 - beyond/chinese_clean_passages_80m widget: - text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>" example_title: "Example 1" - text: "<mask> machine learning <mask> my research interest <mask> data science <mask>" example_title: "Example 2" - text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>" example_title: "Example 3" - text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>" example_title: "Example with a prompt 1" - text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>" example_title: "Example with a prompt 2" inference: parameters: max_length: 200 num_beams: 3 do_sample: True --- # 💡GENIUS – generating text using sketches! **基于草稿的文本生成模型** - **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://github.com/beyondguo/genius/blob/master/GENIUS_gby_arxiv.pdf)** 💡**GENIUS** is a powerful conditional text generation model using sketches as input, which can fill in the missing contexts for a given **sketch** (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large- scale textual corpus with a novel *reconstruction from sketch* objective using an *extreme and selective masking* strategy, enabling it to generate diverse and high-quality texts given sketches. **Example 1:** - sketch: `__ machine learning __ my research interest __ data science __` - **GENIUS**: `I am a Ph.D. student in machine learning, and my research interest is in data science. I am interested in understanding how humans and machines interact and how we can improve the quality of life for people around the world.` **Example 2:** - sketch: `自然语言处理__谷歌__通用人工智能__` - **GENIUS**: `自然语言处理是谷歌在通用人工智能领域的一个重要研究方向,其目的是为了促进人类智能的发展。 ` **GENIUS** can also be used as a general textual **data augmentation tool** for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA). ![image-20221119164544165](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/hi-genius.png) - Models hosted in 🤗 Huggingface: **Model variations:** | Model | #params | Language | comment| |------------------------|--------------------------------|-------|---------| | [`genius-large`](https://huggingface.co/beyond/genius-large) | 406M | English | The version used in **paper** (recommend) | | [`genius-large-k2t`](https://huggingface.co/beyond/genius-large-k2t) | 406M | English | keywords-to-text | | [`genius-base`](https://huggingface.co/beyond/genius-base) | 139M | English | smaller version | | [`genius-base-ps`](https://huggingface.co/beyond/genius-base) | 139M | English | pre-trained both in paragraphs and short sentences | | [`genius-base-chinese`](https://huggingface.co/beyond/genius-base-chinese) | 116M | 中文 | 在一千万纯净中文段落上预训练| ![image-20221119191940969](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191919005.png) More Examples: ![image-20221119184950762](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191849815.png) ## Usage ### What is a sketch? First, what is a **sketch**? As defined in our paper, a sketch is "key information consisting of textual spans, phrases, or words, concatenated by mask tokens". It's like a draft or framework when you begin to write an article. With GENIUS model, you can input some key elements you want to mention in your wrinting, then the GENIUS model can generate cohrent text based on your sketch. The sketch which can be composed of: - keywords /key-phrases, like `__NLP__AI__computer__science__` - spans, like `Conference on Empirical Methods__submission of research papers__` - sentences, like `I really like machine learning__I work at Google since last year__` - or a mixup! ### How to use the model #### 1. If you already have a sketch in mind, and want to get a paragraph based on it... ```python from transformers import pipeline # 1. load the model with the huggingface `pipeline` genius = pipeline("text2text-generation", model='beyond/genius-large', device=0) # 2. provide a sketch (joint by <mask> tokens) sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>" # 3. here we go! generated_text = genius(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text'] print(generated_text) ``` Output: ```shell 'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.' ``` If you have a lot of sketches, you can batch-up your sketches to a Huggingface `Dataset` object, which can be much faster. TODO: we are also building a python package for more convenient use of GENIUS, which will be released in few weeks. #### 2. If you have an NLP dataset (e.g. classification) and want to do data augmentation to enlarge your dataset... Please check [genius/augmentation_clf](https://github.com/beyondguo/genius/tree/master/augmentation_clf) and [genius/augmentation_ner_qa](https://github.com/beyondguo/genius/tree/master/augmentation_ner_qa), where we provide ready-to-run scripts for data augmentation for text classification/NER/MRC tasks. ## Augmentation Experiments: Data augmentation is an important application for natural language generation (NLG) models, which is also a valuable evaluation of whether the generated text can be used in real applications. - Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes. - Text Classification Datasets: [HuffPost](https://huggingface.co/datasets/khalidalt/HuffPost), [BBC](https://huggingface.co/datasets/SetFit/bbc-news), [SST2](https://huggingface.co/datasets/glue), [IMDB](https://huggingface.co/datasets/imdb), [Yahoo](https://huggingface.co/datasets/yahoo_answers_topics), [20NG](https://huggingface.co/datasets/newsgroup). - Base classifier: [DistilBERT](https://huggingface.co/distilbert-base-cased) In-distribution (ID) evaluations: | Method | Huff | BBC | Yahoo | 20NG | IMDB | SST2 | avg. | |:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:| | none | 79.17 | **96.16** | 45.77 | 46.67 | 77.87 | 76.67 | 70.39 | | EDA | 79.20 | 95.11 | 45.10 | 46.15 | 77.88 | 75.52 | 69.83 | | BackT | 80.48 | 95.28 | 46.10 | 46.61 | 78.35 | 76.96 | 70.63 | | MLM | 80.04 | 96.07 | 45.35 | 46.53 | 75.73 | 76.61 | 70.06 | | C-MLM | 80.60 | 96.13 | 45.40 | 46.36 | 77.31 | 76.91 | 70.45 | | LAMBADA | 81.46 | 93.74 | 50.49 | 47.72 | 78.22 | 78.31 | 71.66 | | STA | 80.74 | 95.64 | 46.96 | 47.27 | 77.88 | 77.80 | 71.05 | | **GeniusAug** | 81.43 | 95.74 | 49.60 | 50.38 | **80.16** | 78.82 | 72.68 | | **GeniusAug-f** | **81.82** | 95.99 | **50.42** | **50.81** | 79.40 | **80.57** | **73.17** | Out-of-distribution (OOD) evaluations: | | Huff->BBC | BBC->Huff | IMDB->SST2 | SST2->IMDB | avg. | |------------|:----------:|:----------:|:----------:|:----------:|:----------:| | none | 62.32 | 62.00 | 74.37 | 73.11 | 67.95 | | EDA | 67.48 | 58.92 | 75.83 | 69.42 | 67.91 | | BackT | 67.75 | 63.10 | 75.91 | 72.19 | 69.74 | | MLM | 66.80 | 65.39 | 73.66 | 73.06 | 69.73 | | C-MLM | 64.94 | **67.80** | 74.98 | 71.78 | 69.87 | | LAMBADA | 68.57 | 52.79 | 75.24 | 76.04 | 68.16 | | STA | 69.31 | 64.82 | 74.72 | 73.62 | 70.61 | | **GeniusAug** | 74.87 | 66.85 | 76.02 | 74.76 | 73.13 | | **GeniusAug-f** | **76.18** | 66.89 | **77.45** | **80.36** | **75.22** | ### BibTeX entry and citation info TBD
viktor-enzell/wav2vec2-large-voxrex-swedish-4gram
viktor-enzell
2022-11-19T11:06:02Z
5,719
5
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "sv", "dataset:common_voice", "dataset:NST_Swedish_ASR_Database", "dataset:P4", "dataset:The_Swedish_Culturomics_Gigaword_Corpus", "license:cc0-1.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-26T13:32:57Z
--- language: sv metrics: - wer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard - sv license: cc0-1.0 datasets: - common_voice - NST_Swedish_ASR_Database - P4 - The_Swedish_Culturomics_Gigaword_Corpus model-index: - name: Wav2vec 2.0 large VoxRex Swedish (C) with 4-gram results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 6.4723 --- # KBLab's wav2vec 2.0 large VoxRex Swedish (C) with 4-gram model Training of the acoustic model is the work of KBLab. See [VoxRex-C](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) for more details. This repo extends the acoustic model with a social media 4-gram language model for boosted performance. ## Model description VoxRex-C is extended with a 4-gram language model estimated from a subset extracted from [The Swedish Culturomics Gigaword Corpus](https://spraakbanken.gu.se/resurser/gigaword) from Språkbanken. The subset contains 40M words from the social media genre between 2010 and 2015. ## How to use #### Simple usage example with pipeline ```python import torch from transformers import pipeline # Load the model. Using GPU if available model_name = 'viktor-enzell/wav2vec2-large-voxrex-swedish-4gram' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') pipe = pipeline(model=model_name).to(device) # Run inference on an audio file output = pipe('path/to/audio.mp3')['text'] ``` #### More verbose usage example with audio pre-processing Example of transcribing 1% of the Common Voice test split. The model expects 16kHz audio, so audio with another sampling rate is resampled to 16kHz. ```python from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM from datasets import load_dataset import torch import torchaudio.functional as F # Import model and processor. Using GPU if available model_name = 'viktor-enzell/wav2vec2-large-voxrex-swedish-4gram' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device); processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Import and process speech data common_voice = load_dataset('common_voice', 'sv-SE', split='test[:1%]') def speech_file_to_array(sample): # Convert speech file to array and downsample to 16 kHz sampling_rate = sample['audio']['sampling_rate'] sample['speech'] = F.resample(torch.tensor(sample['audio']['array']), sampling_rate, 16_000) return sample common_voice = common_voice.map(speech_file_to_array) # Run inference inputs = processor(common_voice['speech'], sampling_rate=16_000, return_tensors='pt', padding=True).to(device) with torch.no_grad(): logits = model(**inputs).logits transcripts = processor.batch_decode(logits.cpu().numpy()).text ``` ## Training procedure Text data for the n-gram model is pre-processed by removing characters not part of the wav2vec 2.0 vocabulary and uppercasing all characters. After pre-processing and storing each text sample on a new line in a text file, a [KenLM](https://github.com/kpu/kenlm) model is estimated. See [this tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) for more details. ## Evaluation results The model was evaluated on the full Common Voice test set version 6.1. VoxRex-C achieved a WER of 9.03% without the language model and 6.47% with the language model.
