modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 18:28:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 18:27:40
card
stringlengths
11
1.01M
jl8771/sd-class-butterflies-32
jl8771
2022-11-29T05:41:50Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T05:41:45Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(jl8771/sd-class-butterflies-32) image = pipeline().images[0] image ```
manter/momoko
manter
2022-11-29T05:21:52Z
0
8
null
[ "doi:10.57967/hf/0147", "license:unknown", "region:us" ]
null
2022-11-29T03:32:48Z
--- license: unknown --- This was a stable diffusion based model that was based off of anythingv3 and momoko which I still don't know the orgin of. (personal story: How I fond this was from going to a outdated stable diffusion web ui link and hitting generate. It came out good so I googled it and found this.) Sorce: https://www.kaggle.com/code/inmine/novelai-with-webui-stable-diffusion-version/data, https://www.kaggle.com/datasets/inmine/momoko btw here is a prompt (prompt:Masterpiece, best quality,)(negitive prompt:lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewerdigits, cropped, worst quality, low quality, normal quality, ipeg artifacts, signature, watermark,username, blurry) That's what I found work's the best, The main thing it generates is woman so be warned.
Shubham09/whisper63filescheck
Shubham09
2022-11-29T05:12:22Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-29T05:07:16Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: whisper63filescheck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper63filescheck This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0638 - Wer: 23.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1324 | 14.29 | 100 | 1.0638 | 23.7647 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
Urigavilan03/Tiempo
Urigavilan03
2022-11-29T05:12:14Z
0
0
null
[ "region:us" ]
null
2022-11-29T05:09:08Z
un reloj de bolsillo antiguo en medio de unas hojas escritas en cursiva desenfocada
smilton/mt5-large-qasrl-es-p2-question
smilton
2022-11-29T04:36:00Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T03:55:16Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-large-qasrl-es-p2-question results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-qasrl-es-p2-question This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1 - Tokenizers 0.11.0
Alred/bart-base-finetuned-summarization-cnn-ver3
Alred
2022-11-29T04:10:37Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-29T03:38:16Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bart-base-finetuned-summarization-cnn-ver3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-summarization-cnn-ver3 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.9827 - Bertscore-mean-precision: 0.8811 - Bertscore-mean-recall: 0.8554 - Bertscore-mean-f1: 0.8679 - Bertscore-median-precision: 0.8809 - Bertscore-median-recall: 0.8545 - Bertscore-median-f1: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 3.632 | 1.0 | 5742 | 2.9827 | 0.8811 | 0.8554 | 0.8679 | 0.8809 | 0.8545 | 0.8669 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
NSandra/distilbert-base-uncased-finetuned-ner
NSandra
2022-11-29T04:09:17Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:55:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2393 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 1.5491 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 2 | 1.3278 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 3 | 1.2393 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
nhanv/cv_parser
nhanv
2022-11-29T04:00:56Z
167
3
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:23:32Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: cv-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cv-ner This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0956 - Precision: 0.8906 - Recall: 0.9325 - F1: 0.9111 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 91 | 0.2049 | 0.6618 | 0.7362 | 0.6970 | 0.9534 | | 0.5036 | 2.0 | 182 | 0.1156 | 0.7873 | 0.8630 | 0.8234 | 0.9722 | | 0.1442 | 3.0 | 273 | 0.1078 | 0.8262 | 0.9039 | 0.8633 | 0.9771 | | 0.0757 | 4.0 | 364 | 0.1179 | 0.8652 | 0.9059 | 0.8851 | 0.9780 | | 0.0526 | 5.0 | 455 | 0.0907 | 0.888 | 0.9080 | 0.8979 | 0.9837 | | 0.0342 | 6.0 | 546 | 0.0972 | 0.8926 | 0.9346 | 0.9131 | 0.9832 | | 0.0245 | 7.0 | 637 | 0.1064 | 0.8937 | 0.9284 | 0.9107 | 0.9834 | | 0.0188 | 8.0 | 728 | 0.0965 | 0.8980 | 0.9366 | 0.9169 | 0.9850 | | 0.0159 | 9.0 | 819 | 0.0999 | 0.91 | 0.9305 | 0.9201 | 0.9846 | | 0.0141 | 10.0 | 910 | 0.0956 | 0.8906 | 0.9325 | 0.9111 | 0.9851 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
ryvalenza/sd-class-butterflies-32
ryvalenza
2022-11-29T04:00:32Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T04:00:01Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(ryvalenza/sd-class-butterflies-32) image = pipeline().images[0] image ```
jeraldflowers/vit_model
jeraldflowers
2022-11-29T03:51:31Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-27T05:06:17Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1526 | 3.85 | 500 | 0.0095 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
smilton/mt5-large-qasrl-es-p1-question
smilton
2022-11-29T03:36:45Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T02:56:06Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-large-qasrl-es-p1-question results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-qasrl-es-p1-question This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1 - Tokenizers 0.11.0
UCSYNLP/MyanBERTa
UCSYNLP
2022-11-29T03:35:58Z
297
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "MyanBERTa", "Myanmar", "BERT", "RoBERTa", "my", "dataset:MyCorpus", "dataset:Web", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-25T06:57:10Z
--- language: my tags: - MyanBERTa - Myanmar - BERT - RoBERTa license: apache-2.0 datasets: - MyCorpus - Web --- ## Model description This model is a BERT based Myanmar pre-trained language model. MyanBERTa was pre-trained for 528K steps on a word segmented Myanmar dataset consisting of 5,992,299 sentences (136M words). As the tokenizer, byte-leve BPE tokenizer of 30,522 subword units which is learned after word segmentation is applied. Cite this work as: ``` Aye Mya Hlaing, Win Pa Pa, "MyanBERTa: A Pre-trained Language Model For Myanmar", In Proceedings of 2022 International Conference on Communication and Computer Research (ICCR2022), November 2022, Seoul, Republic of Korea ``` [Download Paper](https://journal-home.s3.ap-northeast-2.amazonaws.com/site/iccr2022/abs/QOHFI-0004.pdf)
tomekkorbak/amazing_payne
tomekkorbak
2022-11-29T03:28:47Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-29T03:28:38Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: amazing_payne results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazing_payne This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00065, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'amazing_payne', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/jfkodfu1
JiHoon-kim/bert-base-klue-ynat-finetuned
JiHoon-kim
2022-11-29T03:25:05Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "mrc", "ko", "dataset:klue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T03:21:37Z
--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-sa-4.0 --- # 인프런 강의용 checkpoint KLUE의 YNAT task에 파인튜닝된 모델입니다.
JiHoon-kim/bert-base-klue-mrc-finetuned
JiHoon-kim
2022-11-29T03:16:57Z
103
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "mrc", "ko", "dataset:klue", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-29T03:05:13Z
--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-sa-4.0 --- # 인프런 강의용 checkpoint KLUE의 MRC task에 파인튜닝된 모델입니다.
kejian/final-cond-25-0.25
kejian
2022-11-29T03:14:56Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-28T01:55:18Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: kejian/final-cond-25-0.25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/final-cond-25-0.25 This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.25, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.000475}, 'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 704, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512, 'prefix': '<|aligned|>', 'use_prompt_for_scoring': False}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/final-cond-25-0.25', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5000, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/ssntrqry
neulab/omnitab-large-finetuned-wtq
neulab
2022-11-29T02:11:26Z
4,399
7
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-10-26T00:56:04Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-finetuned-wtq` (based on BART architecture) is initialized with `neulab/omnitab-large` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions). ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-finetuned-wtq") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-16shot-finetuned-wtq-16shot
neulab
2022-11-29T02:10:07Z
52
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T01:48:24Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-16shot-finetuned-wtq-16shot` (based on BART architecture) is initialized with `neulab/omnitab-large-16shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 16-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-16shot
neulab
2022-11-29T02:07:05Z
48
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:05:27Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-16shot` (based on BART architecture) is initialized with `microsoft/tapex-large` and continuously pretrained on natural and synthetic data (SQL2NL model trained in the 16-shot setting). ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-16shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-16shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
alexziweiwang/retrain5_oneTimeTraining_MTL-1epoch
alexziweiwang
2022-11-29T02:00:29Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-29T01:43:16Z
--- tags: - generated_from_trainer model-index: - name: retrain5_oneTimeTraining_MTL-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain5_oneTimeTraining_MTL-1epoch This model is a fine-tuned version of [alexziweiwang/exp21-uaspeech-foundation](https://huggingface.co/alexziweiwang/exp21-uaspeech-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.1861 - Acc: 0.285 - Wer: 1.1126 - Correct: 57 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 13.9337 | 0.01 | 1.2925 | 2 | 200 | 200 | | 12.4373 | 0.04 | 10 | 13.7513 | 0.08 | 1.5296 | 16 | 200 | 200 | | 12.4373 | 0.06 | 15 | 13.5517 | 0.125 | 2.1126 | 25 | 200 | 200 | | 12.6667 | 0.08 | 20 | 13.3400 | 0.165 | 2.5791 | 33 | 200 | 200 | | 12.6667 | 0.11 | 25 | 13.1141 | 0.205 | 3.6561 | 41 | 200 | 200 | | 11.1856 | 0.13 | 30 | 12.8805 | 0.22 | 2.7451 | 44 | 200 | 200 | | 11.1856 | 0.15 | 35 | 12.6423 | 0.245 | 2.5178 | 49 | 200 | 200 | | 10.6635 | 0.17 | 40 | 12.4028 | 0.27 | 2.4308 | 54 | 200 | 200 | | 10.6635 | 0.19 | 45 | 12.1660 | 0.3 | 2.1818 | 60 | 200 | 200 | | 10.7952 | 0.21 | 50 | 11.9291 | 0.305 | 1.9348 | 61 | 200 | 200 | | 10.7952 | 0.23 | 55 | 11.6945 | 0.31 | 1.6858 | 62 | 200 | 200 | | 10.3867 | 0.25 | 60 | 11.4608 | 0.315 | 1.5237 | 63 | 200 | 200 | | 10.3867 | 0.27 | 65 | 11.2313 | 0.315 | 1.3953 | 63 | 200 | 200 | | 10.252 | 0.3 | 70 | 11.0102 | 0.315 | 1.3162 | 63 | 200 | 200 | | 10.252 | 0.32 | 75 | 10.7918 | 0.315 | 1.2826 | 63 | 200 | 200 | | 10.1788 | 0.34 | 80 | 10.5736 | 0.315 | 1.2628 | 63 | 200 | 200 | | 10.1788 | 0.36 | 85 | 10.3607 | 0.32 | 1.2391 | 64 | 200 | 200 | | 9.1361 | 0.38 | 90 | 10.1527 | 0.31 | 1.2253 | 62 | 200 | 200 | | 9.1361 | 0.4 | 95 | 9.9507 | 0.31 | 1.2036 | 62 | 200 | 200 | | 9.5447 | 0.42 | 100 | 9.7553 | 0.315 | 1.2095 | 63 | 200 | 200 | | 9.5447 | 0.44 | 105 | 9.5599 | 0.31 | 1.2016 | 62 | 200 | 200 | | 9.1579 | 0.46 | 110 | 9.3711 | 0.295 | 1.1996 | 59 | 200 | 200 | | 9.1579 | 0.48 | 115 | 9.1892 | 0.295 | 1.1897 | 59 | 200 | 200 | | 7.9217 | 0.51 | 120 | 9.0143 | 0.3 | 1.1858 | 60 | 200 | 200 | | 7.9217 | 0.53 | 125 | 8.8493 | 0.305 | 1.1719 | 61 | 200 | 200 | | 8.4439 | 0.55 | 130 | 8.6946 | 0.305 | 1.1739 | 61 | 200 | 200 | | 8.4439 | 0.57 | 135 | 8.5492 | 0.31 | 1.1581 | 62 | 200 | 200 | | 8.0639 | 0.59 | 140 | 8.4153 | 0.315 | 1.1502 | 63 | 200 | 200 | | 8.0639 | 0.61 | 145 | 8.2872 | 0.32 | 1.1482 | 64 | 200 | 200 | | 8.4173 | 0.63 | 150 | 8.1649 | 0.33 | 1.1443 | 66 | 200 | 200 | | 8.4173 | 0.65 | 155 | 8.0500 | 0.325 | 1.1403 | 65 | 200 | 200 | | 7.8991 | 0.67 | 160 | 7.9422 | 0.33 | 1.1364 | 66 | 200 | 200 | | 7.8991 | 0.7 | 165 | 7.8410 | 0.32 | 1.1344 | 64 | 200 | 200 | | 6.9206 | 0.72 | 170 | 7.7469 | 0.32 | 1.1304 | 64 | 200 | 200 | | 6.9206 | 0.74 | 175 | 7.6601 | 0.325 | 1.1285 | 65 | 200 | 200 | | 7.1911 | 0.76 | 180 | 7.5832 | 0.305 | 1.1206 | 61 | 200 | 200 | | 7.1911 | 0.78 | 185 | 7.5163 | 0.305 | 1.1225 | 61 | 200 | 200 | | 7.201 | 0.8 | 190 | 7.4565 | 0.305 | 1.1245 | 61 | 200 | 200 | | 7.201 | 0.82 | 195 | 7.4049 | 0.295 | 1.1245 | 59 | 200 | 200 | | 7.1507 | 0.84 | 200 | 7.3568 | 0.295 | 1.1225 | 59 | 200 | 200 | | 7.1507 | 0.86 | 205 | 7.3139 | 0.3 | 1.1206 | 60 | 200 | 200 | | 6.6223 | 0.89 | 210 | 7.2774 | 0.295 | 1.1186 | 59 | 200 | 200 | | 6.6223 | 0.91 | 215 | 7.2469 | 0.295 | 1.1186 | 59 | 200 | 200 | | 7.1645 | 0.93 | 220 | 7.2220 | 0.295 | 1.1166 | 59 | 200 | 200 | | 7.1645 | 0.95 | 225 | 7.2041 | 0.29 | 1.1146 | 58 | 200 | 200 | | 6.2562 | 0.97 | 230 | 7.1921 | 0.29 | 1.1146 | 58 | 200 | 200 | | 6.2562 | 0.99 | 235 | 7.1861 | 0.285 | 1.1126 | 57 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
huggingtweets/elonmusk-lexfridman
huggingtweets
2022-11-29T01:35:11Z
118
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/956331551435960322/OaqR8pAB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Lex Fridman</div> <div style="text-align: center; font-size: 14px;">@elonmusk-lexfridman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Lex Fridman. | Data | Elon Musk | Lex Fridman | | --- | --- | --- | | Tweets downloaded | 3198 | 2410 | | Retweets | 126 | 253 | | Short tweets | 968 | 49 | | Tweets kept | 2104 | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18nt3c0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-lexfridman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-lexfridman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
akmoyu/whisper-medium-mn
akmoyu
2022-11-29T01:27:26Z
3
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "mn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-27T12:12:01Z
