modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 00:39:58
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 00:39:49
card
stringlengths
11
1.01M
johaanm/test-planner-alpha-V8.5
johaanm
2023-09-17T18:21:52Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-17T18:21:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
nalnnzph/ppo-Huggy
nalnnzph
2023-09-17T18:20:44Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-17T18:20:39Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nalnnzph/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/aiba_yumi_idolmastercinderellagirls
CyberHarem
2023-09-17T18:19:58Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/aiba_yumi_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-17T17:57:51Z
--- license: mit datasets: - CyberHarem/aiba_yumi_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of aiba_yumi_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7020, you need to download `7020/aiba_yumi_idolmastercinderellagirls.pt` as the embedding and `7020/aiba_yumi_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7020**, with the score of 0.950. The trigger words are: 1. `aiba_yumi_idolmastercinderellagirls` 2. `short_hair, brown_eyes, blush, smile, blonde_hair, bangs, breasts, open_mouth, collarbone, brown_hair, medium_breasts` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8100 | 0.911 | [Download](8100/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-8100](8100/previews/pattern_1.png) | ![pattern_2-8100](8100/previews/pattern_2.png) | ![pattern_3-8100](8100/previews/pattern_3.png) | ![pattern_4-8100](8100/previews/pattern_4.png) | ![pattern_5-8100](8100/previews/pattern_5.png) | ![pattern_6-8100](8100/previews/pattern_6.png) | ![pattern_7-8100](8100/previews/pattern_7.png) | ![pattern_8-8100](8100/previews/pattern_8.png) | ![pattern_9-8100](8100/previews/pattern_9.png) | [<NSFW, click to see>](8100/previews/pattern_10.png) | [<NSFW, click to see>](8100/previews/pattern_11.png) | ![pattern_12-8100](8100/previews/pattern_12.png) | ![pattern_13-8100](8100/previews/pattern_13.png) | [<NSFW, click to see>](8100/previews/pattern_14.png) | ![pattern_15-8100](8100/previews/pattern_15.png) | ![bikini-8100](8100/previews/bikini.png) | [<NSFW, click to see>](8100/previews/bondage.png) | ![free-8100](8100/previews/free.png) | ![maid-8100](8100/previews/maid.png) | ![miko-8100](8100/previews/miko.png) | [<NSFW, click to see>](8100/previews/nude.png) | [<NSFW, click to see>](8100/previews/nude2.png) | ![suit-8100](8100/previews/suit.png) | ![yukata-8100](8100/previews/yukata.png) | | 7560 | 0.935 | [Download](7560/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-7560](7560/previews/pattern_1.png) | ![pattern_2-7560](7560/previews/pattern_2.png) | ![pattern_3-7560](7560/previews/pattern_3.png) | ![pattern_4-7560](7560/previews/pattern_4.png) | ![pattern_5-7560](7560/previews/pattern_5.png) | ![pattern_6-7560](7560/previews/pattern_6.png) | ![pattern_7-7560](7560/previews/pattern_7.png) | ![pattern_8-7560](7560/previews/pattern_8.png) | ![pattern_9-7560](7560/previews/pattern_9.png) | [<NSFW, click to see>](7560/previews/pattern_10.png) | [<NSFW, click to see>](7560/previews/pattern_11.png) | ![pattern_12-7560](7560/previews/pattern_12.png) | ![pattern_13-7560](7560/previews/pattern_13.png) | [<NSFW, click to see>](7560/previews/pattern_14.png) | ![pattern_15-7560](7560/previews/pattern_15.png) | ![bikini-7560](7560/previews/bikini.png) | [<NSFW, click to see>](7560/previews/bondage.png) | ![free-7560](7560/previews/free.png) | ![maid-7560](7560/previews/maid.png) | ![miko-7560](7560/previews/miko.png) | [<NSFW, click to see>](7560/previews/nude.png) | [<NSFW, click to see>](7560/previews/nude2.png) | ![suit-7560](7560/previews/suit.png) | ![yukata-7560](7560/previews/yukata.png) | | **7020** | **0.950** | [**Download**](7020/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | ![pattern_2-7020](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | ![pattern_7-7020](7020/previews/pattern_7.png) | ![pattern_8-7020](7020/previews/pattern_8.png) | ![pattern_9-7020](7020/previews/pattern_9.png) | [<NSFW, click to see>](7020/previews/pattern_10.png) | [<NSFW, click to see>](7020/previews/pattern_11.png) | ![pattern_12-7020](7020/previews/pattern_12.png) | ![pattern_13-7020](7020/previews/pattern_13.png) | [<NSFW, click to see>](7020/previews/pattern_14.png) | ![pattern_15-7020](7020/previews/pattern_15.png) | ![bikini-7020](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | ![free-7020](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | 6480 | 0.930 | [Download](6480/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-6480](6480/previews/pattern_1.png) | ![pattern_2-6480](6480/previews/pattern_2.png) | ![pattern_3-6480](6480/previews/pattern_3.png) | ![pattern_4-6480](6480/previews/pattern_4.png) | ![pattern_5-6480](6480/previews/pattern_5.png) | ![pattern_6-6480](6480/previews/pattern_6.png) | ![pattern_7-6480](6480/previews/pattern_7.png) | ![pattern_8-6480](6480/previews/pattern_8.png) | ![pattern_9-6480](6480/previews/pattern_9.png) | [<NSFW, click to see>](6480/previews/pattern_10.png) | [<NSFW, click to see>](6480/previews/pattern_11.png) | ![pattern_12-6480](6480/previews/pattern_12.png) | ![pattern_13-6480](6480/previews/pattern_13.png) | [<NSFW, click to see>](6480/previews/pattern_14.png) | ![pattern_15-6480](6480/previews/pattern_15.png) | ![bikini-6480](6480/previews/bikini.png) | [<NSFW, click to see>](6480/previews/bondage.png) | ![free-6480](6480/previews/free.png) | ![maid-6480](6480/previews/maid.png) | ![miko-6480](6480/previews/miko.png) | [<NSFW, click to see>](6480/previews/nude.png) | [<NSFW, click to see>](6480/previews/nude2.png) | ![suit-6480](6480/previews/suit.png) | ![yukata-6480](6480/previews/yukata.png) | | 5940 | 0.938 | [Download](5940/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | ![pattern_7-5940](5940/previews/pattern_7.png) | ![pattern_8-5940](5940/previews/pattern_8.png) | ![pattern_9-5940](5940/previews/pattern_9.png) | [<NSFW, click to see>](5940/previews/pattern_10.png) | [<NSFW, click to see>](5940/previews/pattern_11.png) | ![pattern_12-5940](5940/previews/pattern_12.png) | ![pattern_13-5940](5940/previews/pattern_13.png) | [<NSFW, click to see>](5940/previews/pattern_14.png) | ![pattern_15-5940](5940/previews/pattern_15.png) | ![bikini-5940](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | ![free-5940](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5400 | 0.934 | [Download](5400/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | [<NSFW, click to see>](5400/previews/pattern_10.png) | [<NSFW, click to see>](5400/previews/pattern_11.png) | ![pattern_12-5400](5400/previews/pattern_12.png) | ![pattern_13-5400](5400/previews/pattern_13.png) | [<NSFW, click to see>](5400/previews/pattern_14.png) | ![pattern_15-5400](5400/previews/pattern_15.png) | ![bikini-5400](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4860 | 0.929 | [Download](4860/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-4860](4860/previews/pattern_1.png) | ![pattern_2-4860](4860/previews/pattern_2.png) | ![pattern_3-4860](4860/previews/pattern_3.png) | ![pattern_4-4860](4860/previews/pattern_4.png) | ![pattern_5-4860](4860/previews/pattern_5.png) | ![pattern_6-4860](4860/previews/pattern_6.png) | ![pattern_7-4860](4860/previews/pattern_7.png) | ![pattern_8-4860](4860/previews/pattern_8.png) | ![pattern_9-4860](4860/previews/pattern_9.png) | [<NSFW, click to see>](4860/previews/pattern_10.png) | [<NSFW, click to see>](4860/previews/pattern_11.png) | ![pattern_12-4860](4860/previews/pattern_12.png) | ![pattern_13-4860](4860/previews/pattern_13.png) | [<NSFW, click to see>](4860/previews/pattern_14.png) | ![pattern_15-4860](4860/previews/pattern_15.png) | ![bikini-4860](4860/previews/bikini.png) | [<NSFW, click to see>](4860/previews/bondage.png) | ![free-4860](4860/previews/free.png) | ![maid-4860](4860/previews/maid.png) | ![miko-4860](4860/previews/miko.png) | [<NSFW, click to see>](4860/previews/nude.png) | [<NSFW, click to see>](4860/previews/nude2.png) | ![suit-4860](4860/previews/suit.png) | ![yukata-4860](4860/previews/yukata.png) | | 4320 | 0.942 | [Download](4320/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | [<NSFW, click to see>](4320/previews/pattern_10.png) | [<NSFW, click to see>](4320/previews/pattern_11.png) | ![pattern_12-4320](4320/previews/pattern_12.png) | ![pattern_13-4320](4320/previews/pattern_13.png) | [<NSFW, click to see>](4320/previews/pattern_14.png) | ![pattern_15-4320](4320/previews/pattern_15.png) | ![bikini-4320](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3780 | 0.896 | [Download](3780/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-3780](3780/previews/pattern_1.png) | ![pattern_2-3780](3780/previews/pattern_2.png) | ![pattern_3-3780](3780/previews/pattern_3.png) | ![pattern_4-3780](3780/previews/pattern_4.png) | ![pattern_5-3780](3780/previews/pattern_5.png) | ![pattern_6-3780](3780/previews/pattern_6.png) | ![pattern_7-3780](3780/previews/pattern_7.png) | ![pattern_8-3780](3780/previews/pattern_8.png) | ![pattern_9-3780](3780/previews/pattern_9.png) | [<NSFW, click to see>](3780/previews/pattern_10.png) | [<NSFW, click to see>](3780/previews/pattern_11.png) | ![pattern_12-3780](3780/previews/pattern_12.png) | ![pattern_13-3780](3780/previews/pattern_13.png) | [<NSFW, click to see>](3780/previews/pattern_14.png) | ![pattern_15-3780](3780/previews/pattern_15.png) | ![bikini-3780](3780/previews/bikini.png) | [<NSFW, click to see>](3780/previews/bondage.png) | ![free-3780](3780/previews/free.png) | ![maid-3780](3780/previews/maid.png) | ![miko-3780](3780/previews/miko.png) | [<NSFW, click to see>](3780/previews/nude.png) | [<NSFW, click to see>](3780/previews/nude2.png) | ![suit-3780](3780/previews/suit.png) | ![yukata-3780](3780/previews/yukata.png) | | 3240 | 0.903 | [Download](3240/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-3240](3240/previews/pattern_1.png) | ![pattern_2-3240](3240/previews/pattern_2.png) | ![pattern_3-3240](3240/previews/pattern_3.png) | ![pattern_4-3240](3240/previews/pattern_4.png) | ![pattern_5-3240](3240/previews/pattern_5.png) | ![pattern_6-3240](3240/previews/pattern_6.png) | ![pattern_7-3240](3240/previews/pattern_7.png) | ![pattern_8-3240](3240/previews/pattern_8.png) | ![pattern_9-3240](3240/previews/pattern_9.png) | [<NSFW, click to see>](3240/previews/pattern_10.png) | [<NSFW, click to see>](3240/previews/pattern_11.png) | ![pattern_12-3240](3240/previews/pattern_12.png) | ![pattern_13-3240](3240/previews/pattern_13.png) | [<NSFW, click to see>](3240/previews/pattern_14.png) | ![pattern_15-3240](3240/previews/pattern_15.png) | ![bikini-3240](3240/previews/bikini.png) | [<NSFW, click to see>](3240/previews/bondage.png) | ![free-3240](3240/previews/free.png) | ![maid-3240](3240/previews/maid.png) | ![miko-3240](3240/previews/miko.png) | [<NSFW, click to see>](3240/previews/nude.png) | [<NSFW, click to