modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
bigmorning/whisper_charsplit_new_0061
bigmorning
2023-08-13T13:41:13Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T13:41:06Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0061 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0061 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0044 - Train Accuracy: 0.0795 - Train Wermet: 10.3884 - Validation Loss: 0.5223 - Validation Accuracy: 0.0764 - Validation Wermet: 8.8152 - Epoch: 60 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e7_s55555_v4_l4_r4
KingKazma
2023-08-13T13:41:12Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:41:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_lora_500_10_3000_8_e8_s55555_v4_l4_r4
KingKazma
2023-08-13T13:40:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:40:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e5_s108_v4_l4_v50
KingKazma
2023-08-13T13:39:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:39:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T13:38:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:38:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e4_s108_v4_l4_v50
KingKazma
2023-08-13T13:35:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:35:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e4_s108_v4_l4_v100
KingKazma
2023-08-13T13:35:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:35:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_lora_500_10_3000_8_e6_s55555_v4_l4_r4
KingKazma
2023-08-13T13:34:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:34:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e3_s108_v4_l4_v50
KingKazma
2023-08-13T13:32:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:32:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
helamri/rl_course_vizdoom_health_gathering_supreme
helamri
2023-08-13T13:32:25Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T13:24:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.97 +/- 4.61 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r helamri/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e3_s108_v4_l4_v100
KingKazma
2023-08-13T13:32:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:32:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_lora_500_10_3000_8_e5_s55555_v4_l4_r4
KingKazma
2023-08-13T13:31:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:31:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Mtc2/poca-SoccerTwos
Mtc2
2023-08-13T13:31:31Z
33
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-13T13:27:24Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Mtc2/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e4_s55555_v4_l4_r4
KingKazma
2023-08-13T13:31:08Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:31:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
aeolian83/poly-ko-1.3b-translate
aeolian83
2023-08-13T13:29:17Z
84
2
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "causal-lm", "ko", "dataset:squarelike/sharegpt_deepl_ko_translation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-12T06:10:33Z
--- license: apache-2.0 language: - ko datasets: - squarelike/sharegpt_deepl_ko_translation tags: - pytorch - causal-lm --- # poly-ko-1.3b-translate - EleutherAI/polyglot-ko-1.3b์„ squarelike/sharegpt_deepl_ko_translation์œผ๋กœ ์˜ํ•œ ๋ฒˆ์—ญ๋งŒ ๊ฐ€๋Šฅํ•˜๋„๋ก fine-tuningํ•œ ๋ชจ๋ธ - QRoLA๊ธฐ๋ฒ•์œผ๋กœ fine-tunnig ### ํ›ˆ๋ จ ์ •๋ณด - Epoch: 1 - learning-rate: 3e-4 - batch_size: 3 - Lora r: 8 - Lora target modules: query_key_value 3090GPU 1๋Œ€๋กœ ํ›ˆ๋ จํ–ˆ์Šต๋‹ˆ๋‹ค.
KingKazma/xsum_t5-small_lora_500_10_3000_8_e4_s55555_v4_l4_r4
KingKazma
2023-08-13T13:29:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:29:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T13:29:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:28:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0058
bigmorning
2023-08-13T13:28:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T13:27:55Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0058 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0058 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0007 - Train Accuracy: 0.0795 - Train Wermet: 10.2557 - Validation Loss: 0.5328 - Validation Accuracy: 0.0764 - Validation Wermet: 8.5665 - Epoch: 57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_10_3000_8_e3_s55555_v4_l4_r4
KingKazma
2023-08-13T13:26:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:26:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e1_s108_v4_l4_v50
KingKazma
2023-08-13T13:25:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:25:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_t5-small_lora_500_10_3000_8_e1_s55555_v4_l4_r4
KingKazma
2023-08-13T13:20:25Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:20:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Dayanand4574/stable-diffusion-chair
Dayanand4574
2023-08-13T13:15:29Z
3
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T13:11:48Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Stable-diffusion-chair Dreambooth model trained by Dayanand4574 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ShowCarSign/car-show-display-signs-and-boards
ShowCarSign
2023-08-13T13:14:29Z
0
0
null
[ "region:us" ]
null
2023-08-13T12:56:16Z
Welcome to the ShowCarSign <a href="https://showcarsign.com/product/show-car-sign/">car show display boards</a>. ! Here, you'll find an excellent selection of boards that will showcase your cars in style. Whether you're a seasoned pro with a fleet of vehicles or a first-time buyer with just one car, we've got something for everyone. Our boards are designed to turn heads and get attention. That means they have to look just as great on the outside as they do the inside. Choose from our wide range of <a href="http://https://showcarsign.com/">car show display ideas</a>. Plus, our state-of-the-art printing techniques make sure that whatever board you choose, it'll be vibrant and strong - ready to show off your precious vehicles in all their glory. For those with more unique tastes, we can even design and create custom <a href="http://https://showcarsign.com/product/car-show-boards/">car show reader boards</a> made to measure. So come take a look at what we have to offer here at ShowCarSign and make sure your cars get the display they deserve. Visit: https://showcarsign.com
bigmorning/whisper_charsplit_new_0053
bigmorning
2023-08-13T13:05:58Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T13:05:49Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0053 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0053 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0083 - Train Accuracy: 0.0794 - Train Wermet: 9.9557 - Validation Loss: 0.5173 - Validation Accuracy: 0.0762 - Validation Wermet: 8.2406 - Epoch: 52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0052
bigmorning
2023-08-13T13:01:35Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T13:01:23Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0052 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0052 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0069 - Train Accuracy: 0.0794 - Train Wermet: 10.2037 - Validation Loss: 0.5434 - Validation Accuracy: 0.0759 - Validation Wermet: 8.5399 - Epoch: 51 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
ailabturkiye/tonguc
ailabturkiye
2023-08-13T13:01:01Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-08-13T12:50:26Z
--- license: openrail language: - tr tags: - music ---
bigmorning/whisper_charsplit_new_0051
bigmorning
2023-08-13T12:57:04Z
73
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:56:57Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0051 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0051 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0006 - Train Accuracy: 0.0795 - Train Wermet: 9.9494 - Validation Loss: 0.5233 - Validation Accuracy: 0.0763 - Validation Wermet: 8.5719 - Epoch: 50 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
fp16-guy/Cetus-Mix_v4_fp16_cleaned
fp16-guy
2023-08-13T12:51:38Z
0
1
null
[ "text-to-image", "region:us" ]
text-to-image
2023-07-31T14:37:04Z
--- pipeline_tag: text-to-image --- Cetus-Mix v4, but fp16/cleaned - smaller size, same result. ======== /// **[**original checkpoint link**](https://civitai.com/models/6755?modelVersionId=126564)** *(all rights to the model belong to Eagelaxis)* --- *[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusmixv4%2001%2020230807110113-111-cetusMix_v4-Euler%20a-6.png) *(1.99gb version)* *[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusmixv4%2002%2020230807110204-111-cetusMix_v4-Euler%20a-6.png) *(1.83gb version - no vae)* *[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_v4%20inp%2001%2020230813151521-111-cetusMix_v4_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)* *[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_v4%20inp%2002%2020230813151628-111-cetusMix_v4_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
fathyshalab/mdcsi-medizin-gesundheit-pflege-setfit
fathyshalab
2023-08-13T12:46:00Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T12:44:45Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpx6f5c9l2\fathyshalab\mdcsi-medizin-gesundheit-pflege-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpx6f5c9l2\fathyshalab\mdcsi-medizin-gesundheit-pflege-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
bigmorning/whisper_charsplit_new_0048
bigmorning
2023-08-13T12:43:50Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:43:42Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0048 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0048 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0037 - Train Accuracy: 0.0795 - Train Wermet: 10.0455 - Validation Loss: 0.5174 - Validation Accuracy: 0.0762 - Validation Wermet: 8.2514 - Epoch: 47 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0047
bigmorning
2023-08-13T12:39:25Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:39:16Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0047 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0047 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0070 - Train Accuracy: 0.0794 - Train Wermet: 10.2166 - Validation Loss: 0.5169 - Validation Accuracy: 0.0760 - Validation Wermet: 8.8409 - Epoch: 46 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bulentsoykan/q-Taxi-v3
bulentsoykan
2023-08-13T12:37:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T12:37:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bulentsoykan/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bigmorning/whisper_charsplit_new_0046
bigmorning
2023-08-13T12:35:00Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:34:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0046 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0046 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0041 - Train Accuracy: 0.0795 - Train Wermet: 10.2751 - Validation Loss: 0.5242 - Validation Accuracy: 0.0760 - Validation Wermet: 8.3671 - Epoch: 45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0042