NbAiLab/whisper
NbAiLab
2022-11-19T10:46:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-11-07T11:29:35Z
--- license: apache-2.0 --- # Whisper Finetuning Whisper finetuning example script.
KubiakJakub01/finetuned-distilbert-base-uncased
KubiakJakub01
2022-11-19T10:45:52Z
60
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T09:14:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KubiakJakub01/finetuned-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KubiakJakub01/finetuned-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2767 - Validation Loss: 0.4326 - Train Accuracy: 0.8319 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.4680 | 0.4008 | 0.8378 | 0 | | 0.3475 | 0.4017 | 0.8385 | 1 | | 0.2767 | 0.4326 | 0.8319 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
jonathanrichard13/pegasus-xsum-reddit-clean-4
jonathanrichard13
2022-11-19T10:22:51Z
102
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:reddit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T07:21:12Z
--- tags: - generated_from_trainer datasets: - reddit metrics: - rouge model-index: - name: pegasus-xsum-reddit-clean-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: reddit type: reddit args: default metrics: - name: Rouge1 type: rouge value: 27.7525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-reddit-clean-4 This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the reddit dataset. It achieves the following results on the evaluation set: - Loss: 2.7697 - Rouge1: 27.7525 - Rouge2: 7.9823 - Rougel: 20.9276 - Rougelsum: 22.6678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.0594 | 1.0 | 1906 | 2.8489 | 27.9837 | 8.0824 | 20.9135 | 22.7261 | | 2.861 | 2.0 | 3812 | 2.7793 | 27.8298 | 8.048 | 20.8653 | 22.6781 | | 2.7358 | 3.0 | 5718 | 2.7697 | 27.7525 | 7.9823 | 20.9276 | 22.6678 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
mmiteva/distilbert-base-uncased-customized
mmiteva
2022-11-19T08:46:43Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T09:58:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mmiteva/distilbert-base-uncased-customized results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mmiteva/distilbert-base-uncased-customized This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3257 - Train End Logits Accuracy: 0.9017 - Train Start Logits Accuracy: 0.8747 - Validation Loss: 1.5040 - Validation End Logits Accuracy: 0.6988 - Validation Start Logits Accuracy: 0.6655 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36885, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0773 | 0.7064 | 0.6669 | 1.1080 | 0.6973 | 0.6669 | 0 | | 0.7660 | 0.7812 | 0.7433 | 1.1076 | 0.7093 | 0.6734 | 1 | | 0.5586 | 0.8351 | 0.7988 | 1.2336 | 0.7039 | 0.6692 | 2 | | 0.4165 | 0.8741 | 0.8434 | 1.3799 | 0.7034 | 0.6707 | 3 | | 0.3257 | 0.9017 | 0.8747 | 1.5040 | 0.6988 | 0.6655 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.7.0 - Datasets 2.6.1 - Tokenizers 0.13.2
robinhad/wav2vec2-xls-r-300m-crh
robinhad
2022-11-19T08:15:07Z
79
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "crh", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-19T08:03:35Z
--- language: - crh license: mit tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-crh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-crh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the custom Crimean Tatar dataset. It achieves the following results on the evaluation set: - Loss: 0.738475 - Wer: 0.4494 - Cer: 0.1254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
Mohan515/t5-small-finetuned-medical
Mohan515
2022-11-19T07:56:25Z
60
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T07:49:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Mohan515/t5-small-finetuned-medical results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Mohan515/t5-small-finetuned-medical This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8018 - Validation Loss: 0.5835 - Train Rouge1: 43.3783 - Train Rouge2: 35.1091 - Train Rougel: 41.6332 - Train Rougelsum: 42.5743 - Train Gen Len: 17.4718 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.8018 | 0.5835 | 43.3783 | 35.1091 | 41.6332 | 42.5743 | 17.4718 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_hate_speech_LSTM
coderSounak
2022-11-19T07:02:00Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T06:59:33Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_hate_speech_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_hate_speech_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5748 - Accuracy: 0.6944 - F1: 0.7170 - Precision: 0.6734 - Recall: 0.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_sentiment_LSTM
coderSounak
2022-11-19T06:53:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T06:49:59Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_sentiment_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_sentiment_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9053 - Accuracy: 0.5551 - F1: 0.5509 - Precision: 0.5633 - Recall: 0.5551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
KellyShiiii/primer-crd3
KellyShiiii
2022-11-19T06:47:19Z
92
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "generated_from_trainer", "dataset:crd3", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T04:19:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - crd3 metrics: - rouge model-index: - name: primer-crd3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: crd3 type: crd3 config: default split: train[:500] args: default metrics: - name: Rouge1 type: rouge value: 0.1510358452879352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # primer-crd3 This model is a fine-tuned version of [allenai/PRIMERA](https://huggingface.co/allenai/PRIMERA) on the crd3 dataset. It achieves the following results on the evaluation set: - Loss: 3.8193 - Rouge1: 0.1510 - Rouge2: 0.0279 - Rougel: 0.1251 - Rougelsum: 0.1355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 250 | 2.9569 | 0.1762 | 0.0485 | 0.1525 | 0.1605 | | 1.7993 | 2.0 | 500 | 3.4079 | 0.1612 | 0.0286 | 0.1367 | 0.1444 | | 1.7993 | 3.0 | 750 | 3.8193 | 0.1510 | 0.0279 | 0.1251 | 0.1355 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.8.0 - Datasets 2.7.0 - Tokenizers 0.13.2
sd-concepts-library/yoshimurachi
sd-concepts-library
2022-11-19T06:43:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-19T06:43:53Z
--- license: mit --- ### Yoshimurachi on Stable Diffusion This is the `<yoshi-san>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<yoshi-san> 0](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/3.jpeg) ![<yoshi-san> 1](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/1.jpeg) ![<yoshi-san> 2](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/2.jpeg) ![<yoshi-san> 3](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/0.jpeg)
meongracun/nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32
meongracun
2022-11-19T05:54:44Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:26:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2914 - Bleu: 0.0708 - Meteor: 0.2054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.8210 | 0.0313 | 0.1235 | | No log | 2.0 | 404 | 2.6712 | 0.0398 | 0.1478 | | 3.0646 | 3.0 | 606 | 2.5543 | 0.0483 | 0.1661 | | 3.0646 | 4.0 | 808 | 2.4735 | 0.0537 | 0.1751 | | 2.6866 | 5.0 | 1010 | 2.4120 | 0.0591 | 0.1855 | | 2.6866 | 6.0 | 1212 | 2.3663 | 0.0618 | 0.1906 | | 2.6866 | 7.0 | 1414 | 2.3324 | 0.0667 | 0.1993 | | 2.5034 | 8.0 | 1616 | 2.3098 | 0.0684 | 0.2023 | | 2.5034 | 9.0 | 1818 | 2.2969 | 0.0696 | 0.2042 | | 2.4271 | 10.0 | 2020 | 2.2914 | 0.0708 | 0.2054 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32
meongracun