see>](3240/previews/nude2.png) | ![suit-3240](3240/previews/suit.png) | ![yukata-3240](3240/previews/yukata.png) | | 2700 | 0.868 | [Download](2700/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-2700](2700/previews/pattern_1.png) | ![pattern_2-2700](2700/previews/pattern_2.png) | ![pattern_3-2700](2700/previews/pattern_3.png) | ![pattern_4-2700](2700/previews/pattern_4.png) | ![pattern_5-2700](2700/previews/pattern_5.png) | ![pattern_6-2700](2700/previews/pattern_6.png) | ![pattern_7-2700](2700/previews/pattern_7.png) | ![pattern_8-2700](2700/previews/pattern_8.png) | ![pattern_9-2700](2700/previews/pattern_9.png) | [<NSFW, click to see>](2700/previews/pattern_10.png) | [<NSFW, click to see>](2700/previews/pattern_11.png) | ![pattern_12-2700](2700/previews/pattern_12.png) | ![pattern_13-2700](2700/previews/pattern_13.png) | [<NSFW, click to see>](2700/previews/pattern_14.png) | ![pattern_15-2700](2700/previews/pattern_15.png) | ![bikini-2700](2700/previews/bikini.png) | [<NSFW, click to see>](2700/previews/bondage.png) | ![free-2700](2700/previews/free.png) | ![maid-2700](2700/previews/maid.png) | ![miko-2700](2700/previews/miko.png) | [<NSFW, click to see>](2700/previews/nude.png) | [<NSFW, click to see>](2700/previews/nude2.png) | ![suit-2700](2700/previews/suit.png) | ![yukata-2700](2700/previews/yukata.png) | | 2160 | 0.882 | [Download](2160/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-2160](2160/previews/pattern_1.png) | ![pattern_2-2160](2160/previews/pattern_2.png) | ![pattern_3-2160](2160/previews/pattern_3.png) | ![pattern_4-2160](2160/previews/pattern_4.png) | ![pattern_5-2160](2160/previews/pattern_5.png) | ![pattern_6-2160](2160/previews/pattern_6.png) | ![pattern_7-2160](2160/previews/pattern_7.png) | ![pattern_8-2160](2160/previews/pattern_8.png) | ![pattern_9-2160](2160/previews/pattern_9.png) | [<NSFW, click to see>](2160/previews/pattern_10.png) | [<NSFW, click to see>](2160/previews/pattern_11.png) | ![pattern_12-2160](2160/previews/pattern_12.png) | ![pattern_13-2160](2160/previews/pattern_13.png) | [<NSFW, click to see>](2160/previews/pattern_14.png) | ![pattern_15-2160](2160/previews/pattern_15.png) | ![bikini-2160](2160/previews/bikini.png) | [<NSFW, click to see>](2160/previews/bondage.png) | ![free-2160](2160/previews/free.png) | ![maid-2160](2160/previews/maid.png) | ![miko-2160](2160/previews/miko.png) | [<NSFW, click to see>](2160/previews/nude.png) | [<NSFW, click to see>](2160/previews/nude2.png) | ![suit-2160](2160/previews/suit.png) | ![yukata-2160](2160/previews/yukata.png) | | 1620 | 0.899 | [Download](1620/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-1620](1620/previews/pattern_1.png) | ![pattern_2-1620](1620/previews/pattern_2.png) | ![pattern_3-1620](1620/previews/pattern_3.png) | ![pattern_4-1620](1620/previews/pattern_4.png) | ![pattern_5-1620](1620/previews/pattern_5.png) | ![pattern_6-1620](1620/previews/pattern_6.png) | ![pattern_7-1620](1620/previews/pattern_7.png) | ![pattern_8-1620](1620/previews/pattern_8.png) | ![pattern_9-1620](1620/previews/pattern_9.png) | [<NSFW, click to see>](1620/previews/pattern_10.png) | [<NSFW, click to see>](1620/previews/pattern_11.png) | ![pattern_12-1620](1620/previews/pattern_12.png) | ![pattern_13-1620](1620/previews/pattern_13.png) | [<NSFW, click to see>](1620/previews/pattern_14.png) | ![pattern_15-1620](1620/previews/pattern_15.png) | ![bikini-1620](1620/previews/bikini.png) | [<NSFW, click to see>](1620/previews/bondage.png) | ![free-1620](1620/previews/free.png) | ![maid-1620](1620/previews/maid.png) | ![miko-1620](1620/previews/miko.png) | [<NSFW, click to see>](1620/previews/nude.png) | [<NSFW, click to see>](1620/previews/nude2.png) | ![suit-1620](1620/previews/suit.png) | ![yukata-1620](1620/previews/yukata.png) | | 1080 | 0.917 | [Download](1080/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-1080](1080/previews/pattern_1.png) | ![pattern_2-1080](1080/previews/pattern_2.png) | ![pattern_3-1080](1080/previews/pattern_3.png) | ![pattern_4-1080](1080/previews/pattern_4.png) | ![pattern_5-1080](1080/previews/pattern_5.png) | ![pattern_6-1080](1080/previews/pattern_6.png) | ![pattern_7-1080](1080/previews/pattern_7.png) | ![pattern_8-1080](1080/previews/pattern_8.png) | ![pattern_9-1080](1080/previews/pattern_9.png) | [<NSFW, click to see>](1080/previews/pattern_10.png) | [<NSFW, click to see>](1080/previews/pattern_11.png) | ![pattern_12-1080](1080/previews/pattern_12.png) | ![pattern_13-1080](1080/previews/pattern_13.png) | [<NSFW, click to see>](1080/previews/pattern_14.png) | ![pattern_15-1080](1080/previews/pattern_15.png) | ![bikini-1080](1080/previews/bikini.png) | [<NSFW, click to see>](1080/previews/bondage.png) | ![free-1080](1080/previews/free.png) | ![maid-1080](1080/previews/maid.png) | ![miko-1080](1080/previews/miko.png) | [<NSFW, click to see>](1080/previews/nude.png) | [<NSFW, click to see>](1080/previews/nude2.png) | ![suit-1080](1080/previews/suit.png) | ![yukata-1080](1080/previews/yukata.png) | | 540 | 0.763 | [Download](540/aiba_yumi_idolmastercinderellagirls.zip) | ![pattern_1-540](540/previews/pattern_1.png) | ![pattern_2-540](540/previews/pattern_2.png) | ![pattern_3-540](540/previews/pattern_3.png) | ![pattern_4-540](540/previews/pattern_4.png) | ![pattern_5-540](540/previews/pattern_5.png) | ![pattern_6-540](540/previews/pattern_6.png) | ![pattern_7-540](540/previews/pattern_7.png) | ![pattern_8-540](540/previews/pattern_8.png) | ![pattern_9-540](540/previews/pattern_9.png) | [<NSFW, click to see>](540/previews/pattern_10.png) | [<NSFW, click to see>](540/previews/pattern_11.png) | ![pattern_12-540](540/previews/pattern_12.png) | ![pattern_13-540](540/previews/pattern_13.png) | [<NSFW, click to see>](540/previews/pattern_14.png) | ![pattern_15-540](540/previews/pattern_15.png) | ![bikini-540](540/previews/bikini.png) | [<NSFW, click to see>](540/previews/bondage.png) | ![free-540](540/previews/free.png) | ![maid-540](540/previews/maid.png) | ![miko-540](540/previews/miko.png) | [<NSFW, click to see>](540/previews/nude.png) | [<NSFW, click to see>](540/previews/nude2.png) | ![suit-540](540/previews/suit.png) | ![yukata-540](540/previews/yukata.png) |
QMB15/mythomax-13B-8.13bit-MAX-exl2
QMB15
2023-09-17T18:19:37Z
8
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T17:47:29Z
--- license: other language: - en --- This is an exllama V2 quantization of https://huggingface.co/Gryphe/MythoMax-L2-13b This particular version is designed for maximum quality at the cost of size. I noticed that the previous 8bpw version was using a small bitrate for some layers, and reported a lower quantized ppl than its base ppl, implying that the layer optimizer was overfitting to the dataset. In response, I edited measurement.json to add +1 error to all bitrates except for 8.13 (the max). (Don't reuse that file for other quants!!) That means this version uses the best 8bit-32g quantization mode for all layers. In out of sample tests, this squeezes out just a little better perplexity than the 8bit version. Calibration data: https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-v1/test/0000.parquet An improved, potentially even perfected variant of MythoMix, my [MythoLogic-L2](https://huggingface.co/Gryphe/MythoLogic-L2-13b) and [Huginn](https://huggingface.co/The-Face-Of-Goonery/Huginn-13b-FP16) merge using a highly experimental tensor type merge technique. The main difference with MythoMix is that I allowed more of Huginn to intermingle with the single tensors located at the front and end of a model, resulting in increased coherency across the entire structure. The script and the acccompanying templates I used to produce both can [be found here](https://github.com/Gryphe/BlockMerge_Gradient/tree/main/YAML). This model is proficient at both roleplaying and storywriting due to its unique nature. Quantized models are available from TheBloke: [GGML](https://huggingface.co/TheBloke/MythoMax-L2-13B-GGML) - [GPTQ](https://huggingface.co/TheBloke/MythoMax-L2-13B-GPTQ) (You're the best!) ## Model details The idea behind this merge is that each layer is composed of several tensors, which are in turn responsible for specific functions. Using MythoLogic-L2's robust understanding as its input and Huginn's extensive writing capability as its output seems to have resulted in a model that exceeds at both, confirming my theory. (More details to be released at a later time) This type of merge is incapable of being illustrated, as each of its 363 tensors had an unique ratio applied to it. As with my prior merges, gradients were part of these ratios to further finetune its behaviour. ## Prompt Format This model primarily uses Alpaca formatting, so for optimal model performance, use: ``` <System prompt/Character Card> ### Instruction: Your instruction or question here. For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only. ### Response: ``` --- license: other ---
reallygoodtechdeals/autotrain-lane-center-8-89748143997
reallygoodtechdeals
2023-09-17T18:05:35Z
201
0
transformers
[ "transformers", "pytorch", "safetensors", "resnet", "image-classification", "autotrain", "vision", "dataset:reallygoodtechdeals/autotrain-data-lane-center-8", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T18:03:59Z
--- tags: - autotrain - vision - image-classification datasets: - reallygoodtechdeals/autotrain-data-lane-center-8 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.49428603121272385 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 89748143997 - CO2 Emissions (in grams): 0.4943 ## Validation Metrics - Loss: 0.693 - Accuracy: 0.523 - Precision: 0.417 - Recall: 0.263 - AUC: 0.371 - F1: 0.323
badokorach/mobilebert-uncased-squad-v2-qa
badokorach
2023-09-17T17:52:20Z
123
0
transformers
[ "transformers", "pytorch", "mobilebert", "question-answering", "generated_from_trainer", "base_model:badokorach/mobilebert-uncased-squad-v2-qa", "base_model:finetune:badokorach/mobilebert-uncased-squad-v2-qa", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-09-17T14:54:23Z
--- license: mit base_model: badokorach/mobilebert-uncased-squad-v2-qa tags: - generated_from_trainer model-index: - name: mobilebert-uncased-squad-v2-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert-uncased-squad-v2-qa This model is a fine-tuned version of [badokorach/mobilebert-uncased-squad-v2-qa](https://huggingface.co/badokorach/mobilebert-uncased-squad-v2-qa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 265 | 2.3277 | | 2.6476 | 2.0 | 530 | 2.1362 | | 2.6476 | 3.0 | 795 | 1.9784 | | 2.3668 | 4.0 | 1060 | 1.7966 | | 2.3668 | 5.0 | 1325 | 1.7200 | | 2.0871 | 6.0 | 1590 | 1.5585 | | 2.0871 | 7.0 | 1855 | 1.3859 | | 1.9018 | 8.0 | 2120 | 1.2941 | | 1.9018 | 9.0 | 2385 | 1.2245 | | 1.6963 | 10.0 | 2650 | 1.1069 | | 1.6963 | 11.0 | 2915 | 0.9504 | | 1.5186 | 12.0 | 3180 | 0.8660 | | 1.5186 | 13.0 | 3445 | 0.8664 | | 1.3707 | 14.0 | 3710 | 0.6955 | | 1.3707 | 15.0 | 3975 | 0.6217 | | 1.2402 | 16.0 | 4240 | 0.5880 | | 1.0937 | 17.0 | 4505 | 0.5604 | | 1.0937 | 18.0 | 4770 | 0.4484 | | 0.9468 | 19.0 | 5035 | 0.3988 | | 0.9468 | 20.0 | 5300 | 0.3981 | | 0.8648 | 21.0 | 5565 | 0.3145 | | 0.8648 | 22.0 | 5830 | 0.3053 | | 0.7644 | 23.0 | 6095 | 0.2580 | | 0.7644 | 24.0 | 6360 | 0.2741 | | 0.6697 | 25.0 | 6625 | 0.2122 | | 0.6697 | 26.0 | 6890 | 0.1946 | | 0.6188 | 27.0 | 7155 | 0.1915 | | 0.6188 | 28.0 | 7420 | 0.1550 | | 0.5341 | 29.0 | 7685 | 0.1430 | | 0.5341 | 30.0 | 7950 | 0.1287 | | 0.4874 | 31.0 | 8215 | 0.1250 | | 0.4874 | 32.0 | 8480 | 0.0994 | | 0.4516 | 33.0 | 8745 | 0.0955 | | 0.4164 | 34.0 | 9010 | 0.0890 | | 0.4164 | 35.0 | 9275 | 0.0838 | | 0.3864 | 36.0 | 9540 | 0.0796 | | 0.3864 | 37.0 | 9805 | 0.0766 | | 0.353 | 38.0 | 10070 | 0.0788 | | 0.353 | 39.0 | 10335 | 0.0711 | | 0.3331 | 40.0 | 10600 | 0.0681 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