--- language: - mn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Mn - akmoyu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 42.52948885976409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Mn - akmoyu This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7233 - Wer: 42.5295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0182 | 7.94 | 1000 | 0.5995 | 46.5269 | | 0.0027 | 15.87 | 2000 | 0.6499 | 44.2169 | | 0.0002 | 23.81 | 3000 | 0.7057 | 42.5623 | | 0.0001 | 31.75 | 4000 | 0.7233 | 42.5295 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
matan-diamond/sd-class-butterflies-64
matan-diamond
2022-11-29T01:27:10Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T01:26:52Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(matan-diamond/sd-class-butterflies-64) image = pipeline().images[0] image ```
BunnyViking/bvSketchOutline
BunnyViking
2022-11-29T01:26:30Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-11-28T02:53:16Z
--- license: mit --- Sketch Outline style - a scratchy concept-art like style to give the appearance of quickly rendered pencil and ink art. The model is trained on humans, some animals, some structures and a few vehicles but it is best at humans and monsters. NOTE - the model has been trained with some artistic nudes included and can generate unintended NSFW content on occasion. Custom style trained off SD 1.5 DDLM Token: bvSketchOutline Not using the token (or using prompts like 'stroke' or 'outline') or placing the token at the start or end of the prompt will have different interesting effect. Higher versions will improve the overall style at the cost of flexibility. The model will skew more toward humans at the higher versions. The higher versions will also create more monstrous animals. I recommend a confidence between 7.5 and 12.5 v2 2000 - some outline and flexible CFG 7.5 is fine 7.5 ![v2000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620449747-631c8158aa346997917dcf5d.jpeg) 12.5 ![v2000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620450973-631c8158aa346997917dcf5d.jpeg) v2 3000 - sketchy and flexible CFG 7.5 is fine 7.5 ![v3000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620450689-631c8158aa346997917dcf5d.jpeg) 12.5 ![v3000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620451447-631c8158aa346997917dcf5d.jpeg) v2 4000 - sketchy outline and extra outline strokes. recommend increasing CFG to 12.5 so less flexible 7.5 ![v4000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550007-631c8158aa346997917dcf5d.jpeg) 12.5 ![v4000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550245-631c8158aa346997917dcf5d.jpeg) v2 5000 - smoother outlines much less flexible, will start skewing strongly toward humans even at 7.5 CFG. At 12.5 CFG it will be sketchier with more outline strokes, almost like v2 2000 in look but at higher quality. 7.5 ![v5000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620549994-631c8158aa346997917dcf5d.jpeg) 12.5 ![v5000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550011-631c8158aa346997917dcf5d.jpeg) v2 6000 - very sketchy and scratchy at 7.5 CFG, more inky, may lose detail. At 12.5 is quite inky in its outlines. 7.5 ![v6000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620597579-631c8158aa346997917dcf5d.jpeg) 12.5 ![v6000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620598073-631c8158aa346997917dcf5d.jpeg) v2 7000 - sketchy and many flowing outlines at 7.5 CFG. Can have compromised details. At 12.5 CFG the style becomes very inky and loses detail almost wet watercolour 7.5 ![v7000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620597830-631c8158aa346997917dcf5d.jpeg) 12.5 ![v7000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620598527-631c8158aa346997917dcf5d.jpeg)
dlwh/legal-xlm-base_128k
dlwh
2022-11-29T00:48:35Z
4
2
transformers
[ "transformers", "roberta", "fill-mask", "bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-29T00:41:54Z
--- license: apache-2.0 language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv dataset: - joelito/MultiLegalPile_Wikipedia_Filtered --- Huggingface thinks this is a model, but it's just a tokenizer. Trained on https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered
pig4431/YELP_BERT_5E
pig4431
2022-11-29T00:43:10Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T00:38:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9733333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.1867 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5555 | 0.03 | 50 | 0.5569 | 0.74 | | 0.2815 | 0.06 | 100 | 0.1400 | 0.9533 | | 0.2736 | 0.1 | 150 | 0.1366 | 0.9533 | | 0.2444 | 0.13 | 200 | 0.1144 | 0.9667 | | 0.1778 | 0.16 | 250 | 0.1739 | 0.9533 | | 0.1656 | 0.19 | 300 | 0.1073 | 0.96 | | 0.1777 | 0.22 | 350 | 0.1001 | 0.9733 | | 0.1915 | 0.26 | 400 | 0.1545 | 0.94 | | 0.1983 | 0.29 | 450 | 0.1158 | 0.94 | | 0.1858 | 0.32 | 500 | 0.0831 | 0.9667 | | 0.2024 | 0.35 | 550 | 0.1088 | 0.96 | | 0.1638 | 0.38 | 600 | 0.1047 | 0.9533 | | 0.1333 | 0.42 | 650 | 0.1596 | 0.9467 | | 0.245 | 0.45 | 700 | 0.1273 | 0.96 | | 0.1786 | 0.48 | 750 | 0.1001 | 0.9667 | | 0.1859 | 0.51 | 800 | 0.1125 | 0.9467 | | 0.1764 | 0.54 | 850 | 0.0963 | 0.9533 | | 0.2151 | 0.58 | 900 | 0.0904 | 0.9533 | | 0.1152 | 0.61 | 950 | 0.1119 | 0.9667 | | 0.1564 | 0.64 | 1000 | 0.0788 | 0.9667 | | 0.1691 | 0.67 | 1050 | 0.0791 | 0.9733 | | 0.1748 | 0.7 | 1100 | 0.0805 | 0.9667 | | 0.1531 | 0.74 | 1150 | 0.0839 | 0.9667 | | 0.1426 | 0.77 | 1200 | 0.0957 | 0.9467 | | 0.1563 | 0.8 | 1250 | 0.1194 | 0.96 | | 0.1666 | 0.83 | 1300 | 0.1029 | 0.96 | | 0.1912 | 0.86 | 1350 | 0.0908 | 0.96 | | 0.1822 | 0.9 | 1400 | 0.0788 | 0.9733 | | 0.1339 | 0.93 | 1450 | 0.1134 | 0.96 | | 0.1512 | 0.96 | 1500 | 0.0739 | 0.9733 | | 0.1198 | 0.99 | 1550 | 0.0811 | 0.9733 | | 0.1118 | 1.02 | 1600 | 0.0819 | 0.9733 | | 0.1508 | 1.06 | 1650 | 0.1114 | 0.9667 | | 0.0757 | 1.09 | 1700 | 0.1202 | 0.9667 | | 0.0959 | 1.12 | 1750 | 0.1077 | 0.9667 | | 0.0849 | 1.15 | 1800 | 0.1009 | 0.9733 | | 0.0792 | 1.18 | 1850 | 0.0994 | 0.9733 | | 0.0651 | 1.22 | 1900 | 0.1192 | 0.9733 | | 0.0909 | 1.25 | 1950 | 0.1129 | 0.9667 | | 0.0815 | 1.28 | 2000 | 0.1037 | 0.9733 | | 0.0933 | 1.31 | 2050 | 0.0884 | 0.98 | | 0.0998 | 1.34 | 2100 | 0.0860 | 0.9733 | | 0.1099 | 1.38 | 2150 | 0.0793 | 0.98 | | 0.0712 | 1.41 | 2200 | 0.0831 | 0.9867 | | 0.1126 | 1.44 | 2250 | 0.0681 | 0.98 | | 0.0731 | 1.47 | 2300 | 0.1019 | 0.9667 | | 0.1021 | 1.5 | 2350 | 0.0659 | 0.9733 | | 0.089 | 1.54 | 2400 | 0.0832 | 0.9733 | | 0.0967 | 1.57 | 2450 | 0.0766 | 0.98 | | 0.1015 | 1.6 | 2500 | 0.0803 | 0.9733 | | 0.0956 | 1.63 | 2550 | 0.0781 | 0.9667 | | 0.0896 | 1.66 | 2600 | 0.1033 | 0.9667 | | 0.0925 | 1.7 | 2650 | 0.1036 | 0.9667 | | 0.1326 | 1.73 | 2700 | 0.0892 | 0.9667 | | 0.0884 | 1.76 | 2750 | 0.0913 | 0.9667 | | 0.1061 | 1.79 | 2800 | 0.0821 | 0.9733 | | 0.1031 | 1.82 | 2850 | 0.0935 | 0.9733 | | 0.0873 | 1.86 | 2900 | 0.1058 | 0.9733 | | 0.0957 | 1.89 | 2950 | 0.1025 | 0.9733 | | 0.1149 | 1.92 | 3000 | 0.0675 | 0.98 | | 0.0876 | 1.95 | 3050 | 0.1050 | 0.9667 | | 0.0951 | 1.98 | 3100 | 0.0765 | 0.9733 | | 0.0643 | 2.02 | 3150 | 0.0691 | 0.98 | | 0.0551 | 2.05 | 3200 | 0.0765 | 0.98 | | 0.0609 | 2.08 | 3250 | 0.0717 | 0.98 | | 0.0268 | 2.11 | 3300 | 0.0780 | 0.98 | | 0.0338 | 2.14 | 3350 | 0.0980 | 0.9733 | | 0.0287 | 2.18 | 3400 | 0.1118 | 0.9733 | | 0.0456 | 2.21 | 3450 | 0.1186 | 0.9733 | | 0.0294 | 2.24 | 3500 | 0.1162 | 0.9733 | | 0.0551 | 2.27 | 3550 | 0.1057 | 0.98 | | 0.0445 | 2.3 | 3600 | 0.1042 | 0.9733 | | 0.0233 | 2.34 | 3650 | 0.1164 | 0.9733 | | 0.0695 | 2.37 | 3700 | 0.1189 | 0.9733 | | 0.0524 | 2.4 | 3750 | 0.1198 | 0.9667 | | 0.0457 | 2.43 | 3800 | 0.1479 | 0.9733 | | 0.0289 | 2.46 | 3850 | 0.1214 | 0.9733 | | 0.0432 | 2.5 | 3900 | 0.1740 | 0.9733 | | 0.0425 | 2.53 | 3950 | 0.1167 | 0.9733 | | 0.022 | 2.56 | 4000 | 0.1667 | 0.9733 | | 0.063 | 2.59 | 4050 | 0.1392 | 0.9733 | | 0.0388 | 2.62 | 4100 | 0.1376 | 0.9733 | | 0.0759 | 2.66 | 4150 | 0.1400 | 0.9733 | | 0.0526 | 2.69 | 4200 | 0.1232 | 0.9733 | | 0.049 | 2.72 | 4250 | 0.1247 | 0.9667 | | 0.0397 | 2.75 | 4300 | 0.1288 | 0.9667 | | 0.0346 | 2.78 | 4350 | 0.1243 | 0.9733 | | 0.0525 | 2.82 | 4400 | 0.1405 | 0.9733 | | 0.0566 | 2.85 | 4450 | 0.1145 | 0.98 | | 0.029 | 2.88 | 4500 | 0.1246 | 0.9733 | | 0.043 | 2.91 | 4550 | 0.1308 | 0.9733 | | 0.0613 | 2.94 | 4600 | 0.1125 | 0.9733 | | 0.0704 | 2.98 | 4650 | 0.0872 | 0.98 | | 0.0169 | 3.01 | 4700 | 0.1046 | 0.9733 | | 0.0277 | 3.04 | 4750 | 0.1193 | 0.9733 | | 0.0159 | 3.07 | 4800 | 0.1107 | 0.98 | | 0.0013 | 3.1 | 4850 | 0.1342 | 0.9733 | | 0.0063 | 3.13 | 4900 | 0.1425 | 0.9733 | | 0.0131 | 3.17 | 4950 | 0.1261 | 0.98 | | 0.0071 | 3.2 | 5000 | 0.1424 | 0.9733 | | 0.0315 | 3.23 | 5050 | 0.1347 | 0.9733 | | 0.0045 | 3.26 | 5100 | 0.1582 | 0.9733 | | 0.0107 | 3.29 | 5150 | 0.1426 | 0.9733 | | 0.014 | 3.33 | 5200 | 0.1298 | 0.98 | | 0.0281 | 3.36 | 5250 | 0.1485 | 0.9733 | | 0.0101 | 3.39 | 5300 | 0.1340 | 0.9733 | | 0.0002 | 3.42 | 5350 | 0.1635 | 0.9733 | | 0.0358 | 3.45 | 5400 | 0.1853 | 0.9733 | | 0.0107 | 3.49 | 5450 | 0.1812 | 0.96 | | 0.0157 | 3.52 | 5500 | 0.1828 | 0.9667 | | 0.0336 | 3.55 | 5550 | 0.1839 | 0.9733 | | 0.0095 | 3.58 | 5600 | 0.2067 | 0.9667 | | 0.0216 | 3.61 | 5650 | 0.2004 | 0.9667 | | 0.0136 | 3.65 | 5700 | 0.1892 | 0.9667 | | 0.0041 | 3.68 | 5750 | 0.2082 | 0.9667 | | 0.0411 | 3.71 | 5800 | 0.1835 | 0.9667 | | 0.0233 | 3.74 | 5850 | 0.1713 | 0.9733 | | 0.0078 | 3.77 | 5900 | 0.2228 | 0.9667 | | 0.01 | 3.81 | 5950 | 0.2097 | 0.9667 | | 0.0063 | 3.84 | 6000 | 0.2105 | 0.9667 | | 0.0132 | 3.87 | 6050 | 0.2070 | 0.9667 | | 0.0134 | 3.9 | 6100 | 0.1995 | 0.9667 | | 0.0278 | 3.93 | 6150 | 0.1663 | 0.9733 | | 0.0211 | 3.97 | 6200 | 0.1534 | 0.9667 | | 0.0237 | 4.0 | 6250 | 0.1954 | 0.9667 | | 0.0201 | 4.03 | 6300 | 0.1684 | 0.96 | | 0.0013 | 4.06 | 6350 | 0.2022 | 0.9667 | | 0.0002 | 4.09 | 6400 | 0.1783 | 0.9667 | | 0.011 | 4.13 | 6450 | 0.2207 | 0.9667 | | 0.0117 | 4.16 | 6500 | 0.1916 | 0.9667 | | 0.0083 | 4.19 | 6550 | 0.1900 | 0.96 | | 0.007 | 4.22 | 6600 | 0.1782 | 0.9733 | | 0.0074 | 4.25 | 6650 | 0.2034 | 0.9667 | | 0.0004 | 4.29 | 6700 | 0.1852 | 0.9667 | | 0.0002 | 4.32 | 6750 | 0.2156 | 0.9667 | | 0.0069 | 4.35 | 6800 | 0.2257 | 0.9667 | | 0.0056 | 4.38 | 6850 | 0.2214 | 0.9667 | | 0.016 | 4.41 | 6900 | 0.2035 | 0.9667 | | 0.0055 | 4.45 | 6950 | 0.1800 | 0.9733 | | 0.0 | 4.48 | 7000 | 0.1819 | 0.9733 | | 0.0001 | 4.51 | 7050 | 0.1867 | 0.9733 | | 0.0 | 4.54 | 7100 | 0.1880 | 0.9733 | | 0.0006 | 4.57 | 7150 | 0.2108 | 0.9667 | | 0.0024 | 4.61 | 7200 | 0.2087 | 0.9667 | | 0.0003 | 4.64 | 7250 | 0.1992 | 0.9733 | | 0.0 | 4.67 | 7300 | 0.2050 | 0.9667 | | 0.0037 | 4.7 | 7350 | 0.1899 | 0.9733 | | 0.0109 | 4.73 | 7400 | 0.1832 | 0.9733 | | 0.0108 | 4.77 | 7450 | 0.1861 | 0.9733 | | 0.0159 | 4.8 | 7500 | 0.1795 | 0.9733 | | 0.004 | 4.83 | 7550 | 0.1767 | 0.9733 | | 0.0012 | 4.86 | 7600 | 0.1888 | 0.9733 | | 0.0076 | 4.89 | 7650 | 0.1894 | 0.9733 | | 0.0113 | 4.93 | 7700 | 0.1870 | 0.9733 | | 0.0007 | 4.96 | 7750 | 0.1869 | 0.9733 | | 0.0099 | 4.99 | 7800 | 0.1867 | 0.9733 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
joweyel/sd-class-butterflies-32
joweyel
2022-11-28T23:54:45Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T23:51:15Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of (more or less) cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(datboi223/sd-class-butterflies-32) image = pipeline().images[0] image ```
Serhio/sd-fine-tune-v2
Serhio
2022-11-28T23:43:18Z
34
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T23:41:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### sd-fine-tune-v2 on Stable Diffusion via Dreambooth #### model by Serhio This your the Stable Diffusion model fine-tuned the sd-fine-tune-v2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **Bashkov Sergey** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
pig4431/TweetEval_BERT_5E
pig4431
2022-11-28T23:38:03Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T23:31:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5419 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6264 | 0.04 | 50 | 0.5266 | 0.74 | | 0.5054 | 0.08 | 100 | 0.5959 | 0.6333 | | 0.4732 | 0.12 | 150 | 0.3524 | 0.86 | | 0.3916 | 0.16 | 200 | 0.3195 | 0.8667 | | 0.3477 | 0.2 | 250 | 0.2878 | 0.8867 | | 0.3116 | 0.24 | 300 | 0.2903 | 0.92 | | 0.3039 | 0.28 | 350 | 0.2488 | 0.8933 | | 0.2633 | 0.32 | 400 | 0.2530 | 0.92 | | 0.2667 | 0.37 | 450 | 0.2125 | 0.9267 | | 0.2604 | 0.41 | 500 | 0.2628 | 0.8867 | | 0.278 | 0.45 | 550 | 0.2322 | 0.8867 | | 0.2625 | 0.49 | 600 | 0.1903 | 0.92 | | 0.2808 | 0.53 | 650 | 0.2400 | 0.8933 | | 0.2396 | 0.57 | 700 | 0.2184 | 0.9067 | | 0.2571 | 0.61 | 750 | 0.1906 | 0.9133 | | 0.2676 | 0.65 | 800 | 0.2467 | 0.9067 | | 0.2288 | 0.69 | 850 | 0.2038 | 0.9133 | | 0.2959 | 0.73 | 900 | 0.1941 | 0.9 | | 0.2619 | 0.77 | 950 | 0.2100 | 0.9333 | | 0.2504 | 0.81 | 1000 | 0.1523 | 0.9333 | | 0.2338 | 0.85 | 1050 | 0.1429 | 0.94 | | 0.2529 | 0.89 | 1100 | 0.1269 | 0.94 | | 0.2238 | 0.93 | 1150 | 0.1722 | 0.9333 | | 0.2295 | 0.97 | 1200 | 0.1874 | 0.94 | | 0.2089 | 1.01 | 1250 | 0.2214 | 0.9067 | | 0.1406 | 1.06 | 1300 | 0.3410 | 0.9133 | | 0.1587 | 1.1 | 1350 | 0.3330 | 0.9133 | | 0.1732 | 1.14 | 1400 | 0.2716 | 0.9133 | | 0.195 | 1.18 | 1450 | 0.3726 | 0.92 | | 0.1777 | 1.22 | 1500 | 0.2430 | 0.9267 | | 0.1433 | 1.26 | 1550 | 0.3011 | 0.9267 | | 0.1333 | 1.3 | 1600 | 0.2489 | 0.9333 | | 0.1516 | 1.34 | 1650 | 0.3340 | 0.9267 | | 0.1774 | 1.38 | 1700 | 0.2497 | 0.8933 | | 0.1608 | 1.42 | 1750 | 0.3234 | 0.9 | | 0.1534 | 1.46 | 1800 | 0.3383 | 0.9133 | | 0.1287 | 1.5 | 1850 | 0.3134 | 0.9133 | | 0.1422 | 1.54 | 1900 | 0.3330 | 0.9 | | 0.1578 | 1.58 | 1950 | 0.3281 | 0.9133 | | 0.1786 | 1.62 | 2000 | 0.2939 | 0.9267 | | 0.2019 | 1.66 | 2050 | 0.3535 | 0.9 | | 0.1995 | 1.7 | 2100 | 0.3032 | 0.9067 | | 0.159 | 1.75 | 2150 | 0.2598 | 0.9267 | | 0.1493 | 1.79 | 2200 | 0.2391 | 0.9267 | | 0.1748 | 1.83 | 2250 | 0.2258 | 0.92 | | 0.1783 | 1.87 | 2300 | 0.2749 | 0.9133 | | 0.1619 | 1.91 | 2350 | 0.2699 | 0.92 | | 0.1378 | 1.95 | 2400 | 0.2776 | 0.9067 | | 0.1529 | 1.99 | 2450 | 0.2235 | 0.9333 | | 0.1071 | 2.03 | 2500 | 0.2841 | 0.9267 | | 0.0812 | 2.07 | 2550 | 0.3178 | 0.9267 | | 0.0464 | 2.11 | 2600 | 0.3567 | 0.92 | | 0.1108 | 2.15 | 2650 | 0.2723 | 0.92 | | 0.0845 | 2.19 | 2700 | 0.2774 | 0.9267 | | 0.0795 | 2.23 | 2750 | 0.3027 | 0.9267 | | 0.0403 | 2.27 | 2800 | 0.3566 | 0.9267 | | 0.0664 | 2.31 | 2850 | 0.4015 | 0.92 | | 0.0659 | 2.35 | 2900 | 0.4298 | 0.9067 | | 0.1059 | 2.39 | 2950 | 0.4028 | 0.92 | | 0.105 | 2.44 | 3000 | 0.3701 | 0.92 | | 0.0808 | 2.48 | 3050 | 0.3206 | 0.9267 | | 0.0811 | 2.52 | 3100 | 0.3644 | 0.9133 | | 0.0458 | 2.56 | 3150 | 0.3781 | 0.9267 | | 0.0764 | 2.6 | 3200 | 0.3749 | 0.9267 | | 0.0567 | 2.64 | 3250 | 0.3995 | 0.92 | | 0.0971 | 2.68 | 3300 | 0.3455 | 0.92 | | 0.0579 | 2.72 | 3350 | 0.4508 | 0.92 | | 0.0853 | 2.76 | 3400 | 0.4350 | 0.92 | | 0.0577 | 2.8 | 3450 | 0.3804 | 0.9333 | | 0.0732 | 2.84 | 3500 | 0.4387 | 0.92 | | 0.0874 | 2.88 | 3550 | 0.3885 | 0.9333 | | 0.1031 | 2.92 | 3600 | 0.3937 | 0.92 | | 0.0335 | 2.96 | 3650 | 0.4963 | 0.8933 | | 0.0913 | 3.0 | 3700 | 0.3827 | 0.9333 | | 0.047 | 3.04 | 3750 | 0.4136 | 0.92 | | 0.0531 | 3.08 | 3800 | 0.4362 | 0.92 | | 0.0265 | 3.12 | 3850 | 0.4857 | 0.92 | | 0.038 | 3.17 | 3900 | 0.4425 | 0.92 | | 0.0294 | 3.21 | 3950 | 0.4347 | 0.92 | | 0.0367 | 3.25 | 4000 | 0.4291 | 0.9333 | | 0.0102 | 3.29 | 4050 | 0.5178 | 0.9267 | | 0.0311 | 3.33 | 4100 | 0.4784 | 0.9267 | | 0.0274 | 3.37 | 4150 | 0.5421 | 0.9267 | | 0.0275 | 3.41 | 4200 | 0.5194 | 0.92 | | 0.0795 | 3.45 | 4250 | 0.4788 | 0.92 | | 0.0413 | 3.49 | 4300 | 0.4393 | 0.9267 | | 0.0373 | 3.53 | 4350 | 0.4965 | 0.92 | | 0.0303 | 3.57 | 4400 | 0.4284 | 0.9267 | | 0.0248 | 3.61 | 4450 | 0.4476 | 0.9267 | | 0.0557 | 3.65 | 4500 | 0.4690 | 0.92 | | 0.0358 | 3.69 | 4550 | 0.4774 | 0.9133 | | 0.0194 | 3.73 | 4600 | 0.4755 | 0.92 | | 0.0473 | 3.77 | 4650 | 0.4637 | 0.92 | | 0.0133 | 3.81 | 4700 | 0.4868 | 0.92 | | 0.0204 | 3.86 | 4750 | 0.4886 | 0.9267 | | 0.0338 | 3.9 | 4800 | 0.5101 | 0.9267 | | 0.0424 | 3.94 | 4850 | 0.4812 | 0.9267 | | 0.0237 | 3.98 | 4900 | 0.4837 | 0.9267 | | 0.0372 | 4.02 | 4950 | 0.5000 | 0.9267 | | 0.0254 | 4.06 | 5000 | 0.5210 | 0.92 | | 0.024 | 4.1 | 5050 | 0.5272 | 0.92 | | 0.0117 | 4.14 | 5100 | 0.5447 | 0.92 | | 0.018 | 4.18 | 5150 | 0.5353 | 0.92 | | 0.0097 | 4.22 | 5200 | 0.5415 | 0.9267 | | 0.0151 | 4.26 | 5250 | 0.5447 | 0.9267 | | 0.0118 | 4.3 | 5300 | 0.5285 | 0.9267 | | 0.0004 | 4.34 | 5350 | 0.5399 | 0.9267 | | 0.0102 | 4.38 | 5400 | 0.5552 | 0.9267 | | 0.0012 | 4.42 | 5450 | 0.5689 | 0.92 | | 0.02 | 4.46 | 5500 | 0.5619 | 0.9267 | | 0.0056 | 4.5 | 5550 | 0.5784 | 0.92 | | 0.0271 | 4.55 | 5600 | 0.5766 | 0.92 | | 0.0191 | 4.59 | 5650 | 0.5662 | 0.92 | | 0.0311 | 4.63 | 5700 | 0.5514 | 0.9267 | | 0.0167 | 4.67 | 5750 | 0.5510 | 0.9267 | | 0.0293 | 4.71 | 5800 | 0.5571 | 0.9267 | | 0.0304 | 4.75 | 5850 | 0.5494 | 0.92 | | 0.0161 | 4.79 | 5900 | 0.5469 | 0.9267 | | 0.0017 | 4.83 | 5950 | 0.5468 | 0.9267 | | 0.0176 | 4.87 | 6000 | 0.5426 | 0.9267 | | 0.0094 | 4.91 | 6050 | 0.5402 | 0.9267 | | 0.0041 | 4.95 | 6100 | 0.5416 | 0.9267 | | 0.0281 | 4.99 | 6150 | 0.5419 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
jiping/whisper-small-jsun2-hi
jiping
2022-11-28T22:38:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-24T21:04:14Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Jsun Hi - Jiping results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 31.761618555828324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Jsun Hi - Jiping This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2775 - Wer: 31.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2092 | 0.61 | 1000 | 0.3201 | 38.7666 | | 0.1106 | 1.22 | 2000 | 0.2810 | 34.1023 | | 0.1049 | 1.83 | 3000 | 0.2660 | 32.4812 | | 0.052 | 2.45 | 4000 | 0.2775 | 31.7616 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Hamaru/MJV4_Hypernetwork
Hamaru
2022-11-28T22:33:40Z
0
12
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-28T22:03:24Z
--- license: creativeml-openrail-m --- Hypernetwork trained on some Midjourney V4 portraits. Euler a and DPM++ samplers work best. CFG scale at 7 and low step count (<50) work well. Prompts should include words like "portrait", "octane render" and "highly detailed" for best results. Avoid using face restoration like GFPGAN or CodeFormer if possible
ali97/sd-class-butterflies-32
ali97
2022-11-28T22:31:50Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T22:31:00Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(ali97/sd-class-butterflies-32) image = pipeline().images[0] image ```
kanixwang/my-awesome-setfit-model
kanixwang
2022-11-28T22:19:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T22:02:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alryan1478/gpt-neo-125M-DOD-LOW
alryan1478
2022-11-28T22:19:47Z
103
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T21:59:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-DOD-LOW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-DOD-LOW This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 261 | 6.4768 | | 6.8863 | 2.0 | 522 | 6.1056 | | 6.8863 | 3.0 | 783 | 6.0427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
futuredatascience/action-classifier-v1
futuredatascience
2022-11-28T22:17:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T22:17:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 105 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1050, "warmup_steps": 105, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pig4431/TUF_ALBERT_5E
pig4431
2022-11-28T21:34:30Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:32:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_ALBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5099 | 0.1 | 50 | 0.3861 | 0.8533 | | 0.2985 | 0.2 | 100 | 0.2961 | 0.8933 | | 0.2972 | 0.3 | 150 | 0.2335 | 0.9333 | | 0.2835 | 0.4 | 200 | 0.1872 | 0.94 | | 0.26 | 0.5 | 250 | 0.4147 | 0.9133 | | 0.2986 | 0.59 | 300 | 0.2080 | 0.9267 | | 0.2554 | 0.69 | 350 | 0.3984 | 0.9133 | | 0.2306 | 0.79 | 400 | 0.2136 | 0.9333 | | 0.2218 | 0.89 | 450 | 0.4455 | 0.8867 | | 0.2113 | 0.99 | 500 | 0.2205 | 0.94 | | 0.2541 | 1.09 | 550 | 0.1705 | 0.9333 | | 0.1947 | 1.19 | 600 | 0.3264 | 0.8933 | | 0.2409 | 1.29 | 650 | 0.2084 | 0.92 | | 0.1968 | 1.39 | 700 | 0.2550 | 0.9267 | | 0.172 | 1.49 | 750 | 0.2238 | 0.9467 | | 0.1478 | 1.58 | 800 | 0.2501 | 0.9533 | | 0.2199 | 1.68 | 850 | 0.2618 | 0.9133 | | 0.1792 | 1.78 | 900 | 0.2109 | 0.9267 | | 0.1831 | 1.88 | 950 | 0.2641 | 0.92 | | 0.1534 | 1.98 | 1000 | 0.1924 | 0.94 | | 0.1208 | 2.08 | 1050 | 0.2990 | 0.9333 | | 0.1118 | 2.18 | 1100 | 0.4952 | 0.9 | | 0.158 | 2.28 | 1150 | 0.1706 | 0.9533 | | 0.1163 | 2.38 | 1200 | 0.1238 | 0.9733 | | 0.1738 | 2.48 | 1250 | 0.1989 | 0.9467 | | 0.1305 | 2.57 | 1300 | 0.4354 | 0.9067 | | 0.1668 | 2.67 | 1350 | 0.1276 | 0.9667 | | 0.1195 | 2.77 | 1400 | 0.2170 | 0.9533 | | 0.1057 | 2.87 | 1450 | 0.2882 | 0.9333 | | 0.1172 | 2.97 | 1500 | 0.1435 | 0.9667 | | 0.0893 | 3.07 | 1550 | 0.1754 | 0.96 | | 0.0582 | 3.17 | 1600 | 0.1858 | 0.96 | | 0.0887 | 3.27 | 1650 | 0.4954 | 0.92 | | 0.1166 | 3.37 | 1700 | 0.2356 | 0.9467 | | 0.0518 | 3.47 | 1750 | 0.1910 | 0.96 | | 0.0741 | 3.56 | 1800 | 0.1328 | 0.9733 | | 0.072 | 3.66 | 1850 | 0.2769 | 0.9467 | | 0.0534 | 3.76 | 1900 | 0.3501 | 0.94 | | 0.0776 | 3.86 | 1950 | 0.3171 | 0.94 | | 0.0537 | 3.96 | 2000 | 0.2138 | 0.9533 | | 0.0683 | 4.06 | 2050 | 0.2934 | 0.94 | | 0.015 | 4.16 | 2100 | 0.2233 | 0.9533 | | 0.0236 | 4.26 | 2150 | 0.2673 | 0.9533 | | 0.0357 | 4.36 | 2200 | 0.2279 | 0.96 | | 0.0298 | 4.46 | 2250 | 0.3017 | 0.9467 | | 0.0357 | 4.55 | 2300 | 0.2910 | 0.9467 | | 0.0208 | 4.65 | 2350 | 0.2498 | 0.9533 | | 0.0345 | 4.75 | 2400 | 0.2259 | 0.9667 | | 0.0174 | 4.85 | 2450 | 0.2274 | 0.9667 | | 0.0393 | 4.95 | 2500 | 0.2389 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
Inayat/Fine_tune_whisper_small
Inayat
2022-11-28T21:14:32Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-14T19:18:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Fine_tune_whisper_small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_tune_whisper_small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8238 - Wer: 42.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 900 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2994 | 3.92 | 200 | 0.6607 | 44.0797 | | 0.0201 | 7.84 | 400 | 0.7371 | 42.6042 | | 0.002 | 11.76 | 600 | 0.8027 | 42.5304 | | 0.0011 | 15.69 | 800 | 0.8238 | 42.9362 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/TUF_BERT_5E
pig4431
2022-11-28T21:13:00Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:06:14Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_BERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3251 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4078 | 0.1 | 50 | 0.2430 | 0.92 | | 0.2488 | 0.2 | 100 | 0.1465 | 0.94 | | 0.1966 | 0.3 | 150 | 0.1284 | 0.96 | | 0.2096 | 0.4 | 200 | 0.2879 | 0.9067 | | 0.2015 | 0.5 | 250 | 0.1629 | 0.9467 | | 0.1692 | 0.59 | 300 | 0.2165 | 0.9133 | | 0.1794 | 0.69 | 350 | 0.1535 | 0.9533 | | 0.1975 | 0.79 | 400 | 0.1429 | 0.9333 | | 0.1394 | 0.89 | 450 | 0.2384 | 0.92 | | 0.191 | 0.99 | 500 | 0.2198 | 0.94 | | 0.0907 | 1.09 | 550 | 0.1270 | 0.9467 | | 0.073 | 1.19 | 600 | 0.2016 | 0.94 | | 0.1594 | 1.29 | 650 | 0.2078 | 0.9267 | | 0.087 | 1.39 | 700 | 0.3312 | 0.9333 | | 0.0961 | 1.49 | 750 | 0.3704 | 0.92 | | 0.1225 | 1.58 | 800 | 0.1686 | 0.9467 | | 0.0969 | 1.68 | 850 | 0.1525 | 0.9333 | | 0.0942 | 1.78 | 900 | 0.1924 | 0.94 | | 0.0681 | 1.88 | 950 | 0.1825 | 0.9467 | | 0.1295 | 1.98 | 1000 | 0.1360 | 0.9333 | | 0.0626 | 2.08 | 1050 | 0.2014 | 0.94 | | 0.0372 | 2.18 | 1100 | 0.2030 | 0.9467 | | 0.0077 | 2.28 | 1150 | 0.2615 | 0.9467 | | 0.0393 | 2.38 | 1200 | 0.4256 | 0.9267 | | 0.0492 | 2.48 | 1250 | 0.3057 | 0.94 | | 0.0184 | 2.57 | 1300 | 0.1308 | 0.9733 | | 0.0209 | 2.67 | 1350 | 0.2848 | 0.9467 | | 0.0328 | 2.77 | 1400 | 0.1862 | 0.96 | | 0.0333 | 2.87 | 1450 | 0.2347 | 0.96 | | 0.0527 | 2.97 | 1500 | 0.3855 | 0.9333 | | 0.0685 | 3.07 | 1550 | 0.3174 | 0.94 | | 0.0217 | 3.17 | 1600 | 0.2320 | 0.9533 | | 0.0036 | 3.27 | 1650 | 0.3219 | 0.9333 | | 0.0015 | 3.37 | 1700 | 0.1649 | 0.9733 | | 0.0177 | 3.47 | 1750 | 0.3785 | 0.94 | | 0.0142 | 3.56 | 1800 | 0.1420 | 0.9733 | | 0.0319 | 3.66 | 1850 | 0.4057 | 0.9333 | | 0.0254 | 3.76 | 1900 | 0.1824 | 0.96 | | 0.0092 | 3.86 | 1950 | 0.2400 | 0.9533 | | 0.0306 | 3.96 | 2000 | 0.2238 | 0.96 | | 0.0118 | 4.06 | 2050 | 0.2623 | 0.9533 | | 0.0097 | 4.16 | 2100 | 0.3642 | 0.9467 | | 0.0132 | 4.26 | 2150 | 0.3235 | 0.9467 | | 0.0155 | 4.36 | 2200 | 0.3535 | 0.9467 | | 0.0043 | 4.46 | 2250 | 0.3236 | 0.9467 | | 0.0004 | 4.55 | 2300 | 0.2984 | 0.9467 | | 0.009 | 4.65 | 2350 | 0.2941 | 0.9467 | | 0.0068 | 4.75 | 2400 | 0.2936 | 0.9467 | | 0.0102 | 4.85 | 2450 | 0.3138 | 0.9467 | | 0.0015 | 4.95 | 2500 | 0.3251 | 0.9467 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/TweetEval_DistilBERT_5E
pig4431
2022-11-28T21:09:36Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:03:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_DistilBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9133333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - Accuracy: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5747 | 0.04 | 50 | 0.4843 | 0.7333 | | 0.4336 | 0.08 | 100 | 0.2888 | 0.8667 | | 0.3437 | 0.12 | 150 | 0.2895 | 0.8667 | | 0.3375 | 0.16 | 200 | 0.2864 | 0.8733 | | 0.3072 | 0.2 | 250 | 0.2577 | 0.8867 | | 0.3019 | 0.24 | 300 | 0.2574 | 0.8933 | | 0.2662 | 0.28 | 350 | 0.2621 | 0.8867 | | 0.283 | 0.32 | 400 | 0.2340 | 0.92 | | 0.2949 | 0.37 | 450 | 0.2482 | 0.8933 | | 0.3066 | 0.41 | 500 | 0.2537 | 0.9 | | 0.2457 | 0.45 | 550 | 0.2473 | 0.9 | | 0.295 | 0.49 | 600 | 0.2177 | 0.9133 | | 0.2862 | 0.53 | 650 | 0.2215 | 0.9133 | | 0.2603 | 0.57 | 700 | 0.2272 | 0.9133 | | 0.2976 | 0.61 | 750 | 0.2298 | 0.9067 | | 0.2823 | 0.65 | 800 | 0.2451 | 0.8933 | | 0.2583 | 0.69 | 850 | 0.2645 | 0.8933 | | 0.2694 | 0.73 | 900 | 0.2352 | 0.9 | | 0.2433 | 0.77 | 950 | 0.2322 | 0.9133 | | 0.2598 | 0.81 | 1000 | 0.2300 | 0.9 | | 0.2701 | 0.85 | 1050 | 0.2162 | 0.9 | | 0.2227 | 0.89 | 1100 | 0.2135 | 0.8933 | | 0.2045 | 0.93 | 1150 | 0.2233 | 0.9133 | | 0.2821 | 0.97 | 1200 | 0.2194 | 0.9 | | 0.2342 | 1.01 | 1250 | 0.2488 | 0.88 | | 0.2028 | 1.06 | 1300 | 0.2451 | 0.8867 | | 0.1509 | 1.1 | 1350 | 0.3174 | 0.88 | | 0.1888 | 1.14 | 1400 | 0.2537 | 0.9133 | | 0.1825 | 1.18 | 1450 | 0.2559 | 0.9067 | | 0.1721 | 1.22 | 1500 | 0.2511 | 0.92 | | 0.2137 | 1.26 | 1550 | 0.2963 | 0.9133 | | 0.2153 | 1.3 | 1600 | 0.2210 | 0.92 | | 0.1989 | 1.34 | 1650 | 0.2231 | 0.9133 | | 0.2155 | 1.38 | 1700 | 0.1991 | 0.9133 | | 0.1912 | 1.42 | 1750 | 0.2146 | 0.92 | | 0.1623 | 1.46 | 1800 | 0.2721 | 0.9 | | 0.2236 | 1.5 | 1850 | 0.2301 | 0.9267 | | 0.1907 | 1.54 | 1900 | 0.1988 | 0.92 | | 0.1286 | 1.58 | 1950 | 0.2326 | 0.9 | | 0.2147 | 1.62 | 2000 | 0.2432 | 0.9267 | | 0.2018 | 1.66 | 2050 | 0.2162 | 0.9067 | | 0.2073 | 1.7 | 2100 | 0.2153 | 0.9133 | | 0.1498 | 1.75 | 2150 | 0.2335 | 0.92 | | 0.1812 | 1.79 | 2200 | 0.2275 | 0.9267 | | 0.1482 | 1.83 | 2250 | 0.2734 | 0.9 | | 0.2233 | 1.87 | 2300 | 0.2454 | 0.9 | | 0.1673 | 1.91 | 2350 | 0.2394 | 0.92 | | 0.1555 | 1.95 | 2400 | 0.2725 | 0.92 | | 0.2082 | 1.99 | 2450 | 0.2684 | 0.9133 | | 0.1545 | 2.03 | 2500 | 0.3049 | 0.9067 | | 0.1384 | 2.07 | 2550 | 0.2960 | 0.9133 | | 0.1201 | 2.11 | 2600 | 0.3259 | 0.9 | | 0.1348 | 2.15 | 2650 | 0.3091 | 0.9133 | | 0.1046 | 2.19 | 2700 | 0.2916 | 0.9267 | | 0.1506 | 2.23 | 2750 | 0.2910 | 0.9133 | | 0.1481 | 2.27 | 2800 | 0.2855 | 0.9067 | | 0.1318 | 2.31 | 2850 | 0.3075 | 0.9 | | 0.1204 | 2.35 | 2900 | 0.3169 | 0.8933 | | 0.1669 | 2.39 | 2950 | 0.3050 | 0.9067 | | 0.1725 | 2.44 | 3000 | 0.2970 | 0.9133 | | 0.1305 | 2.48 | 3050 | 0.3065 | 0.9 | | 0.1508 | 2.52 | 3100 | 0.3079 | 0.9133 | | 0.184 | 2.56 | 3150 | 0.3482 | 0.9067 | | 0.1263 | 2.6 | 3200 | 0.3310 | 0.9 | | 0.1282 | 2.64 | 3250 | 0.3520 | 0.8933 | | 0.1217 | 2.68 | 3300 | 0.3158 | 0.9067 | | 0.1203 | 2.72 | 3350 | 0.3351 | 0.92 | | 0.1068 | 2.76 | 3400 | 0.3239 | 0.92 | | 0.1517 | 2.8 | 3450 | 0.3247 | 0.92 | | 0.113 | 2.84 | 3500 | 0.3269 | 0.9133 | | 0.1276 | 2.88 | 3550 | 0.3162 | 0.92 | | 0.1548 | 2.92 | 3600 | 0.3196 | 0.9133 | | 0.1305 | 2.96 | 3650 | 0.3163 | 0.92 | | 0.149 | 3.0 | 3700 | 0.3013 | 0.92 | | 0.0816 | 3.04 | 3750 | 0.3097 | 0.9267 | | 0.0884 | 3.08 | 3800 | 0.3028 | 0.92 | | 0.0727 | 3.12 | 3850 | 0.3487 | 0.9133 | | 0.1018 | 3.17 | 3900 | 0.3447 | 0.92 | | 0.1266 | 3.21 | 3950 | 0.3589 | 0.9133 | | 0.1216 | 3.25 | 4000 | 0.3464 | 0.92 | | 0.091 | 3.29 | 4050 | 0.3454 | 0.92 | | 0.0829 | 3.33 | 4100 | 0.3450 | 0.92 | | 0.1084 | 3.37 | 4150 | 0.3670 | 0.92 | | 0.0754 | 3.41 | 4200 | 0.3661 | 0.92 | | 0.094 | 3.45 | 4250 | 0.3588 | 0.9067 | | 0.0641 | 3.49 | 4300 | 0.3936 | 0.92 | | 0.1138 | 3.53 | 4350 | 0.3616 | 0.92 | | 0.0744 | 3.57 | 4400 | 0.3562 | 0.92 | | 0.0697 | 3.61 | 4450 | 0.3532 | 0.9267 | | 0.1083 | 3.65 | 4500 | 0.3451 | 0.9267 | | 0.0701 | 3.69 | 4550 | 0.3307 | 0.92 | | 0.0849 | 3.73 | 4600 | 0.3797 | 0.92 | | 0.09 | 3.77 | 4650 | 0.3746 | 0.9267 | | 0.0799 | 3.81 | 4700 | 0.3799 | 0.92 | | 0.0589 | 3.86 | 4750 | 0.3805 | 0.92 | | 0.0578 | 3.9 | 4800 | 0.3910 | 0.9133 | | 0.0816 | 3.94 | 4850 | 0.3856 | 0.9133 | | 0.1366 | 3.98 | 4900 | 0.3707 | 0.92 | | 0.0846 | 4.02 | 4950 | 0.3802 | 0.92 | | 0.0401 | 4.06 | 5000 | 0.3842 | 0.92 | | 0.0851 | 4.1 | 5050 | 0.3773 | 0.9267 | | 0.0514 | 4.14 | 5100 | 0.3922 | 0.9133 | | 0.0909 | 4.18 | 5150 | 0.3893 | 0.92 | | 0.0764 | 4.22 | 5200 | 0.3818 | 0.9133 | | 0.1208 | 4.26 | 5250 | 0.4096 | 0.92 | | 0.0689 | 4.3 | 5300 | 0.3940 | 0.9133 | | 0.0524 | 4.34 | 5350 | 0.4020 | 0.9133 | | 0.0733 | 4.38 | 5400 | 0.4002 | 0.9133 | | 0.0699 | 4.42 | 5450 | 0.4013 | 0.9133 | | 0.0712 | 4.46 | 5500 | 0.4037 | 0.9067 | | 0.0557 | 4.5 | 5550 | 0.4121 | 0.92 | | 0.0679 | 4.55 | 5600 | 0.4067 | 0.9133 | | 0.0651 | 4.59 | 5650 | 0.4194 | 0.9133 | | 0.0607 | 4.63 | 5700 | 0.4007 | 0.9133 | | 0.0676 | 4.67 | 5750 | 0.4013 | 0.9133 | | 0.0303 | 4.71 | 5800 | 0.3984 | 0.9133 | | 0.0674 | 4.75 | 5850 | 0.4037 | 0.9133 | | 0.0842 | 4.79 | 5900 | 0.4072 | 0.9133 | | 0.0516 | 4.83 | 5950 | 0.4096 | 0.9133 | | 0.0556 | 4.87 | 6000 | 0.4111 | 0.92 | | 0.0277 | 4.91 | 6050 | 0.4079 | 0.9133 | | 0.0629 | 4.95 | 6100 | 0.4053 | 0.9133 | | 0.0426 | 4.99 | 6150 | 0.4043 | 0.9133 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