2022-11-19T05:41:31Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:13:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9022 - Bleu: 0.0284 - Meteor: 0.1159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 3.2021 | 0.0126 | 0.0683 | | No log | 2.0 | 404 | 3.0749 | 0.0219 | 0.0958 | | 3.559 | 3.0 | 606 | 3.0147 | 0.0252 | 0.1059 | | 3.559 | 4.0 | 808 | 2.9738 | 0.0262 | 0.1094 | | 3.2602 | 5.0 | 1010 | 2.9476 | 0.027 | 0.1113 | | 3.2602 | 6.0 | 1212 | 2.9309 | 0.0278 | 0.1138 | | 3.2602 | 7.0 | 1414 | 2.9153 | 0.0278 | 0.1139 | | 3.1839 | 8.0 | 1616 | 2.9083 | 0.0285 | 0.116 | | 3.1839 | 9.0 | 1818 | 2.9041 | 0.0284 | 0.1158 | | 3.1574 | 10.0 | 2020 | 2.9022 | 0.0284 | 0.1159 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:30:40Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:31:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8531 - Bleu: 0.1306 - Meteor: 0.2859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.7171 | 0.0374 | 0.14 | | 3.1222 | 2.0 | 808 | 2.4821 | 0.0519 | 0.1723 | | 2.7305 | 3.0 | 1212 | 2.3370 | 0.0663 | 0.1983 | | 2.4848 | 4.0 | 1616 | 2.2469 | 0.0771 | 0.2158 | | 2.3394 | 5.0 | 2020 | 2.1567 | 0.0857 | 0.227 | | 2.3394 | 6.0 | 2424 | 2.1038 | 0.0919 | 0.2369 | | 2.2007 | 7.0 | 2828 | 2.0403 | 0.0973 | 0.2449 | | 2.1027 | 8.0 | 3232 | 2.0105 | 0.1066 | 0.2554 | | 2.0299 | 9.0 | 3636 | 1.9725 | 0.1105 | 0.2606 | | 1.9568 | 10.0 | 4040 | 1.9515 | 0.1147 | 0.2655 | | 1.9568 | 11.0 | 4444 | 1.9274 | 0.118 | 0.2699 | | 1.8986 | 12.0 | 4848 | 1.9142 | 0.1215 | 0.2739 | | 1.8512 | 13.0 | 5252 | 1.8936 | 0.1243 | 0.2777 | | 1.8258 | 14.0 | 5656 | 1.8841 | 0.1254 | 0.279 | | 1.7854 | 15.0 | 6060 | 1.8792 | 0.1278 | 0.2827 | | 1.7854 | 16.0 | 6464 | 1.8662 | 0.1274 | 0.2818 | | 1.7598 | 17.0 | 6868 | 1.8604 | 0.1293 | 0.2834 | | 1.7436 | 18.0 | 7272 | 1.8598 | 0.13 | 0.2849 | | 1.7299 | 19.0 | 7676 | 1.8545 | 0.1308 | 0.2857 | | 1.7168 | 20.0 | 8080 | 1.8531 | 0.1306 | 0.2859 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:30:12Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:31:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6902 - Bleu: 0.039 - Meteor: 0.144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 3.1126 | 0.0197 | 0.0888 | | 3.6037 | 2.0 | 808 | 2.9899 | 0.0254 | 0.108 | | 3.2835 | 3.0 | 1212 | 2.9337 | 0.0275 | 0.1129 | | 3.1798 | 4.0 | 1616 | 2.8926 | 0.0284 | 0.1152 | | 3.1361 | 5.0 | 2020 | 2.8638 | 0.0295 | 0.1196 | | 3.1361 | 6.0 | 2424 | 2.8362 | 0.0305 | 0.1222 | | 3.0848 | 7.0 | 2828 | 2.8137 | 0.0321 | 0.1266 | | 3.0439 | 8.0 | 3232 | 2.7928 | 0.0327 | 0.1284 | | 3.025 | 9.0 | 3636 | 2.7754 | 0.0337 | 0.1311 | | 2.9891 | 10.0 | 4040 | 2.7604 | 0.0348 | 0.134 | | 2.9891 | 11.0 | 4444 | 2.7469 | 0.0354 | 0.136 | | 2.9706 | 12.0 | 4848 | 2.7343 | 0.036 | 0.1372 | | 2.9537 | 13.0 | 5252 | 2.7250 | 0.0365 | 0.1387 | | 2.9471 | 14.0 | 5656 | 2.7152 | 0.0375 | 0.1408 | | 2.9274 | 15.0 | 6060 | 2.7081 | 0.038 | 0.142 | | 2.9274 | 16.0 | 6464 | 2.7021 | 0.0384 | 0.143 | | 2.9147 | 17.0 | 6868 | 2.6966 | 0.0387 | 0.1433 | | 2.9093 | 18.0 | 7272 | 2.6934 | 0.0389 | 0.1438 | | 2.9082 | 19.0 | 7676 | 2.6906 | 0.039 | 0.1437 | | 2.8945 | 20.0 | 8080 | 2.6902 | 0.039 | 0.144 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
osanseviero/test-ernie-paddle
osanseviero
2022-11-19T05:25:32Z
0
0
null
[ "paddlepaddle", "license:apache-2.0", "region:us" ]
null
2022-11-19T05:25:31Z
--- license: apache-2.0 duplicated_from: PaddlePaddle/ci-test-ernie-model --- this model is for CI testing in paddlenlp repo. As you can guess, PaddleNLP will play with 🤗 Huggingface.
elRivx/gBWoman
elRivx
2022-11-19T04:57:34Z
0
1
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-19T04:40:07Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # gBWoman This is a Stable Diffusion custom model that bring to you a woman generated with non-licenced images. The magic word is: gBWoman If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/m3hOa5i.png width=30% height=30%> <img src=https://imgur.com/u0Af9mX.png width=30% height=30%> <img src=https://imgur.com/VpKDMMK.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Sebabrata/dof-Rai2-1
Sebabrata
2022-11-19T04:21:37Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-18T21:38:29Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-Rai2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-Rai2-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
nguyenkhoa2407/favs_filter_classification_v2
nguyenkhoa2407
2022-11-19T03:42:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:filter_v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-11T05:12:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filter_v2 metrics: - f1 - accuracy model-index: - name: favs_filter_classification_v2 results: - task: name: Text Classification type: text-classification dataset: name: filter_v2 type: filter_v2 config: default split: train args: default metrics: - name: F1 type: f1 value: 0.9761904761904762 - name: Accuracy type: accuracy value: 0.9545454545454546 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # favs_filter_classification_v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the filter_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2016 - F1: 0.9762 - Roc Auc: 0.9844 - Accuracy: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6596 | 1.0 | 16 | 0.6086 | 0.2687 | 0.5474 | 0.0 | | 0.5448 | 2.0 | 32 | 0.5354 | 0.3824 | 0.6063 | 0.0 | | 0.5106 | 3.0 | 48 | 0.4874 | 0.4444 | 0.6382 | 0.0455 | | 0.4353 | 4.0 | 64 | 0.4301 | 0.5352 | 0.6889 | 0.1818 | | 0.3699 | 5.0 | 80 | 0.3890 | 0.6579 | 0.7640 | 0.3636 | | 0.349 | 6.0 | 96 | 0.3663 | 0.6667 | 0.7633 | 0.3182 | | 0.3104 | 7.0 | 112 | 0.3327 | 0.7105 | 0.7953 | 0.4545 | | 0.3023 | 8.0 | 128 | 0.2971 | 0.7733 | 0.8303 | 0.5455 | | 0.2676 | 9.0 | 144 | 0.2766 | 0.8395 | 0.8861 | 0.7727 | | 0.2374 | 10.0 | 160 | 0.2541 | 0.8537 | 0.8980 | 0.7727 | | 0.2238 | 11.0 | 176 | 0.2399 | 0.9024 | 0.9293 | 0.8182 | | 0.2084 | 12.0 | 192 | 0.2221 | 0.9286 | 0.9531 | 0.8636 | | 0.2143 | 13.0 | 208 | 0.2138 | 0.9286 | 0.9531 | 0.8636 | | 0.1846 | 14.0 | 224 | 0.2016 | 0.9762 | 0.9844 | 0.9545 | | 0.1812 | 15.0 | 240 | 0.1957 | 0.9762 | 0.9844 | 0.9545 | | 0.1756 | 16.0 | 256 | 0.1881 | 0.9647 | 0.9806 | 0.9091 | | 0.1662 | 17.0 | 272 | 0.1845 | 0.9762 | 0.9844 | 0.9545 | | 0.1715 | 18.0 | 288 | 0.1802 | 0.9762 | 0.9844 | 0.9545 | | 0.1585 | 19.0 | 304 | 0.1782 | 0.9762 | 0.9844 | 0.9545 | | 0.1595 | 20.0 | 320 | 0.1775 | 0.9762 | 0.9844 | 0.9545 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sanchit-gandhi/w2v2-dbart-5k-1e-4
sanchit-gandhi
2022-11-19T03:37:49Z
78
0
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-17T17:02:41Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: w2v2-dbart-5k-1e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-dbart-5k-1e-4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3370 - Wer: 15.0932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.0771 | 0.2 | 1000 | 1.8878 | 64.0932 | | 0.7272 | 0.4 | 2000 | 0.7003 | 23.8557 | | 0.5948 | 0.6 | 3000 | 0.4765 | 14.4223 | | 0.4597 | 0.8 | 4000 | 0.3761 | 14.1429 | | 0.3704 | 1.0 | 5000 | 0.3370 | 15.0932 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.13.2
rdyzakya/bert-indo-base-uncased-ner
rdyzakya
2022-11-19T02:10:45Z
118
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T02:05:00Z
--- tags: - generated_from_trainer model-index: - name: bert-indo-base-uncased-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-indo-base-uncased-ner This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
juancopi81/distilgpt2-finetuned-yannic-test-1
juancopi81
2022-11-19T02:07:14Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T01:36:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-yannic-test-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-yannic-test-1 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 482 | 3.5938 | | 3.6669 | 2.0 | 964 | 3.5534 | | 3.5089 | 3.0 | 1446 | 3.5315 | | 3.4295 | 4.0 | 1928 | 3.5197 | | 3.3772 | 5.0 | 2410 | 3.5143 | | 3.3383 | 6.0 | 2892 | 3.5110 | | 3.3092 | 7.0 | 3374 | 3.5084 | | 3.2857 | 8.0 | 3856 | 3.5082 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
dvitel/h0-1
dvitel
2022-11-19T02:03:55Z
122
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "CodeGPT-small-py", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T23:04:43Z