daochf/Lora-MetaLlama2-7b-chat-hf-PuceDs04-v01
daochf
2023-09-17T17:49:52Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-17T17:49:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
chenqile09/chinese-alpaca-2-LoRA-7B-couplet-100k
chenqile09
2023-09-17T17:48:39Z
8
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "dataset:chenqile09/llama2-chinese-couplet-100k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T05:55:23Z
--- datasets: - chenqile09/llama2-chinese-couplet-100k language: - zh metrics: - bertscore - bleu library_name: transformers --- ## Chinese-alpaca-2-LoRA-7B-couplet-100k Finetuned chinese-alpaca-2-7B model via LoRA on the 100k Chinese couplet dataset - Dataset: [llama2-chinese-couplet-100k](https://huggingface.co/datasets/chenqile09/llama2-chinese-couplet-100k) - Notebook: [chinese-llama-finetuning-100k](https://github.com/Qile-Paul-Chen/chinese-llama-finetuning-couplet/blob/dev/chinese-llama-finetuning-100k.ipynb)
MaxArb/RotEtogoCasino
MaxArb
2023-09-17T17:45:28Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2023-09-14T18:26:02Z
--- license: cc-by-nc-nd-4.0 ---
cdahd/after5-caly-film
cdahd
2023-09-17T17:24:20Z
0
0
null
[ "region:us" ]
null
2023-09-17T17:21:56Z
# "After 5: cały film cda" ## Opis Filmu Z dnia na dzień liczba fanów serii "After" rośnie, a jej najnowsza odsłona, "After 5: Na Zawsze," stanowi kulminację emocji i zawirowań, które towarzyszyły głównym bohaterom od początku ich historii. Pod kierownictwem Castille Landon, film zadebiutował 13 września 2023 roku, oferując widzom nową, jeszcze nieodkrytą stronę relacji między Tessą a Hardinem. ## Obsada Gwiazdy serii, Hero Fiennes-Tiffin i Josephine Langford, wracają w swoich ikonicznych rolach jako Hardin Scott i Tessa Young. U ich boku pojawiają się takie nazwiska jak Stephen Moyer w roli Christiana Vance'a czy Louise Lombard jako Trish. ## Fabuła Film kontynuuje dramatyczną sagę miłości i zdrady. Tessa i Hardin, już nie będąc parą, próbują znaleźć nowe drogi w życiu. Tessa skupia się na karierze, Hardin zaś na nowym wyzwaniu w Lizbonie. Ale czy nowe miejsce i nowi ludzie mogą zmienić to, co między nimi było? I czy są gotowi na to, co ich czeka? ## Co Nowego? Jednym z najbardziej interesujących aspektów "After 5: Na Zawsze" jest to, że film nie jest bezpośrednią adaptacją żadnej książki. Jest to świeże podejście, które różni go od poprzednich części serii. Co więcej, film dostępny jest jedynie w kinach, co jest odpowiedzią na regulacje mające na celu ograniczenie piractwa. ## Ciekawostki - Ostatnia część serii "After" - Nie jest to adaptacja książkowa, ale samodzielne dzieło - Premiera filmu jest jedyną opcją dla oglądających z powodu regulacji antypirackich ## Ostateczna Refleksja Jest to film, który stanowi zamknięcie pewnej epoki dla wielu fanów serii. Tessa i Hardin, zmagając się z nowymi wyzwaniami i możliwościami, muszą odpowiedzieć sobie na pytanie, czy ich miłość przetrwa te wszystkie burze. Film "After 5: Na Zawsze" jest emocjonalną, ale też dramatyczną odsłoną ich historii, która z pewnością zrobi na widzu duże wrażenie. ## Źródło: CdaTube Informacje użyte do napisania artykułu pochodzą ze strony <a href="https://cdatube.pl/after-5-caly-film/">cdatube.pl</a>
garage-bAInd/Platypus-7B-adapters
garage-bAInd
2023-09-17T17:03:53Z
0
0
null
[ "pytorch", "en", "dataset:garage-bAInd/Open-Platypus", "arxiv:2308.07317", "arxiv:2307.09288", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-09-17T16:58:03Z
--- license: cc-by-nc-sa-4.0 language: - en datasets: - garage-bAInd/Open-Platypus --- # Platypus2-7B LoRA adapters **NOTE**: There is some issue with LLaMa-2 7B and fine-tuning only works if you use `fp16=False` and `bf16=True` in the HF trainer. Gathering more intel on this but if you have any thoughts about this issue or performance, please let us know! Platypus-7B is an instruction fine-tuned model based on the LLaMA2-7B transformer architecture. ![Platty](./Best_Platty_small.jpeg) ### Benchmark Metrics | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | - | | ARC (25-shot) | - | | HellaSwag (10-shot) | - | | TruthfulQA (0-shot) | - | | Avg. | - | We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results. ### Model Details * **Trained by**: Cole Hunter & Ariel Lee * **Model type:** **Platypus2-7B** is an auto-regressive language model based on the LLaMA2 transformer architecture. * **Language(s)**: English * **License for base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/)) ### Prompt Template ``` ### Instruction: <prompt> (without the <>) ### Response: ``` ### Training Dataset `garage-bAInd/Platypus2-7B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information. ### Training Procedure `garage-bAInd/Platypus2-7B` was instruction fine-tuned using LoRA on 1 A100 80GB. For training details and inference instructions please see the [Platypus2](https://github.com/arielnlee/Platypus) GitHub repo. ### Reproducing Evaluation Results Install LM Evaluation Harness: ``` # clone repository git clone https://github.com/EleutherAI/lm-evaluation-harness.git # check out the correct commit git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463 # change to repo directory cd lm-evaluation-harness # install pip install -e . ``` Each task was evaluated on 1 A100 80GB GPU. ARC: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-7B,use_accelerate=True,dtype="bfloat16" --tasks arc_challenge --batch_size 2 --no_cache --write_out --output_path results/Platypus2-7B/arc_challenge_25shot.json --device cuda --num_fewshot 25 ``` HellaSwag: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-7B,use_accelerate=True,dtype="bfloat16" --tasks hellaswag --batch_size 2 --no_cache --write_out --output_path results/Platypus2-7B/hellaswag_10shot.json --device cuda --num_fewshot 10 ``` MMLU: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-7B,use_accelerate=True,dtype="bfloat16" --tasks hendrycksTest-* --batch_size 2 --no_cache --write_out --output_path results/Platypus2-7B/mmlu_5shot.json --device cuda --num_fewshot 5 ``` TruthfulQA: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Platypus2-7B,use_accelerate=True,dtype="bfloat16" --tasks truthfulqa_mc --batch_size 2 --no_cache --write_out --output_path results/Platypus2-7B/truthfulqa_0shot.json --device cuda ``` ### Limitations and bias Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/ ### Citations ```bibtex @article{platypus2023, title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs}, author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz}, booktitle={arXiv preprint arxiv:2308.07317}, year={2023} } ``` ```bibtex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, } ``` ```bibtex @inproceedings{ hu2022lora, title={Lo{RA}: Low-Rank Adaptation of Large Language Models}, author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=nZeVKeeFYf9} } ```
JonasSim/TWingshadow_v1.4
JonasSim
2023-09-17T17:01:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-17T16:00:47Z
--- license: creativeml-openrail-m ---
CyberHarem/hisakawa_hayate_idolmastercinderellagirls
CyberHarem
2023-09-17T17:00:42Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/hisakawa_hayate_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-17T16:40:35Z
--- license: mit datasets: - CyberHarem/hisakawa_hayate_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of hisakawa_hayate_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4320, you need to download `4320/hisakawa_hayate_idolmastercinderellagirls.pt` as the embedding and `4320/hisakawa_hayate_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4320**, with the score of 0.965. The trigger words are: 1. `hisakawa_hayate_idolmastercinderellagirls` 2. `bangs, long_hair, grey_hair, braid, blush, blue_eyes, jewelry, braided_bangs, earrings, smile, breasts, open_mouth, collarbone, very_long_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8100 | 0.943 | [Download](8100/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-8100](8100/previews/pattern_1.png) | ![pattern_2-8100](8100/previews/pattern_2.png) | ![pattern_3-8100](8100/previews/pattern_3.png) | ![pattern_4-8100](8100/previews/pattern_4.png) | ![pattern_5-8100](8100/previews/pattern_5.png) | ![pattern_6-8100](8100/previews/pattern_6.png) | ![pattern_7-8100](8100/previews/pattern_7.png) | ![pattern_8-8100](8100/previews/pattern_8.png) | ![pattern_9-8100](8100/previews/pattern_9.png) | ![pattern_10-8100](8100/previews/pattern_10.png) | ![pattern_11-8100](8100/previews/pattern_11.png) | ![pattern_12-8100](8100/previews/pattern_12.png) | [<NSFW, click to see>](8100/previews/bikini.png) | [<NSFW, click to see>](8100/previews/bondage.png) | ![free-8100](8100/previews/free.png) | ![maid-8100](8100/previews/maid.png) | ![miko-8100](8100/previews/miko.png) | [<NSFW, click to see>](8100/previews/nude.png) | [<NSFW, click to see>](8100/previews/nude2.png) | ![suit-8100](8100/previews/suit.png) | ![yukata-8100](8100/previews/yukata.png) | | 7560 | 0.956 | [Download](7560/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-7560](7560/previews/pattern_1.png) | ![pattern_2-7560](7560/previews/pattern_2.png) | ![pattern_3-7560](7560/previews/pattern_3.png) | ![pattern_4-7560](7560/previews/pattern_4.png) | ![pattern_5-7560](7560/previews/pattern_5.png) | ![pattern_6-7560](7560/previews/pattern_6.png) | ![pattern_7-7560](7560/previews/pattern_7.png) | ![pattern_8-7560](7560/previews/pattern_8.png) | ![pattern_9-7560](7560/previews/pattern_9.png) | ![pattern_10-7560](7560/previews/pattern_10.png) | ![pattern_11-7560](7560/previews/pattern_11.png) | ![pattern_12-7560](7560/previews/pattern_12.png) | [<NSFW, click to see>](7560/previews/bikini.png) | [<NSFW, click to see>](7560/previews/bondage.png) | ![free-7560](7560/previews/free.png) | ![maid-7560](7560/previews/maid.png) | ![miko-7560](7560/previews/miko.png) | [<NSFW, click to see>](7560/previews/nude.png) | [<NSFW, click to see>](7560/previews/nude2.png) | ![suit-7560](7560/previews/suit.png) | ![yukata-7560](7560/previews/yukata.png) | | 7020 | 0.965 | [Download](7020/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | ![pattern_2-7020](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | ![pattern_7-7020](7020/previews/pattern_7.png) | ![pattern_8-7020](7020/previews/pattern_8.png) | ![pattern_9-7020](7020/previews/pattern_9.png) | ![pattern_10-7020](7020/previews/pattern_10.png) | ![pattern_11-7020](7020/previews/pattern_11.png) | ![pattern_12-7020](7020/previews/pattern_12.png) | [<NSFW, click to see>](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | ![free-7020](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | 6480 | 0.952 | [Download](6480/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-6480](6480/previews/pattern_1.png) | ![pattern_2-6480](6480/previews/pattern_2.png) | ![pattern_3-6480](6480/previews/pattern_3.png) | ![pattern_4-6480](6480/previews/pattern_4.png) | ![pattern_5-6480](6480/previews/pattern_5.png) | ![pattern_6-6480](6480/previews/pattern_6.png) | ![pattern_7-6480](6480/previews/pattern_7.png) | ![pattern_8-6480](6480/previews/pattern_8.png) | ![pattern_9-6480](6480/previews/pattern_9.png) | ![pattern_10-6480](6480/previews/pattern_10.png) | ![pattern_11-6480](6480/previews/pattern_11.png) | ![pattern_12-6480](6480/previews/pattern_12.png) | [<NSFW, click to see>](6480/previews/bikini.png) | [<NSFW, click to see>](6480/previews/bondage.png) | ![free-6480](6480/previews/free.png) | ![maid-6480](6480/previews/maid.png) | ![miko-6480](6480/previews/miko.png) | [<NSFW, click to see>](6480/previews/nude.png) | [<NSFW, click to see>](6480/previews/nude2.png) | ![suit-6480](6480/previews/suit.png) | ![yukata-6480](6480/previews/yukata.png) | | 5940 | 0.959 | [Download](5940/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | ![pattern_7-5940](5940/previews/pattern_7.png) | ![pattern_8-5940](5940/previews/pattern_8.png) | ![pattern_9-5940](5940/previews/pattern_9.png) | ![pattern_10-5940](5940/previews/pattern_10.png) | ![pattern_11-5940](5940/previews/pattern_11.png) | ![pattern_12-5940](5940/previews/pattern_12.png) | [<NSFW, click to see>](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | ![free-5940](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5400 | 0.961 | [Download](5400/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | ![pattern_10-5400](5400/previews/pattern_10.png) | ![pattern_11-5400](5400/previews/pattern_11.png) | ![pattern_12-5400](5400/previews/pattern_12.png) | [<NSFW, click to see>](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4860 | 0.959 | [Download](4860/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-4860](4860/previews/pattern_1.png) | ![pattern_2-4860](4860/previews/pattern_2.png) | ![pattern_3-4860](4860/previews/pattern_3.png) | ![pattern_4-4860](4860/previews/pattern_4.png) | ![pattern_5-4860](4860/previews/pattern_5.png) | ![pattern_6-4860](4860/previews/pattern_6.png) | ![pattern_7-4860](4860/previews/pattern_7.png) | ![pattern_8-4860](4860/previews/pattern_8.png) | ![pattern_9-4860](4860/previews/pattern_9.png) | ![pattern_10-4860](4860/previews/pattern_10.png) | ![pattern_11-4860](4860/previews/pattern_11.png) | ![pattern_12-4860](4860/previews/pattern_12.png) | [<NSFW, click to see>](4860/previews/bikini.png) | [<NSFW, click to see>](4860/previews/bondage.png) | ![free-4860](4860/previews/free.png) | ![maid-4860](4860/previews/maid.png) | ![miko-4860](4860/previews/miko.png) | [<NSFW, click to see>](4860/previews/nude.png) | [<NSFW, click to see>](4860/previews/nude2.png) | ![suit-4860](4860/previews/suit.png) | ![yukata-4860](4860/previews/yukata.png) | | **4320** | **0.965** | [**Download**](4320/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![pattern_11-4320](4320/previews/pattern_11.png) | ![pattern_12-4320](4320/previews/pattern_12.png) | [<NSFW, click to see>](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | ![free-4320](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3780 | 0.950 | [Download](3780/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-3780](3780/previews/pattern_1.png) | ![pattern_2-3780](3780/previews/pattern_2.png) | ![pattern_3-3780](3780/previews/pattern_3.png) | ![pattern_4-3780](3780/previews/pattern_4.png) | ![pattern_5-3780](3780/previews/pattern_5.png) | ![pattern_6-3780](3780/previews/pattern_6.png) | ![pattern_7-3780](3780/previews/pattern_7.png) | ![pattern_8-3780](3780/previews/pattern_8.png) | ![pattern_9-3780](3780/previews/pattern_9.png) | ![pattern_10-3780](3780/previews/pattern_10.png) | ![pattern_11-3780](3780/previews/pattern_11.png) | ![pattern_12-3780](3780/previews/pattern_12.png) | [<NSFW, click to see>](3780/previews/bikini.png) | [<NSFW, click to see>](3780/previews/bondage.png) | ![free-3780](3780/previews/free.png) | ![maid-3780](3780/previews/maid.png) | ![miko-3780](3780/previews/miko.png) | [<NSFW, click to see>](3780/previews/nude.png) | [<NSFW, click to see>](3780/previews/nude2.png) | ![suit-3780](3780/previews/suit.png) | ![yukata-3780](3780/previews/yukata.png) | | 3240 | 0.950 | [Download](3240/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-3240](3240/previews/pattern_1.png) | ![pattern_2-3240](3240/previews/pattern_2.png) | ![pattern_3-3240](3240/previews/pattern_3.png) | ![pattern_4-3240](3240/previews/pattern_4.png) | ![pattern_5-3240](3240/previews/pattern_5.png) | ![pattern_6-3240](3240/previews/pattern_6.png) | ![pattern_7-3240](3240/previews/pattern_7.png) | ![pattern_8-3240](3240/previews/pattern_8.png) | ![pattern_9-3240](3240/previews/pattern_9.png) | ![pattern_10-3240](3240/previews/pattern_10.png) | ![pattern_11-3240](3240/previews/pattern_11.png) | ![pattern_12-3240](3240/previews/pattern_12.png) | [<NSFW, click to see>](3240/previews/bikini.png) | [<NSFW, click to see>](3240/previews/bondage.png) | ![free-3240](3240/previews/free.png) | ![maid-3240](3240/previews/maid.png) | ![miko-3240](3240/previews/miko.png) | [<NSFW, click to see>](3240/previews/nude.png) | [<NSFW, click to see>](3240/previews/nude2.png) | ![suit-3240](3240/previews/suit.png) | ![yukata-3240](3240/previews/yukata.png) | | 2700 | 0.944 | [Download](2700/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-2700](2700/previews/pattern_1.png) | ![pattern_2-2700](2700/previews/pattern_2.png) | ![pattern_3-2700](2700/previews/pattern_3.png) | ![pattern_4-2700](2700/previews/pattern_4.png) | ![pattern_5-2700](2700/previews/pattern_5.png) | ![pattern_6-2700](2700/previews/pattern_6.png) | ![pattern_7-2700](2700/previews/pattern_7.png) | ![pattern_8-2700](2700/previews/pattern_8.png) | ![pattern_9-2700](2700/previews/pattern_9.png) | ![pattern_10-2700](2700/previews/pattern_10.png) | ![pattern_11-2700](2700/previews/pattern_11.png) | ![pattern_12-2700](2700/previews/pattern_12.png) | [<NSFW, click to see>](2700/previews/bikini.png) | [<NSFW, click to see>](2700/previews/bondage.png) | ![free-2700](2700/previews/free.png) | ![maid-2700](2700/previews/maid.png) | ![miko-2700](2700/previews/miko.png) | [<NSFW, click to see>](2700/previews/nude.png) | [<NSFW, click to see>](2700/previews/nude2.png) | ![suit-2700](2700/previews/suit.png) | ![yukata-2700](2700/previews/yukata.png) | | 2160 | 0.958 | [Download](2160/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-2160](2160/previews/pattern_1.png) | ![pattern_2-2160](2160/previews/pattern_2.png) | ![pattern_3-2160](2160/previews/pattern_3.png) | ![pattern_4-2160](2160/previews/pattern_4.png) | ![pattern_5-2160](2160/previews/pattern_5.png) | ![pattern_6-2160](2160/previews/pattern_6.png) | ![pattern_7-2160](2160/previews/pattern_7.png) | ![pattern_8-2160](2160/previews/pattern_8.png) | ![pattern_9-2160](2160/previews/pattern_9.png) | ![pattern_10-2160](2160/previews/pattern_10.png) | ![pattern_11-2160](2160/previews/pattern_11.png) | ![pattern_12-2160](2160/previews/pattern_12.png) | [<NSFW, click to see>](2160/previews/bikini.png) | [<NSFW, click to see>](2160/previews/bondage.png) | ![free-2160](2160/previews/free.png) | ![maid-2160](2160/previews/maid.png) | ![miko-2160](2160/previews/miko.png) | [<NSFW, click to see>](2160/previews/nude.png) | [<NSFW, click to see>](2160/previews/nude2.png) | ![suit-2160](2160/previews/suit.png) | ![yukata-2160](2160/previews/yukata.png) | | 1620 | 0.969 | [Download](1620/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-1620](1620/previews/pattern_1.png) | ![pattern_2-1620](1620/previews/pattern_2.png) | ![pattern_3-1620](1620/previews/pattern_3.png) | ![pattern_4-1620](1620/previews/pattern_4.png) | ![pattern_5-1620](1620/previews/pattern_5.png) | ![pattern_6-1620](1620/previews/pattern_6.png) | ![pattern_7-1620](1620/previews/pattern_7.png) | ![pattern_8-1620](1620/previews/pattern_8.png) | ![pattern_9-1620](1620/previews/pattern_9.png) | ![pattern_10-1620](1620/previews/pattern_10.png) | ![pattern_11-1620](1620/previews/pattern_11.png) | ![pattern_12-1620](1620/previews/pattern_12.png) | [<NSFW, click to see>](1620/previews/bikini.png) | [<NSFW, click to see>](1620/previews/bondage.png) | ![free-1620](1620/previews/free.png) | ![maid-1620](1620/previews/maid.png) | ![miko-1620](1620/previews/miko.png) | [<NSFW, click to see>](1620/previews/nude.png) | [<NSFW, click to see>](1620/previews/nude2.png) | ![suit-1620](1620/previews/suit.png) | ![yukata-1620](1620/previews/yukata.png) | | 1080 | 0.897 | [Download](1080/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-1080](1080/previews/pattern_1.png) | ![pattern_2-1080](1080/previews/pattern_2.png) | ![pattern_3-1080](1080/previews/pattern_3.png) | ![pattern_4-1080](1080/previews/pattern_4.png) | ![pattern_5-1080](1080/previews/pattern_5.png) | ![pattern_6-1080](1080/previews/pattern_6.png) | ![pattern_7-1080](1080/previews/pattern_7.png) | ![pattern_8-1080](1080/previews/pattern_8.png) | ![pattern_9-1080](1080/previews/pattern_9.png) | ![pattern_10-1080](1080/previews/pattern_10.png) | ![pattern_11-1080](1080/previews/pattern_11.png) | ![pattern_12-1080](1080/previews/pattern_12.png) | [<NSFW, click to see>](1080/previews/bikini.png) | [<NSFW, click to see>](1080/previews/bondage.png) | ![free-1080](1080/previews/free.png) | ![maid-1080](1080/previews/maid.png) | ![miko-1080](1080/previews/miko.png) | [<NSFW, click to see>](1080/previews/nude.png) | [<NSFW, click to see>](1080/previews/nude2.png) | ![suit-1080](1080/previews/suit.png) | ![yukata-1080](1080/previews/yukata.png) | | 540 | 0.937 | [Download](540/hisakawa_hayate_idolmastercinderellagirls.zip) | ![pattern_1-540](540/previews/pattern_1.png) | ![pattern_2-540](540/previews/pattern_2.png) | ![pattern_3-540](540/previews/pattern_3.png) | ![pattern_4-540](540/previews/pattern_4.png) | ![pattern_5-540](540/previews/pattern_5.png) | ![pattern_6-540](540/previews/pattern_6.png) | ![pattern_7-540](540/previews/pattern_7.png) | ![pattern_8-540](540/previews/pattern_8.png) | ![pattern_9-540](540/previews/pattern_9.png) | ![pattern_10-540](540/previews/pattern_10.png) | ![pattern_11-540](540/previews/pattern_11.png) | ![pattern_12-540](540/previews/pattern_12.png) | [<NSFW, click to see>](540/previews/bikini.png) | [<NSFW, click to see>](540/previews/bondage.png) | ![free-540](540/previews/free.png) | ![maid-540](540/previews/maid.png) | ![miko-540](540/previews/miko.png) | [<NSFW, click to see>](540/previews/nude.png) | [<NSFW, click to see>](540/previews/nude2.png) | ![suit-540](540/previews/suit.png) | ![yukata-540](540/previews/yukata.png) |