bigmorning
2023-08-13T12:17:26Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:17:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0042 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0042 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0045 - Train Accuracy: 0.0795 - Train Wermet: 10.2251 - Validation Loss: 0.5014 - Validation Accuracy: 0.0761 - Validation Wermet: 8.5737 - Epoch: 41 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Pierre-Arthur/T5_small_eurlexsum
Pierre-Arthur
2023-08-13T12:16:31Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:eur-lex-sum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-24T20:26:43Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - eur-lex-sum metrics: - rouge model-index: - name: T5_small_eurlexsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eur-lex-sum type: eur-lex-sum config: french split: test args: french metrics: - name: Rouge1 type: rouge value: 0.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5_small_eurlexsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eur-lex-sum dataset. It achieves the following results on the evaluation set: - Loss: 1.1159 - Rouge1: 0.2 - Rouge2: 0.1394 - Rougel: 0.1833 - Rougelsum: 0.1829 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 71 | 1.4740 | 0.1718 | 0.0935 | 0.1476 | 0.1476 | 19.0 | | No log | 2.0 | 142 | 1.2138 | 0.1915 | 0.1207 | 0.1719 | 0.1719 | 19.0 | | No log | 3.0 | 213 | 1.1368 | 0.1953 | 0.1306 | 0.1759 | 0.1759 | 19.0 | | No log | 4.0 | 284 | 1.1159 | 0.2 | 0.1394 | 0.1833 | 0.1829 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
lizsergeeva/vit-base-patch16-224-finetuned-vit
lizsergeeva
2023-08-13T12:13:49Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-13T08:28:07Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-vit results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9160530191458026 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-vit This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2549 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6065 | 0.99 | 47 | 0.4006 | 0.8748 | | 0.335 | 2.0 | 95 | 0.2745 | 0.9175 | | 0.2707 | 2.97 | 141 | 0.2549 | 0.9161 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0041
bigmorning
2023-08-13T12:12:58Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:12:51Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0041 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0041 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0120 - Train Accuracy: 0.0793 - Train Wermet: 10.4810 - Validation Loss: 0.4963 - Validation Accuracy: 0.0760 - Validation Wermet: 8.9194 - Epoch: 40 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bulentsoykan/q-FrozenLake-v1-4x4-noSlippery
bulentsoykan
2023-08-13T12:12:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T12:12:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bulentsoykan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bigmorning/whisper_charsplit_new_0040
bigmorning
2023-08-13T12:08:34Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T12:08:26Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0040 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0035 - Train Accuracy: 0.0795 - Train Wermet: 10.6833 - Validation Loss: 0.5276 - Validation Accuracy: 0.0757 - Validation Wermet: 8.9798 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0038
bigmorning
2023-08-13T11:59:47Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:59:40Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0038 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0038 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0020 - Train Accuracy: 0.0795 - Train Wermet: 10.7428 - Validation Loss: 0.4835 - Validation Accuracy: 0.0762 - Validation Wermet: 9.0566 - Epoch: 37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0035
bigmorning
2023-08-13T11:46:46Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:46:39Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0130 - Train Accuracy: 0.0793 - Train Wermet: 11.1022 - Validation Loss: 0.4748 - Validation Accuracy: 0.0760 - Validation Wermet: 9.4521 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0034
bigmorning
2023-08-13T11:42:29Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:42:22Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0034 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0034 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0047 - Train Accuracy: 0.0795 - Train Wermet: 10.7613 - Validation Loss: 0.4788 - Validation Accuracy: 0.0759 - Validation Wermet: 9.4065 - Epoch: 33 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
ManuVleuBeu/bart_base_answer-aware_normal_eduQG
ManuVleuBeu
2023-08-13T11:39:33Z
175
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T11:23:42Z
--- tags: - generated_from_trainer model-index: - name: bart_base_answer-aware_normal_eduQG results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_base_answer-aware_normal_eduQG This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0033
bigmorning
2023-08-13T11:38:10Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:38:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0033 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0033 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0036 - Train Accuracy: 0.0795 - Train Wermet: 10.7759 - Validation Loss: 0.4667 - Validation Accuracy: 0.0761 - Validation Wermet: 9.0385 - Epoch: 32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
abdelhamidmalki/dqn-SpaceInvadersNoFrameskip-v4
abdelhamidmalki
2023-08-13T11:29:42Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T11:28:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 742.50 +/- 347.09 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abdelhamidmalki -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abdelhamidmalki -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga abdelhamidmalki ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
bigmorning/whisper_charsplit_new_0031
bigmorning
2023-08-13T11:29:27Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:29:20Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0031 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0031 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0084 - Train Accuracy: 0.0794 - Train Wermet: 10.9143 - Validation Loss: 0.4474 - Validation Accuracy: 0.0760 - Validation Wermet: 9.3668 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Sparticle/llama-2-7b-chat-japanese-lora
Sparticle
2023-08-13T11:28:48Z
0
8
null
[ "ja", "en", "dataset:izumi-lab/llm-japanese-dataset", "license:cc-by-sa-4.0", "region:us" ]
null
2023-07-29T02:39:49Z
--- license: cc-by-sa-4.0 datasets: - izumi-lab/llm-japanese-dataset language: - ja - en --- ## This model is a fine-tuned Llama2-7b-chat-hf model with Japanese dataset with LoRA. # This model is finetuned by the joint efforts of Sparticle Inc. and A. I. Hakusan Inc. The training set of this model contains: 5% of randomly chosen data from llm-japanese-dataset by izumi-lab. Japanese-alpaca-lora dataset, retrieved from https://github.com/masa3141/japanese-alpaca-lora/tree/main For inference, please follow the instructions in https://github.com/tloen/alpaca-lora/ . ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.5.0.dev0 You must agree with Meta's agreements when using this LoRA adapter with Llama-2.
bigmorning/whisper_charsplit_new_0029
bigmorning
2023-08-13T11:20:47Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:20:40Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0029 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0029 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0114 - Train Accuracy: 0.0794 - Train Wermet: 11.3093 - Validation Loss: 0.4431 - Validation Accuracy: 0.0758 - Validation Wermet: 9.5545 - Epoch: 28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Punit71/Taxi-v3
Punit71
2023-08-13T11:19:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T11:19:17Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Punit71/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bigmorning/whisper_charsplit_new_0028
bigmorning
2023-08-13T11:16:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:16:16Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0028 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0028 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0101 - Train Accuracy: 0.0794 - Train Wermet: 11.2963 - Validation Loss: 0.4282 - Validation Accuracy: 0.0760 - Validation Wermet: 9.5792 - Epoch: 27 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0027
bigmorning
2023-08-13T11:12:00Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:11:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0027 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0027 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0118 - Train Accuracy: 0.0794 - Train Wermet: 11.0532 - Validation Loss: 0.4207 - Validation Accuracy: 0.0759 - Validation Wermet: 9.7227 - Epoch: 26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0026
bigmorning
2023-08-13T11:07:34Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:07:26Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0026 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0026 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0142 - Train Accuracy: 0.0794 - Train Wermet: 11.3562 - Validation Loss: 0.4057 - Validation Accuracy: 0.0760 - Validation Wermet: 9.6831 - Epoch: 25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
morell23/3dmm
morell23
2023-08-13T11:04:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T11:03:45Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_charsplit_new_0025
bigmorning
2023-08-13T11:03:11Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T11:03:04Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0025 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0181 - Train Accuracy: 0.0793 - Train Wermet: 11.3124 - Validation Loss: 0.3982 - Validation Accuracy: 0.0759 - Validation Wermet: 9.8710 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Falah/Iyad_Radi_SDXL1.0_Lora
Falah
2023-08-13T11:01:53Z
3