--- license: apache-2.0 tags: - CodeGPT-small-py - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0-1 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.21212121212121213 name: Exact Match - type: bleu value: 0.8954467480979604 name: BLEU - type: dvitel/codebleu value: 0.6976253554171774 name: CodeBLEU - type: chrf value: 91.42413429212283 name: chrF --- # h0-1 This model is a fine-tuned version of [microsoft/CodeGPT-small-py](https://huggingface.co/microsoft/CodeGPT-small-py) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset. [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h0-1.py). It achieves the following results on the evaluation set: - Loss: 0.3622 - Exact Match: 0.1970 - Bleu: 0.9193 - Codebleu: 0.7686 - Chrf: 93.5686 ## Model description CodeGPT-small-py fine-tuned on HearthStone dataset for 200 epochs ## Intended uses & limitations HearthStone card code synthesis. ## Training and evaluation data See split of [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-------:| | 0.2482 | 11.94 | 1600 | 0.2828 | 0.1364 | 0.9012 | 0.7012 | 92.2247 | | 0.0203 | 23.88 | 3200 | 0.2968 | 0.1970 | 0.9114 | 0.7298 | 93.0236 | | 0.0082 | 35.82 | 4800 | 0.3049 | 0.1970 | 0.9125 | 0.7480 | 93.1997 | | 0.0049 | 47.76 | 6400 | 0.3190 | 0.1818 | 0.9125 | 0.7526 | 93.0967 | | 0.0038 | 59.7 | 8000 | 0.3289 | 0.1818 | 0.9117 | 0.7348 | 93.1293 | | 0.0024 | 71.64 | 9600 | 0.3358 | 0.1970 | 0.9142 | 0.7555 | 93.0747 | | 0.0022 | 83.58 | 11200 | 0.3379 | 0.1970 | 0.9164 | 0.7642 | 93.2931 | | 0.0013 | 95.52 | 12800 | 0.3444 | 0.2121 | 0.9189 | 0.7700 | 93.4456 | | 0.0009 | 107.46 | 14400 | 0.3408 | 0.1970 | 0.9188 | 0.7655 | 93.4808 | | 0.0006 | 119.4 | 16000 | 0.3522 | 0.1970 | 0.9177 | 0.7510 | 93.4061 | | 0.0003 | 131.34 | 17600 | 0.3589 | 0.2121 | 0.9178 | 0.7614 | 93.3980 | | 0.0002 | 143.28 | 19200 | 0.3562 | 0.2121 | 0.9179 | 0.7634 | 93.5130 | | 0.0002 | 155.22 | 20800 | 0.3624 | 0.1970 | 0.9208 | 0.7699 | 93.6707 | | 0.0001 | 167.16 | 22400 | 0.3608 | 0.1970 | 0.9193 | 0.7703 | 93.6082 | | 0.0001 | 179.1 | 24000 | 0.3620 | 0.1970 | 0.9190 | 0.7667 | 93.5154 | | 0.0001 | 191.04 | 25600 | 0.3622 | 0.1970 | 0.9193 | 0.7686 | 93.5686 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
dvitel/h2
dvitel
2022-11-19T02:02:50Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "distigpt2", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T21:25:37Z
--- license: apache-2.0 tags: - distigpt2 - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.0 name: Exact Match - type: bleu value: 0.6082316056517667 name: BLEU - type: dvitel/codebleu value: 0.36984242128954287 name: CodeBLEU - type: chrf value: 68.77878158023694 name: chrF --- # h2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone). [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h2.py). It achieves the following results on the evaluation set: - Loss: 2.5771 - Exact Match: 0.0 - Bleu: 0.6619 - Codebleu: 0.5374 - Ngram Match Score: 0.4051 - Weighted Ngram Match Score: 0.4298 - Syntax Match Score: 0.5605 - Dataflow Match Score: 0.7541 - Chrf: 73.9625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:| | 1.2052 | 11.94 | 1600 | 1.2887 | 0.0 | 0.6340 | 0.4427 | 0.3384 | 0.3614 | 0.5263 | 0.5446 | 70.8004 | | 0.3227 | 23.88 | 3200 | 1.4484 | 0.0 | 0.6575 | 0.5050 | 0.3767 | 0.3995 | 0.5955 | 0.6485 | 72.9553 | | 0.205 | 35.82 | 4800 | 1.6392 | 0.0 | 0.6598 | 0.5174 | 0.3788 | 0.4022 | 0.5821 | 0.7063 | 73.2766 | | 0.1392 | 47.76 | 6400 | 1.8219 | 0.0 | 0.6584 | 0.5279 | 0.3922 | 0.4159 | 0.5742 | 0.7294 | 73.5022 | | 0.0979 | 59.7 | 8000 | 1.9416 | 0.0 | 0.6635 | 0.5305 | 0.4012 | 0.4248 | 0.5699 | 0.7261 | 73.8081 | | 0.0694 | 71.64 | 9600 | 2.1793 | 0.0 | 0.6593 | 0.5400 | 0.4027 | 0.4271 | 0.5562 | 0.7739 | 73.6746 | | 0.0512 | 83.58 | 11200 | 2.2547 | 0.0 | 0.6585 | 0.5433 | 0.4040 | 0.4283 | 0.5486 | 0.7921 | 73.7670 | | 0.0399 | 95.52 | 12800 | 2.3037 | 0.0 | 0.6585 | 0.5354 | 0.4040 | 0.4282 | 0.5454 | 0.7640 | 73.7431 | | 0.0316 | 107.46 | 14400 | 2.4113 | 0.0 | 0.6577 | 0.5294 | 0.4006 | 0.4257 | 0.5504 | 0.7409 | 73.7004 | | 0.0254 | 119.4 | 16000 | 2.4407 | 0.0 | 0.6607 | 0.5412 | 0.4041 | 0.4285 | 0.5598 | 0.7723 | 73.8828 | | 0.0208 | 131.34 | 17600 | 2.4993 | 0.0 | 0.6637 | 0.5330 | 0.4042 | 0.4286 | 0.5684 | 0.7310 | 74.1760 | | 0.0176 | 143.28 | 19200 | 2.5138 | 0.0 | 0.6627 | 0.5434 | 0.4050 | 0.4295 | 0.5620 | 0.7772 | 74.0546 | | 0.0158 | 155.22 | 20800 | 2.5589 | 0.0 | 0.6616 | 0.5347 | 0.4044 | 0.4291 | 0.5512 | 0.7541 | 73.9516 | | 0.0147 | 167.16 | 22400 | 2.5554 | 0.0 | 0.6620 | 0.5354 | 0.4049 | 0.4295 | 0.5630 | 0.7442 | 73.9461 | | 0.0134 | 179.1 | 24000 | 2.5696 | 0.0 | 0.6607 | 0.5395 | 0.4046 | 0.4293 | 0.5602 | 0.7640 | 73.8383 | | 0.0135 | 191.04 | 25600 | 2.5771 | 0.0 | 0.6619 | 0.5374 | 0.4051 | 0.4298 | 0.5605 | 0.7541 | 73.9625 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
flamesbob/ross_model
flamesbob
2022-11-19T01:21:55Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-19T00:49:51Z
--- license: creativeml-openrail-m --- `m_ross artstyle,`class token License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
bwhite5311/NLP-sentiment-project-2001-samples
bwhite5311
2022-11-19T01:21:00Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T21:45:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 - precision model-index: - name: NLP-sentiment-project-2001-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9998 - name: F1 type: f1 value: 0.9998005186515061 - name: Precision type: precision value: 0.9996011168727563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-sentiment-project-2001-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Accuracy: 0.9998 - F1: 0.9998 - Precision: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
StanfordAIMI/covid-radbert
StanfordAIMI
2022-11-19T01:11:06Z
108
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "uncased", "radiology", "biomedical", "covid-19", "covid19", "en", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T03:44:46Z
--- widget: - text: "procedure: single ap view of the chest comparison: none findings: no surgical hardware nor tubes. lungs, pleura: low lung volumes, bilateral airspace opacities. no pneumothorax or pleural effusion. cardiovascular and mediastinum: the cardiomediastinal silhouette seems stable. impression: 1. patchy bilateral airspace opacities, stable, but concerning for multifocal pneumonia. 2. absence of other suspicions, the rest of the lungs seems fine." - text: "procedure: single ap view of the chest comparison: none findings: No surgical hardware nor tubes. lungs, pleura: low lung volumes, bilateral airspace opacities. no pneumothorax or pleural effusion. cardiovascular and mediastinum: the cardiomediastinal silhouette seems stable. impression: 1. patchy bilateral airspace opacities, stable. 2. some areas are suggestive that pneumonia can not be excluded. 3. recommended to follow-up shortly and check if there are additional symptoms" tags: - text-classification - pytorch - transformers - uncased - radiology - biomedical - covid-19 - covid19 language: - en license: mit --- COVID-RadBERT was trained to detect the presence or absence of COVID-19 within radiology reports, along an "uncertain" diagnostic when further medical tests are required. ## Citation ```bibtex @article{chambon_cook_langlotz_2022, title={Improved fine-tuning of in-domain transformer model for inferring COVID-19 presence in multi-institutional radiology reports}, DOI={10.1007/s10278-022-00714-8}, journal={Journal of Digital Imaging}, author={Chambon, Pierre and Cook, Tessa S. and Langlotz, Curtis P.}, year={2022} } ```
rocca/lyra-v2-soundstream
rocca
2022-11-19T01:10:07Z
0
7
null
[ "tflite", "onnx", "license:apache-2.0", "region:us" ]
null
2022-10-02T04:01:37Z
--- license: apache-2.0 --- For an eventual web demo of Lyra v2 (SoundStream). Currently this repo just contains a copy of the model files in the official Lyra repo as of October 2nd 2022: https://github.com/google/lyra/tree/main/model_coeffs I'm aiming to produce ONNX versions of the models too. WIP demo here: https://github.com/josephrocca/lyra-v2-soundstream-web
andrewzhang505/doom_deathmatch_bots
andrewzhang505
2022-11-19T00:58:04Z
4
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T23:12:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 69.40 +/- 4.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deathmatch_bots type: doom_deathmatch_bots --- A(n) **APPO** model trained on the **doom_deathmatch_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
zates/albert-base-v2-finetuned-squad-seed-42
zates
2022-11-19T00:30:41Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T22:06:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: albert-base-v2-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad-seed-42 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