Stoemb/phi-1_5-finetuned-html_2_text
Stoemb
2023-09-17T17:00:20Z
59
0
transformers
[ "transformers", "pytorch", "mixformer-sequential", "text-generation", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-09-17T16:49:09Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-html_2_text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-html_2_text This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 5000 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Atulit23/meta-llama-indian-constitution
Atulit23
2023-09-17T16:50:09Z
44
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T16:36:06Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: meta-llama-indian-constitution results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meta-llama-indian-constitution This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
aviroes/MAScIR_elderly_whisper-medium-LoRA-data-augmented
aviroes
2023-09-17T16:47:54Z
0
0
null
[ "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "region:us" ]
null
2023-09-17T11:58:42Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer model-index: - name: MAScIR_elderly_whisper-medium-LoRA-data-augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MAScIR_elderly_whisper-medium-LoRA-data-augmented This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8119 | 0.09 | 100 | 0.2422 | | 0.7907 | 0.19 | 200 | 0.2357 | | 0.6762 | 0.28 | 300 | 0.2311 | | 0.7081 | 0.38 | 400 | 0.2256 | | 0.5623 | 0.47 | 500 | 0.1946 | | 0.569 | 0.57 | 600 | 0.1697 | | 9.0833 | 0.66 | 700 | 8.1242 | | 6.1681 | 0.76 | 800 | 5.9288 | | 5.5565 | 0.85 | 900 | 4.9360 | | 2.0714 | 0.95 | 1000 | 0.2584 | | 0.6051 | 1.04 | 1100 | 0.2062 | | 0.485 | 1.14 | 1200 | 0.1824 | | 0.637 | 1.23 | 1300 | 0.1522 | | 0.5521 | 1.33 | 1400 | 0.1371 | | 0.3999 | 1.42 | 1500 | 0.1331 | | 0.4788 | 1.52 | 1600 | 0.1344 | | 0.3738 | 1.61 | 1700 | 0.0952 | | 0.3046 | 1.71 | 1800 | 0.0871 | | 0.4335 | 1.8 | 1900 | 0.0770 | | 0.3876 | 1.9 | 2000 | 0.0654 | | 0.4226 | 1.99 | 2100 | 0.0638 | | 0.2651 | 2.09 | 2200 | 0.0612 | | 0.2075 | 2.18 | 2300 | 0.0541 | | 0.2464 | 2.28 | 2400 | 0.0473 | | 0.1797 | 2.37 | 2500 | 0.0482 | | 0.2393 | 2.47 | 2600 | 0.0428 | | 0.1764 | 2.56 | 2700 | 0.0396 | | 0.1398 | 2.66 | 2800 | 0.0390 | | 0.1855 | 2.75 | 2900 | 0.0382 | | 0.232 | 2.85 | 3000 | 0.0369 | | 0.2 | 2.94 | 3100 | 0.0358 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
fetiska/Dum-E-PandaReachDense-v3
fetiska
2023-09-17T16:29:30Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T16:23:54Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.22 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vasaicrow/distilbert-base-uncased-finetuned-imdb
vasaicrow
2023-09-17T16:29:02Z
124
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-17T16:07:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7087 | 1.0 | 157 | 2.4899 | | 2.5798 | 2.0 | 314 | 2.4231 | | 2.5271 | 3.0 | 471 | 2.4356 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
asas-ai/nllb-200-distilled-600M-finetuned_augmented_synthetic_ar-to-en
asas-ai
2023-09-17T16:26:14Z
17
1
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "translation", "base_model:facebook/nllb-200-distilled-600M", "base_model:finetune:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-19T14:28:14Z
--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - bleu model-index: - name: nllb-200-distilled-600M-finetuned_augmented_synthetic_ar-to-en results: [] pipeline_tag: translation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-200-distilled-600M-finetuned_augmented_synthetic_ar-to-en This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7501 - Bleu: 62.4193 - Gen Len: 64.586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.0564 | 1.0 | 2210 | 1.0374 | 45.431 | 65.406 | | 0.8998 | 2.0 | 4420 | 0.8975 | 52.6173 | 66.014 | | 0.7972 | 3.0 | 6630 | 0.8399 | 55.9624 | 65.357 | | 0.7451 | 4.0 | 8840 | 0.8021 | 57.3958 | 65.94 | | 0.6884 | 5.0 | 11050 | 0.7771 | 59.9589 | 65.367 | | 0.6742 | 6.0 | 13260 | 0.7648 | 61.0786 | 64.74 | | 0.6599 | 7.0 | 15470 | 0.7562 | 61.9442 | 64.694 | | 0.6168 | 8.0 | 17680 | 0.7530 | 62.0067 | 64.965 | | 0.6234 | 9.0 | 19890 | 0.7502 | 62.0721 | 64.888 | | 0.5948 | 10.0 | 22100 | 0.7501 | 62.4193 | 64.586 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3
asas-ai/opus-mt-ar-en-finetuned_augmented_MT-ar-to-en
asas-ai
2023-09-17T16:25:17Z
125
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "translation", "base_model:Helsinki-NLP/opus-mt-ar-en", "base_model:finetune:Helsinki-NLP/opus-mt-ar-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-15T16:43:53Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-ar-en tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned_augmented_MTback-ar-to-en results: [] pipeline_tag: translation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned_augmented_MTback-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8227 - Bleu: 66.3415 - Gen Len: 59.569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.3965 | 1.0 | 1098 | 1.1276 | 52.6355 | 62.191 | | 2.0086 | 2.0 | 2196 | 0.9785 | 58.7217 | 61.399 | | 1.7825 | 3.0 | 3294 | 0.9172 | 61.1046 | 61.316 | | 1.6434 | 4.0 | 4392 | 0.8788 | 63.501 | 60.232 | | 1.5295 | 5.0 | 5490 | 0.8571 | 64.7425 | 59.709 | | 1.4316 | 6.0 | 6588 | 0.8419 | 65.7013 | 59.381 | | 1.3766 | 7.0 | 7686 | 0.8315 | 65.9805 | 59.585 | | 1.3241 | 8.0 | 8784 | 0.8254 | 66.2432 | 59.516 | | 1.2965 | 9.0 | 9882 | 0.8238 | 66.2241 | 59.604 | | 1.2877 | 10.0 | 10980 | 0.8227 | 66.3415 | 59.569 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
asas-ai/opus-mt-ar-en-finetuned_augmented_synthetic-ar-to-en
asas-ai
2023-09-17T16:24:06Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "translation", "base_model:Helsinki-NLP/opus-mt-ar-en", "base_model:finetune:Helsinki-NLP/opus-mt-ar-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-17T15:36:11Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-ar-en tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned_augmented_synthetic-ar-to-en results: [] pipeline_tag: translation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned_augmented_synthetic-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8682 - Bleu: 63.4498 - Gen Len: 59.457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.9549 | 1.0 | 1105 | 1.2644 | 43.0637 | 61.33 | | 0.7674 | 2.0 | 2210 | 1.0862 | 51.6055 | 60.714 | | 0.6736 | 3.0 | 3315 | 0.9910 | 56.1642 | 60.434 | | 0.6011 | 4.0 | 4420 | 0.9463 | 59.6059 | 59.682 | | 0.5543 | 5.0 | 5525 | 0.9158 | 61.101 | 59.493 | | 0.5176 | 6.0 | 6630 | 0.8961 | 61.9065 | 59.468 | | 0.4849 | 7.0 | 7735 | 0.8840 | 62.6833 | 59.5 | | 0.4692 | 8.0 | 8840 | 0.8727 | 63.0766 | 59.425 | | 0.464 | 9.0 | 9945 | 0.8709 | 63.3354 | 59.454 | | 0.4486 | 10.0 | 11050 | 0.8682 | 63.4498 | 59.457 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
semaj83/speecht5_finetuned_multilingual_librispeech_de
semaj83
2023-09-17T16:23:40Z
85
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "de", "dataset:facebook/multilingual_librispeech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-16T23:24:59Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_multilingual_librispeech_de results: [] datasets: - facebook/multilingual_librispeech language: - de pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_multilingual_librispeech_de This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4472 | 76.92 | 1000 | 0.4305 | | 0.4181 | 153.85 | 2000 | 0.4299 | | 0.4138 | 230.77 | 3000 | 0.4353 | | 0.4163 | 307.69 | 4000 | 0.4373 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
zjoe/a2c-PandaPickAndPlace-v3
zjoe
2023-09-17T16:23:18Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T16:17:50Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ashishkat/adalora
ashishkat
2023-09-17T16:22:09Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-30T11:37:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
Powidl43/p4a-mandala
Powidl43
2023-09-17T16:14:35Z
0
1
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-17T15:13:32Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- --- # P4A Mandala trained with kohya_ss (edg settings) pinkal09 dataset deviantart.com/pinkal09 trigger "p4a psychedelic" + EasyNegative huggingface.co/LibreSD/Various/resolve/main/EasyNegative.safetensors huggingface.co/LibreSD/Various/resolve/main/EasyNegativeV2.safetensors samples civitai.com/models/147191/p4a-mandala --- # Merge Info step1_hard = [p4a-step2](https://huggingface.co/Powidl43/psychedelic/tree/main/step2-merge) 0.6 + pinkal09 0.4 step2_hard_a = step1_hard-camelliamix_v3 0.6 + step1_hard-greymix_v2 0.4 step2_hard_b = step1_hard-counterfeit_v3 0.6 + step1_hard-nabimix_v2 0.4 p4a_mandala_v1_hard_a = step2_hard_a 0.6 + step2_hard_b 0.4 p4a_mandala_v1_hard_b = step2_hard_b 0.6 + step2_hard_a 0.4 step1_soft = [p4a-step2](https://huggingface.co/Powidl43/psychedelic/tree/main/step2-merge) 0.8 + pinkal09 0.2 step2_soft_a = step1_soft-camelliamix_v3 0.6 + step1_soft-greymix_v2 0.4 step2_soft_b = step1_soft-counterfeit_v3 0.6 + step1_soft-nabimix_v2 0.4 p4a_mandala_v1_soft_a = step2_soft_a 0.6 + step2_soft_b 0.4 p4a_mandala_v1_soft_b = step2_soft_b 0.6 + step2_soft_a 0.4 --- base models and other essentials huggingface.co/LibreSD
Osmond141319/Tameheadmix
Osmond141319
2023-09-17T16:12:31Z
0
0
null
[ "region:us" ]
null
2023-09-10T04:46:42Z
https://civitai.com/models/27707?modelVersionId=161189
ys7yoo/nli_sts_roberta_large_lr1e-05_wd1e-03_ep10_lr1e-05_wd1e-03_ep10_ckpt
ys7yoo
2023-09-17T16:10:54Z
116
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep10", "base_model:finetune:ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep10", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T15:25:51Z
--- base_model: ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep10 tags: - generated_from_trainer datasets: - klue metrics: - accuracy - f1 model-index: - name: nli_sts_roberta_large_lr1e-05_wd1e-03_ep10_lr1e-05_wd1e-03_ep10_ckpt results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: nli split: validation args: nli metrics: - name: Accuracy type: accuracy value: 0.8963333333333333 - name: F1 type: f1 value: 0.8962457758881018 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nli_sts_roberta_large_lr1e-05_wd1e-03_ep10_lr1e-05_wd1e-03_ep10_ckpt This model is a fine-tuned version of [ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep10](https://huggingface.co/ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep10) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.8963 - F1: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6445 | 1.0 | 391 | 0.4254 | 0.852 | 0.8512 | | 0.2943 | 2.0 | 782 | 0.3371 | 0.889 | 0.8886 | | 0.1586 | 3.0 | 1173 | 0.3704 | 0.888 | 0.8881 | | 0.0921 | 4.0 | 1564 | 0.4429 | 0.892 | 0.8919 | | 0.0565 | 5.0 | 1955 | 0.4864 | 0.899 | 0.8989 | | 0.0378 | 6.0 | 2346 | 0.5727 | 0.8963 | 0.8962 | | 0.0238 | 7.0 | 2737 | 0.6247 | 0.8957 | 0.8955 | | 0.016 | 8.0 | 3128 | 0.6578 | 0.8947 | 0.8945 | | 0.0101 | 9.0 | 3519 | 0.6780 | 0.8953 | 0.8952 | | 0.0067 | 10.0 | 3910 | 0.6903 | 0.8963 | 0.8962 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