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-13T08:27:32Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a Iyad Radi tags: - text-to-image - diffusers - autotrain inference: true --- # ART Text-to-Image Generation using stabilityai/stable-diffusion-xl-base-1.0 This repository contains code and instructions for using the `stabilityai/stable-diffusion-xl-base-1.0` model from Hugging Face's Transformers library to generate images from textual descriptions. The model utilizes diffusion models for high-quality image synthesis based on the provided text prompts. ![1](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/12.png) ![2](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/2.png) ![3](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/3.png) ![4](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/4.png) ![5](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/6.png) ![6](https://huggingface.co/Falah/Iyad_Radi_SDXL1.0_Lora/resolve/main/8.png) ## Model Information - Base Model: stabilityai/stable-diffusion-xl-base-1.0 - Instance Prompt: "photo of Iyad Radi" - Tags: - text-to-image - diffusers - autotrain ## Inference To use this model for generating images from text prompts, follow these steps: 1. **Environment Setup:** Make sure you have Python installed on your system. You can also use a virtual environment for isolation. 2. **Install Dependencies:** Install the required Python packages by running the following command: ```bash pip install -r requirements.txt ``` 3.## Usage Here is an example of how you can use the `stabilityai/stable-diffusion-xl-base-1.0` model for text-to-image generation in Python using the `diffusers` library. ```python from diffusers import DiffusionPipeline import torch # Load LoRA weights lora_weights = torch.load("/path/to/lora_weights/pytorch_lora_weights.safetensors") # Initialize the DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.to("cuda") # Load LoRA weights into the pipeline pipe.load_lora_weights(lora_weights) # Text prompt for image generation prompt = "photo of Iyad Radi with cat in the pool" # Generate Images image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images ``` 4. **Generated Images:** The generated images will be saved in the `output_images` directory by default. ## Application in Art and Cinema Industry This model can be incredibly useful in the art and cinema movie production industry, especially for creating visuals based on textual descriptions. In the case of Aiyad Radi, an Iraqi actor and comedian, this tool can aid in visualizing character designs, scenes, and concepts before actual production. Directors, artists, and producers can utilize the generated images as a reference to plan and visualize their projects effectively. ## Credits - Model developed by [stabilityai](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - This repository is created and maintained by [Falah.G.Saleih] ## Disclaimer Please note that the model's outputs might vary, and the generated images are based on the input text prompts. The model's behavior is influenced by its training data and might not always produce accurate or desired results. Feel free to experiment, provide feedback, and contribute to this repository if you'd like to enhance its functionality! ---
bigmorning/whisper_charsplit_new_0022
bigmorning
2023-08-13T10:50:13Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T10:50:05Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0022 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0022 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0318 - Train Accuracy: 0.0790 - Train Wermet: 11.6314 - Validation Loss: 0.3628 - Validation Accuracy: 0.0760 - Validation Wermet: 9.6652 - Epoch: 21 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0020
bigmorning
2023-08-13T10:41:26Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T10:41:19Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0463 - Train Accuracy: 0.0787 - Train Wermet: 11.9677 - Validation Loss: 0.3402 - Validation Accuracy: 0.0760 - Validation Wermet: 10.2814 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
steve-tong/opus-mt-en-zh-tw
steve-tong
2023-08-13T10:39:43Z
107
2
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-zh", "base_model:finetune:Helsinki-NLP/opus-mt-en-zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T10:36:48Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-zh tags: - generated_from_trainer model-index: - name: opus-mt-en-zh-tw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-zh-tw This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0017
bigmorning
2023-08-13T10:28:14Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T10:28:07Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0017 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0017 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0760 - Train Accuracy: 0.0779 - Train Wermet: 12.2637 - Validation Loss: 0.3142 - Validation Accuracy: 0.0761 - Validation Wermet: 10.2638 - Epoch: 16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0015
bigmorning
2023-08-13T10:19:26Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T10:19:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0998 - Train Accuracy: 0.0773 - Train Wermet: 11.9502 - Validation Loss: 0.3025 - Validation Accuracy: 0.0761 - Validation Wermet: 10.7066 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0012
bigmorning
2023-08-13T10:06:23Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T10:06:15Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0012 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0012 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1450 - Train Accuracy: 0.0762 - Train Wermet: 11.7637 - Validation Loss: 0.2971 - Validation Accuracy: 0.0758 - Validation Wermet: 10.1481 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
alxxtexxr/WizardCoder-15B-v1.0-Sharded-8GB
alxxtexxr
2023-08-13T10:00:50Z
15
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "arxiv:2306.08568", "arxiv:2304.12244", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-12T11:52:53Z
--- license: bigscience-openrail-m pipeline_tag: text-generation --- # Disclaimer: I do not own the weights of WizardCoder-15B-V1.0, nor did I train the model. I only sharded or split the model weights. The actual weights can be found [here](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0). The rest of the README is copied from the same page listed above. This is the Full-Weight of WizardCoder. **Repository**: https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder **Twitter**: https://twitter.com/WizardLM_AI/status/1669109414559911937 **Paper**: [WizardCoder: Empowering Code Large Language Models with Evol-Instruct](https://arxiv.org/abs/2306.08568) ## WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions <p align="center"> ๐Ÿค— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> โ€ข ๐Ÿฆ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> โ€ข ๐Ÿ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> โ€ข ๐Ÿ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> <br> </p> <p align="center"> ๐Ÿ‘‹ Join our <a href="https://discord.gg/bpmeZD7V" target="_blank">Discord</a> </p> ## News - ๐Ÿ”ฅ ๐Ÿ”ฅ ๐Ÿ”ฅ [08/11/2023] We release **WizardMath** Models. - ๐Ÿ”ฅ Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**. - ๐Ÿ”ฅ Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM. - ๐Ÿ”ฅ Our **WizardMath-70B-V1.0** model achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM. | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License| | ----- |------| ---- |------|-------| ----- | ----- | | WizardMath-70B-V1.0 | ๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | ๐Ÿ“ƒComing Soon| **81.6** | **22.7** || <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a> | | WizardMath-13B-V1.0 | ๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | ๐Ÿ“ƒComing Soon| **63.9** | **14.0** | [Demo-1](http://47.103.63.15:50082/), | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a> | | WizardMath-7B-V1.0 | ๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | ๐Ÿ“ƒComing Soon| **54.9** | **10.7** | [Demo-1](http://47.103.63.15:50080/), [Demo-2](http://47.103.63.15:50081/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a>| <font size=4> | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>WizardEval</sup> | <sup>HumanEval</sup> | <sup>License</sup>| | ----- |------| ---- |------|-------| ----- | ----- | ----- | | <sup>WizardLM-13B-V1.2</sup> | <sup>๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> | <sup>101.4% </sup>|<sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> | | <sup>WizardLM-13B-V1.1</sup> |<sup> ๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | <sup>99.3% </sup> |<sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>| | <sup>WizardLM-30B-V1.0</sup> | <sup>๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | <sup>97.8% </sup> | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> | | <sup>WizardLM-13B-V1.0</sup> | <sup>๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | <sup>89.1% </sup> |<sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>| | <sup>WizardLM-7B-V1.0 </sup>| <sup>๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> ๐Ÿ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | <sup>78.0% </sup> |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>| | <sup>WizardCoder-15B-V1.0</sup> | <sup> ๐Ÿค— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a></sup> | <sup>๐Ÿ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a></sup> | || |<sup> 57.3 pass@1 </sup> | <sup> <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a></sup> | </font> # WizardCoder: Empowering Code Large Language Models with Evol-Instruct To develop our WizardCoder model, we begin by adapting the Evol-Instruct method specifically for coding tasks. This involves tailoring the prompt to the domain of code-related instructions. Subsequently, we fine-tune the Code LLM, StarCoder, utilizing the newly created instruction-following training set. ## News - ๐Ÿ”ฅ Our **WizardCoder-15B-v1.0** model achieves the **57.3 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval), which is **22.3** points higher than the SOTA open-source Code LLMs. - ๐Ÿ”ฅ We released **WizardCoder-15B-v1.0** trained with **78k** evolved code instructions. Please checkout the [Model Weights](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0), and [Paper](). - &#x1F4E3; Please refer to our Twitter account https://twitter.com/WizardLM_AI and HuggingFace Repo https://huggingface.co/WizardLM . We will use them to announce any new release at the 1st time. ## Comparing WizardCoder with the Closed-Source Models. ๐Ÿ”ฅ The following figure shows that our **WizardCoder attains the third position in this benchmark**, surpassing Claude-Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Notably, our model exhibits a substantially smaller size compared to these models. <p align="center" width="100%"> <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/pass1.png" alt="WizardCoder" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a> </p> โ—**Note: In this study, we copy the scores for HumanEval and HumanEval+ from the [LLM-Humaneval-Benchmarks](https://github.com/my-other-github-account/llm-humaneval-benchmarks). Notably, all the mentioned models generate code solutions for each problem utilizing a **single attempt**, and the resulting pass rate percentage is reported. Our **WizardCoder** generates answers using greedy decoding and tests with the same [code](https://github.com/evalplus/evalplus).** ## Comparing WizardCoder with the Open-Source Models. The following table clearly demonstrates that our **WizardCoder** exhibits a substantial performance advantage over all the open-source models. โ—**If you are confused with the different scores of our model (57.3 and 59.8), please check the Notes.