darkprincess638/darkprincess638-a
darkprincess638
2022-11-19T00:13:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-11-18T23:51:21Z
--- license: apache-2.0 --- ## Trigger Prompt The keywords `darkprincess638 person` will trigger the character, best to use at start of prompt ## Examples These are some sample images generated by this model ![Sample generations](https://i.imgur.com/MBqrHLu.png)
shi-labs/dinat-tiny-in1k-224
shi-labs
2022-11-18T23:11:09Z
99
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:07:23Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (tiny variant) DiNAT-Tiny trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-tiny-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-tiny-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-small-in1k-224
shi-labs
2022-11-18T23:10:53Z
89
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:02:48Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (small variant) DiNAT-Small trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-small-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-small-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-mini-in1k-224
shi-labs
2022-11-18T23:10:49Z
1,834
1
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T22:27:14Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (mini variant) DiNAT-Mini trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-base-in1k-224
shi-labs
2022-11-18T23:07:43Z
90
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:04:27Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (base variant) DiNAT-Base trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-base-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-base-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
OSalem99/a2c-AntBulletEnv-v0
OSalem99
2022-11-18T22:42:18Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-18T22:41:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 953.99 +/- 100.86 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elRivx/DMVC2
elRivx
2022-11-18T22:16:09Z
0
3
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-03T15:14:43Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # DMVC2 This is an own SD trainee with an 2000s videogame illustrations as a style. If you wanna test it, you can put this word on the prompt: DMVC2 . Sometimes you must put before things like 'an illustration of' If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/lrD4Q5s.png width=30% height=30%> <img src=https://imgur.com/DSW8Ein.png width=30% height=30%> <img src=https://imgur.com/Z4T2eYj.png width=30% height=30%> <img src=https://imgur.com/EzidtGk.png width=30% height=30%> <img src=https://imgur.com/1NHdWhc.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
racro/sentiment-browser-extension
racro
2022-11-18T21:51:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T06:57:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sentiment-browser-extension results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-browser-extension This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7068 - Accuracy: 0.8516 - F1: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
laion
2022-11-18T21:00:32Z
11,367
19
open_clip
[ "open_clip", "arxiv:1910.04867", "license:mit", "region:us" ]
null
2022-11-18T20:49:11Z
--- license: mit widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog --- # Model Card for CLIP ViT-H/14 frozen xlm roberta large - LAION-5B # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) 7. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description A CLIP ViT-H/14 frozen xlm roberta large model trained with the LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Model training done by Romain Beaumont on the [stability.ai](https://stability.ai/) cluster. # Uses ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. # Training Details ## Training Data This model was trained with the full LAION-5B (https://laion.ai/blog/laion-5b/). ## Training Procedure Training with batch size 90k for 13B sample of laion5B, see https://wandb.ai/rom1504/open-clip/reports/xlm-roberta-large-unfrozen-vit-h-14-frozen--VmlldzoyOTc3ODY3 Model is H/14 on visual side, xlm roberta large initialized with pretrained weights on text side. The H/14 was initialized from https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K and kept frozen during training. # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. ## Results The model achieves imagenet 1k 77.0% (vs 78% for the english H/14) ![results_xlm_roberta_large.png](results_xlm_roberta_large.png) On zero shot classification on imagenet with translated prompts this model reaches: * 56% in italian (vs 21% for https://github.com/clip-italian/clip-italian) * 53% in japanese (vs 54.6% for https://github.com/rinnakk/japanese-clip) * 55.7% in chinese (to be compared with https://github.com/OFA-Sys/Chinese-CLIP) This model reaches strong results in both english and other languages. # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model. # Citation **BibTeX:** In addition to forthcoming LAION-5B (https://laion.ai/blog/laion-5b/) paper, please cite: OpenAI CLIP paper ``` @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` OpenCLIP software ``` @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` # How To Get Started With the Model https://github.com/mlfoundations/open_clip
ahmadmwali/finetuning-sentiment-hausa2
ahmadmwali
2022-11-18T20:34:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T19:52:19Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-hausa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-hausa2 This model is a fine-tuned version of [Davlan/xlm-roberta-base-finetuned-hausa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6335 - Accuracy: 0.7310 - F1: 0.7296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
famube/autotrain-documentos-oficiais-2092367351
famube
2022-11-18T20:33:18Z
108
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "pt", "dataset:famube/autotrain-data-documentos-oficiais", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T15:52:11Z
--- tags: - autotrain - token-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - famube/autotrain-data-documentos-oficiais co2_eq_emissions: emissions: 6.461431564881563 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2092367351 - CO2 Emissions (in grams): 6.4614 ## Validation Metrics - Loss: 0.059 - Accuracy: 0.986 - Precision: 0.000 - Recall: 0.000 - F1: 0.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/famube/autotrain-documentos-oficiais-2092367351 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
basaanithanaveenkumar/distilbert-base-uncased-finetuned-ner
basaanithanaveenkumar
2022-11-18T19:58:26Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T15:31:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9260037606459463 - name: Recall type: recall value: 0.9365700861393892 - name: F1 type: f1 value: 0.9312569521690768 - name: Accuracy type: accuracy value: 0.9836370279759162 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Precision: 0.9260 - Recall: 0.9366 - F1: 0.9313 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2388 | 1.0 | 878 | 0.0689 | 0.9129 | 0.9234 | 0.9181 | 0.9815 | | 0.0545 | 2.0 | 1756 | 0.0599 | 0.9232 | 0.9340 | 0.9285 | 0.9830 | | 0.0304 | 3.0 | 2634 | 0.0608 | 0.9260 | 0.9366 | 0.9313 | 0.9836 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
cyburn/laze_opera_panda
cyburn
2022-11-18T18:57:58Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-11-18T18:29:31Z
--- license: unknown --- # Soda Stream finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever> by laze opera panda` ## Example prompts `woman near a fountain by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/1.png" alt="Picture." width="500"/> `woman in taxi by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/2.png" alt="Picture." width="500"/> `man portrait by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/3.png" alt="Picture." width="500"/>
cyburn/ans_huh
cyburn
2022-11-18T18:26:00Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-11-18T18:12:17Z