NabeelShar/emotion-dectect
NabeelShar
2023-09-17T16:05:13Z
220
0
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-13T18:11:40Z
--- license: apache-2.0 ### Just Another Project
wzneric/df_wm_id1
wzneric
2023-09-17T15:50:11Z
7
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-17T15:01:24Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks Tshirt tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - wzneric/df_wm_id1 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks Tshirt using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
ihsansatriawan/image_classification
ihsansatriawan
2023-09-17T15:42:27Z
214
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-15T20:40:12Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2908 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.2380 | 0.5062 | | No log | 2.0 | 40 | 1.1930 | 0.6 | | No log | 3.0 | 60 | 1.2037 | 0.5687 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
guydebruyn/ppo-SnowballTarget
guydebruyn
2023-09-17T15:39:26Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-17T15:39:20Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: guydebruyn/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pensuke/xlm-roberta-base-finetuned-panx-de
pensuke
2023-09-17T15:39:13Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-17T11:21:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.838776250104582 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1927 - F1: 0.8388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.338 | 1.0 | 525 | 0.2224 | 0.7987 | | 0.1756 | 2.0 | 1050 | 0.1949 | 0.8280 | | 0.1131 | 3.0 | 1575 | 0.1927 | 0.8388 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
BolaKubuz/distilhubert-finetuned-gtzan
BolaKubuz
2023-09-17T15:38:16Z
159
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-09T14:28:37Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6334 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.172 | 0.99 | 56 | 2.0068 | 0.5 | | 1.6062 | 2.0 | 113 | 1.4539 | 0.57 | | 1.2326 | 2.99 | 169 | 1.1605 | 0.67 | | 1.0537 | 4.0 | 226 | 1.0225 | 0.73 | | 0.8398 | 4.99 | 282 | 0.8392 | 0.8 | | 0.7322 | 6.0 | 339 | 0.8435 | 0.76 | | 0.6144 | 6.99 | 395 | 0.7217 | 0.83 | | 0.5545 | 8.0 | 452 | 0.6526 | 0.84 | | 0.4077 | 8.99 | 508 | 0.6378 | 0.83 | | 0.4029 | 9.91 | 560 | 0.6334 | 0.83 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
lloorree/mythxl-70b-gptq
lloorree
2023-09-17T15:30:21Z
8
6
transformers
[ "transformers", "llama", "text-generation", "dataset:kaiokendev/SuperCOT-dataset", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T06:32:19Z
--- license: cc-by-nc-sa-4.0 datasets: - kaiokendev/SuperCOT-dataset --- Quantized 70B recreation of [MythoMax](https://huggingface.co/Gryphe/MythoMax-L2-13b). Differences: - Includes a 70B recreation of SuperCOT as in the 1.2 version of Huginn - Anywhere Airoboros is merged in, the 1.4.1 version was used instead of 2.X Known limitation: it *strongly* prefers novel format in roleplay, and will revert to it over time regardless of context or conversation history. License is strictly noncommercial, both to match that of its major dependency [Chronos 70B](https://huggingface.co/elinas/chronos-70b-v2) and in its own right. ## Prompt Format (Copied from the MythoMax page, not necessarily optimal) This model primarily uses Alpaca formatting, so for optimal model performance, use: ``` <System prompt/Character Card> ### Instruction: Your instruction or question here. For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only. ### Response: ```
wanzhenen/rudeus
wanzhenen
2023-09-17T15:11:11Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T15:10:19Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### Rudeus on Stable Diffusion via Dreambooth #### model by wanzhenen This your the Stable Diffusion model fine-tuned the Rudeus concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<rudeus> anime man** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/wanzhenen/rudeus/resolve/main/concept_images/3.jpeg) ![image 1](https://huggingface.co/wanzhenen/rudeus/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/wanzhenen/rudeus/resolve/main/concept_images/0.jpeg) ![image 3](https://huggingface.co/wanzhenen/rudeus/resolve/main/concept_images/1.jpeg)
lpepino/encodecmae-small
lpepino
2023-09-17T15:09:10Z
0
1
null
[ "arxiv:2309.07391", "license:mit", "region:us" ]
null
2023-09-11T01:28:33Z
--- license: mit --- # Model description This is EnCodecMAE, an audio feature extractor pretrained with masked language modelling to predict discrete targets generated by EnCodec, a neural audio codec. For more details about the architecture and pretraining procedure, read the [paper](https://arxiv.org/abs/2309.07391). # Usage ### 1) Clone the [EnCodecMAE library](https://github.com/habla-liaa/encodecmae): ``` git clone https://github.com/habla-liaa/encodecmae.git ``` ### 2) Install it: ``` cd encodecmae pip install -e . ``` ### 3) Extract embeddings in Python: ``` python from encodecmae import load_model model = load_model('small', device='cuda:0') features = model.extract_features_from_file('gsc/bed/00176480_nohash_0.wav') ```
lpepino/encodecmae-large-st
lpepino
2023-09-17T15:08:17Z
0
1
null
[ "arxiv:2309.07391", "license:mit", "region:us" ]
null
2023-09-11T01:39:07Z
--- license: mit --- # Model description This is EnCodecMAE, an audio feature extractor pretrained with masked language modelling to predict discrete targets generated by EnCodec, a neural audio codec. For more details about the architecture and pretraining procedure, read the [paper](https://arxiv.org/abs/2309.07391). # Usage ### 1) Clone the [EnCodecMAE library](https://github.com/habla-liaa/encodecmae): ``` git clone https://github.com/habla-liaa/encodecmae.git ``` ### 2) Install it: ``` cd encodecmae pip install -e . ``` ### 3) Extract embeddings in Python: ``` python from encodecmae import load_model model = load_model('large-st', device='cuda:0') features = model.extract_features_from_file('gsc/bed/00176480_nohash_0.wav') ```
microsoft/prophetnet-large-uncased-squad-qg
microsoft
2023-09-17T15:07:14Z
587
7
transformers
[ "transformers", "pytorch", "safetensors", "prophetnet", "text2text-generation", "en", "dataset:squad", "arxiv:2001.04063", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - squad --- ## prophetnet-large-uncased-squad-qg Fine-tuned weights(converted from [original fairseq version repo](https://github.com/microsoft/ProphetNet)) for [ProphetNet](https://arxiv.org/abs/2001.04063) on question generation SQuAD 1.1. ProphetNet is a new pre-trained language model for sequence-to-sequence learning with a novel self-supervised objective called future n-gram prediction. ProphetNet is able to predict more future tokens with a n-stream decoder. The original implementation is Fairseq version at [github repo](https://github.com/microsoft/ProphetNet). ### Usage ``` from transformers import ProphetNetTokenizer, ProphetNetForConditionalGeneration, ProphetNetConfig model = ProphetNetForConditionalGeneration.from_pretrained('microsoft/prophetnet-large-uncased-squad-qg') tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased-squad-qg') FACT_TO_GENERATE_QUESTION_FROM = ""Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975." inputs = tokenizer([FACT_TO_GENERATE_QUESTION_FROM], return_tensors='pt') # Generate Summary question_ids = model.generate(inputs['input_ids'], num_beams=5, early_stopping=True) tokenizer.batch_decode(question_ids, skip_special_tokens=True) # should give: 'along with paul allen, who founded microsoft?' ``` ### Citation ```bibtex @article{yan2020prophetnet, title={Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training}, author={Yan, Yu and Qi, Weizhen and Gong, Yeyun and Liu, Dayiheng and Duan, Nan and Chen, Jiusheng and Zhang, Ruofei and Zhou, Ming}, journal={arXiv preprint arXiv:2001.04063}, year={2020} } ```
sd-dreambooth-library/snapp-g-data
sd-dreambooth-library
2023-09-17T15:05:38Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T15:02:27Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### snapp_g_data on Stable Diffusion via Dreambooth #### model by hosnasn This your the Stable Diffusion model fine-tuned the snapp_g_data concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **m_concept** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/snapp-g-data/resolve/main/concept_images/3.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/snapp-g-data/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/snapp-g-data/resolve/main/concept_images/0.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/snapp-g-data/resolve/main/concept_images/1.jpeg)
dini-r-a/emotion_classification
dini-r-a
2023-09-17T15:01:58Z
109
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-14T05:43:05Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: FastJobs--Visual_Emotional_Analysis split: train[:-1] args: FastJobs--Visual_Emotional_Analysis metrics: - name: Accuracy type: accuracy value: 0.5625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6256 - Accuracy: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.7794 | 0.4875 | | No log | 2.0 | 20 | 1.6813 | 0.4938 | | 0.2276 | 3.0 | 30 | 1.7602 | 0.4875 | | 0.2276 | 4.0 | 40 | 1.9172 | 0.4562 | | 0.2048 | 5.0 | 50 | 1.9316 | 0.4625 | | 0.2048 | 6.0 | 60 | 1.8285 | 0.5 | | 0.2048 | 7.0 | 70 | 1.6341 | 0.5687 | | 0.1617 | 8.0 | 80 | 1.7461 | 0.5375 | | 0.1617 | 9.0 | 90 | 1.6544 | 0.5312 | | 0.1766 | 10.0 | 100 | 1.9449 | 0.4875 | | 0.1766 | 11.0 | 110 | 1.7565 | 0.5125 | | 0.1766 | 12.0 | 120 | 1.8936 | 0.5 | | 0.1979 | 13.0 | 130 | 1.6812 | 0.5687 | | 0.1979 | 14.0 | 140 | 1.7619 | 0.5188 | | 0.1694 | 15.0 | 150 | 1.6903 | 0.55 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
TinyLlama/TinyLlama-1.1B-Chat-v0.2
TinyLlama
2023-09-17T15:00:54Z
65
13
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "dataset:OpenAssistant/oasst_top1_2023-08-25", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T04:45:53Z
--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - OpenAssistant/oasst_top1_2023-08-25 language: - en --- <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. <div align="center"> <img src="./TinyLlama_logo.png" width="300"/> </div> We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on [PY007/TinyLlama-1.1B-intermediate-step-240k-503b](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b). The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25). **Update from V0.1: 1. Different dataset. 2. Different chat format (now [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) formatted conversations).** #### How to use You will need the transformers>=4.31 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ``` from transformers import AutoTokenizer import transformers import torch model = "PY007/TinyLlama-1.1B-Chat-v0.2" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) prompt = "How to get in a good university?" formatted_prompt = ( f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" ) sequences = pipeline( formatted_prompt, do_sample=True, top_k=50, top_p = 0.9, num_return_sequences=1, repetition_penalty=1.1, max_new_tokens=1024, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```