pig4431/TUF_DistilBERT_5E
pig4431
2022-11-28T20:13:46Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:05:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_DistilBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1832 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5092 | 0.1 | 50 | 0.4385 | 0.7533 | | 0.2807 | 0.2 | 100 | 0.2225 | 0.9 | | 0.1881 | 0.3 | 150 | 0.1531 | 0.94 | | 0.1895 | 0.4 | 200 | 0.1426 | 0.94 | | 0.1995 | 0.5 | 250 | 0.1428 | 0.94 | | 0.1745 | 0.59 | 300 | 0.1538 | 0.9267 | | 0.1679 | 0.69 | 350 | 0.1249 | 0.9533 | | 0.199 | 0.79 | 400 | 0.1327 | 0.9467 | | 0.1703 | 0.89 | 450 | 0.1488 | 0.92 | | 0.1541 | 0.99 | 500 | 0.1772 | 0.9467 | | 0.1436 | 1.09 | 550 | 0.1070 | 0.9667 | | 0.1463 | 1.19 | 600 | 0.1165 | 0.9467 | | 0.1309 | 1.29 | 650 | 0.1054 | 0.9733 | | 0.097 | 1.39 | 700 | 0.1346 | 0.94 | | 0.1307 | 1.49 | 750 | 0.1477 | 0.9467 | | 0.1506 | 1.58 | 800 | 0.1311 | 0.9533 | | 0.1386 | 1.68 | 850 | 0.1165 | 0.9667 | | 0.1463 | 1.78 | 900 | 0.4207 | 0.9067 | | 0.1202 | 1.88 | 950 | 0.1528 | 0.9667 | | 0.1403 | 1.98 | 1000 | 0.1262 | 0.96 | | 0.073 | 2.08 | 1050 | 0.1459 | 0.96 | | 0.0713 | 2.18 | 1100 | 0.1747 | 0.9533 | | 0.0814 | 2.28 | 1150 | 0.1953 | 0.9667 | | 0.0935 | 2.38 | 1200 | 0.1888 | 0.9533 | | 0.0685 | 2.48 | 1250 | 0.1562 | 0.9467 | | 0.1154 | 2.57 | 1300 | 0.1806 | 0.96 | | 0.1239 | 2.67 | 1350 | 0.1322 | 0.9533 | | 0.1011 | 2.77 | 1400 | 0.2148 | 0.94 | | 0.0718 | 2.87 | 1450 | 0.1686 | 0.96 | | 0.1159 | 2.97 | 1500 | 0.1532 | 0.9533 | | 0.0516 | 3.07 | 1550 | 0.1888 | 0.96 | | 0.063 | 3.17 | 1600 | 0.1851 | 0.9467 | | 0.068 | 3.27 | 1650 | 0.2775 | 0.94 | | 0.0946 | 3.37 | 1700 | 0.1853 | 0.96 | | 0.0606 | 3.47 | 1750 | 0.2148 | 0.9467 | | 0.0663 | 3.56 | 1800 | 0.2091 | 0.9533 | | 0.0474 | 3.66 | 1850 | 0.1702 | 0.9533 | | 0.0585 | 3.76 | 1900 | 0.1660 | 0.96 | | 0.0439 | 3.86 | 1950 | 0.2220 | 0.9533 | | 0.0758 | 3.96 | 2000 | 0.1834 | 0.96 | | 0.0497 | 4.06 | 2050 | 0.1707 | 0.9533 | | 0.0412 | 4.16 | 2100 | 0.1948 | 0.9533 | | 0.0338 | 4.26 | 2150 | 0.2039 | 0.9533 | | 0.0796 | 4.36 | 2200 | 0.1797 | 0.9533 | | 0.0727 | 4.46 | 2250 | 0.1986 | 0.9533 | | 0.032 | 4.55 | 2300 | 0.1947 | 0.9467 | | 0.0436 | 4.65 | 2350 | 0.1908 | 0.9467 | | 0.0205 | 4.75 | 2400 | 0.1806 | 0.96 | | 0.0326 | 4.85 | 2450 | 0.1835 | 0.96 | | 0.0404 | 4.95 | 2500 | 0.1832 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
futuredatascience/from-classifier-v1
futuredatascience
2022-11-28T20:07:27Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T20:07:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 530, "warmup_steps": 53, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SwePalm/sd-class-butterflies-32
SwePalm
2022-11-28T20:01:43Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:00:51Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of (not so?) cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(SwePalm/sd-class-butterflies-32) image = pipeline().images[0] image ```
reubenjohn/stack-overflow-open-status-classifier-pt
reubenjohn
2022-11-28T20:01:21Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T03:44:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: stack-overflow-open-status-classifier-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stack-overflow-open-status-classifier-pt This model is a fine-tuned version of [reubenjohn/stack-overflow-open-status-classifier-pt](https://huggingface.co/reubenjohn/stack-overflow-open-status-classifier-pt) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9448 - eval_runtime: 3.554 - eval_samples_per_second: 28.137 - eval_steps_per_second: 0.563 - epoch: 0.01 - step: 60 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
motmono/a2c-AntBulletEnv-v0
motmono
2022-11-28T19:58:24Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-28T19:57:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1539.68 +/- 213.96 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pig4431/TUF_roBERTa_5E
pig4431
2022-11-28T19:55:07Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T19:48:29Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_roBERTa_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2136 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4665 | 0.1 | 50 | 0.2587 | 0.9333 | | 0.245 | 0.2 | 100 | 0.1355 | 0.96 | | 0.2079 | 0.3 | 150 | 0.1454 | 0.9533 | | 0.2098 | 0.4 | 200 | 0.1809 | 0.9533 | | 0.1637 | 0.5 | 250 | 0.2299 | 0.94 | | 0.1869 | 0.59 | 300 | 0.1324 | 0.9667 | | 0.2202 | 0.69 | 350 | 0.1786 | 0.9467 | | 0.2084 | 0.79 | 400 | 0.1541 | 0.9533 | | 0.148 | 0.89 | 450 | 0.1790 | 0.9533 | | 0.1945 | 0.99 | 500 | 0.1168 | 0.9667 | | 0.1648 | 1.09 | 550 | 0.1153 | 0.96 | | 0.1099 | 1.19 | 600 | 0.1239 | 0.96 | | 0.1238 | 1.29 | 650 | 0.1486 | 0.9533 | | 0.1067 | 1.39 | 700 | 0.1195 | 0.96 | | 0.1324 | 1.49 | 750 | 0.1134 | 0.96 | | 0.1128 | 1.58 | 800 | 0.1180 | 0.9667 | | 0.1406 | 1.68 | 850 | 0.2081 | 0.9533 | | 0.1516 | 1.78 | 900 | 0.1987 | 0.9533 | | 0.1537 | 1.88 | 950 | 0.1644 | 0.96 | | 0.0957 | 1.98 | 1000 | 0.1660 | 0.96 | | 0.0699 | 2.08 | 1050 | 0.2057 | 0.9533 | | 0.1007 | 2.18 | 1100 | 0.2336 | 0.9533 | | 0.0677 | 2.28 | 1150 | 0.2399 | 0.9467 | | 0.059 | 2.38 | 1200 | 0.2331 | 0.96 | | 0.1051 | 2.48 | 1250 | 0.1974 | 0.9533 | | 0.0778 | 2.57 | 1300 | 0.2857 | 0.9467 | | 0.1099 | 2.67 | 1350 | 0.2641 | 0.9533 | | 0.0747 | 2.77 | 1400 | 0.2219 | 0.9533 | | 0.0874 | 2.87 | 1450 | 0.2780 | 0.9533 | | 0.0675 | 2.97 | 1500 | 0.1993 | 0.96 | | 0.052 | 3.07 | 1550 | 0.1918 | 0.96 | | 0.0214 | 3.17 | 1600 | 0.2410 | 0.96 | | 0.0512 | 3.27 | 1650 | 0.2353 | 0.96 | | 0.0548 | 3.37 | 1700 | 0.2722 | 0.9533 | | 0.0554 | 3.47 | 1750 | 0.1593 | 0.9733 | | 0.0742 | 3.56 | 1800 | 0.2568 | 0.96 | | 0.064 | 3.66 | 1850 | 0.2358 | 0.96 | | 0.052 | 3.76 | 1900 | 0.2161 | 0.9667 | | 0.0349 | 3.86 | 1950 | 0.2497 | 0.96 | | 0.0868 | 3.96 | 2000 | 0.1834 | 0.9667 | | 0.0445 | 4.06 | 2050 | 0.2441 | 0.9533 | | 0.0388 | 4.16 | 2100 | 0.2136 | 0.9667 | | 0.0484 | 4.26 | 2150 | 0.2114 | 0.9667 | | 0.0263 | 4.36 | 2200 | 0.2325 | 0.96 | | 0.0409 | 4.46 | 2250 | 0.2454 | 0.9533 | | 0.0324 | 4.55 | 2300 | 0.2105 | 0.9667 | | 0.0295 | 4.65 | 2350 | 0.2118 | 0.9667 | | 0.0372 | 4.75 | 2400 | 0.2005 | 0.9667 | | 0.0294 | 4.85 | 2450 | 0.2057 | 0.9667 | | 0.0354 | 4.95 | 2500 | 0.2136 | 0.9667 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
UKP-SQuARE/tweac_16
UKP-SQuARE
2022-11-28T19:43:48Z
102
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "QA", "en", "dataset:BoolQ", "dataset:CommonSenseQA", "dataset:DROP", "dataset:DuoRC", "dataset:HellaSWAG", "dataset:HotpotQA", "dataset:HybridQA", "dataset:NarrativeQA", "dataset:NaturalQuestionsShort", "dataset:NewsQA", "dataset:QAMR", "dataset:RACE", "dataset:SearchQA", "dataset:SIQA", "dataset:SQuAD", "dataset:TriviaQA-web", "arxiv:2104.07081", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T18:34:07Z
--- language: - en tags: - QA license: cc-by-4.0 datasets: - BoolQ - CommonSenseQA - DROP - DuoRC - HellaSWAG - HotpotQA - HybridQA - NarrativeQA - NaturalQuestionsShort - NewsQA - QAMR - RACE - SearchQA - SIQA - SQuAD - TriviaQA-web metrics: - Accuracy - Precision - Recall - F1 - MRR - R@3 - R@5 --- BERT for Sequence Classification trained on QA Dataset prediction task. - Input: question. - Output: dataset from where that question comes from. Original paper: TWEAC: Transformer with Extendable QA Agent Classifiers https://arxiv.org/abs/2104.07081 Datasets used for training: ``` list_datasets = ['BoolQ','CommonSenseQA','DROP','DuoRC','HellaSWAG','HotpotQA','HybridQA','NarrativeQA','NaturalQuestionsShort','NewsQA','QAMR','RACE','SearchQA','SIQA','SQuAD','TriviaQA-web'] ``` Results for all datasets: - Accuracy: 0.7919096825783123 - Precision: 0.731586272892176 - Recall: 0.7919096825783123 - F1: 0.7494425609552463 - MRR: 0.8720871733637521 - R@3: 0.9438690810655046 - R@5: 0.9745318608004427 - Queries/second: 6052.33538824659 Results per dataset: ``` "BoolQ": { "accuracy": 0.998776758409786, "mrr": 0.999388379204893, "r@3": 1.0, "r@5": 1.0, "query_per_second": 6978.947907596168, "precision": 0.8649364406779662, "recall": 0.998776758409786, "f1": 0.9270508089696281 }, "CommonSenseQA": { "accuracy": 0.9247135842880524, "mrr": 0.9476358338878795, "r@3": 0.9705400981996727, "r@5": 0.9705400981996727, "query_per_second": 5823.984138936813, "precision": 0.442443226311668, "recall": 0.9247135842880524, "f1": 0.5985169491525425 }, "DROP": { "accuracy": 0.9075083892617449, "mrr": 0.9378200367399193, "r@3": 0.9609899328859061, "r@5": 0.9786073825503355, "query_per_second": 6440.988897129248, "precision": 0.8636726546906187, "recall": 0.9075083892617449, "f1": 0.8850480670893842 }, "DuoRC": { "accuracy": 0.5555803405457654, "mrr": 0.7368963429107307, "r@3": 0.9092125808610305, "r@5": 0.9596996059186557, "query_per_second": 6853.643198794893, "precision": 0.646814404432133, "recall": 0.5555803405457654, "f1": 0.5977360905563778 }, "HellaSWAG": { "accuracy": 0.998406691894045, "mrr": 0.9990705702715262, "r@3": 1.0, "r@5": 1.0, "query_per_second": 3091.5012960785157, "precision": 0.9974134500596896, "recall": 0.998406691894045, "f1": 0.9979098238280083 }, "HotpotQA": { "accuracy": 0.7414435784479837, "mrr": 0.8435804344945315, "r@3": 0.9325652321247034, "r@5": 0.973568281938326, "query_per_second": 4972.668019223381, "precision": 0.7352150537634409, "recall": 0.7414435784479837, "f1": 0.7383161801923401 }, "HybridQA": { "accuracy": 0.7934218118869013, "mrr": 0.8806947764680021, "r@3": 0.964800923254472, "r@5": 0.9930755914598961, "query_per_second": 4886.494046259562, "precision": 0.7198952879581152, "recall": 0.7934218118869013, "f1": 0.7548723579467472 }, "NarrativeQA": { "accuracy": 0.5623756749076442, "mrr": 0.7416681781060867, "r@3": 0.9011082693947144, "r@5": 0.9580373212086767, "query_per_second": 7081.067049796865, "precision": 0.5623224095472628, "recall": 0.5623756749076442, "f1": 0.5623490409661377 }, "NaturalQuestionsShort": { "accuracy": 0.7985353692739171, "mrr": 0.8743599435345307, "r@3": 0.9439077594266126, "r@5": 0.9774072919912745, "query_per_second": 7136.590426649795, "precision": 0.7963020509633313, "recall": 0.7985353692739171, "f1": 0.7974171464135678 }, "NewsQA": { "accuracy": 0.5375118708452041, "mrr": 0.71192075967717, "r@3": 0.855650522317189, "r@5": 0.939696106362773, "query_per_second": 7193.851409052092, "precision": 0.18757249378624688, "recall": 0.5375118708452041, "f1": 0.2780985136961061 }, "QAMR": { "accuracy": 0.6658497602557272, "mrr": 0.7969741223377345, "r@3": 0.9207778369738945, "r@5": 0.973361747469366, "query_per_second": 7321.775044800525, "precision": 0.8654525309881587, "recall": 0.6658497602557272, "f1": 0.7526421968624852 }, "RACE": { "accuracy": 0.8771538617474154, "mrr": 0.917901778042666, "r@3": 0.9489154672613015, "r@5": 0.9693898236367322, "query_per_second": 6952.225120744351, "precision": 0.8767983789260385, "recall": 0.8771538617474154, "f1": 0.8769760843129306 }, "SearchQA": { "accuracy": 0.9762073027090695, "mrr": 0.9865069592101393, "r@3": 0.9972909305064782, "r@5": 0.9984687868080094, "query_per_second": 4031.0193826035634, "precision": 0.9870191735143503, "recall": 0.9762073027090695, "f1": 0.9815834665719192 }, "SIQA": { "accuracy": 0.9969293756397134, "mrr": 0.9977823268509042, "r@3": 0.9979529170931423, "r@5": 1.0, "query_per_second": 6711.547709005977, "precision": 0.9329501915708812, "recall": 0.9969293756397134, "f1": 0.9638792676892627 }, "SQuAD": { "accuracy": 0.550628092881614, "mrr": 0.7164538452390565, "r@3": 0.8660068519223448, "r@5": 0.9366197183098591, "query_per_second": 7033.420124363291, "precision": 0.48613678373382624, "recall": 0.550628092881614, "f1": 0.5163766175814368 }, "TriviaQA-web": { "accuracy": 0.7855124582584125, "mrr": 0.8647404868442627, "r@3": 0.9321859748266119, "r@5": 0.9640380169535063, "query_per_second": 4327.642440910395, "precision": 0.7404358353510896, "recall": 0.7855124582584125, "f1": 0.7623083634550667 }, ```
altsoph/xlmr-AER
altsoph
2022-11-28T19:22:35Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "nlp", "roberta", "xlmr", "classifier", "aer", "narrative", "entity recognition", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-27T22:41:15Z
--- language: - en thumbnail: https://raw.githubusercontent.com/altsoph/misc/main/imgs/aer_logo.png tags: - nlp - roberta - xlmr - classifier - aer - narrative - entity recognition license: mit --- An XLM-Roberta based language model fine-tuned for AER (Actionable Entities Recognition) -- recognition of entities that protagonists could interact with for further plot development. We used 5K+ locations from 1K interactive text fiction games and extracted textual descriptions of locations and lists of actionable entities in them. The resulting [BAER dataset is available here](https://github.com/altsoph/BAER). Then we used it to train this model. The example of usage: ```py from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline MODEL_NAME = "altsoph/xlmr-AER" text = """This bedroom is extremely spare, with dirty laundry scattered haphazardly all over the floor. Cleaner clothing can be found in the dresser. A bathroom lies to the south, while a door to the east leads to the living room.""" model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) pipe = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple", ignore_labels=['O','PAD']) entities = pipe(text) print(entities) ``` If you use the model, please cite the following: ``` @inproceedings{Tikhonov-etal-2022-AER, title = "Actionable Entities Recognition Benchmark for Interactive Fiction", author = "Alexey Tikhonov and Ivan P. Yamshchikov", year = "2022", } ```
leonrafael29/bert2bert_uncased_english_to_spanish
leonrafael29
2022-11-28T18:52:56Z
13
0
transformers