--- license: unknown --- # Ans Huh finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever> watercolor by ans huh` ## Example prompts `woman near a fountain watercolor by ans huh`: <img src="https://huggingface.co/cyburn/ans_huh/resolve/main/1.jpg" alt="Picture." width="500"/> `woman in taxi watercolor by ans huh`: <img src="https://huggingface.co/cyburn/ans_huh/resolve/main/2.jpg" alt="Picture." width="500"/> `man portrait watercolor by ans huh`: <img src="https://huggingface.co/cyburn/ans_huh/resolve/main/3.jpg" alt="Picture." width="500"/>
eimiss/EimisSemiRealistic
eimiss
2022-11-18T16:10:42Z
0
43
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-18T09:21:10Z
--- thumbnail: https://imgur.com/DkGWTA2.png language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Diffusion model This model is trained with detailed semi realistic images via my anime model. # Sample generations This model is made to get semi realistic, realistic results with a lot of detail. ``` Positive:1girl, aura, blue_fire, electricity, energy, fire, flame, glowing, glowing_eyes, green_eyes, hitodama, horns, lightning, long_hair, magic, male_focus, solo, spirit Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a, CFG scale: 8, Seed: 2526294281, Size: 896x768 ``` <img src=https://imgur.com/HHdOmIF.jpg width=75% height=75%> ``` Positive: a girl,Phoenix girl,fluffy hair,war,a hell on earth, Beautiful and detailed costume, blue glowing eyes, masterpiece, (detailed hands), (glowing), twintails, smiling, beautiful detailed white gloves, (upper_body), (realistic) Negative: lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a Karras, CFG scale: 8, Seed: 2495938777/2495938779, Size: 896x768 ``` <img src=https://imgur.com/bHiTlAu.png width=75% height=75%> <img src=https://imgur.com/dGFn0uV.png width=75% height=75%> ``` Positive:1girl, blurry, bracelet, breasts, dress, earrings, fingernails, grey_eyes, jewelry, lips, lipstick, looking_at_viewer, makeup, nail_polish, necklace, petals, red_lips, short_hair, solo, white_hair Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a, CFG scale: 8, Seed: 3149099819, Size: 704x896 ``` <img src=https://imgur.com/tnGOZz8.png width=75% height=75%> Img2img results: ``` Positive:1girl, anal_hair, black_pubic_hair, blurry, blurry_background, brown_eyes, colored_pubic_hair, excessive_pubic_hair, female_pubic_hair, forehead, grass, lips, looking_at_viewer, male_pubic_hair, mismatched_pubic_hair, pov, pubic_hair, realistic, solo, stray_pubic_hair, teeth Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 35, Sampler: Euler a, CFG scale: 9, Seed: 2148680457, Size: 512x512, Denoising strength: 0.6, Mask blur: 4 ``` <img src=https://imgur.com/RVl7Xxd.png width=75% height=75%> ## Disclaimer If you get anime images not semi realistic ones try some prompts like semi realistic, realistic or (SemiRealImg). Usually helps. This model also works nicely with landscapes like my previous one. However I recommend my other anime model for landscapes. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
GabCcr99/Clasificador-Ojos
GabCcr99
2022-11-18T15:58:34Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T15:58:21Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Clasificador-Ojos results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7727272510528564 --- # Clasificador-Ojos Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Closed Eyes ![Closed Eyes](images/Closed_Eyes.jpg) #### Opened Eyes ![Opened Eyes](images/Opened_Eyes.jpg)
zhiguoxu/bert-base-chinese-finetuned-food
zhiguoxu
2022-11-18T15:57:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T15:53:37Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-chinese-finetuned-food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-food This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2163 | 1.0 | 3 | 1.7446 | 0.0201 | | 1.5263 | 2.0 | 6 | 1.1179 | 0.6113 | | 1.1837 | 3.0 | 9 | 0.7233 | 0.75 | | 0.6987 | 4.0 | 12 | 0.4377 | 0.8766 | | 0.5036 | 5.0 | 15 | 0.2544 | 0.9154 | | 0.2602 | 6.0 | 18 | 0.1495 | 0.9598 | | 0.1998 | 7.0 | 21 | 0.0834 | 0.9836 | | 0.1182 | 8.0 | 24 | 0.0484 | 0.9911 | | 0.0815 | 9.0 | 27 | 0.0280 | 1.0 | | 0.05 | 10.0 | 30 | 0.0177 | 1.0 | | 0.0375 | 11.0 | 33 | 0.0124 | 1.0 | | 0.0244 | 12.0 | 36 | 0.0094 | 1.0 | | 0.0213 | 13.0 | 39 | 0.0075 | 1.0 | | 0.0163 | 14.0 | 42 | 0.0063 | 1.0 | | 0.0147 | 15.0 | 45 | 0.0056 | 1.0 | | 0.0124 | 16.0 | 48 | 0.0051 | 1.0 | | 0.0125 | 17.0 | 51 | 0.0047 | 1.0 | | 0.0115 | 18.0 | 54 | 0.0045 | 1.0 | | 0.0116 | 19.0 | 57 | 0.0044 | 1.0 | | 0.0102 | 20.0 | 60 | 0.0044 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 1.18.4 - Tokenizers 0.12.1
Davlan/bloom-560m_am_ia3_10000samples
Davlan
2022-11-18T15:41:00Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-18T14:27:20Z
--- license: bigscience-openrail-m ---
Davlan/bloom-560m_am_continual-pretrain_10000samples
Davlan
2022-11-18T15:37:46Z
120
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T14:06:34Z
--- license: bigscience-openrail-m ---
Davlan/bloom-560m_am_madx_10000samples
Davlan
2022-11-18T14:44:59Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-18T14:26:38Z
--- license: bigscience-openrail-m ---
GabCcr99/Clasificador-animales
GabCcr99
2022-11-18T14:37:47Z
268
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T14:37:34Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Clasificador-animales results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # Clasificador-animales Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### snake ![snake](images/snake.jpg) #### tiger ![tiger](images/tiger.jpg)
pagh/ddpm-butterflies-128
pagh
2022-11-18T14:22:22Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-18T13:35:46Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/pagh/ddpm-butterflies-128/tensorboard?#scalars)
FloatingPoint/MiloManara
FloatingPoint
2022-11-18T14:12:41Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-18T13:34:36Z
--- license: creativeml-openrail-m --- **Milo Manara Style** This is the Alpha release of a Stable Diffusion model trained to achieve the style of the Italian illustration master Milo Manara. Use the token **in the style of ->Manara** in your prompts for the style. **Sample result** ![SD-tmpnmoxk0x9.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668780523264-6305eb3cd70693fdf1c7bb7f.jpeg) **Warning**: Due to the nature of the style, NSFW images may be easily generated using this model. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
cyburn/lego_set
cyburn
2022-11-18T13:44:33Z
0
2
null
[ "license:unknown", "region:us" ]
null
2022-11-17T18:33:12Z
--- license: unknown --- # Lego Set finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images of "Lego Sets" ## Using the model * common subject prompt tokens: `lego set <wathever>` ## Example prompts `mcdonald restaurant lego set`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/1.jpg" alt="Picture." width="500"/> `lego set crow, skull`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/2.jpg" alt="Picture." width="500"/> ## img2img example `lego set ottawa parliament building sharp focus`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/3.jpg" alt="Picture." width="500"/>
Madiator2011/Lyoko-Diffusion-v1.1
Madiator2011
2022-11-18T13:00:15Z
36
6
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-10-30T14:52:25Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: false extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. If possible do not use this model for comercial stuff and if you want to at least give some credtis :) By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well. extra_gated_fields: I have read the License and agree with its terms: checkbox --- # Lyoko Diffusion v1-1 Model Card ![sample](sample.png) This model is allowing users to generate images into styles from TV show Code Lyoko both 2D/CGI format. To switch between styles you need to add it to prompt: for CGI ```CGILyoko style style``` for 2D ```2DLyoko style style``` If you want to support my future projects you can do it via https://ko-fi.com/madiator2011 Or by using my model on runpod with my reflink https://runpod.io?ref=vfker49t This model has been trained thanks to support of Runpod.io team. ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "Madiator2011/Lyoko-Diffusion-v1.1" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept.