** | Model | HumanEval Pass@1 | MBPP Pass@1 | |------------------|------------------|-------------| | CodeGen-16B-Multi| 18.3 |20.9 | | CodeGeeX | 22.9 |24.4 | | LLaMA-33B | 21.7 |30.2 | | LLaMA-65B | 23.7 |37.7 | | PaLM-540B | 26.2 |36.8 | | PaLM-Coder-540B | 36.0 |47.0 | | PaLM 2-S | 37.6 |50.0 | | CodeGen-16B-Mono | 29.3 |35.3 | | Code-Cushman-001 | 33.5 |45.9 | | StarCoder-15B | 33.6 |43.6* | | InstructCodeT5+ | 35.0 |-- | | WizardLM-30B 1.0| 37.8 |-- | | WizardCoder-15B 1.0 | **57.3** |**51.8** | โ—**Note: The reproduced result of StarCoder on MBPP.** โ—**Note: The above table conducts a comprehensive comparison of our **WizardCoder** with other models on the HumanEval and MBPP benchmarks. We adhere to the approach outlined in previous studies by generating **20 samples** for each problem to estimate the pass@1 score and evaluate with the same [code](https://github.com/openai/human-eval/tree/master). The scores of GPT4 and GPT3.5 reported by [OpenAI](https://openai.com/research/gpt-4) are 67.0 and 48.1 (maybe these are the early version GPT4&3.5).** ## Call for Feedbacks We welcome everyone to use your professional and difficult instructions to evaluate WizardCoder, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardCoder. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it. ## Contents 1. [Online Demo](#online-demo) 2. [Fine-tuning](#fine-tuning) 3. [Inference](#inference) 4. [Evaluation](#evaluation) 5. [Citation](#citation) 6. [Disclaimer](#disclaimer) ## Online Demo We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** code-related problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks. ## Fine-tuning We fine-tune WizardCoder using the modified code `train.py` from [Llama-X](https://github.com/AetherCortex/Llama-X). We fine-tune StarCoder-15B with the following hyperparameters: | Hyperparameter | StarCoder-15B | |----------------|---------------| | Batch size | 512 | | Learning rate | 2e-5 | | Epochs | 3 | | Max length | 2048 | | Warmup step | 30 | | LR scheduler | cosine | To reproduce our fine-tuning of WizardCoder, please follow the following steps: 1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy. (Note: `deepspeed==0.9.2` and `transformers==4.29.2`) 2. Replace the `train.py` with the `train_wizardcoder.py` in our repo (`src/train_wizardcoder.py`) 3. Login Huggingface: ```bash huggingface-cli login ``` 4. Execute the following training command: ```bash deepspeed train_wizardcoder.py \ --model_name_or_path "bigcode/starcoder" \ --data_path "/your/path/to/code_instruction_data.json" \ --output_dir "/your/path/to/ckpt" \ --num_train_epochs 3 \ --model_max_length 2048 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50 \ --save_total_limit 2 \ --learning_rate 2e-5 \ --warmup_steps 30 \ --logging_steps 2 \ --lr_scheduler_type "cosine" \ --report_to "tensorboard" \ --gradient_checkpointing True \ --deepspeed configs/deepspeed_config.json \ --fp16 True ``` ## Inference We provide the decoding script for WizardCoder, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file. You can specify `base_model`, `input_data_path` and `output_data_path` in `src\inference_wizardcoder.py` to set the decoding model, path of input file and path of output file. ```bash pip install jsonlines ``` The decoding command is: ``` python src\inference_wizardcoder.py \ --base_model "/your/path/to/ckpt" \ --input_data_path "/your/path/to/input/data.jsonl" \ --output_data_path "/your/path/to/output/result.jsonl" ``` The format of `data.jsonl` should be: ``` {"idx": 11, "Instruction": "Write a Python code to count 1 to 10."} {"idx": 12, "Instruction": "Write a Jave code to sum 1 to 10."} ``` The prompt for our WizardCoder in `src\inference_wizardcoder.py` is: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` ## Evaluation We provide the evaluation script on HumanEval for WizardCoder. 1. According to the instructions of [HumanEval](https://github.com/openai/human-eval), install the environment. 2. Run the following script to generate the answer. ```bash model="/path/to/your/model" temp=0.2 max_len=2048 pred_num=200 num_seqs_per_iter=2 output_path=preds/T${temp}_N${pred_num} mkdir -p ${output_path} echo 'Output path: '$output_path echo 'Model to eval: '$model # 164 problems, 21 per GPU if GPU=8 index=0 gpu_num=8 for ((i = 0; i < $gpu_num; i++)); do start_index=$((i * 21)) end_index=$(((i + 1) * 21)) gpu=$((i)) echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu} ((index++)) ( CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} ) & if (($index % $gpu_num == 0)); then wait; fi done ``` 3. Run the post processing code `src/process_humaneval.py` to collect the code completions from all answer files. ```bash output_path=preds/T${temp}_N${pred_num} echo 'Output path: '$output_path python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt evaluate_functional_correctness ${output_path}.jsonl ``` ## Citation Please cite the repo if you use the data or code in this repo. ``` @misc{luo2023wizardcoder, title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang}, year={2023}, } ``` ## Disclaimer The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
mrvincenzo/dqn-SpaceInvadersNoFrameskip-v4
mrvincenzo
2023-08-13T09:48:54Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T09:48:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 872.00 +/- 417.93 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrvincenzo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrvincenzo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mrvincenzo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
HachiML/japanese-stablelm-alpha-7b-hh-rlhf-49k-ja-qlora-v2-1.2ep
HachiML
2023-08-13T09:48:00Z
1
0
peft
[ "peft", "dataset:HachiML/hh-rlhf-49k-ja-alpaca-format", "region:us" ]
null
2023-08-13T09:46:23Z
--- library_name: peft datasets: - HachiML/hh-rlhf-49k-ja-alpaca-format --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
darthPanda/whisper-tiny-urdu
darthPanda
2023-08-13T09:47:03Z
86
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ur", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T07:25:30Z
--- language: - ur license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Urdu - darth results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 59.544821179749185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Urdu - darth This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.8511 - Wer Ortho: 62.5039 - Wer: 59.5448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.673 | 1.08 | 500 | 0.8511 | 62.5039 | 59.5448 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
asenella/MMVAEPlus_beta_25_scale_True_seed_3
asenella
2023-08-13T09:44:09Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T19:38:45Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
bigmorning/whisper_charsplit_new_0004
bigmorning
2023-08-13T09:31:14Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T09:31:06Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0004 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0004 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3813 - Train Accuracy: 0.0708 - Train Wermet: 11.9157 - Validation Loss: 0.3935 - Validation Accuracy: 0.0733 - Validation Wermet: 9.4615 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
TinToTin/ppo-CartPole-v1
TinToTin
2023-08-13T09:27:09Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T09:24:39Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 247.10 +/- 99.41 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Thineshan/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
moraxgiga/llama-2-7b-Gokul_datadolly
moraxgiga
2023-08-13T09:09:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-28T09:17:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
abhijeet2022/Taxi-v3
abhijeet2022
2023-08-13T09:03:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T08:10:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="abhijeet2022/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/mdcsi-finanzen-setfit
fathyshalab
2023-08-13T08:57:01Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T08:56:11Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp1dwypgha\fathyshalab\mdcsi-finanzen-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp1dwypgha\fathyshalab\mdcsi-finanzen-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
caffeinatedwoof/whisper-tiny-minds14-enUS
caffeinatedwoof
2023-08-13T08:55:58Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T05:59:19Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14-enUS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 30.3873431533006 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds14-enUS This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7518 - Wer Ortho: 30.8480 - Wer: 30.3873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0006 | 35.71 | 500 | 0.7518 | 30.8480 | 30.3873 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Sandiago21/llama-2-13b-hf-prompt-answering
Sandiago21
2023-08-13T08:49:51Z
0
2
null
[ "pytorch", "generated_from_trainer", "text-generation", "multilingual", "dataset:conversations", "region:us" ]
text-generation
2023-08-05T17:55:00Z
--- language: - multilingual tags: - generated_from_trainer datasets: - conversations model-index: - name: llama-2-13b-hf-prompt-answering results: [] pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-2-13b-hf-prompt-answering This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the CONVERSATIONS dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Tokenizers 0.13.3
ldhldh/_diff_big_12kstep
ldhldh
2023-08-13T08:44:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T08:44:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
asenella/MMVAEPlus_beta_25_scale_True_seed_2
asenella
2023-08-13T08:43:16Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:15:22Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Ryukijano/lora-trained-xl-anime_colab
Ryukijano
2023-08-13T08:39:09Z
3
4
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-13T06:05:06Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: anime prompts tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Ryukijano/lora-trained-xl-anime_colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on anime prompts using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
asenella/MMVAEPlus_beta_25_scale_True_seed_0
asenella
2023-08-13T08:29:36Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T16:49:53Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
fathyshalab/mdcsi-moebel-einrichtungshaeuser-setfit
fathyshalab
2023-08-13T08:25:32Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T08:24:41Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpvfzjmjqz\fathyshalab\mdcsi-moebel-einrichtungshaeuser-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpvfzjmjqz\fathyshalab\mdcsi-moebel-einrichtungshaeuser-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
chriskim2273/IOTNation_Classification_Model_0.7_5K_AND_ORIGINAL_DATASET_ROBERTA
chriskim2273
2023-08-13T08:24:12Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "base_model:deepset/roberta-base-squad2", "base_model:finetune:deepset/roberta-base-squad2", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T07:57:43Z