[ "transformers", "encoder-decoder", "text2text-generation", "translation", "en", "es", "dataset:news_commentary", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-28T17:32:46Z
--- language: - en - es tags: - translation datasets: - news_commentary metrics: - bleurt ---
Dagar/t5-small-science-papers-NIPS
Dagar
2022-11-28T18:21:27Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T18:00:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-science-papers-NIPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-science-papers-NIPS This model is a fine-tuned version of [Dagar/t5-small-science-papers](https://huggingface.co/Dagar/t5-small-science-papers) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7566 - Rouge1: 15.7066 - Rouge2: 2.5654 - Rougel: 11.4679 - Rougelsum: 14.4017 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 318 | 5.1856 | 13.7172 | 2.0644 | 10.2189 | 12.838 | 19.0 | | 5.4522 | 2.0 | 636 | 5.0383 | 15.6211 | 2.1808 | 11.3561 | 14.3054 | 19.0 | | 5.4522 | 3.0 | 954 | 4.9486 | 15.1659 | 2.3308 | 11.1052 | 13.9456 | 19.0 | | 5.1254 | 4.0 | 1272 | 4.8851 | 15.716 | 2.4099 | 11.4954 | 14.5099 | 19.0 | | 4.9794 | 5.0 | 1590 | 4.8456 | 15.5507 | 2.4267 | 11.3867 | 14.3237 | 19.0 | | 4.9794 | 6.0 | 1908 | 4.8073 | 15.8406 | 2.4254 | 11.6878 | 14.6154 | 19.0 | | 4.8823 | 7.0 | 2226 | 4.7872 | 15.5554 | 2.4637 | 11.3401 | 14.3183 | 19.0 | | 4.8338 | 8.0 | 2544 | 4.7680 | 15.4783 | 2.4888 | 11.3364 | 14.2031 | 19.0 | | 4.8338 | 9.0 | 2862 | 4.7621 | 15.958 | 2.5662 | 11.6139 | 14.6576 | 19.0 | | 4.7838 | 10.0 | 3180 | 4.7566 | 15.7066 | 2.5654 | 11.4679 | 14.4017 | 19.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
FrancoisDongier/sd-class-butterflies-32
FrancoisDongier
2022-11-28T18:19:31Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T18:16:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(FrancoisDongier/sd-class-butterflies-32) image = pipeline().images[0] image ```
ashu1318/lilt-en-funsd
ashu1318
2022-11-28T18:17:59Z
80
0
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T17:49:59Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.8731 - Answer: {'precision': 0.8688915375446961, 'recall': 0.8922888616891065, 'f1': 0.8804347826086957, 'number': 817} - Header: {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119} - Question: {'precision': 0.9105166051660517, 'recall': 0.9164345403899722, 'f1': 0.9134659879685332, 'number': 1077} - Overall Precision: 0.8792 - Overall Recall: 0.8857 - Overall F1: 0.8825 - Overall Accuracy: 0.7976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4323 | 10.53 | 200 | 1.0423 | {'precision': 0.8369195922989807, 'recall': 0.9045287637698899, 'f1': 0.8694117647058823, 'number': 817} | {'precision': 0.5405405405405406, 'recall': 0.5042016806722689, 'f1': 0.5217391304347826, 'number': 119} | {'precision': 0.8869323447636701, 'recall': 0.8885793871866295, 'f1': 0.8877551020408162, 'number': 1077} | 0.8471 | 0.8723 | 0.8595 | 0.7981 | | 0.045 | 21.05 | 400 | 1.2757 | {'precision': 0.8435374149659864, 'recall': 0.9106487148102815, 'f1': 0.8758092995879929, 'number': 817} | {'precision': 0.5795454545454546, 'recall': 0.42857142857142855, 'f1': 0.49275362318840576, 'number': 119} | {'precision': 0.8626943005181347, 'recall': 0.9275766016713092, 'f1': 0.8939597315436242, 'number': 1077} | 0.8430 | 0.8912 | 0.8665 | 0.8026 | | 0.0133 | 31.58 | 600 | 1.4887 | {'precision': 0.8632075471698113, 'recall': 0.8959608323133414, 'f1': 0.8792792792792793, 'number': 817} | {'precision': 0.6020408163265306, 'recall': 0.4957983193277311, 'f1': 0.543778801843318, 'number': 119} | {'precision': 0.8791887125220459, 'recall': 0.9257195914577531, 'f1': 0.9018543645409318, 'number': 1077} | 0.8596 | 0.8882 | 0.8737 | 0.7983 | | 0.0051 | 42.11 | 800 | 1.7382 | {'precision': 0.8601645123384254, 'recall': 0.8959608323133414, 'f1': 0.8776978417266187, 'number': 817} | {'precision': 0.5636363636363636, 'recall': 0.5210084033613446, 'f1': 0.5414847161572053, 'number': 119} | {'precision': 0.9032558139534884, 'recall': 0.9015784586815228, 'f1': 0.9024163568773235, 'number': 1077} | 0.8669 | 0.8768 | 0.8718 | 0.7925 | | 0.004 | 52.63 | 1000 | 1.7599 | {'precision': 0.8307349665924276, 'recall': 0.9130966952264382, 'f1': 0.8699708454810495, 'number': 817} | {'precision': 0.6039603960396039, 'recall': 0.5126050420168067, 'f1': 0.5545454545454545, 'number': 119} | {'precision': 0.8939256572982774, 'recall': 0.9155060352831941, 'f1': 0.9045871559633027, 'number': 1077} | 0.8530 | 0.8907 | 0.8714 | 0.7941 | | 0.002 | 63.16 | 1200 | 1.8409 | {'precision': 0.8312985571587126, 'recall': 0.9167686658506732, 'f1': 0.8719441210710128, 'number': 817} | {'precision': 0.6074766355140186, 'recall': 0.5462184873949579, 'f1': 0.575221238938053, 'number': 119} | {'precision': 0.8814949863263446, 'recall': 0.8978644382544104, 'f1': 0.8896044158233671, 'number': 1077} | 0.8461 | 0.8847 | 0.8650 | 0.7876 | | 0.0013 | 73.68 | 1400 | 1.7795 | {'precision': 0.81445523193096, 'recall': 0.9241126070991432, 'f1': 0.8658256880733943, 'number': 817} | {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119} | {'precision': 0.888785046728972, 'recall': 0.883008356545961, 'f1': 0.8858872845831393, 'number': 1077} | 0.8432 | 0.8788 | 0.8606 | 0.7934 | | 0.0011 | 84.21 | 1600 | 1.8386 | {'precision': 0.8338833883388339, 'recall': 0.9277845777233782, 'f1': 0.8783314020857474, 'number': 817} | {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} | {'precision': 0.8943985307621671, 'recall': 0.904363974001857, 'f1': 0.8993536472760849, 'number': 1077} | 0.8573 | 0.8922 | 0.8744 | 0.7945 | | 0.0048 | 94.74 | 1800 | 1.8664 | {'precision': 0.8589595375722543, 'recall': 0.9094247246022031, 'f1': 0.8834720570749108, 'number': 817} | {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} | {'precision': 0.9003656307129799, 'recall': 0.914577530176416, 'f1': 0.9074159373560571, 'number': 1077} | 0.8705 | 0.8917 | 0.8810 | 0.7927 | | 0.0004 | 105.26 | 2000 | 1.8672 | {'precision': 0.8634772462077013, 'recall': 0.9057527539779682, 'f1': 0.8841099163679809, 'number': 817} | {'precision': 0.7093023255813954, 'recall': 0.5126050420168067, 'f1': 0.5951219512195123, 'number': 119} | {'precision': 0.8923076923076924, 'recall': 0.9155060352831941, 'f1': 0.9037580201649862, 'number': 1077} | 0.8726 | 0.8877 | 0.8801 | 0.7953 | | 0.0005 | 115.79 | 2200 | 1.8731 | {'precision': 0.8688915375446961, 'recall': 0.8922888616891065, 'f1': 0.8804347826086957, 'number': 817} | {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119} | {'precision': 0.9105166051660517, 'recall': 0.9164345403899722, 'f1': 0.9134659879685332, 'number': 1077} | 0.8792 | 0.8857 | 0.8825 | 0.7976 | | 0.0002 | 126.32 | 2400 | 1.9408 | {'precision': 0.8408071748878924, 'recall': 0.9179926560587516, 'f1': 0.8777062609713283, 'number': 817} | {'precision': 0.6310679611650486, 'recall': 0.5462184873949579, 'f1': 0.5855855855855856, 'number': 119} | {'precision': 0.9091760299625468, 'recall': 0.9015784586815228, 'f1': 0.9053613053613054, 'number': 1077} | 0.8657 | 0.8872 | 0.8763 | 0.7935 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
kejian/final-filter-again
kejian
2022-11-28T17:39:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-28T01:33:32Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: kejian/final-filter-again results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/final-filter-again This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/final-filter-again', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5000, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/25z4zfy3
mostafahaggag/sd-class-butterflies-32
mostafahaggag
2022-11-28T17:37:32Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T17:37:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(mostafahaggag/sd-class-butterflies-32) image = pipeline().images[0] image ```
alexziweiwang/retrain_epoch2and3
alexziweiwang
2022-11-28T17:31:08Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T17:14:05Z
--- tags: - generated_from_trainer model-index: - name: retrain_epoch2and3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain_epoch2and3 This model is a fine-tuned version of [alexziweiwang/retrain_first1epoch](https://huggingface.co/alexziweiwang/retrain_first1epoch) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4888 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:----:|:---:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 7.8479 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6019 | 0.04 | 10 | 7.4765 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6019 | 0.06 | 15 | 7.1196 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3222 | 0.08 | 20 | 6.8029 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3222 | 0.11 | 25 | 6.5210 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2645 | 0.13 | 30 | 6.2630 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2645 | 0.15 | 35 | 6.0213 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.8699 | 0.17 | 40 | 5.8096 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.8699 | 0.19 | 45 | 5.5831 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7145 | 0.21 | 50 | 5.3644 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7145 | 0.23 | 55 | 5.1777 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3702 | 0.25 | 60 | 5.0257 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3702 | 0.27 | 65 | 4.8642 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.1896 | 0.3 | 70 | 4.7205 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.1896 | 0.32 | 75 | 4.5846 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.0615 | 0.34 | 80 | 4.4313 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.0615 | 0.36 | 85 | 4.2923 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.5189 | 0.38 | 90 | 4.1662 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.5189 | 0.4 | 95 | 4.0545 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4911 | 0.42 | 100 | 3.9585 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4911 | 0.44 | 105 | 3.8489 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1997 | 0.46 | 110 | 3.7573 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1997 | 0.48 | 115 | 3.6722 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7348 | 0.51 | 120 | 3.5844 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7348 | 0.53 | 125 | 3.4980 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8042 | 0.55 | 130 | 3.4318 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8042 | 0.57 | 135 | 3.3690 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.705 | 0.59 | 140 | 3.3126 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.705 | 0.61 | 145 | 3.2630 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.763 | 0.63 | 150 | 3.2063 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.763 | 0.65 | 155 | 3.1562 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.5585 | 0.67 | 160 | 3.1096 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.5585 | 0.7 | 165 | 3.0719 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.213 | 0.72 | 170 | 3.0373 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.213 | 0.74 | 175 | 3.0035 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2874 | 0.76 | 180 | 2.9712 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2874 | 0.78 | 185 | 2.9405 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.3327 | 0.8 | 190 | 2.9134 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.3327 | 0.82 | 195 | 2.8910 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2382 | 0.84 | 200 | 2.8672 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2382 | 0.86 | 205 | 2.8462 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0069 | 0.89 | 210 | 2.8260 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0069 | 0.91 | 215 | 2.8087 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2288 | 0.93 | 220 | 2.7920 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.2288 | 0.95 | 225 | 2.7750 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.787 | 0.97 | 230 | 2.7557 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.787 | 0.99 | 235 | 2.7367 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9717 | 1.01 | 240 | 2.7207 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9717 | 1.03 | 245 | 2.7063 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9269 | 1.05 | 250 | 2.6939 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.9269 | 1.08 | 255 | 2.6831 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8771 | 1.1 | 260 | 2.6709 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8771 | 1.12 | 265 | 2.6594 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0474 | 1.14 | 270 | 2.6472 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.0474 | 1.16 | 275 | 2.6361 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7652 | 1.18 | 280 | 2.6268 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7652 | 1.2 | 285 | 2.6184 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8322 | 1.22 | 290 | 2.6106 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8322 | 1.24 | 295 | 2.6034 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6464 | 1.27 | 300 | 2.5957 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6464 | 1.29 | 305 | 2.5877 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7974 | 1.31 | 310 | 2.5805 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7974 | 1.33 | 315 | 2.5748 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.797 | 1.35 | 320 | 2.5698 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.797 | 1.37 | 325 | 2.5644 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7508 | 1.39 | 330 | 2.5595 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7508 | 1.41 | 335 | 2.5537 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7188 | 1.43 | 340 | 2.5486 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7188 | 1.46 | 345 | 2.5434 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6889 | 1.48 | 350 | 2.5377 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6889 | 1.5 | 355 | 2.5336 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6373 | 1.52 | 360 | 2.5300 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6373 | 1.54 | 365 | 2.5258 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.765 | 1.56 | 370 | 2.5219 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.765 | 1.58 | 375 | 2.5181 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6407 | 1.6 | 380 | 2.5144 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6407 | 1.62 | 385 | 2.5113 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7727 | 1.64 | 390 | 2.5093 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7727 | 1.67 | 395 | 2.5076 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8091 | 1.69 | 400 | 2.5060 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.8091 | 1.71 | 405 | 2.5042 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7204 | 1.73 | 410 | 2.5027 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7204 | 1.75 | 415 | 2.5011 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6168 | 1.77 | 420 | 2.4987 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6168 | 1.79 | 425 | 2.4965 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6947 | 1.81 | 430 | 2.4947 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6947 | 1.83 | 435 | 2.4932 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7495 | 1.86 | 440 | 2.4921 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7495 | 1.88 | 445 | 2.4911 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7413 | 1.9 | 450 | 2.4904 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.7413 | 1.92 | 455 | 2.4897 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6498 | 1.94 | 460 | 2.4893 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6498 | 1.96 | 465 | 2.4890 | 0.24 | 1.0 | 48 | 200 | 200 | | 2.6891 | 1.98 | 470 | 2.4888 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