gonzalez-agirre/roberta-base-bne-conll-ner
gonzalez-agirre
2022-11-18T12:14:57Z
123
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "conll", "ner", "es", "dataset:bne", "dataset:conll", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T11:56:52Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "conll" - "ner" datasets: - "bne" - "conll" metrics: - "f1" widget: - text: "Festival de San Sebastián: Johnny Depp recibirá el premio Donostia en pleno rifirrafe judicial con Amber Heard" - text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto." - text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje." - text: "El Tribunal Superior de Justicia se pronunció ayer: \"Hay base legal dentro del marco jurídico actual\"." inference: parameters: aggregation_strategy: "first" ---
arynas/model
arynas
2022-11-18T12:05:11Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-05T02:56:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.0046 - Wer: 116.8945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5232 | 4.95 | 1000 | 3.6227 | 127.2695 | | 0.0538 | 9.9 | 2000 | 4.3761 | 125.3417 | | 0.0166 | 14.85 | 3000 | 4.6306 | 114.6863 | | 0.0008 | 19.8 | 4000 | 4.7625 | 116.3687 | | 0.0022 | 24.75 | 5000 | 4.9290 | 116.0182 | | 0.0002 | 29.7 | 6000 | 4.9100 | 118.2264 | | 0.0001 | 34.65 | 7000 | 4.9886 | 116.5089 | | 0.0001 | 39.6 | 8000 | 5.0046 | 116.8945 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-en-sv-finetuned
oskarandrsson
2022-11-18T11:38:37Z
116
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "en", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-11T13:36:09Z
--- language: - en - sv tags: - generated_from_trainer - translation metrics: - type: Bleu - value: 67.28 model-index: - name: mt-en-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-en-sv-finetuned This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-sv. It achieves the following results on the Tatoeba.en.sv evaluation set: - Bleu: 67.28528945378108 ## Model description - source_lang = en - target_lang = sv ## Intended uses & limitations More information needed ## Training and evaluation data - ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - mixed_precision_training: Native AMP ### Training results | testset | BLEU | |-----------------------|-------| | Tatoeba.en.sv | 67.28| ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-sq-sv-finetuned
oskarandrsson
2022-11-18T11:37:55Z
104
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "sv", "sq", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-14T13:13:15Z
--- license: apache-2.0 language: - sv - sq tags: - generated_from_trainer - translation metrics: - bleu model-index: - name: mt-sq-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-sq-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-sq-sv](https://huggingface.co/Helsinki-NLP/opus-mt-sq-sv) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2250 - Bleu: 47.0111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.7042 | 1.0 | 4219 | 1.4806 | 41.9650 | | 1.5537 | 2.0 | 8438 | 1.3955 | 43.1524 | | 1.4352 | 3.0 | 12657 | 1.3142 | 44.4373 | | 1.3346 | 4.0 | 16876 | 1.2793 | 45.2265 | | 1.2847 | 5.0 | 21095 | 1.2597 | 45.8071 | | 1.2821 | 6.0 | 25314 | 1.2454 | 46.3737 | | 1.2342 | 7.0 | 29533 | 1.2363 | 46.6308 | | 1.2092 | 8.0 | 33752 | 1.2301 | 46.8227 | | 1.1766 | 9.0 | 37971 | 1.2260 | 46.9719 | | 1.1836 | 10.0 | 42190 | 1.2250 | 47.0111 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-lt-sv-finetuned
oskarandrsson
2022-11-18T11:36:42Z
108
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "lt", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T08:27:36Z
--- license: apache-2.0 language: - lt - sv tags: - generated_from_trainer - translation metrics: - bleu model-index: - name: mt-lt-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-lt-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-lt-sv](https://huggingface.co/Helsinki-NLP/opus-mt-lt-sv) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1276 - Bleu: 43.0025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.3499 | 1.0 | 4409 | 1.2304 | 40.3211 | | 1.2442 | 2.0 | 8818 | 1.1870 | 41.4633 | | 1.1875 | 3.0 | 13227 | 1.1652 | 41.9164 | | 1.1386 | 4.0 | 17636 | 1.1523 | 42.3534 | | 1.0949 | 5.0 | 22045 | 1.1423 | 42.6339 | | 1.0739 | 6.0 | 26454 | 1.1373 | 42.7617 | | 1.0402 | 7.0 | 30863 | 1.1324 | 42.8568 | | 1.0369 | 8.0 | 35272 | 1.1298 | 42.9608 | | 1.0138 | 9.0 | 39681 | 1.1281 | 42.9833 | | 1.0192 | 10.0 | 44090 | 1.1276 | 43.0025 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-uk-sv-finetuned
oskarandrsson
2022-11-18T11:36:18Z
105
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "uk", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T13:48:10Z
--- license: apache-2.0 language: - uk - sv tags: - generated_from_trainer - translation model-index: - name: mt-uk-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-uk-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-uk-sv](https://huggingface.co/Helsinki-NLP/opus-mt-uk-sv) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4210 - eval_bleu: 40.6634 - eval_runtime: 966.5303 - eval_samples_per_second: 18.744 - eval_steps_per_second: 4.687 - epoch: 6.0 - step: 40764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-ru-sv-finetuned
oskarandrsson
2022-11-18T11:35:38Z
103
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "ru", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-18T09:31:15Z
--- license: apache-2.0 language: - ru - sv tags: - generated_from_trainer - translation model-index: - name: mt-ru-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-ru-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-sv](https://huggingface.co/Helsinki-NLP/opus-mt-ru-sv) on the None dataset. It achieves the following results on the Tatoeba.rus.swe evaluation set: - eval_loss: 0.6998 - eval_bleu: 54.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-bs-sv-finetuned
oskarandrsson
2022-11-18T11:35:05Z
104
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "bs", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T16:57:47Z
--- license: apache-2.0 language: - bs - sv tags: - translation model-index: - name: mt-bs-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-bs-sv-finetuned This model is a fine-tuned version of [oskarandrsson/mt-hr-sv-finetuned](https://huggingface.co/oskarandrsson/mt-hr-sv-finetuned) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8217 - eval_bleu: 53.9611 - eval_runtime: 601.8995 - eval_samples_per_second: 15.971 - eval_steps_per_second: 3.994 - epoch: 4.0 - step: 14420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
vikram15/bert-finetuned-squad
vikram15
2022-11-18T11:03:16Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T10:20:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vikram15/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vikram15/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7556 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 954, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 2.3076 | 0 | | 1.0840 | 1 | | 0.7556 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
Thivin/distilbert-base-uncased-finetuned-ner
Thivin
2022-11-18T10:51:19Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T09:10:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3100 - Precision: 0.9309 - Recall: 0.9435 - F1: 0.9371 - Accuracy: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 234 | 0.2362 | 0.9356 | 0.9484 | 0.9420 | 0.9335 | | No log | 2.0 | 468 | 0.2854 | 0.9303 | 0.9425 | 0.9363 | 0.9282 | | 0.2119 | 3.0 | 702 | 0.3100 | 0.9309 | 0.9435 | 0.9371 | 0.9294 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
projecte-aina/roberta-large-ca-paraphrase
projecte-aina
2022-11-18T10:35:24Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "paraphrase", "textual entailment", "ca", "dataset:projecte-aina/Parafraseja", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-17T09:15:02Z
--- language: - ca license: apache-2.0 tags: - "catalan" - "paraphrase" - "textual entailment" datasets: - "projecte-aina/Parafraseja" metrics: - "combined_score" - f1 - accuracy inference: parameters: aggregation_strategy: "first" model-index: - name: roberta-large-ca-paraphrase results: - task: type: text-classification dataset: type: projecte-aina/Parafraseja name: Parafraseja metrics: - name: F1 type: f1 value: 0.86678 - name: Accuracy type: accuracy value: 0.86175 - name: combined_score type: combined_score value: 0.86426 widget: - text: "Tinc un amic a Manresa. A Manresa hi viu un amic meu." - text: "La dona va anar a l'hotel en moto. Ella va agafar el cotxe per anar a l'hotel." --- # Catalan BERTa (roberta-large-ca-v2) finetuned for Paraphrase Detection ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-large-ca-paraphrase** is a Paraphrase Detection model for the Catalan language fine-tuned from the roberta-large-ca-v2 model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Intended uses and limitations **roberta-large-ca-paraphrase** model can be used to detect if two sentences are in a paraphrase relation. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="projecte-aina/roberta-large-ca-paraphrase") example = "Tinc un amic a Manresa. </s></s> A Manresa hi viu un amic meu." paraphrase = nlp(example) pprint(paraphrase) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the Paraphase Detection dataset in Catalan [Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing the combined_score. ## Evaluation results We evaluated the _roberta-large-ca-paraphrase_ on the Parafraseja test set against standard multilingual and monolingual baselines: | Model | Parafraseja (combined_score) | | ------------|:-------------| | roberta-large-ca-v2 |**86.42** | | roberta-base-ca-v2 |84.38 | | mBERT | 79.66 | | XLM-RoBERTa | 77.83 | ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation Information NA ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
rayendito/mt5-small-finetuned-xl-sum-indonesia
rayendito
2022-11-18T10:18:43Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xl_sum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-18T08:29:49Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xl_sum model-index: - name: mt5-small-finetuned-xl-sum-indonesia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xl-sum-indonesia This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xl_sum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
LidoHon/ppo-LunarLander-v2
LidoHon
2022-11-18T09:36:53Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-18T09:34:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 0.26 +/- 54.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Shubham09/whisper-small-hi
Shubham09
2022-11-18T09:36:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-17T12:49:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.13.2