--- license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: IOTNation_Classification_Model_0.7_5K_AND_ORIGINAL_DATASET_ROBERTA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_Classification_Model_0.7_5K_AND_ORIGINAL_DATASET_ROBERTA This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0365 - Accuracy: 0.9927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
GhifSmile/distilbert-base-uncased-DSC-new-cllbck
GhifSmile
2023-08-13T08:19:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T08:01:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: distilbert-base-uncased-DSC-new-cllbck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-DSC-new-cllbck This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Accuracy: 0.9817 - Precision: 0.9831 - Recall: 0.9818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | 0.5329 | 1.0 | 618 | 0.1812 | 0.9511 | 0.9577 | 0.9518 | | 0.0853 | 2.0 | 1236 | 0.1160 | 0.9817 | 0.9831 | 0.9818 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
abhijeet2022/q-FrozenLake-v1-4x4-noSlippery
abhijeet2022
2023-08-13T08:02:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T08:01:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="abhijeet2022/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nivoko1022/mnivoko1022
nivoko1022
2023-08-13T07:58:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T07:58:01Z
--- license: creativeml-openrail-m ---
modelmaker/luna
modelmaker
2023-08-13T07:55:20Z
0
0
diffusers
[ "diffusers", "cat", "ay", "dataset:Open-Orca/OpenOrca", "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T07:53:41Z
--- license: creativeml-openrail-m datasets: - Open-Orca/OpenOrca language: - ay metrics: - accuracy library_name: diffusers tags: - cat ---
timjwhite/distilhubert-finetuned-gtzan
timjwhite
2023-08-13T07:21:22Z
168
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:Sandiago21/distilhubert-finetuned-gtzan", "base_model:finetune:Sandiago21/distilhubert-finetuned-gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-11T10:54:34Z
--- license: apache-2.0 base_model: Sandiago21/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9951 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0951 | 1.0 | 57 | 0.5566 | 0.87 | | 0.0629 | 2.0 | 114 | 0.6819 | 0.83 | | 0.0231 | 3.0 | 171 | 0.6118 | 0.86 | | 0.0159 | 4.0 | 228 | 0.9208 | 0.83 | | 0.0374 | 5.0 | 285 | 0.8746 | 0.85 | | 0.1714 | 6.0 | 342 | 0.6671 | 0.87 | | 0.2148 | 7.0 | 399 | 1.1850 | 0.79 | | 0.0147 | 8.0 | 456 | 1.0551 | 0.79 | | 0.0788 | 9.0 | 513 | 1.5179 | 0.79 | | 0.0015 | 10.0 | 570 | 1.3290 | 0.8 | | 0.0049 | 11.0 | 627 | 1.0943 | 0.85 | | 0.0012 | 12.0 | 684 | 1.0667 | 0.85 | | 0.0043 | 13.0 | 741 | 1.1816 | 0.82 | | 0.0015 | 14.0 | 798 | 0.9108 | 0.88 | | 0.0011 | 15.0 | 855 | 1.0289 | 0.87 | | 0.001 | 16.0 | 912 | 0.7696 | 0.87 | | 0.0006 | 17.0 | 969 | 0.8539 | 0.87 | | 0.1001 | 18.0 | 1026 | 1.1917 | 0.78 | | 0.0017 | 19.0 | 1083 | 1.0016 | 0.83 | | 0.0525 | 20.0 | 1140 | 0.9513 | 0.88 | | 0.0004 | 21.0 | 1197 | 0.9268 | 0.86 | | 0.0003 | 22.0 | 1254 | 1.1209 | 0.82 | | 0.0003 | 23.0 | 1311 | 0.9270 | 0.87 | | 0.0003 | 24.0 | 1368 | 1.1148 | 0.84 | | 0.0003 | 25.0 | 1425 | 1.0507 | 0.85 | | 0.0002 | 26.0 | 1482 | 1.0156 | 0.86 | | 0.0002 | 27.0 | 1539 | 1.0062 | 0.87 | | 0.0002 | 28.0 | 1596 | 1.0124 | 0.87 | | 0.0002 | 29.0 | 1653 | 1.0154 | 0.87 | | 0.0002 | 30.0 | 1710 | 1.0092 | 0.88 | | 0.0002 | 31.0 | 1767 | 1.0123 | 0.88 | | 0.0175 | 32.0 | 1824 | 0.9928 | 0.88 | | 0.0002 | 33.0 | 1881 | 1.0014 | 0.88 | | 0.0115 | 34.0 | 1938 | 0.9989 | 0.88 | | 0.0001 | 35.0 | 1995 | 0.9871 | 0.88 | | 0.0001 | 36.0 | 2052 | 0.9920 | 0.88 | | 0.0002 | 37.0 | 2109 | 0.9974 | 0.88 | | 0.0002 | 38.0 | 2166 | 0.9950 | 0.88 | | 0.0001 | 39.0 | 2223 | 0.9997 | 0.88 | | 0.0001 | 40.0 | 2280 | 0.9951 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
caiAtSNU/ppo-from-scratch-LunarLander-v2
caiAtSNU
2023-08-13T07:10:14Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T07:07:30Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -126.67 +/- 91.01 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo_solution' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'caiAtSNU/ppo-from-scratch-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
LongSafari/hyenadna-medium-160k-seqlen
LongSafari
2023-08-13T07:05:42Z
17
2
transformers
[ "transformers", "arxiv:2306.15794", "arxiv:2302.10866", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-23T05:23:10Z
--- license: bsd-3-clause --- # HyenaDNA Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**. See below for an [overview](#model) of the model and training. Better yet, check out these resources. **Resources:** - [arxiv](https://arxiv.org/abs/2306.15794) - [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) - [github](https://github.com/HazyResearch/hyena-dna) **Links to all HuggingFace models:** - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main) - [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main) See [GPU requirements](#hardware) for each model. ### Sample snippet This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings. See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna). ```python # instantiate pretrained model pretrained_model_name = 'hyenadna-medium-450k-seqlen' max_length = 450_000 model = HyenaDNAPreTrainedModel.from_pretrained( './checkpoints', pretrained_model_name, ) # create tokenizer, no training involved :) tokenizer = CharacterTokenizer( characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters model_max_length=max_length, ) # create a sample sequence = 'ACTG' * int(max_length/4) tok_seq = tokenizer(sequence)["input_ids"] # place on device, convert to tensor tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim # prep model and forward model.to(device) model.eval() # deterministic with torch.inference_mode(): embeddings = model(tok_seq) print(embeddings.shape) # embeddings here! ``` ### How to use pretrained weights - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first. - [github](https://github.com/HazyResearch/hyena-dna) Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that. If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too. ### GPU requirements (suggested) <a name="hardware"></a> Here are suggestions on the hardware (preferred minimum) we think you can use for each model. GPU during: Pretrain, fine-tune, inference - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40) T4: 16GB A100-40: 40GB A100-80: 80GB ## Model & Training Overview <a name="model"></a> HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations. This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention). We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer. We pretrain using next token (nucleotide) prediction on the human reference genome (HG38). HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning. Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA! ### Authors Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re. **Contact** Eric Nguyen, etnguyen@stanford.edu Michael Poli, poli@stanford.edu Marjan Faizi, Marjan_Faizi@hms.harvard.edu ## Citation Feel free to cite us :) ``` @article{nguyen2023hyenadna, title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution}, author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Rรฉ}, year={2023}, eprint={2306.15794}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
LongSafari/hyenadna-medium-450k-seqlen
LongSafari
2023-08-13T07:05:18Z
9
7
transformers
[ "transformers", "arxiv:2306.15794", "arxiv:2302.10866", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-06-23T08:11:59Z
--- license: bsd-3-clause --- # HyenaDNA Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**. See below for an [overview](#model) of the model and training. Better yet, check out these resources. **Resources:** - [arxiv](https://arxiv.org/abs/2306.15794) - [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) - [github](https://github.com/HazyResearch/hyena-dna) **Links to all HuggingFace models:** - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main) - [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main) See [GPU requirements](#hardware) for each model. ### Sample snippet This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings. See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna). ```python # instantiate pretrained model pretrained_model_name = 'hyenadna-medium-450k-seqlen' max_length = 450_000 model = HyenaDNAPreTrainedModel.from_pretrained( './checkpoints', pretrained_model_name, ) # create tokenizer, no training involved :) tokenizer = CharacterTokenizer( characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters model_max_length=max_length, ) # create a sample sequence = 'ACTG' * int(max_length/4) tok_seq = tokenizer(sequence)["input_ids"] # place on device, convert to tensor tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim # prep model and forward model.to(device) model.eval() # deterministic with torch.inference_mode(): embeddings = model(tok_seq) print(embeddings.shape) # embeddings here! ``` ### How to use pretrained weights - [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first. - [github](https://github.com/HazyResearch/hyena-dna) Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that. If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too. ### GPU requirements (suggested) <a name="hardware"></a> Here are suggestions on the hardware (preferred minimum) we think you can use for each model. GPU during: Pretrain, fine-tune, inference - [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4) - [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4) - [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4) - [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4) - [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40) T4: 16GB A100-40: 40GB A100-80: 80GB ## Model & Training Overview <a name="model"></a> HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations. This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention). We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer. We pretrain using next token (nucleotide) prediction on the human reference genome (HG38). HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning. Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA! ### Authors Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re. **Contact** Eric Nguyen, etnguyen@stanford.edu Michael Poli, poli@stanford.edu Marjan Faizi, Marjan_Faizi@hms.harvard.edu ## Citation Feel free to cite us :) ``` @article{nguyen2023hyenadna, title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution}, author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Rรฉ}, year={2023}, eprint={2306.15794}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
aidenpan/FillLineGaps
aidenpan
2023-08-13T07:03:40Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-08-08T14:43:44Z
--- license: apache-2.0 --- # FillLineGaps This repo holds the model from [FillLineGaps](https://github.com/zhenglinpan/FillLineGaps). `LightUNet_generator_700_mono_fuji.pth`: model for binarized black and white(channel=1) images. `LightUNet_generator_1000_color_dls.pth`: model for chromatic(channel=3) images.