wa3dbk/whisper-small-hi
wa3dbk
2022-11-28T17:12:02Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-24T16:19:34Z
## whisper-small-hi This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset (language=Hindi).
antgrutta/sd-class-butterflies-32
antgrutta
2022-11-28T16:59:10Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:58:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(antgrutta/sd-class-butterflies-32) image = pipeline().images[0] image ```
EmnaBou/bert-finetuned-DT
EmnaBou
2022-11-28T16:49:12Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T15:20:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-DT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-DT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6697 - Precision: 0.2381 - Recall: 0.0321 - F1: 0.0565 - Accuracy: 0.8179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 99 | 0.7505 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 2.0 | 198 | 0.7033 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 3.0 | 297 | 0.6697 | 0.2381 | 0.0321 | 0.0565 | 0.8179 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
KidTheCat/sd-class-butterflies-32
KidTheCat
2022-11-28T16:20:46Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:17:50Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(KidTheCat/sd-class-butterflies-32) image = pipeline().images[0] image ```
luisgasco/distilbert-base-uncased-finetuned-emotion
luisgasco
2022-11-28T16:17:49Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T16:03:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.892 - name: F1 type: f1 value: 0.8873822002431591 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3693 - Accuracy: 0.892 - F1: 0.8874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5715 | 0.8275 | 0.8047 | | 0.7552 | 2.0 | 250 | 0.3693 | 0.892 | 0.8874 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
AdelZakirov/sd-class-butterflies-42
AdelZakirov
2022-11-28T15:53:06Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T15:52:36Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(AdelZakirov/sd-class-butterflies-42) image = pipeline().images[0] image ```
lucascruz/ppo_lunarlander
lucascruz
2022-11-28T15:48:46Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-27T14:13:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.73 +/- 20.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SYH99999/autotrain-translator-2261971987
SYH99999
2022-11-28T15:30:31Z
104
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "ja", "en", "dataset:SYH99999/autotrain-data-translator-3c03831c-5fcf2e86-839aa322-a7658498-cb30b55a-eefc0458", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-11-28T11:53:31Z
--- tags: - autotrain - translation language: - ja - en datasets: - SYH99999/autotrain-data-translator-3c03831c-5fcf2e86-839aa322-a7658498-cb30b55a-eefc0458 co2_eq_emissions: emissions: 234.5986254372695 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 2261971987 - CO2 Emissions (in grams): 234.5986 ## Validation Metrics - Loss: 4.237 - SacreBLEU: 0.697 - Gen len: 256.387
arrandi/sd-class-butterflies-32
arrandi
2022-11-28T15:24:36Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T15:23:56Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(arrandi/sd-class-butterflies-32) image = pipeline().images[0] image ```
ViktorDo/DistilBERT-POWO_MGH_Epiphyte_Finetuned
ViktorDo
2022-11-28T15:24:34Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:08:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_MGH_Epiphyte_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_MGH_Epiphyte_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0824 | 1.0 | 1931 | 0.0807 | | 0.0768 | 2.0 | 3862 | 0.0747 | | 0.0664 | 3.0 | 5793 | 0.0749 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ConvLab/ddpt-policy-0.01multiwoz21
ConvLab
2022-11-28T15:20:35Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:18:28Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-0.01multiwoz21 This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on 1 percent of [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 40 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ConvLab/mle-policy-multiwoz21
ConvLab
2022-11-28T15:11:19Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/multiwoz21", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:07:50Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/multiwoz21 --- # mle-policy-multiwoz21 This is a MLE model trained on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - seed: 0 - optimizer: Adam - num_epochs: 24 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ViktorDo/DistilBERT-POWO_MGH_Growth_Form_Finetuned
ViktorDo
2022-11-28T15:04:56Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T14:48:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_MGH_Growth_Form_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_MGH_Growth_Form_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2379 | 1.0 | 2054 | 0.2241 | | 0.2098 | 2.0 | 4108 | 0.2173 | | 0.2168 | 3.0 | 6162 | 0.2182 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ConvLab/ddpt-policy-sgd
ConvLab
2022-11-28T15:01:15Z
0
1
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T13:21:09Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-sgd This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 1 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
alexziweiwang/pure-start-epoch1
alexziweiwang
2022-11-28T14:49:27Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T14:32:53Z
--- tags: - generated_from_trainer model-index: - name: pure-start-epoch1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pure-start-epoch1 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 21.0050 - Acc: 0.095 - Wer: 1.0 - Correct: 19 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 67.2752 | 0.0 | 1.0119 | 0 | 200 | 200 | | 131.0548 | 0.04 | 10 | 66.2796 | 0.0 | 1.0257 | 0 | 200 | 200 | | 131.0548 | 0.06 | 15 | 65.2071 | 0.005 | 1.0237 | 1 | 200 | 200 | | 145.0859 | 0.08 | 20 | 64.0987 | 0.035 | 1.0198 | 7 | 200 | 200 | | 145.0859 | 0.11 | 25 | 62.9734 | 0.07 | 1.0119 | 14 | 200 | 200 | | 110.0012 | 0.13 | 30 | 61.8288 | 0.09 | 1.0119 | 18 | 200 | 200 | | 110.0012 | 0.15 | 35 | 60.6565 | 0.09 | 1.0119 | 18 | 200 | 200 | | 122.6164 | 0.17 | 40 | 59.4606 | 0.095 | 1.0119 | 19 | 200 | 200 | | 122.6164 | 0.19 | 45 | 58.2224 | 0.095 | 1.0099 | 19 | 200 | 200 | | 125.942 | 0.21 | 50 | 56.9514 | 0.095 | 1.0020 | 19 | 200 | 200 | | 125.942 | 0.23 | 55 | 55.5923 | 0.095 | 1.0 | 19 | 200 | 200 | | 111.2271 | 0.25 | 60 | 54.1423 | 0.095 | 1.0 | 19 | 200 | 200 | | 111.2271 | 0.27 | 65 | 52.6174 | 0.095 | 1.0 | 19 | 200 | 200 | | 137.2356 | 0.3 | 70 | 51.0340 | 0.095 | 1.0 | 19 | 200 | 200 | | 137.2356 | 0.32 | 75 | 49.4034 | 0.095 | 1.0 | 19 | 200 | 200 | | 112.2532 | 0.34 | 80 | 47.7291 | 0.095 | 1.0 | 19 | 200 | 200 | | 112.2532 | 0.36 | 85 | 46.0281 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.3973 | 0.38 | 90 | 44.2361 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.3973 | 0.4 | 95 | 42.4925 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.7175 | 0.42 | 100 | 40.7673 | 0.095 | 1.0 | 19 | 200 | 200 | | 88.7175 | 0.44 | 105 | 39.0848 | 0.095 | 1.0 | 19 | 200 | 200 | | 90.857 | 0.46 | 110 | 37.4890 | 0.095 | 1.0 | 19 | 200 | 200 | | 90.857 | 0.48 | 115 | 35.8966 | 0.095 | 1.0 | 19 | 200 | 200 | | 77.5782 | 0.51 | 120 | 34.2822 | 0.1 | 1.0 | 20 | 200 | 200 | | 77.5782 | 0.53 | 125 | 32.7953 | 0.1 | 1.0 | 20 | 200 | 200 | | 80.2378 | 0.55 | 130 | 31.4560 | 0.1 | 1.0 | 20 | 200 | 200 | | 80.2378 | 0.57 | 135 | 30.1651 | 0.1 | 1.0 | 20 | 200 | 200 | | 73.5042 | 0.59 | 140 | 29.0069 | 0.095 | 1.0 | 19 | 200 | 200 | | 73.5042 | 0.61 | 145 | 28.0349 | 0.095 | 1.0 | 19 | 200 | 200 | | 71.5632 | 0.63 | 150 | 27.1812 | 0.095 | 1.0 | 19 | 200 | 200 | | 71.5632 | 0.65 | 155 | 26.4012 | 0.095 | 1.0 | 19 | 200 | 200 | | 76.5337 | 0.67 | 160 | 25.6924 | 0.095 | 1.0 | 19 | 200 | 200 | | 76.5337 | 0.7 | 165 | 25.0184 | 0.095 | 1.0 | 19 | 200 | 200 | | 54.6507 | 0.72 | 170 | 24.4100 | 0.095 | 1.0 | 19 | 200 | 200 | | 54.6507 | 0.74 | 175 | 23.8273 | 0.095 | 1.0 | 19 | 200 | 200 | | 57.1606 | 0.76 | 180 | 23.2988 | 0.095 | 1.0 | 19 | 200 | 200 | | 57.1606 | 0.78 | 185 | 22.8731 | 0.095 | 1.0 | 19 | 200 | 200 | | 56.0855 | 0.8 | 190 | 22.5336 | 0.095 | 1.0 | 19 | 200 | 200 | | 56.0855 | 0.82 | 195 | 22.2334 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.2475 | 0.84 | 200 | 21.9555 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.2475 | 0.86 | 205 | 21.7112 | 0.095 | 1.0 | 19 | 200 | 200 | | 47.9988 | 0.89 | 210 | 21.5123 | 0.095 | 1.0 | 19 | 200 | 200 | | 47.9988 | 0.91 | 215 | 21.3407 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.1394 | 0.93 | 220 | 21.1965 | 0.095 | 1.0 | 19 | 200 | 200 | | 55.1394 | 0.95 | 225 | 21.1028 | 0.095 | 1.0 | 19 | 200 | 200 | | 48.0323 | 0.97 | 230 | 21.0376 | 0.095 | 1.0 | 19 | 200 | 200 | | 48.0323 | 0.99 | 235 | 21.0050 | 0.095 | 1.0 | 19 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
Fabiuas/Animal-classifier
Fabiuas
2022-11-28T14:38:27Z
311
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T14:37:59Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Animal-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9481481313705444 --- # Animal-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bee ![bee](images/bee.jpg) #### beetle ![beetle](images/beetle.jpg) #### bird ![bird](images/bird.jpg) #### butterfly ![butterfly](images/butterfly.jpg) #### camel ![camel](images/camel.jpg) #### cat ![cat](images/cat.jpg) #### caterpillar ![caterpillar](images/caterpillar.jpg) #### crab ![crab](images/crab.jpg) #### dog ![dog](images/dog.jpg) #### fly ![fly](images/fly.jpg) #### grasshopper ![grasshopper](images/grasshopper.jpg) #### horse ![horse](images/horse.jpg) #### lizard ![lizard](images/lizard.jpg) #### mosquito ![mosquito](images/mosquito.jpg) #### mouse ![mouse](images/mouse.jpg) #### snake ![snake](images/snake.jpg) #### spider ![spider](images/spider.jpg) #### whale ![whale](images/whale.jpg)
renesteeman/whisper-tiny-dutch
renesteeman
2022-11-28T14:29:27Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T11:37:40Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Dutch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: nl, split: test' metrics: - name: Wer type: wer value: 42.065535920433355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Dutch This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7024 - Wer: 42.0655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5563 | 0.78 | 500 | 0.7838 | 47.5002 | | 0.3949 | 1.56 | 1000 | 0.7301 | 43.9570 | | 0.2666 | 2.34 | 1500 | 0.7103 | 42.8426 | | 0.2307 | 3.12 | 2000 | 0.7024 | 42.0655 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/bert-uncased-massive-intent-classification_banking-1
fathyshalab
2022-11-28T13:48:29Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T13:40:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification_banking-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification_banking-1 This model is a fine-tuned version of [gokuls/bert-uncased-massive-intent-classification](https://huggingface.co/gokuls/bert-uncased-massive-intent-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6770 - Accuracy: 0.1378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8977 | 1.0 | 3 | 2.7353 | 0.0622 | | 2.5889 | 2.0 | 6 | 2.7109 | 0.0933 | | 2.4362 | 3.0 | 9 | 2.6940 | 0.1111 | | 2.3175 | 4.0 | 12 | 2.6817 | 0.1333 | | 2.2524 | 5.0 | 15 | 2.6770 | 0.1378 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
jfjensen/sd-class-butterflies-32
jfjensen
2022-11-28T12:59:41Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T12:58:55Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(jfjensen/sd-class-butterflies-32) image = pipeline().images[0] image ```
minhtoan/t5-small-vietnamese-news
minhtoan
2022-11-28T12:52:14Z
122
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "vi", "dataset:Wikilingua", "dataset:Vietnews", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-24T08:01:28Z
--- language: vi datasets: - Wikilingua - Vietnews tags: - summarization license: mit widget: - text: 'VKS cáo buộc ông Nguyễn Thế Hiệp có sai phạm trong vụ cháy gần Bệnh viện Nhi trung ương khiến 2 người chết, thiệt hại 1,9 tỷ đồng song bị cáo khẳng định vô tội. Mức án đề nghị 9-10 năm tù với bị cáo 73 tuổi được đại diện VKSND quận Ba Đình đưa ra chiều 28/11, quy buộc phạm tội Vi phạm quy định về phòng cháy chữa cháy, theo Điều 313 Bộ luật Hình sự. VKS nhận định ông Hiệp có lỗi trong việc vận hành nhà trọ không phép, không đủ điều kiện an toàn phòng cháy chữa cháy, gây thiệt hại về tài sản và khiến hai người chết. Tuy nhiên, bị cáo chưa bồi thường. Bản luận tội nêu, tại phiên tòa hôm nay ông Hiệp "chưa tỏ thái độ ăn năn hối hận, có nhân thân đặc biệt xấu". Từ hàng chục năm trước, ông từng 11 lần bị lập danh chỉ bản về hành vi trộm cắp, năm 1985 lại nhận 18 năm tù về các tội cướp tài sản, hiếp dâm, đưa hối lộ...' inference: parameters: max_length: 150 --- # Text summarization for Vietnamese Language State-of-the-art lightweights pretrained Transformer-based encoder-decoder model for Vietnamese. Model trained on dataset Vietnamese News with input length = 512, output length = 150 ## How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Example test data on VNExpress: https://vnexpress.net/ong-hiep-khung-khong-nhan-toi-trong-vu-chay-gan-benh-vien-nhi-4541483.html tokenizer = AutoTokenizer.from_pretrained("minhtoan/t5-small-vietnamese-news") model = AutoModelForSeq2SeqLM.from_pretrained("minhtoan/t5-small-vietnamese-news") model.cuda() src = 'VKS cáo buộc ông Nguyễn Thế Hiệp có sai phạm trong vụ cháy gần Bệnh viện Nhi trung ương khiến 2 người chết, thiệt hại 1,9 tỷ đồng song bị cáo khẳng định vô tội. Mức án đề nghị 9-10 năm tù với bị cáo 73 tuổi được đại diện VKSND quận Ba Đình đưa ra chiều 28/11, quy buộc phạm tội Vi phạm quy định về phòng cháy chữa cháy, theo Điều 313 Bộ luật Hình sự. VKS nhận định ông Hiệp có lỗi trong việc vận hành nhà trọ không phép, không đủ điều kiện an toàn phòng cháy chữa cháy, gây thiệt hại về tài sản và khiến hai người chết. Tuy nhiên, bị cáo chưa bồi thường. Bản luận tội nêu, tại phiên tòa hôm nay ông Hiệp "chưa tỏ thái độ ăn năn hối hận, có nhân thân đặc biệt xấu". Từ hàng chục năm trước, ông từng 11 lần bị lập danh chỉ bản về hành vi trộm cắp, năm 1985 lại nhận 18 năm tù về các tội cướp tài sản, hiếp dâm, đưa hối lộ...' tokenized_text = tokenizer.encode(src, return_tensors="pt").cuda() model.eval() summary_ids = model.generate(tokenized_text, max_length=150) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) output ``` ## Author ` Phan Minh Toan `