nagupv/Stable13B_contextLLMExam_18kv2_f0
nagupv
2023-09-17T14:57:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-19T13:36:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
NewstaR/Porpoise-6b-instruct
NewstaR
2023-09-17T14:55:11Z
2,581
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "custom_code", "dataset:Open-Orca/OpenOrca", "dataset:cerebras/SlimPajama-627B", "dataset:ehartford/dolphin", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T14:27:51Z
--- datasets: - Open-Orca/OpenOrca - cerebras/SlimPajama-627B - ehartford/dolphin --- This model is a finetuned version of the DeciLM-6b-instruct on the Dolphin GPT4 Dataset Please set naive_attention_prefill to true when loading this model. **Example:** ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer model_name = "NewstaR/Porpoise-6b-instruct" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True, naive_attention_prefill=True, ) model.config.use_cache = False ```
nielsr/van-base-finetuned-eurosat-imgaug
nielsr
2023-09-17T14:46:28Z
208
0
transformers
[ "transformers", "pytorch", "tensorboard", "van", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:Visual-Attention-Network/van-base", "base_model:finetune:Visual-Attention-Network/van-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-11T12:46:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy base_model: Visual-Attention-Network/van-base model-index: - name: van-base-finetuned-eurosat-imgaug results: - task: type: image-classification name: Image Classification dataset: name: image_folder type: image_folder args: default metrics: - type: accuracy value: 0.9885185185185185 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # van-base-finetuned-eurosat-imgaug This model is a fine-tuned version of [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0379 - Accuracy: 0.9885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0887 | 1.0 | 190 | 0.0589 | 0.98 | | 0.055 | 2.0 | 380 | 0.0390 | 0.9878 | | 0.0223 | 3.0 | 570 | 0.0379 | 0.9885 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Gladiator/funnel-transformer-xlarge_ner_wikiann
Gladiator
2023-09-17T14:42:45Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "funnel", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T16:19:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: funnel-transformer-xlarge_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8522084990579862 - name: Recall type: recall value: 0.8633535981903011 - name: F1 type: f1 value: 0.8577448467184043 - name: Accuracy type: accuracy value: 0.935805105791199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # funnel-transformer-xlarge_ner_wikiann This model is a fine-tuned version of [funnel-transformer/xlarge](https://huggingface.co/funnel-transformer/xlarge) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Precision: 0.8522 - Recall: 0.8634 - F1: 0.8577 - Accuracy: 0.9358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3193 | 1.0 | 5000 | 0.3116 | 0.8239 | 0.8296 | 0.8267 | 0.9260 | | 0.2836 | 2.0 | 10000 | 0.2846 | 0.8446 | 0.8498 | 0.8472 | 0.9325 | | 0.2237 | 3.0 | 15000 | 0.3258 | 0.8427 | 0.8542 | 0.8484 | 0.9332 | | 0.1303 | 4.0 | 20000 | 0.3801 | 0.8531 | 0.8634 | 0.8582 | 0.9362 | | 0.0867 | 5.0 | 25000 | 0.4023 | 0.8522 | 0.8634 | 0.8577 | 0.9358 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Serotina/rl_course_vizdoom_health_gathering_supreme
Serotina
2023-09-17T14:35:43Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T14:35:32Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.35 +/- 6.07 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Serotina/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
ys7yoo/nli_sts_roberta_large_lr1e_05_wd1e_03_ep5_lr1e-05_wd1e-03_ep5_ckpt
ys7yoo
2023-09-17T14:26:43Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:ys7yoo/sts_roberta-large_lr1e-05_wd1e-03_ep5", "base_model:finetune:ys7yoo/sts_roberta-large_lr1e-05_wd1e-03_ep5", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T13:54:14Z
--- base_model: ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep5 tags: - generated_from_trainer datasets: - klue metrics: - accuracy - f1 model-index: - name: nli_sts_roberta_large_lr1e_05_wd1e_03_ep5_lr1e-05_wd1e-03_ep5_ckpt results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: nli split: validation args: nli metrics: - name: Accuracy type: accuracy value: 0.8986666666666666 - name: F1 type: f1 value: 0.8985280502079203 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nli_sts_roberta_large_lr1e_05_wd1e_03_ep5_lr1e-05_wd1e-03_ep5_ckpt This model is a fine-tuned version of [ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep5](https://huggingface.co/ys7yoo/sts_roberta_large_lr1e-05_wd1e-03_ep5) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4971 - Accuracy: 0.8987 - F1: 0.8985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5471 | 1.0 | 391 | 0.3522 | 0.876 | 0.8756 | | 0.2379 | 2.0 | 782 | 0.3345 | 0.8983 | 0.8981 | | 0.1215 | 3.0 | 1173 | 0.3708 | 0.8997 | 0.8995 | | 0.0661 | 4.0 | 1564 | 0.4734 | 0.896 | 0.8958 | | 0.0407 | 5.0 | 1955 | 0.4971 | 0.8987 | 0.8985 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
CyberHarem/satou_shin_idolmastercinderellagirls
CyberHarem
2023-09-17T14:25:10Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/satou_shin_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-17T14:02:17Z
--- license: mit datasets: - CyberHarem/satou_shin_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of satou_shin_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 3240, you need to download `3240/satou_shin_idolmastercinderellagirls.pt` as the embedding and `3240/satou_shin_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 3240**, with the score of 0.946. The trigger words are: 1. `satou_shin_idolmastercinderellagirls` 2. `green_eyes, ahoge, blush, smile, bangs, long_hair, breasts, twintails, heart, blonde_hair, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:--------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-----------------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8100 | 0.904 | [Download](8100/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-8100](8100/previews/pattern_1.png) | ![pattern_2-8100](8100/previews/pattern_2.png) | ![pattern_3-8100](8100/previews/pattern_3.png) | ![pattern_4-8100](8100/previews/pattern_4.png) | ![pattern_5-8100](8100/previews/pattern_5.png) | ![pattern_6-8100](8100/previews/pattern_6.png) | ![pattern_7-8100](8100/previews/pattern_7.png) | ![pattern_8-8100](8100/previews/pattern_8.png) | ![pattern_9-8100](8100/previews/pattern_9.png) | ![pattern_10-8100](8100/previews/pattern_10.png) | ![pattern_11-8100](8100/previews/pattern_11.png) | [<NSFW, click to see>](8100/previews/pattern_12.png) | ![pattern_13-8100](8100/previews/pattern_13.png) | ![pattern_14-8100](8100/previews/pattern_14.png) | ![pattern_15-8100](8100/previews/pattern_15.png) | ![pattern_16-8100](8100/previews/pattern_16.png) | ![bikini-8100](8100/previews/bikini.png) | [<NSFW, click to see>](8100/previews/bondage.png) | [<NSFW, click to see>](8100/previews/free.png) | ![maid-8100](8100/previews/maid.png) | ![miko-8100](8100/previews/miko.png) | [<NSFW, click to see>](8100/previews/nude.png) | [<NSFW, click to see>](8100/previews/nude2.png) | ![suit-8100](8100/previews/suit.png) | ![yukata-8100](8100/previews/yukata.png) | | 7560 | 0.860 | [Download](7560/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-7560](7560/previews/pattern_1.png) | ![pattern_2-7560](7560/previews/pattern_2.png) | ![pattern_3-7560](7560/previews/pattern_3.png) | ![pattern_4-7560](7560/previews/pattern_4.png) | ![pattern_5-7560](7560/previews/pattern_5.png) | ![pattern_6-7560](7560/previews/pattern_6.png) | ![pattern_7-7560](7560/previews/pattern_7.png) | ![pattern_8-7560](7560/previews/pattern_8.png) | ![pattern_9-7560](7560/previews/pattern_9.png) | ![pattern_10-7560](7560/previews/pattern_10.png) | ![pattern_11-7560](7560/previews/pattern_11.png) | [<NSFW, click to see>](7560/previews/pattern_12.png) | ![pattern_13-7560](7560/previews/pattern_13.png) | ![pattern_14-7560](7560/previews/pattern_14.png) | ![pattern_15-7560](7560/previews/pattern_15.png) | ![pattern_16-7560](7560/previews/pattern_16.png) | ![bikini-7560](7560/previews/bikini.png) | [<NSFW, click to see>](7560/previews/bondage.png) | [<NSFW, click to see>](7560/previews/free.png) | ![maid-7560](7560/previews/maid.png) | ![miko-7560](7560/previews/miko.png) | [<NSFW, click to see>](7560/previews/nude.png) | [<NSFW, click to see>](7560/previews/nude2.png) | ![suit-7560](7560/previews/suit.png) | ![yukata-7560](7560/previews/yukata.png) | | 7020 | 0.937 | [Download](7020/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | ![pattern_2-7020](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | ![pattern_7-7020](7020/previews/pattern_7.png) | ![pattern_8-7020](7020/previews/pattern_8.png) | ![pattern_9-7020](7020/previews/pattern_9.png) | ![pattern_10-7020](7020/previews/pattern_10.png) | ![pattern_11-7020](7020/previews/pattern_11.png) | [<NSFW, click to see>](7020/previews/pattern_12.png) | ![pattern_13-7020](7020/previews/pattern_13.png) | ![pattern_14-7020](7020/previews/pattern_14.png) | ![pattern_15-7020](7020/previews/pattern_15.png) | ![pattern_16-7020](7020/previews/pattern_16.png) | ![bikini-7020](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | [<NSFW, click to see>](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | 6480 | 0.935 | [Download](6480/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-6480](6480/previews/pattern_1.png) | ![pattern_2-6480](6480/previews/pattern_2.png) | ![pattern_3-6480](6480/previews/pattern_3.png) | ![pattern_4-6480](6480/previews/pattern_4.png) | ![pattern_5-6480](6480/previews/pattern_5.png) | ![pattern_6-6480](6480/previews/pattern_6.png) | ![pattern_7-6480](6480/previews/pattern_7.png) | ![pattern_8-6480](6480/previews/pattern_8.png) | ![pattern_9-6480](6480/previews/pattern_9.png) | ![pattern_10-6480](6480/previews/pattern_10.png) | ![pattern_11-6480](6480/previews/pattern_11.png) | [<NSFW, click to see>](6480/previews/pattern_12.png) | ![pattern_13-6480](6480/previews/pattern_13.png) | ![pattern_14-6480](6480/previews/pattern_14.png) | ![pattern_15-6480](6480/previews/pattern_15.png) | ![pattern_16-6480](6480/previews/pattern_16.png) | ![bikini-6480](6480/previews/bikini.png) | [<NSFW, click to see>](6480/previews/bondage.png) | [<NSFW, click to see>](6480/previews/free.png) | ![maid-6480](6480/previews/maid.png) | ![miko-6480](6480/previews/miko.png) | [<NSFW, click