fp16-guy/Cetus-Mix_Whalefall_fp16_cleaned
fp16-guy
2023-08-13T06:58:15Z
0
4
null
[ "text-to-image", "region:us" ]
text-to-image
2023-07-26T18:24:50Z
--- pipeline_tag: text-to-image --- Cetus-Mix Whalefall, but fp16/cleaned - smaller size, same result. ======== /// **[**original checkpoint link**](https://civitai.com/models/6755?modelVersionId=126564)** *(all rights to the model belong to Eagelaxis)* --- *[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusMix_Whalefall2%2001.png) *(1.99gb version)* *[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusMix_Whalefall2%2002%20no%20vae.png) *(1.83gb version - no vae)* *[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_Whalefall2%20inp%2001%2020230812123319-111-cetusMix_Whalefall2_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)* *[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_Whalefall2%20inp%2002%2020230812123519-111-cetusMix_Whalefall2_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
bigmorning/whisper_charsplit_0005
bigmorning
2023-08-13T06:26:40Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T06:26:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0544 - Train Accuracy: 0.0561 - Train Wermet: 9.9365 - Validation Loss: 0.8809 - Validation Accuracy: 0.0623 - Validation Wermet: 10.1087 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.7836 | 0.0245 | 8.8338 | 2.1866 | 0.0348 | 6.5008 | 0 | | 2.0715 | 0.0354 | 7.5148 | 1.8725 | 0.0410 | 5.8800 | 1 | | 1.7730 | 0.0412 | 7.4995 | 1.5964 | 0.0467 | 6.7257 | 2 | | 1.4468 | 0.0478 | 8.1713 | 1.2401 | 0.0544 | 8.7249 | 3 | | 1.0544 | 0.0561 | 9.9365 | 0.8809 | 0.0623 | 10.1087 | 4 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
NocteZeta/ppo-Huggy
NocteZeta
2023-08-13T06:17:15Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-13T06:17:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NocteZeta/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Evan-Lin/Bart-large-abs-yelp-entailment
Evan-Lin
2023-08-13T06:09:54Z
49
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-13T06:02:49Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
keena/inResonance
keena
2023-08-13T05:58:53Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-25T05:03:45Z
--- license: creativeml-openrail-m --- <style type="text/css"> .title{ font-size: 25px } .top{ margin: 0 0 80px 0 } </style> <div class="top"> <h1 class="title"> <span style="color: #cc0000">in</span>Resonance </h1> <img src="https://huggingface.co/keena/inResonance/resolve/main/images/header.jpg" width="1000" height=""> <p>EasyNegativeใ‚„DeepNegativeใ€ใพใŸOrangeMixใฎVAEใ‚’ไฝฟ็”จใ™ใ‚‹ใ“ใจใ‚’ใŠๅ‹งใ‚ใ—ใพใ™ใ€‚</p> </div> <div class="comparison"> <h1 class="tytle">ใƒป2็จฎ้กžใฎใƒขใƒ‡ใƒซ</h1> <img src="https://huggingface.co/keena/inResonance/resolve/main/images/comparison.jpg" width="500" height=""> <p> "<span style="color: #cc0000">in</span>ResonanceT"ใฏ"<span style="color: #cc0000">in</span>ResonanceZ"ใฎๆ”น่‰ฏ็‰ˆใงใ€ใ‚ˆใ‚Šๅคšใใฎใƒขใƒ‡ใƒซใ‚’ใƒžใƒผใ‚ธใ—ใฆใ„ใพใ™ใ€‚<br> ไธ€ๆ–นใŒๆฉŸ่ƒฝ้ขใง่‘—ใ—ใๅ„ชใ‚Œใฆใ„ใ‚‹ใจใ„ใ†ใ“ใจใฏ็„กใ„ใฎใงใ€ใŠๅฅฝใใชๆ–นใ‚’ใŠไฝฟใ„ใใ ใ•ใ„ใ€‚ </p> </div> <p>[ใƒ›ใƒผใƒ ็”ป้ขไฝœๆˆไธญ]</p>
asenella/MMVAEPlus_beta_25_scale_True_seed_1
asenella
2023-08-13T05:48:28Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:07:31Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
scoldgrin/ppo-LunarLander-v2
scoldgrin
2023-08-13T05:48:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T05:47:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.55 +/- 12.21 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
iknow-lab/ko-flan-zero-v0-0731
iknow-lab
2023-08-13T05:46:38Z
112
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ko", "dataset:nsmc", "dataset:jason9693/APEACH", "dataset:KETI-AIR/korquad", "dataset:klue", "dataset:smilegate-ai/kor_unsmile", "dataset:kor_nlu", "dataset:skt/kobest_v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-08T13:49:38Z
--- license: apache-2.0 language: - ko pipeline_tag: text-classification widget: - text: ์˜ˆ์ „์—๋Š” ์ฃผ๋ง๋งˆ๋‹ค ๊ทน์žฅ์— ๋†€๋Ÿฌ๊ฐ”๋Š”๋ฐ ์š”์ƒˆ๋Š” ์ข€ ์•ˆ๊ฐ€๋Š” ํŽธ์ด์—์š” [SEP] ๋Œ“๊ธ€ ์ฃผ์ œ๋ฅผ ๋ถ„๋ฅ˜ํ•˜์„ธ์š” [SEP] ์‹œ๋„ค๋งˆ - text: >- ์ธ์ฒœ๋ฐœ KTX์™€ ๊ด€๋ จํ•œโ€ˆ์†ก๋„์—ญ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๊ฐ€โ€ˆ์‚ฌ์‹ค์ƒโ€ˆ๋ฌด์‚ฐ,โ€ˆ๋‹จ์ˆœ ์ฒ ๋„ยท๋ฒ„์Šค ์œ„์ฃผ ํ™˜์Šน์‹œ์„ค๋กœโ€ˆ๋งŒ๋“ค์–ด์ง„๋‹ค.โ€ˆ์ด ๋•Œ๋ฌธ์— ์ธ์ฒœ์‹œ์˜ ์ธ์ฒœ๋ฐœ KTXโ€ˆ๊ธฐ์ ์— ์•ต์ปค์‹œ์„ค์ธ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๋ฅผ ํ†ตํ•œ ์ธ๊ทผโ€ˆ์ง€์—ญโ€ˆ๊ฒฝ์ œโ€ˆํ™œ์„ฑํ™”๋ฅผโ€ˆ์ด๋ค„๋‚ธ๋‹ค๋Š” ๊ณ„ํš์˜ ์ฐจ์งˆ์ด ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. [SEP] ๊ฒฝ์ œ์— ๊ธ์ •์ ์ธ ๋‰ด์Šค์ธ๊ฐ€์š”? [SEP] ์•„๋‹ˆ์š” - text: ๋งˆ์ง€๋ง‰์—๋Š” kํŒ ๊ณต์—ฐ๋ณด๊ณ  ์ข‹์€ ์ถ”์–ต ๋‚จ์•˜์œผ๋ฉด ์ข‹๊ฒ ๋„ค์š” [SEP] ์š•์„ค์ด ํฌํ•จ๋˜์–ด์žˆ๋‚˜์š”? [SEP] ์•„๋‹ˆ์š” datasets: - nsmc - jason9693/APEACH - KETI-AIR/korquad - klue - smilegate-ai/kor_unsmile - kor_nlu - skt/kobest_v1 --- ## ์‚ฌ์šฉ ์˜ˆ์‹œ ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("iknow-lab/ko-flan-zero-v0-0731") model = AutoModelForSequenceClassification.from_pretrained("iknow-lab/ko-flan-zero-v0-0731") def inference(instruction, input, labels): instruction = f"{input} [SEP] {instruction}" inputs = tokenizer([instruction] * len(labels), labels, truncation=True, padding=True, return_tensors="pt") scores = model(**inputs).logits.squeeze(1).tolist() output = dict(zip(labels, scores)) print(instruction, output) inference( "๋ฌธ์žฅ์„ ๊ฐ์„ฑ๋ถ„๋ฅ˜ํ•ด์ฃผ์„ธ์š”", "์•„ ์˜ํ™” ๊ฐœ๋…ธ์žผ", ["๊ธ์ •์ ", "๋ถ€์ •์ "] ) inference( "๊ธ€๊ณผ ๊ด€๋ จ๋œ ๋‚ด์šฉ์„ ๋งŒ๋“ค์–ด์ฃผ์„ธ์š”", "์˜ˆ์ „์—๋Š” ์ฃผ๋ง๋งˆ๋‹ค ๊ทน์žฅ์— ๋†€๋Ÿฌ๊ฐ”๋Š”๋ฐ ์š”์ƒˆ๋Š” ์ข€ ์•ˆ๊ฐ€๋Š” ํŽธ์ด์—์š”", ["์˜ํ™”์— ๊ด€ํ•œ ๊ธ€์ด๋‹ค", "๋“œ๋ผ๋งˆ์— ๊ด€ํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค"] ) inference( "๊ธ€์„ ์ฝ๊ณ  ์‹œ์žฅ์— ๋ฏธ์น  ์˜ํ–ฅ์„ ํŒ๋‹จํ•ด๋ณด์„ธ์š”", """์ธ์ฒœ๋ฐœ KTX์™€ ๊ด€๋ จํ•œโ€ˆ์†ก๋„์—ญ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๊ฐ€โ€ˆ์‚ฌ์‹ค์ƒโ€ˆ๋ฌด์‚ฐ,โ€ˆ๋‹จ์ˆœ ์ฒ ๋„ยท๋ฒ„์Šค ์œ„์ฃผ ํ™˜์Šน์‹œ์„ค๋กœโ€ˆ๋งŒ๋“ค์–ด์ง„๋‹ค.