cardiffnlp/twitter-roberta-base-offensive
cardiffnlp
2022-11-28T11:36:23Z
35,866
27
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-offensive 0.9073 2) offensive 0.0927 ```
biu-nlp/f-coref
biu-nlp
2022-11-28T11:35:52Z
88,201
18
transformers
[ "transformers", "pytorch", "roberta", "fast", "coreference-resolution", "en", "dataset:multi_news", "dataset:ontonotes", "arxiv:2209.04280", "arxiv:2205.12644", "arxiv:1907.10529", "arxiv:2101.00434", "arxiv:2109.04127", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2022-08-19T12:01:10Z
--- language: - en tags: - fast - coreference-resolution license: mit datasets: - multi_news - ontonotes metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: biu-nlp/f-coref results: - task: type: coreference-resolution name: coreference-resolution dataset: name: ontonotes type: coreference metrics: - name: Avg. F1 type: CoNLL value: 78.5 --- ## F-Coref: Fast, Accurate and Easy to Use Coreference Resolution [F-Coref](https://arxiv.org/abs/2209.04280) allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the [LingMess](https://arxiv.org/abs/2205.12644) model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover Please check the [official repository](https://github.com/shon-otmazgin/fastcoref) for more details and updates. #### Experiments | Model | Runtime | Memory | |-----------------------|---------|---------| | [Joshi et al. (2020)](https://arxiv.org/abs/1907.10529) | 12:06 | 27.4 | | [Otmazgin et al. (2022)](https://arxiv.org/abs/2205.12644) | 06:43 | 4.6 | | + Batching | 06:00 | 6.6 | | [Kirstain et al. (2021)](https://arxiv.org/abs/2101.00434) | 04:37 | 4.4 | | [Dobrovolskii (2021)](https://arxiv.org/abs/2109.04127) | 03:49 | 3.5 | | [F-Coref](https://arxiv.org/abs/2209.04280) | 00:45 | 3.3 | | + Batching | 00:35 | 4.5 | | + Leftovers batching | 00:25 | 4.0 | The inference time(Min:Sec) and memory(GiB) for each model on 2.8K documents. Average of 3 runs. Hardware, NVIDIA Tesla V100 SXM2. ### Citation ``` @inproceedings{Otmazgin2022FcorefFA, title={F-coref: Fast, Accurate and Easy to Use Coreference Resolution}, author={Shon Otmazgin and Arie Cattan and Yoav Goldberg}, booktitle={AACL}, year={2022} } ``` [F-coref: Fast, Accurate and Easy to Use Coreference Resolution](https://aclanthology.org/2022.aacl-demo.6) (Otmazgin et al., AACL-IJCNLP 2022)
clp/vit-base-patch16-224-finetuned
clp
2022-11-28T11:29:17Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T11:19:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7617 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6063 | 0.6667 | | No log | 2.0 | 2 | 0.6958 | 0.3333 | | No log | 3.0 | 3 | 0.7617 | 0.3333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
eibakke/bert-finetuned-on-nq-short
eibakke
2022-11-28T10:41:08Z
107
1
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-11-22T07:36:02Z
Trained on the full NQ dataset.
mn367/radio-mlm
mn367
2022-11-28T09:52:57Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-28T09:42:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mn367/radio-mlm results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mn367/radio-mlm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6630 - Validation Loss: 4.6014 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 39000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6630 | 4.6014 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
lewtun/sd-class-butterflies-32-test1
lewtun
2022-11-28T09:09:42Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T08:47:06Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(lewtun/sd-class-butterflies-32-test1) image = pipeline().images[0] image ```
alexziweiwang/retrain_epoch2to5
alexziweiwang
2022-11-28T08:51:14Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T08:35:03Z
--- tags: - generated_from_trainer model-index: - name: retrain_epoch2to5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain_epoch2to5 This model is a fine-tuned version of [alexziweiwang/retrain_first1epoch](https://huggingface.co/alexziweiwang/retrain_first1epoch) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3244 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:----:|:---:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 7.8494 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6032 | 0.04 | 10 | 7.4834 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.6032 | 0.06 | 15 | 7.1350 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3336 | 0.08 | 20 | 6.8284 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.3336 | 0.11 | 25 | 6.5577 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2911 | 0.13 | 30 | 6.3124 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.2911 | 0.15 | 35 | 6.0850 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.9181 | 0.17 | 40 | 5.8888 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.9181 | 0.19 | 45 | 5.6815 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7954 | 0.21 | 50 | 5.4834 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.7954 | 0.23 | 55 | 5.3099 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.4801 | 0.25 | 60 | 5.1678 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.4801 | 0.27 | 65 | 5.0223 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3377 | 0.3 | 70 | 4.8893 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.3377 | 0.32 | 75 | 4.7743 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.2511 | 0.34 | 80 | 4.6494 | 0.24 | 1.0 | 48 | 200 | 200 | | 5.2511 | 0.36 | 85 | 4.5307 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.727 | 0.38 | 90 | 4.4237 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.727 | 0.4 | 95 | 4.3263 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.7653 | 0.42 | 100 | 4.2439 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.7653 | 0.44 | 105 | 4.1589 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4971 | 0.46 | 110 | 4.0847 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.4971 | 0.48 | 115 | 4.0118 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0077 | 0.51 | 120 | 3.9382 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0077 | 0.53 | 125 | 3.8663 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1693 | 0.55 | 130 | 3.8106 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1693 | 0.57 | 135 | 3.7580 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0854 | 0.59 | 140 | 3.7123 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.0854 | 0.61 | 145 | 3.6720 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1988 | 0.63 | 150 | 3.6260 | 0.24 | 1.0 | 48 | 200 | 200 | | 4.1988 | 0.65 | 155 | 3.5853 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.9975 | 0.67 | 160 | 3.5463 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.9975 | 0.7 | 165 | 3.5122 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.6042 | 0.72 | 170 | 3.4862 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.6042 | 0.74 | 175 | 3.4631 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7347 | 0.76 | 180 | 3.4406 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7347 | 0.78 | 185 | 3.4202 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8336 | 0.8 | 190 | 3.4014 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8336 | 0.82 | 195 | 3.3855 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7454 | 0.84 | 200 | 3.3703 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.7454 | 0.86 | 205 | 3.3576 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.525 | 0.89 | 210 | 3.3471 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.525 | 0.91 | 215 | 3.3392 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8175 | 0.93 | 220 | 3.3331 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.8175 | 0.95 | 225 | 3.3289 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.307 | 0.97 | 230 | 3.3259 | 0.24 | 1.0 | 48 | 200 | 200 | | 3.307 | 0.99 | 235 | 3.3244 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
rahul77/t5-small-finetuned-rahul-rough
rahul77
2022-11-28T08:50:11Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T07:27:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-rahul-rough results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-rahul-rough This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 16 | 0.9994 | 26.1162 | 18.2666 | 23.7548 | 25.2106 | 19.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
alexziweiwang/retrain_first1epoch
alexziweiwang
2022-11-28T08:20:32Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T08:04:06Z
--- tags: - generated_from_trainer model-index: - name: retrain_first1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain_first1epoch This model is a fine-tuned version of [alexziweiwang/exp21-uaspeech-foundation](https://huggingface.co/alexziweiwang/exp21-uaspeech-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.2238 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 13.8048 | 0.22 | 1.0237 | 44 | 200 | 200 | | 12.2209 | 0.04 | 10 | 13.6869 | 0.22 | 1.0257 | 44 | 200 | 200 | | 12.2209 | 0.06 | 15 | 13.5691 | 0.225 | 1.0296 | 45 | 200 | 200 | | 12.4299 | 0.08 | 20 | 13.4590 | 0.24 | 1.0375 | 48 | 200 | 200 | | 12.4299 | 0.11 | 25 | 13.3508 | 0.235 | 1.0395 | 47 | 200 | 200 | | 11.0298 | 0.13 | 30 | 13.2241 | 0.25 | 1.0375 | 50 | 200 | 200 | | 11.0298 | 0.15 | 35 | 13.0757 | 0.245 | 1.0336 | 49 | 200 | 200 | | 10.5248 | 0.17 | 40 | 12.9277 | 0.245 | 1.0316 | 49 | 200 | 200 | | 10.5248 | 0.19 | 45 | 12.7784 | 0.25 | 1.0316 | 50 | 200 | 200 | | 10.8585 | 0.21 | 50 | 12.6346 | 0.25 | 1.0277 | 50 | 200 | 200 | | 10.8585 | 0.23 | 55 | 12.4939 | 0.25 | 1.0277 | 50 | 200 | 200 | | 10.7046 | 0.25 | 60 | 12.3472 | 0.25 | 1.0257 | 50 | 200 | 200 | | 10.7046 | 0.27 | 65 | 12.1962 | 0.25 | 1.0237 | 50 | 200 | 200 | | 10.8031 | 0.3 | 70 | 12.0537 | 0.25 | 1.0257 | 50 | 200 | 200 | | 10.8031 | 0.32 | 75 | 11.9088 | 0.25 | 1.0237 | 50 | 200 | 200 | | 10.859 | 0.34 | 80 | 11.7693 | 0.25 | 1.0257 | 50 | 200 | 200 | | 10.859 | 0.36 | 85 | 11.6214 | 0.25 | 1.0198 | 50 | 200 | 200 | | 9.7886 | 0.38 | 90 | 11.4699 | 0.25 | 1.0178 | 50 | 200 | 200 | | 9.7886 | 0.4 | 95 | 11.3182 | 0.25 | 1.0138 | 50 | 200 | 200 | | 10.4627 | 0.42 | 100 | 11.1609 | 0.25 | 1.0119 | 50 | 200 | 200 | | 10.4627 | 0.44 | 105 | 11.0017 | 0.25 | 1.0138 | 50 | 200 | 200 | | 10.0619 | 0.46 | 110 | 10.8520 | 0.25 | 1.0138 | 50 | 200 | 200 | | 10.0619 | 0.48 | 115 | 10.7096 | 0.25 | 1.0138 | 50 | 200 | 200 | | 8.7443 | 0.51 | 120 | 10.5629 | 0.25 | 1.0138 | 50 | 200 | 200 | | 8.7443 | 0.53 | 125 | 10.4111 | 0.25 | 1.0119 | 50 | 200 | 200 | | 9.675 | 0.55 | 130 | 10.2606 | 0.25 | 1.0119 | 50 | 200 | 200 | | 9.675 | 0.57 | 135 | 10.1125 | 0.245 | 1.0119 | 49 | 200 | 200 | | 9.1918 | 0.59 | 140 | 9.9708 | 0.24 | 1.0040 | 48 | 200 | 200 | | 9.1918 | 0.61 | 145 | 9.8248 | 0.24 | 1.0040 | 48 | 200 | 200 | | 9.6798 | 0.63 | 150 | 9.6785 | 0.24 | 1.0040 | 48 | 200 | 200 | | 9.6798 | 0.65 | 155 | 9.5309 | 0.24 | 1.0040 | 48 | 200 | 200 | | 9.0181 | 0.67 | 160 | 9.3867 | 0.24 | 1.0040 | 48 | 200 | 200 | | 9.0181 | 0.7 | 165 | 9.2432 | 0.24 | 1.0040 | 48 | 200 | 200 | | 7.7446 | 0.72 | 170 | 9.1053 | 0.24 | 1.0040 | 48 | 200 | 200 | | 7.7446 | 0.74 | 175 | 8.9743 | 0.24 | 1.0040 | 48 | 200 | 200 | | 8.0251 | 0.76 | 180 | 8.8538 | 0.24 | 1.0040 | 48 | 200 | 200 | | 8.0251 | 0.78 | 185 | 8.7473 | 0.24 | 1.0020 | 48 | 200 | 200 | | 7.9652 | 0.8 | 190 | 8.6516 | 0.24 | 1.0020 | 48 | 200 | 200 | | 7.9652 | 0.82 | 195 | 8.5661 | 0.24 | 1.0020 | 48 | 200 | 200 | | 7.9537 | 0.84 | 200 | 8.4887 | 0.24 | 1.0020 | 48 | 200 | 200 | | 7.9537 | 0.86 | 205 | 8.4206 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.2889 | 0.89 | 210 | 8.3644 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.2889 | 0.91 | 215 | 8.3169 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.8974 | 0.93 | 220 | 8.2789 | 0.24 | 1.0 | 48 | 200 | 200 | | 7.8974 | 0.95 | 225 | 8.2514 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.9118 | 0.97 | 230 | 8.2330 | 0.24 | 1.0 | 48 | 200 | 200 | | 6.9118 | 0.99 | 235 | 8.2238 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
huggingtweets/bobkerns
huggingtweets
2022-11-28T08:14:20Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T08:14:12Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3653376550/f40f9602f2e8e185eb7ddce332157ffe_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob (Moderna #5) Kerns</div> <div style="text-align: center; font-size: 14px;">@bobkerns</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bob (Moderna #5) Kerns. | Data | Bob (Moderna #5) Kerns | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 315 | | Short tweets | 42 | | Tweets kept | 2877 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/390ksfue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobkerns's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bobkerns') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
linfuyou/bert-squad-training
linfuyou
2022-11-28T07:41:14Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T09:15:55Z
bert-base-cased-squadv1.1-training
mtz2110/wav2vec2-large-xls-r-300m-he
mtz2110
2022-11-28T07:33:52Z
22