yip-i/wav2vec2-demo-F04
yip-i
2022-11-18T07:40:13Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-17T02:12:12Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-demo-F04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-F04 This model is a fine-tuned version of [yip-i/uaspeech-pretrained](https://huggingface.co/yip-i/uaspeech-pretrained) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4557 - Wer: 1.0985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 16.8788 | 0.89 | 500 | 3.6172 | 1.0 | | 3.0484 | 1.79 | 1000 | 3.3653 | 1.0 | | 3.0178 | 2.68 | 1500 | 3.3402 | 1.0 | | 3.182 | 3.57 | 2000 | 3.1676 | 1.0103 | | 3.0374 | 4.46 | 2500 | 3.5767 | 1.2914 | | 2.8118 | 5.36 | 3000 | 3.1389 | 1.0444 | | 2.8424 | 6.25 | 3500 | 3.1171 | 1.1454 | | 2.8194 | 7.14 | 4000 | 3.1267 | 1.2464 | | 2.8052 | 8.04 | 4500 | 3.2637 | 1.0918 | | 2.7835 | 8.93 | 5000 | 3.3412 | 1.1052 | | 2.7794 | 9.82 | 5500 | 3.4910 | 1.2220 | | 2.7405 | 10.71 | 6000 | 3.1507 | 1.2451 | | 2.7518 | 11.61 | 6500 | 3.5342 | 1.1618 | | 2.7461 | 12.5 | 7000 | 3.7598 | 1.2768 | | 2.7315 | 13.39 | 7500 | 3.7623 | 1.2220 | | 2.7203 | 14.29 | 8000 | 4.1022 | 1.0730 | | 2.6901 | 15.18 | 8500 | 3.6616 | 1.2914 | | 2.7152 | 16.07 | 9000 | 3.7305 | 1.2488 | | 2.7036 | 16.96 | 9500 | 3.6997 | 1.1454 | | 2.6938 | 17.86 | 10000 | 4.9800 | 1.0365 | | 2.6962 | 18.75 | 10500 | 4.3985 | 1.1813 | | 2.6801 | 19.64 | 11000 | 5.2335 | 1.1910 | | 2.6695 | 20.54 | 11500 | 4.4297 | 1.0432 | | 2.6762 | 21.43 | 12000 | 4.7141 | 1.1612 | | 2.6833 | 22.32 | 12500 | 4.6789 | 1.0578 | | 2.6688 | 23.21 | 13000 | 4.2029 | 1.1971 | | 2.6717 | 24.11 | 13500 | 4.3582 | 1.1606 | | 2.6414 | 25.0 | 14000 | 4.3469 | 1.2859 | | 2.6585 | 25.89 | 14500 | 4.4786 | 1.0517 | | 2.6379 | 26.79 | 15000 | 4.1083 | 1.1800 | | 2.6453 | 27.68 | 15500 | 4.5773 | 1.0365 | | 2.6588 | 28.57 | 16000 | 4.5645 | 1.1381 | | 2.6289 | 29.46 | 16500 | 4.4557 | 1.0985 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
sd-concepts-library/4tnght
sd-concepts-library
2022-11-18T07:10:21Z
0
18
null
[ "license:mit", "region:us" ]
null
2022-11-18T07:10:18Z
--- license: mit --- ### 4tNGHT on Stable Diffusion This is the `<4tNGHT>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<4tNGHT> 0](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/4.jpeg) ![<4tNGHT> 1](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/83.jpeg) ![<4tNGHT> 2](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/53.jpeg) ![<4tNGHT> 3](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/74.jpeg) ![<4tNGHT> 4](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/102.jpeg) ![<4tNGHT> 5](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/79.jpeg) ![<4tNGHT> 6](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/85.jpeg) ![<4tNGHT> 7](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/69.jpeg) ![<4tNGHT> 8](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/19.jpeg) ![<4tNGHT> 9](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/96.jpeg) ![<4tNGHT> 10](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/99.jpeg) ![<4tNGHT> 11](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/101.jpeg) ![<4tNGHT> 12](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/73.jpeg) ![<4tNGHT> 13](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/65.jpeg) ![<4tNGHT> 14](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/91.jpeg) ![<4tNGHT> 15](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/39.jpeg) ![<4tNGHT> 16](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/81.jpeg) ![<4tNGHT> 17](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/95.jpeg) ![<4tNGHT> 18](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/61.jpeg) ![<4tNGHT> 19](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/54.jpeg) ![<4tNGHT> 20](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/42.jpeg) ![<4tNGHT> 21](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/72.jpeg) ![<4tNGHT> 22](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/41.jpeg) ![<4tNGHT> 23](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/75.jpeg) ![<4tNGHT> 24](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/32.jpeg) ![<4tNGHT> 25](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/18.jpeg) ![<4tNGHT> 26](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/67.jpeg) ![<4tNGHT> 27](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/21.jpeg) ![<4tNGHT> 28](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/11.jpeg) ![<4tNGHT> 29](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/7.jpeg) ![<4tNGHT> 30](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/64.jpeg) ![<4tNGHT> 31](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/33.jpeg) ![<4tNGHT> 32](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/100.jpeg) ![<4tNGHT> 33](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/62.jpeg) ![<4tNGHT> 34](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/20.jpeg) ![<4tNGHT> 35](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/88.jpeg) ![<4tNGHT> 36](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/77.jpeg) ![<4tNGHT> 37](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/15.jpeg) ![<4tNGHT> 38](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/56.jpeg) ![<4tNGHT> 39](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/71.jpeg) ![<4tNGHT> 40](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/52.jpeg) ![<4tNGHT> 41](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/6.jpeg) ![<4tNGHT> 42](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/87.jpeg) ![<4tNGHT> 43](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/76.jpeg) ![<4tNGHT> 44](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/34.jpeg) ![<4tNGHT> 45](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/9.jpeg) ![<4tNGHT> 46](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/30.jpeg) ![<4tNGHT> 47](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/59.jpeg) ![<4tNGHT> 48](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/36.jpeg) ![<4tNGHT> 49](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/93.jpeg) ![<4tNGHT> 50](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/14.jpeg) ![<4tNGHT> 51](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/12.jpeg) ![<4tNGHT> 52](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/55.jpeg) ![<4tNGHT> 53](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/17.jpeg) ![<4tNGHT> 54](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/57.jpeg) ![<4tNGHT> 55](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/82.jpeg) ![<4tNGHT> 56](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/103.jpeg) ![<4tNGHT> 57](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/45.jpeg) ![<4tNGHT> 58](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/47.jpeg) ![<4tNGHT> 59](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/43.jpeg) ![<4tNGHT> 60](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/94.jpeg) ![<4tNGHT> 61](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/84.jpeg) ![<4tNGHT> 62](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/25.jpeg) ![<4tNGHT> 63](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/68.jpeg) ![<4tNGHT> 64](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/2.jpeg) ![<4tNGHT> 65](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/90.jpeg) ![<4tNGHT> 66](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/80.jpeg) ![<4tNGHT> 67](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/8.jpeg) ![<4tNGHT> 68](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/38.jpeg) ![<4tNGHT> 69](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/13.jpeg) ![<4tNGHT> 70](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/27.jpeg) ![<4tNGHT> 71](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/37.jpeg) ![<4tNGHT> 72](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/24.jpeg) ![<4tNGHT> 73](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/92.jpeg) ![<4tNGHT> 74](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/35.jpeg) ![<4tNGHT> 75](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/3.jpeg) ![<4tNGHT> 76](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/51.jpeg) ![<4tNGHT> 77](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/89.jpeg) ![<4tNGHT> 78](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/40.jpeg) ![<4tNGHT> 79](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/22.jpeg) ![<4tNGHT> 80](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/63.jpeg) ![<4tNGHT> 81](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/98.jpeg) ![<4tNGHT> 82](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/97.jpeg) ![<4tNGHT> 83](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/10.jpeg) ![<4tNGHT> 84](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/70.jpeg) ![<4tNGHT> 85](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/46.jpeg) ![<4tNGHT> 86](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/23.jpeg) ![<4tNGHT> 87](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/104.jpeg) ![<4tNGHT> 88](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/29.jpeg) ![<4tNGHT> 89](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/28.jpeg) ![<4tNGHT> 90](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/44.jpeg) ![<4tNGHT> 91](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/78.jpeg) ![<4tNGHT> 92](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/1.jpeg) ![<4tNGHT> 93](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/86.jpeg) ![<4tNGHT> 94](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/16.jpeg) ![<4tNGHT> 95](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/60.jpeg) ![<4tNGHT> 96](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/58.jpeg) ![<4tNGHT> 97](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/5.jpeg) ![<4tNGHT> 98](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/49.jpeg) ![<4tNGHT> 99](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/26.jpeg) ![<4tNGHT> 100](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/0.jpeg) ![<4tNGHT> 101](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/50.jpeg) ![<4tNGHT> 102](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/48.jpeg) ![<4tNGHT> 103](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/66.jpeg) ![<4tNGHT> 104](https://huggingface.co/sd-concepts-library/4tnght/resolve/main/concept_images/31.jpeg)
Elitay/Orc
Elitay
2022-11-18T04:52:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-18T04:19:41Z
--- license: creativeml-openrail-m ---
IGKKR/ddpm-butterflies-128
IGKKR
2022-11-18T04:33:09Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-18T02:18:15Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/IGKKR/ddpm-butterflies-128/tensorboard?#scalars)