โ€ˆ์ด ๋•Œ๋ฌธ์— ์ธ์ฒœ์‹œ์˜ ์ธ์ฒœ๋ฐœ KTXโ€ˆ๊ธฐ์ ์— ์•ต์ปค์‹œ์„ค์ธ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๋ฅผ ํ†ตํ•œ ์ธ๊ทผโ€ˆ์ง€์—ญโ€ˆ๊ฒฝ์ œโ€ˆํ™œ์„ฑํ™”๋ฅผโ€ˆ์ด๋ค„๋‚ธ๋‹ค๋Š” ๊ณ„ํš์˜ ์ฐจ์งˆ์ด ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. 25์ผโ€ˆ์‹œ์—โ€ˆ๋”ฐ๋ฅด๋ฉดโ€ˆ์—ฐ์ˆ˜๊ตฌโ€ˆ์˜ฅ๋ จ๋™โ€ˆ104 ์ผ๋Œ€ 29๋งŒ1์ฒœ725ใŽก(8๋งŒ8์ฒœํ‰)์—โ€ˆ์ถ”์ง„ ์ค‘์ธ 2๋งŒ8์ฒœ62๊ฐ€๊ตฌ ๊ทœ๋ชจ์˜ ์†ก๋„์—ญ์„ธ๊ถŒ๊ตฌ์—ญโ€ˆ๋„์‹œ๊ฐœ๋ฐœ์‚ฌ์—…๊ณผ ์—ฐ๊ณ„, KTXโ€ˆ์†ก๋„์—ญโ€ˆ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ์™€โ€ˆ์ƒ์—…์‹œ์„คยท์—…๋ฌด์‹œ์„คโ€ˆ๋“ฑ์˜ ์กฐ์„ฑ์„ ์ถ”์ง„ ์ค‘์ด๋‹ค.โ€ˆ""", ["๊ธ์ •", "๋ถ€์ •", "์ค‘๋ฆฝ"] ) ``` ### ์‹คํ–‰ ๊ฒฐ๊ณผ ``` ์•„ ์˜ํ™” ๊ฐœ๋…ธ์žผ [SEP] ๋ฌธ์žฅ์„ ๊ฐ์„ฑ๋ถ„๋ฅ˜ํ•ด์ฃผ์„ธ์š” {'๊ธ์ •์ ': -7.878206253051758, '๋ถ€์ •์ ': 50.96009826660156} ์˜ˆ์ „์—๋Š” ์ฃผ๋ง๋งˆ๋‹ค ๊ทน์žฅ์— ๋†€๋Ÿฌ๊ฐ”๋Š”๋ฐ ์š”์ƒˆ๋Š” ์ข€ ์•ˆ๊ฐ€๋Š” ํŽธ์ด์—์š” [SEP] ๊ธ€๊ณผ ๊ด€๋ จ๋œ ๋‚ด์šฉ์„ ๋งŒ๋“ค์–ด์ฃผ์„ธ์š” {'์˜ํ™”์— ๊ด€ํ•œ ๊ธ€์ด๋‹ค': 25.37109375, '๋“œ๋ผ๋งˆ์— ๊ด€ํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค': -31.869916915893555} ์ธ์ฒœ๋ฐœ KTX์™€ ๊ด€๋ จํ•œโ€ˆ์†ก๋„์—ญ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๊ฐ€โ€ˆ์‚ฌ์‹ค์ƒโ€ˆ๋ฌด์‚ฐ,โ€ˆ๋‹จ์ˆœ ์ฒ ๋„ยท๋ฒ„์Šค ์œ„์ฃผ ํ™˜์Šน์‹œ์„ค๋กœโ€ˆ๋งŒ๋“ค์–ด์ง„๋‹ค.โ€ˆ์ด ๋•Œ๋ฌธ์— ์ธ์ฒœ์‹œ์˜ ์ธ์ฒœ๋ฐœ KTXโ€ˆ๊ธฐ์ ์— ์•ต์ปค์‹œ์„ค์ธ ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ๋ฅผ ํ†ตํ•œ ์ธ๊ทผโ€ˆ์ง€์—ญโ€ˆ๊ฒฝ์ œโ€ˆํ™œ์„ฑํ™”๋ฅผโ€ˆ์ด๋ค„๋‚ธ๋‹ค๋Š” ๊ณ„ํš์˜ ์ฐจ์งˆ์ด ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. 25์ผโ€ˆ์‹œ์—โ€ˆ๋”ฐ๋ฅด๋ฉดโ€ˆ์—ฐ์ˆ˜๊ตฌโ€ˆ์˜ฅ๋ จ๋™โ€ˆ104 ์ผ๋Œ€ 29๋งŒ1์ฒœ725ใŽก(8๋งŒ8์ฒœํ‰)์—โ€ˆ์ถ”์ง„ ์ค‘์ธ 2๋งŒ8์ฒœ62๊ฐ€๊ตฌ ๊ทœ๋ชจ์˜ ์†ก๋„์—ญ์„ธ๊ถŒ๊ตฌ์—ญโ€ˆ๋„์‹œ๊ฐœ๋ฐœ์‚ฌ์—…๊ณผ ์—ฐ๊ณ„, KTXโ€ˆ์†ก๋„์—ญโ€ˆ๋ณตํ•ฉํ™˜์Šน์„ผํ„ฐ์™€โ€ˆ์ƒ์—…์‹œ์„คยท์—…๋ฌด์‹œ์„คโ€ˆ๋“ฑ์˜ ์กฐ์„ฑ์„ ์ถ”์ง„ ์ค‘์ด๋‹ค.โ€ˆ [SEP] ๊ธ€์„ ์ฝ๊ณ  ์‹œ์žฅ์— ๋ฏธ์น  ์˜ํ–ฅ์„ ํŒ๋‹จํ•ด๋ณด์„ธ์š” {'๊ธ์ •': -61.86758804321289, '๋ถ€์ •': 23.72732925415039, '์ค‘๋ฆฝ': -70.4837417602539} ``` ## ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ ```json { "splits": "train", "tasks": "nsmc,apeach,korquad_v1.0,klue_mrc,klue_nli,klue_ynat,kor_nlu,unsmile,klue_re,kobest_copa,kobest_hellaswag,kobest_boolq,kobest_wic,niklex,nikl_absa", "max_instance_per_task": 20000, "split_train": { "nsmc": 20000, "apeach": 7895, "korquad_v1.0": 20000, "klue_mrc": 17553, "klue_nli": 8046, "klue_ynat": 20000, "kor_nlu": 20000, "unsmile": 15002, "klue_re": 20000, "kobest_copa": 3075, "kobest_hellaswag": 499, "kobest_boolq": 3664, "kobest_wic": 3317, "niklex": 20000, "nikl_absa": 2139 }, "split_train_total": 181190 } ``` ## ํ‰๊ฐ€(test set) | task | accuracy | | --- | --- | | [nsmc](https://huggingface.co/datasets/nsmc) | 85.92 | | [jason9693/APEACH](https://huggingface.co/datasets/jason9693/APEACH) | 32.12 | | [klue-ynat](https://huggingface.co/datasets/klue) | 77.59 | | [kobest-boolq](https://huggingface.co/datasets/skt/kobest_v1) | 76.99 | | [kobest-copa](https://huggingface.co/datasets/skt/kobest_v1) | 61.2 | | [kobest-hellaswag](https://huggingface.co/datasets/skt/kobest_v1) | ์ฝ”๋“œ ๋ฒ„๊ทธ ์žˆ์–ด์„œ ์ œ์™ธ | | [kobest-sentineg](https://huggingface.co/datasets/skt/kobest_v1) | 55.92 | | [kobest-wic](https://huggingface.co/datasets/skt/kobest_v1) | 58.49 | ### ํ‰๊ฐ€ ๋ฐฉ์‹ - ๋ชจ๋ธ์— `[CLS] {input} [SEP] {instruction} [SEP] label [SEP]` ํ˜•์‹์œผ๋กœ ๋„ฃ๊ณ  ๋‚˜์˜จ positive์™€ negative๋ผ๋ฆฌ ๋น„๊ตํ•จ. - positive๋Š” ์ •๋‹ต ๋ผ๋ฒจ์„ ์‚ฌ์šฉํ•˜๊ณ , negative๋Š” ์ •๋‹ต ๋ผ๋ฒจ์ด ์•„๋‹Œ ๋ชจ๋“  ๋ผ๋ฒจ์„ ์‚ฌ์šฉ - ์ •๋‹ต ๋ผ๋ฒจ์˜ ์ ์ˆ˜๊ฐ€ ๋ชจ๋“  negative๋ณด๋‹ค ๋†’์„ ๊ฒฝ์šฐ ๋งž์ถ˜ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•จ. ์ด๋Ÿฐ ์‹์œผ๋กœ accuracy ์ธก์ •. ํ…Œ์ŠคํŠธ์— ์‚ฌ์šฉํ•œ ๋งคํ•‘ ์ฝ”๋“œ ``` klue_ynat_labelToTextDict = { 0: "IT๊ณผํ•™", 1: "๊ฒฝ์ œ", 2: "์‚ฌํšŒ", 3: "์ƒํ™œ๋ฌธํ™”", 4: "์„ธ๊ณ„", 5: "์Šคํฌ์ธ ", 6: "์ •์น˜", } klue_ynat_labels = set(klue_ynat_labelToTextDict.values()) def klue_ynat_mapper(item): positives = [klue_ynat_labelToTextDict[item["label"]]] return { "instruction": "๋ฌธ์žฅ์„ ์ฝ๊ณ  ์ฃผ์ œ๋ฅผ ๋ถ„๋ฅ˜ํ•˜์„ธ์š”", "input": item["title"], "positives": positives, "negatives": klue_ynat_labels - set(positives) } kobest_wic_labels = ["์•„๋‹ˆ์˜ค", "์˜ˆ"] def kobest_wic_mapper(item): return { "instruction": "์ฃผ์–ด์ง„ ๋‘ ๋ฌธ์žฅ์—์„œ ๋‹จ์–ด {word}์€(๋Š”) ๋™์ผํ•œ ์˜๋ฏธ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‚˜์š”?".format(word=item["word"]), "input": "๋ฌธ์žฅ1: {context_1}\n๋ฌธ์žฅ2: {context_2}".format(**item), "positives": [kobest_wic_labels[item['label']]], "negatives": [kobest_wic_labels[1 - item['label']]] } copa_question = { "๊ฒฐ๊ณผ": "์ดํ›„์— ์ด์–ด์งˆ ๊ฒฐ๊ณผ๋Š”?", "์›์ธ": "์ด๋Ÿฌํ•œ ์ผ์ด ์ผ์–ด๋‚œ ์›์ธ์€?" } def kobest_copa_mapper(item): answers = [item["alternative_1"], item["alternative_2"]] return { "instruction": copa_question[item["question"]], "input": item["premise"], "positives": [answers[item['label']]], "negatives": [answers[1 - item['label']]] } def kobest_hellaswag_mapper(item): answers = [item[f"ending_{i}"] for i in range(1, 5)] label = answers[item['label']] answers.remove(label) return { "instruction": "์ดํ›„์— ์ด์–ด์งˆ ๋‚ด์šฉ์œผ๋กœ ๊ฐ€์žฅ ์ ์ ˆํ•œ ๊ฒƒ์€?", "input": item["context"], "positives": [label], "negatives": answers } kobest_boolq_labels = ["์•„๋‹ˆ์˜ค", "์˜ˆ"] def kobest_boolq_mapper(item): return { "instruction": item["question"], "input": item["paragraph"], "positives": [kobest_boolq_labels[item['label']]], "negatives": [kobest_boolq_labels[1 - item['label']]] } kobest_sentineg_labels = ["๋ถ€์ •", "๊ธ์ •"] def kobest_sentineg_mapper(item): return { "instruction": "์ฃผ์–ด์ง„ ๋ฌธ์žฅ์˜ ๊ฐ์ •์„ ๋ถ„๋ฅ˜ํ•˜์„ธ์š”", "input": item["sentence"], "positives": [kobest_boolq_labels[item['label']]], "negatives": [kobest_boolq_labels[1 - item['label']]] } nsmc_labels = ["๋ถ€์ •", "๊ธ์ •"] def nsmc_mapper(item): return { "instruction": "์ฃผ์–ด์ง„ ๋ฌธ์žฅ์˜ ๊ฐ์ •์„ ๋ถ„๋ฅ˜ํ•˜์„ธ์š”", "input": item["document"], "positives": [nsmc_labels[item['label']]], "negatives": [nsmc_labels[1 - item['label']]] } apeach_labels = ["ํ˜์˜ค ํ‘œํ˜„์ด ์•„๋‹™๋‹ˆ๋‹ค", "ํ˜์˜คํ‘œํ˜„"] def apeach_mapper(item): return { "instruction": "ํ˜์˜ค์„ฑ์„ ๋ถ„๋ฅ˜ํ•ด๋ณด์„ธ์š”.", "input": item["text"], "positives": [nsmc_labels[item['class']]], "negatives": [nsmc_labels[1 - item['class']]] } EVAL_LIST = { "klue-ynat": dict( load_args=dict( path="klue", name="ynat", split="validation" ), mapper=klue_ynat_mapper ), "nsmc": dict( load_args=dict( path="nsmc", split="test" ), mapper=nsmc_mapper ), "apeach": dict( load_args=dict( path="jason9693/APEACH", split="test" ), mapper=apeach_mapper ), "kobest-wic": dict( load_args=dict( path="skt/kobest_v1", name="wic", split="test" ), mapper=kobest_wic_mapper ), "kobest-copa": dict( load_args=dict( path="skt/kobest_v1", name="copa", split="test" ), mapper=kobest_copa_mapper ), "kobest-hellaswag": dict( load_args=dict( path="skt/kobest_v1", name="hellaswag", split="test" ), mapper=kobest_hellaswag_mapper ), "kobest-boolq": dict( load_args=dict( path="skt/kobest_v1", name="boolq", split="test" ), mapper=kobest_boolq_mapper ), "kobest-sentineg": dict( load_args=dict( path="skt/kobest_v1", name="sentineg", split="test" ), mapper=kobest_sentineg_mapper ) } ```
Envoid/Bacchus-22B
Envoid
2023-08-13T05:46:06Z
9
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-12T21:49:34Z
# Warning: This model is unpredictable and may produce adult content. Bacchus-22B uses the chargoddard llama-22b block diagonal merge script found here: https://huggingface.co/chargoddard/llama2-22b In this case I used Nous Hermes 13B as the base model: https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b And Manticore-30b-Chat-Pyg-Alpha-Landmark as the donor model: https://huggingface.co/Honkware/Manticore-30b-Chat-Pyg-Alpha-Landmark The initial results were a surprisingly coherent and functional model although I went ahead and gave it a fairly deep LoRA on 51 megabytes of raw text. It responds well to Alpaca instruct style prompt formatting. It can be a little rude at times and doesn't have Dendrite's ego and thirst for philosophical discussion but I feel that it's overall it's a much better general purpose model. It does occasionally output grammatical errors during RP so might need a few more epochs to better fit the training data. If you are role playing using the SillyTavern+SimpleProxy stack it does have a tendency to run away with a scene when using the verbose.mjs prompt format. The singleline.mjs format sometimes remedies this issue however it also causes some characters to give very short, dull replies. So achieving a balance might require a complete new custom prompt format. ## use_cache was originally set to false when uploaded this has now been remedied. recommended edit or redownload config. ## I have been asked about GPTQ for this model unfortunately there seems to be some weird vocabulary mismatch that causes GPTQ to corrupt the model. So the only way to run it in 4bit at the moment is to load the FP16 model in 4bit via transformers.
Dredta/Ukiyana
Dredta
2023-08-13T05:12:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T05:10:04Z
--- license: creativeml-openrail-m ---
nagupv/Llama-7B_LLMExam_f0
nagupv
2023-08-13T05:01:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T12:37:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Chattiori/MelonMix
Chattiori
2023-08-13T04:37:41Z
37
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Grapefruit", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-20T09:42:48Z
--- license: creativeml-openrail-m language: - en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - Grapefruit --- # <span style="color:#00a0a0; font-size:30pt; font-weight:bolder; font-style:italic;"> MelonMix </span> This model was checkpoint merge of Anything v4.5, AbyssOrangeMix 3A1B, GrapeFruitV4.1 and 7th Anime v3 C. V2 has AnyOrangeMix 48A13B, Hassaku v1.3, blue_pencil EX, MIX-Pro v4.5+ColorBox and MeinaPastel V6. Since AnyOrangeMix 48A13B is the mix of Anything v5, AnythingElse v4.5, AbyssOrangeMix3 A1B and AbyssOrangeMix3 A3, merge recipe showing below is identicle. For V2, I used [Chattiori-Model-Merger](https://github.com/Faildes/Chattiori-Model-Merger). ## Merge Recipe V1:(Anything v4.5 (0.5) + AbyssOrangeMix 3A1B (0.5) Weighted Sum) (0.5) + (grapefruitV4.1 (0.5) + 7th Anime v3 C (0.5) Weighted Sum) (0.5) Weighted Sum V2: * Weighted Sum, [**AnythingElse V4-v4.5**](https://civitai.com/models/4855) + [**Anything v5-Prt-Re**](https://civitai.com/models/9409), alpha(0.6) >> **TEMP_0** * Weighted Sum, [**AbyssOrangeMix3-A1B**](https://civitai.com/models/9942) + [**AbyssOrangeMix3-A3**](https://civitai.com/models/9942), alpha(0.5) >> **TEMP_1** * Sum Twice, **TEMP_0** + **TEMP_1** + [**MIX-Pro-V4.5+ColorBox**](https://civitai.com/models/14206), alpha(0.5) rand_beta(0.3, 0.7, 17546192) >> **TEMP_2** * Sum Twice, [**Hassaku (hentai model)-v1.3**](https://civitai.com/models/2583) + [**MeinaPastel-V6**](https://civitai.com/models/11866) + [**blue_pencil-EX**](https://civitai.com/models/79083), rand_alpha(0.35, 0.65, 5481652) rand_beta(0.2, 0.45, 61427253) >> **TEMP_3** * Weighted Sum, **TEMP_3** + **TEMP_2**, rand_alpha(0.25, 0.75, 964451837) >> **MelonMixV2**