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-27T16:52:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-he results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: he_il split: train args: he_il metrics: - name: Wer type: wer value: 0.5953778429933969 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-he This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8899 | 0.99 | 200 | inf | 1.0 | | 3.0802 | 1.98 | 400 | inf | 1.0 | | 1.4275 | 2.97 | 600 | inf | 0.8155 | | 0.8737 | 3.96 | 800 | inf | 0.7276 | | 0.6503 | 4.95 | 1000 | inf | 0.6858 | | 0.5176 | 5.94 | 1200 | inf | 0.6660 | | 0.4084 | 6.93 | 1400 | inf | 0.6682 | | 0.3469 | 7.92 | 1600 | inf | 0.6473 | | 3.2485 | 6.67 | 1800 | inf | 1.0 | | 0.6476 | 7.41 | 2000 | inf | 0.6574 | | 0.3229 | 8.15 | 2200 | inf | 0.6499 | | 0.2899 | 8.89 | 2400 | inf | 0.6376 | | 0.26 | 9.63 | 2600 | inf | 0.6405 | | 0.2038 | 10.37 | 2800 | inf | 0.6409 | | 0.2158 | 11.11 | 3000 | inf | 0.6313 | | 0.1892 | 11.85 | 3200 | inf | 0.6185 | | 0.1611 | 12.59 | 3400 | inf | 0.6271 | | 0.1584 | 13.33 | 3600 | inf | 0.6101 | | 0.1443 | 14.07 | 3800 | inf | 0.6121 | | 0.1353 | 14.81 | 4000 | inf | 0.6194 | | 0.1109 | 15.56 | 4200 | inf | 0.6321 | | 0.1116 | 16.3 | 4400 | inf | 0.6025 | | 0.1054 | 17.04 | 4600 | inf | 0.6029 | | 0.0966 | 17.78 | 4800 | inf | 0.6069 | | 0.0824 | 18.52 | 5000 | inf | 0.5998 | | 0.0812 | 19.26 | 5200 | inf | 0.5972 | | 0.0749 | 20.0 | 5400 | inf | 0.5954 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
venetis/vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred
venetis
2022-11-28T07:33:09Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-27T16:45:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10_album_vitVMMRdb_make_model_album_pred This model is a fine-tuned version of [aaraki/vit-base-patch16-224-in21k-finetuned-cifar10](https://huggingface.co/aaraki/vit-base-patch16-224-in21k-finetuned-cifar10) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5462 - Accuracy: 0.8594 - Precision: 0.8556 - Recall: 0.8594 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 4.6112 | 1.0 | 839 | 4.5615 | 0.1425 | 0.0837 | 0.1425 | 0.0646 | | 3.1177 | 2.0 | 1678 | 2.9595 | 0.4240 | 0.3424 | 0.4240 | 0.3283 | | 2.0793 | 3.0 | 2517 | 2.0048 | 0.5771 | 0.5081 | 0.5771 | 0.5029 | | 1.4566 | 4.0 | 3356 | 1.4554 | 0.6760 | 0.6333 | 0.6760 | 0.6280 | | 1.1307 | 5.0 | 4195 | 1.1319 | 0.7350 | 0.7027 | 0.7350 | 0.7013 | | 0.9367 | 6.0 | 5034 | 0.9328 | 0.7738 | 0.7546 | 0.7738 | 0.7503 | | 0.7783 | 7.0 | 5873 | 0.8024 | 0.7986 | 0.7893 | 0.7986 | 0.7819 | | 0.6022 | 8.0 | 6712 | 0.7187 | 0.8174 | 0.8098 | 0.8174 | 0.8055 | | 0.5234 | 9.0 | 7551 | 0.6635 | 0.8313 | 0.8220 | 0.8313 | 0.8217 | | 0.4298 | 10.0 | 8390 | 0.6182 | 0.8388 | 0.8337 | 0.8388 | 0.8302 | | 0.3618 | 11.0 | 9229 | 0.5953 | 0.8455 | 0.8394 | 0.8455 | 0.8382 | | 0.3262 | 12.0 | 10068 | 0.5735 | 0.8501 | 0.8443 | 0.8501 | 0.8436 | | 0.3116 | 13.0 | 10907 | 0.5612 | 0.8527 | 0.8488 | 0.8527 | 0.8471 | | 0.2416 | 14.0 | 11746 | 0.5524 | 0.8558 | 0.8500 | 0.8558 | 0.8496 | | 0.2306 | 15.0 | 12585 | 0.5489 | 0.8572 | 0.8525 | 0.8572 | 0.8519 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
cavitcakir/swin-tiny-patch4-window7-224-finetuned-eurosat
cavitcakir
2022-11-28T04:30:00Z
206
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T04:24:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5373 - Accuracy: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6855 | 0.98 | 10 | 0.6436 | 0.625 | | 0.6499 | 1.98 | 20 | 0.5745 | 0.7083 | | 0.6021 | 2.98 | 30 | 0.5373 | 0.7639 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
scostiniano/roberta-tagalog-large-ner-v1
scostiniano
2022-11-28T04:22:41Z
113
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "doi:10.57967/hf/0201", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-24T06:32:21Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-tagalog-large-ner-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Description - The dataset consists of 148 Filipino storytelling books, 4,523 sentences, 7,118 tokens, and 868 unique tokens. - This NER model only supports the Filipino language and does not include proper nouns, verbs, adjectives, and adverbs as of the moment - The input must undergo preprocessing. Soon I will upload the code to GitHub for preprocessing the input - To replicate the preprocessed input use this example as a guide - Input: "May umaapoy na bahay " - Preprocessed Input: "apoy bahay" # roberta-tagalog-large-ner-v1 This model is a fine-tuned version of [jcblaise/roberta-tagalog-large](https://huggingface.co/jcblaise/roberta-tagalog-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1866 - Precision: 0.9546 - Recall: 0.9557 - F1: 0.9551 - Accuracy: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 205 | 0.2044 | 0.8945 | 0.8920 | 0.8933 | 0.9414 | | No log | 2.0 | 410 | 0.1421 | 0.9410 | 0.9341 | 0.9375 | 0.9625 | | 0.2423 | 3.0 | 615 | 0.1485 | 0.9309 | 0.9500 | 0.9403 | 0.9670 | | 0.2423 | 4.0 | 820 | 0.1543 | 0.9473 | 0.9505 | 0.9489 | 0.9689 | | 0.0154 | 5.0 | 1025 | 0.1749 | 0.9494 | 0.9494 | 0.9494 | 0.9706 | | 0.0154 | 6.0 | 1230 | 0.1706 | 0.9459 | 0.9545 | 0.9502 | 0.9713 | | 0.0154 | 7.0 | 1435 | 0.1822 | 0.9490 | 0.9522 | 0.9506 | 0.9717 | | 0.003 | 8.0 | 1640 | 0.1841 | 0.9529 | 0.9540 | 0.9534 | 0.9723 | | 0.003 | 9.0 | 1845 | 0.1870 | 0.9540 | 0.9551 | 0.9545 | 0.9729 | | 0.0007 | 10.0 | 2050 | 0.1866 | 0.9546 | 0.9557 | 0.9551 | 0.9724 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ajdowney/bert-wash-binary-25
ajdowney
2022-11-28T03:44:46Z
71
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T03:43:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ajdowney/bert-wash-binary-25 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ajdowney/bert-wash-binary-25 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3261 - Validation Loss: 0.6889 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 129, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4722 | 0.5900 | 0 | | 0.3985 | 0.6213 | 1 | | 0.3261 | 0.6889 | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.13.1
thisisHJLee/wav2vec2-large-xls-r-1b-korean-sample2
thisisHJLee
2022-11-28T02:25:48Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T04:56:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-1b-korean-sample2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-korean-sample2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - Cer: 0.0294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3415 | 1.0 | 11471 | 0.2666 | 0.0750 | | 0.1997 | 2.0 | 22942 | 0.1617 | 0.0415 | | 0.1153 | 3.0 | 34413 | 0.1283 | 0.0294 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
nawel-ucsb/wav2vec2-large-xls-r-300m-french-colab
nawel-ucsb
2022-11-28T02:13:41Z
10
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-24T05:54:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-french-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: fr split: train[:4%] args: fr metrics: - name: Wer type: wer value: 0.2073518915060671 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-french-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4075 - Wer: 0.2074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4642 | 1.07 | 400 | 1.4491 | 0.8681 | | 0.9543 | 2.14 | 800 | 0.5998 | 0.4982 | | 0.5364 | 3.21 | 1200 | 0.4400 | 0.3549 | | 0.4236 | 4.28 | 1600 | 0.4348 | 0.3476 | | 0.3345 | 5.35 | 2000 | 0.3897 | 0.3000 | | 0.2938 | 6.42 | 2400 | 0.3893 | 0.3176 | | 0.2502 | 7.49 | 2800 | 0.4306 | 0.3000 | | 0.2376 | 8.56 | 3200 | 0.4023 | 0.2939 | | 0.1999 | 9.63 | 3600 | 0.3973 | 0.2652 | | 0.1859 | 10.7 | 4000 | 0.3701 | 0.2773 | | 0.1673 | 11.76 | 4400 | 0.4047 | 0.2661 | | 0.1555 | 12.83 | 4800 | 0.4207 | 0.2670 | | 0.1385 | 13.9 | 5200 | 0.4110 | 0.2700 | | 0.13 | 14.97 | 5600 | 0.4209 | 0.2575 | | 0.1185 | 16.04 | 6000 | 0.4385 | 0.2582 | | 0.11 | 17.11 | 6400 | 0.4334 | 0.2461 | | 0.1016 | 18.18 | 6800 | 0.4058 | 0.2450 | | 0.0913 | 19.25 | 7200 | 0.3923 | 0.2439 | | 0.0843 | 20.32 | 7600 | 0.4139 | 0.2434 | | 0.0782 | 21.39 | 8000 | 0.4111 | 0.2397 | | 0.0732 | 22.46 | 8400 | 0.4116 | 0.2327 | | 0.0644 | 23.53 | 8800 | 0.4041 | 0.2327 | | 0.0603 | 24.6 | 9200 | 0.4065 | 0.2232 | | 0.0553 | 25.67 | 9600 | 0.4198 | 0.2198 | | 0.0502 | 26.74 | 10000 | 0.4137 | 0.2172 | | 0.0472 | 27.81 | 10400 | 0.4084 | 0.2148 | | 0.0455 | 28.88 | 10800 | 0.4116 | 0.2109 | | 0.0417 | 29.95 | 11200 | 0.4075 | 0.2074 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/tarunchitra
huggingtweets
2022-11-28T02:11:02Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T02:09:42Z
--- language: en thumbnail: http://www.huggingtweets.com/tarunchitra/1669601459083/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1587539091444432897/Z6_nmrCB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tarun Chitra</div> <div style="text-align: center; font-size: 14px;">@tarunchitra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tarun Chitra. | Data | Tarun Chitra | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 439 | | Short tweets | 362 | | Tweets kept | 2433 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ex37piz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tarunchitra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12p1kbwc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12p1kbwc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tarunchitra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewispons/large-email-classifier
lewispons
2022-11-28T01:56:52Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-26T22:47:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{lewispons/large-email-classifier}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 752 with parameters: ``` {'batch_size': 50, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2256, "warmup_steps": 226, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fanpu/final_model_output_subreddit-wallstreetbets_3
fanpu
2022-11-28T01:42:49Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T19:02:43Z
--- tags: - generated_from_trainer model-index: - name: final_model_output_subreddit-wallstreetbets_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_model_output_subreddit-wallstreetbets_3 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2588 | 1.25 | 5000 | 3.6824 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
erkanxyzalaca/turkishReviews-ds-mini
erkanxyzalaca
2022-11-28T01:38:07Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T22:00:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: turkishReviews-ds-mini results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # turkishReviews-ds-mini This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.3867 - Validation Loss: 8.3741 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -765, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2149 | 9.6891 | 0 | | 9.0695 | 8.7610 | 1 | | 8.3867 | 8.3741 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.1 - Datasets 2.7.1 - Tokenizers 0.13.2
sedatkestepe/wav2vec2-large-xls-r-300m-turkish-colab
sedatkestepe
2022-11-28T00:32:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-28T00:32:12Z
--- license: creativeml-openrail-m ---
ohrenn/lorepass
ohrenn
2022-11-28T00:28:39Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-11-28T00:28:39Z
--- license: bigscience-bloom-rail-1.0 ---
Tara2301/PPO-LunarLander-v22
Tara2301
2022-11-27T23:31:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-27T22:02:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.24 +/- 19.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sandipan1994/t5-small-entailement-Writer-T5-small
Sandipan1994
2022-11-27T22:16:19Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-27T21:11:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-entailement-Writer-T5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-entailement-Writer-T5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 83 | 1.2943 | | No log | 2.0 | 166 | 0.9323 | | No log | 3.0 | 249 | 0.8443 | | No log | 4.0 | 332 | 0.7884 | | No log | 5.0 | 415 | 0.7582 | | No log | 6.0 | 498 | 0.7355 | | 1.2761 | 7.0 | 581 | 0.7178 | | 1.2761 | 8.0 | 664 | 0.7105 | | 1.2761 | 9.0 | 747 | 0.6972 | | 1.2761 | 10.0 | 830 | 0.6847 | | 1.2761 | 11.0 | 913 | 0.6774 | | 1.2761 | 12.0 | 996 | 0.6708 | | 0.7765 | 13.0 | 1079 | 0.6609 | | 0.7765 | 14.0 | 1162 | 0.6566 | | 0.7765 | 15.0 | 1245 | 0.6507 | | 0.7765 | 16.0 | 1328 | 0.6454 | | 0.7765 | 17.0 | 1411 | 0.6438 | | 0.7765 | 18.0 | 1494 | 0.6384 | | 0.693 | 19.0 | 1577 | 0.6347 | | 0.693 | 20.0 | 1660 | 0.6321 | | 0.693 | 21.0 | 1743 | 0.6254 | | 0.693 | 22.0 | 1826 | 0.6237 | | 0.693 | 23.0 | 1909 | 0.6215 | | 0.693 | 24.0 | 1992 | 0.6167 | | 0.6504 | 25.0 | 2075 | 0.6167 | | 0.6504 | 26.0 | 2158 | 0.6131 | | 0.6504 | 27.0 | 2241 | 0.6120 | | 0.6504 | 28.0 | 2324 | 0.6091 | | 0.6504 | 29.0 | 2407 | 0.6076 | | 0.6504 | 30.0 | 2490 | 0.6058 | | 0.615 | 31.0 | 2573 | 0.6031 | | 0.615 | 32.0 | 2656 | 0.6015 | | 0.615 | 33.0 | 2739 | 0.6015 | | 0.615 | 34.0 | 2822 | 0.6000 | | 0.615 | 35.0 | 2905 | 0.5998 | | 0.615 | 36.0 | 2988 | 0.5969 | | 0.586 | 37.0 | 3071 | 0.5959 | | 0.586 | 38.0 | 3154 | 0.5941 | | 0.586 | 39.0 | 3237 | 0.5923 | | 0.586 | 40.0 | 3320 | 0.5936 | | 0.586 | 41.0 | 3403 | 0.5929 | | 0.586 | 42.0 | 3486 | 0.5922 | | 0.5618 | 43.0 | 3569 | 0.5910 | | 0.5618 | 44.0 | 3652 | 0.5885 | | 0.5618 | 45.0 | 3735 | 0.5879 | | 0.5618 | 46.0 | 3818 | 0.5873 | | 0.5618 | 47.0 | 3901 | 0.5877 | | 0.5618 | 48.0 | 3984 | 0.5878 | | 0.5418 | 49.0 | 4067 | 0.5881 | | 0.5418 | 50.0 | 4150 | 0.5858 | | 0.5418 | 51.0 | 4233 | 0.5847 | | 0.5418 | 52.0 | 4316 | 0.5839 | | 0.5418 | 53.0 | 4399 | 0.5843 | | 0.5418 | 54.0 | 4482 | 0.5826 | | 0.5283 | 55.0 | 4565 | 0.5843 | | 0.5283 | 56.0 | 4648 | 0.5833 | | 0.5283 | 57.0 | 4731 | 0.5825 | | 0.5283 | 58.0 | 4814 | 0.5827 | | 0.5283 | 59.0 | 4897 | 0.5830 | | 0.5283 | 60.0 | 4980 | 0.5806 | | 0.5135 | 61.0 | 5063 | 0.5808 | | 0.5135 | 62.0 | 5146 | 0.5806 | | 0.5135 | 63.0 | 5229 | 0.5807 | | 0.5135 | 64.0 | 5312 | 0.5823 | | 0.5135 | 65.0 | 5395 | 0.5801 | | 0.5135 | 66.0 | 5478 | 0.5799 | | 0.5053 | 67.0 | 5561 | 0.5808 | | 0.5053 | 68.0 | 5644 | 0.5796 | | 0.5053 | 69.0 | 5727 | 0.5793 | | 0.5053 | 70.0 | 5810 | 0.5785 | | 0.5053 | 71.0 | 5893 | 0.5790 | | 0.5053 | 72.0 | 5976 | 0.5775 | | 0.4985 | 73.0 | 6059 | 0.5770 | | 0.4985 | 74.0 | 6142 | 0.5777 | | 0.4985 | 75.0 | 6225 | 0.5780 | | 0.4985 | 76.0 | 6308 | 0.5779 | | 0.4985 | 77.0 | 6391 | 0.5782 | | 0.4985 | 78.0 | 6474 | 0.5773 | | 0.4889 | 79.0 | 6557 | 0.5787 | | 0.4889 | 80.0 | 6640 | 0.5787 | | 0.4889 | 81.0 | 6723 | 0.5773 | | 0.4889 | 82.0 | 6806 | 0.5777 | | 0.4889 | 83.0 | 6889 | 0.5759 | | 0.4889 | 84.0 | 6972 | 0.5765 | | 0.4806 | 85.0 | 7055 | 0.5758 | | 0.4806 | 86.0 | 7138 | 0.5760 | | 0.4806 | 87.0 | 7221 | 0.5758 | | 0.4806 | 88.0 | 7304 | 0.5760 | | 0.4806 | 89.0 | 7387 | 0.5759 | | 0.4806 | 90.0 | 7470 | 0.5758 | | 0.4817 | 91.0 | 7553 | 0.5753 | | 0.4817 | 92.0 | 7636 | 0.5757 | | 0.4817 | 93.0 | 7719 | 0.5754 | | 0.4817 | 94.0 | 7802 | 0.5750 | | 0.4817 | 95.0 | 7885 | 0.5753 | | 0.4817 | 96.0 | 7968 | 0.5752 | | 0.4767 | 97.0 | 8051 | 0.5754 | | 0.4767 | 98.0 | 8134 | 0.5756 | | 0.4767 | 99.0 | 8217 | 0.5755 | | 0.4767 | 100.0 | 8300 | 0.5755 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2