to see>](6480/previews/nude.png) | [<NSFW, click to see>](6480/previews/nude2.png) | ![suit-6480](6480/previews/suit.png) | ![yukata-6480](6480/previews/yukata.png) | | 5940 | 0.917 | [Download](5940/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | ![pattern_7-5940](5940/previews/pattern_7.png) | ![pattern_8-5940](5940/previews/pattern_8.png) | ![pattern_9-5940](5940/previews/pattern_9.png) | ![pattern_10-5940](5940/previews/pattern_10.png) | ![pattern_11-5940](5940/previews/pattern_11.png) | [<NSFW, click to see>](5940/previews/pattern_12.png) | ![pattern_13-5940](5940/previews/pattern_13.png) | ![pattern_14-5940](5940/previews/pattern_14.png) | ![pattern_15-5940](5940/previews/pattern_15.png) | ![pattern_16-5940](5940/previews/pattern_16.png) | ![bikini-5940](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | [<NSFW, click to see>](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5400 | 0.934 | [Download](5400/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | ![pattern_10-5400](5400/previews/pattern_10.png) | ![pattern_11-5400](5400/previews/pattern_11.png) | [<NSFW, click to see>](5400/previews/pattern_12.png) | ![pattern_13-5400](5400/previews/pattern_13.png) | ![pattern_14-5400](5400/previews/pattern_14.png) | ![pattern_15-5400](5400/previews/pattern_15.png) | ![pattern_16-5400](5400/previews/pattern_16.png) | ![bikini-5400](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | [<NSFW, click to see>](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4860 | 0.900 | [Download](4860/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-4860](4860/previews/pattern_1.png) | ![pattern_2-4860](4860/previews/pattern_2.png) | ![pattern_3-4860](4860/previews/pattern_3.png) | ![pattern_4-4860](4860/previews/pattern_4.png) | ![pattern_5-4860](4860/previews/pattern_5.png) | ![pattern_6-4860](4860/previews/pattern_6.png) | ![pattern_7-4860](4860/previews/pattern_7.png) | ![pattern_8-4860](4860/previews/pattern_8.png) | ![pattern_9-4860](4860/previews/pattern_9.png) | ![pattern_10-4860](4860/previews/pattern_10.png) | ![pattern_11-4860](4860/previews/pattern_11.png) | [<NSFW, click to see>](4860/previews/pattern_12.png) | ![pattern_13-4860](4860/previews/pattern_13.png) | ![pattern_14-4860](4860/previews/pattern_14.png) | ![pattern_15-4860](4860/previews/pattern_15.png) | ![pattern_16-4860](4860/previews/pattern_16.png) | ![bikini-4860](4860/previews/bikini.png) | [<NSFW, click to see>](4860/previews/bondage.png) | [<NSFW, click to see>](4860/previews/free.png) | ![maid-4860](4860/previews/maid.png) | ![miko-4860](4860/previews/miko.png) | [<NSFW, click to see>](4860/previews/nude.png) | [<NSFW, click to see>](4860/previews/nude2.png) | ![suit-4860](4860/previews/suit.png) | ![yukata-4860](4860/previews/yukata.png) | | 4320 | 0.935 | [Download](4320/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | ![pattern_7-4320](4320/previews/pattern_7.png) | ![pattern_8-4320](4320/previews/pattern_8.png) | ![pattern_9-4320](4320/previews/pattern_9.png) | ![pattern_10-4320](4320/previews/pattern_10.png) | ![pattern_11-4320](4320/previews/pattern_11.png) | [<NSFW, click to see>](4320/previews/pattern_12.png) | ![pattern_13-4320](4320/previews/pattern_13.png) | ![pattern_14-4320](4320/previews/pattern_14.png) | ![pattern_15-4320](4320/previews/pattern_15.png) | ![pattern_16-4320](4320/previews/pattern_16.png) | ![bikini-4320](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | [<NSFW, click to see>](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3780 | 0.907 | [Download](3780/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-3780](3780/previews/pattern_1.png) | ![pattern_2-3780](3780/previews/pattern_2.png) | ![pattern_3-3780](3780/previews/pattern_3.png) | ![pattern_4-3780](3780/previews/pattern_4.png) | ![pattern_5-3780](3780/previews/pattern_5.png) | ![pattern_6-3780](3780/previews/pattern_6.png) | ![pattern_7-3780](3780/previews/pattern_7.png) | ![pattern_8-3780](3780/previews/pattern_8.png) | ![pattern_9-3780](3780/previews/pattern_9.png) | ![pattern_10-3780](3780/previews/pattern_10.png) | ![pattern_11-3780](3780/previews/pattern_11.png) | [<NSFW, click to see>](3780/previews/pattern_12.png) | ![pattern_13-3780](3780/previews/pattern_13.png) | ![pattern_14-3780](3780/previews/pattern_14.png) | ![pattern_15-3780](3780/previews/pattern_15.png) | ![pattern_16-3780](3780/previews/pattern_16.png) | ![bikini-3780](3780/previews/bikini.png) | [<NSFW, click to see>](3780/previews/bondage.png) | [<NSFW, click to see>](3780/previews/free.png) | ![maid-3780](3780/previews/maid.png) | ![miko-3780](3780/previews/miko.png) | [<NSFW, click to see>](3780/previews/nude.png) | [<NSFW, click to see>](3780/previews/nude2.png) | ![suit-3780](3780/previews/suit.png) | ![yukata-3780](3780/previews/yukata.png) | | **3240** | **0.946** | [**Download**](3240/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-3240](3240/previews/pattern_1.png) | ![pattern_2-3240](3240/previews/pattern_2.png) | ![pattern_3-3240](3240/previews/pattern_3.png) | ![pattern_4-3240](3240/previews/pattern_4.png) | ![pattern_5-3240](3240/previews/pattern_5.png) | ![pattern_6-3240](3240/previews/pattern_6.png) | ![pattern_7-3240](3240/previews/pattern_7.png) | ![pattern_8-3240](3240/previews/pattern_8.png) | ![pattern_9-3240](3240/previews/pattern_9.png) | ![pattern_10-3240](3240/previews/pattern_10.png) | ![pattern_11-3240](3240/previews/pattern_11.png) | [<NSFW, click to see>](3240/previews/pattern_12.png) | ![pattern_13-3240](3240/previews/pattern_13.png) | ![pattern_14-3240](3240/previews/pattern_14.png) | ![pattern_15-3240](3240/previews/pattern_15.png) | ![pattern_16-3240](3240/previews/pattern_16.png) | ![bikini-3240](3240/previews/bikini.png) | [<NSFW, click to see>](3240/previews/bondage.png) | [<NSFW, click to see>](3240/previews/free.png) | ![maid-3240](3240/previews/maid.png) | ![miko-3240](3240/previews/miko.png) | [<NSFW, click to see>](3240/previews/nude.png) | [<NSFW, click to see>](3240/previews/nude2.png) | ![suit-3240](3240/previews/suit.png) | ![yukata-3240](3240/previews/yukata.png) | | 2700 | 0.915 | [Download](2700/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-2700](2700/previews/pattern_1.png) | ![pattern_2-2700](2700/previews/pattern_2.png) | ![pattern_3-2700](2700/previews/pattern_3.png) | ![pattern_4-2700](2700/previews/pattern_4.png) | ![pattern_5-2700](2700/previews/pattern_5.png) | ![pattern_6-2700](2700/previews/pattern_6.png) | ![pattern_7-2700](2700/previews/pattern_7.png) | ![pattern_8-2700](2700/previews/pattern_8.png) | ![pattern_9-2700](2700/previews/pattern_9.png) | ![pattern_10-2700](2700/previews/pattern_10.png) | ![pattern_11-2700](2700/previews/pattern_11.png) | [<NSFW, click to see>](2700/previews/pattern_12.png) | ![pattern_13-2700](2700/previews/pattern_13.png) | ![pattern_14-2700](2700/previews/pattern_14.png) | ![pattern_15-2700](2700/previews/pattern_15.png) | ![pattern_16-2700](2700/previews/pattern_16.png) | ![bikini-2700](2700/previews/bikini.png) | [<NSFW, click to see>](2700/previews/bondage.png) | [<NSFW, click to see>](2700/previews/free.png) | ![maid-2700](2700/previews/maid.png) | ![miko-2700](2700/previews/miko.png) | [<NSFW, click to see>](2700/previews/nude.png) | [<NSFW, click to see>](2700/previews/nude2.png) | ![suit-2700](2700/previews/suit.png) | ![yukata-2700](2700/previews/yukata.png) | | 2160 | 0.909 | [Download](2160/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-2160](2160/previews/pattern_1.png) | ![pattern_2-2160](2160/previews/pattern_2.png) | ![pattern_3-2160](2160/previews/pattern_3.png) | ![pattern_4-2160](2160/previews/pattern_4.png) | ![pattern_5-2160](2160/previews/pattern_5.png) | ![pattern_6-2160](2160/previews/pattern_6.png) | ![pattern_7-2160](2160/previews/pattern_7.png) | ![pattern_8-2160](2160/previews/pattern_8.png) | ![pattern_9-2160](2160/previews/pattern_9.png) | ![pattern_10-2160](2160/previews/pattern_10.png) | ![pattern_11-2160](2160/previews/pattern_11.png) | [<NSFW, click to see>](2160/previews/pattern_12.png) | ![pattern_13-2160](2160/previews/pattern_13.png) | ![pattern_14-2160](2160/previews/pattern_14.png) | ![pattern_15-2160](2160/previews/pattern_15.png) | ![pattern_16-2160](2160/previews/pattern_16.png) | ![bikini-2160](2160/previews/bikini.png) | [<NSFW, click to see>](2160/previews/bondage.png) | [<NSFW, click to see>](2160/previews/free.png) | ![maid-2160](2160/previews/maid.png) | ![miko-2160](2160/previews/miko.png) | [<NSFW, click to see>](2160/previews/nude.png) | [<NSFW, click to see>](2160/previews/nude2.png) | ![suit-2160](2160/previews/suit.png) | ![yukata-2160](2160/previews/yukata.png) | | 1620 | 0.896 | [Download](1620/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-1620](1620/previews/pattern_1.png) | ![pattern_2-1620](1620/previews/pattern_2.png) | ![pattern_3-1620](1620/previews/pattern_3.png) | ![pattern_4-1620](1620/previews/pattern_4.png) | ![pattern_5-1620](1620/previews/pattern_5.png) | ![pattern_6-1620](1620/previews/pattern_6.png) | ![pattern_7-1620](1620/previews/pattern_7.png) | ![pattern_8-1620](1620/previews/pattern_8.png) | ![pattern_9-1620](1620/previews/pattern_9.png) | ![pattern_10-1620](1620/previews/pattern_10.png) | ![pattern_11-1620](1620/previews/pattern_11.png) | [<NSFW, click to see>](1620/previews/pattern_12.png) | ![pattern_13-1620](1620/previews/pattern_13.png) | ![pattern_14-1620](1620/previews/pattern_14.png) | ![pattern_15-1620](1620/previews/pattern_15.png) | ![pattern_16-1620](1620/previews/pattern_16.png) | ![bikini-1620](1620/previews/bikini.png) | [<NSFW, click to see>](1620/previews/bondage.png) | [<NSFW, click to see>](1620/previews/free.png) | ![maid-1620](1620/previews/maid.png) | ![miko-1620](1620/previews/miko.png) | [<NSFW, click to see>](1620/previews/nude.png) | [<NSFW, click to see>](1620/previews/nude2.png) | ![suit-1620](1620/previews/suit.png) | ![yukata-1620](1620/previews/yukata.png) | | 1080 | 0.842 | [Download](1080/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-1080](1080/previews/pattern_1.png) | ![pattern_2-1080](1080/previews/pattern_2.png) | ![pattern_3-1080](1080/previews/pattern_3.png) | ![pattern_4-1080](1080/previews/pattern_4.png) | ![pattern_5-1080](1080/previews/pattern_5.png) | ![pattern_6-1080](1080/previews/pattern_6.png) | ![pattern_7-1080](1080/previews/pattern_7.png) | ![pattern_8-1080](1080/previews/pattern_8.png) | ![pattern_9-1080](1080/previews/pattern_9.png) | ![pattern_10-1080](1080/previews/pattern_10.png) | ![pattern_11-1080](1080/previews/pattern_11.png) | [<NSFW, click to see>](1080/previews/pattern_12.png) | ![pattern_13-1080](1080/previews/pattern_13.png) | ![pattern_14-1080](1080/previews/pattern_14.png) | ![pattern_15-1080](1080/previews/pattern_15.png) | ![pattern_16-1080](1080/previews/pattern_16.png) | ![bikini-1080](1080/previews/bikini.png) | [<NSFW, click to see>](1080/previews/bondage.png) | [<NSFW, click to see>](1080/previews/free.png) | ![maid-1080](1080/previews/maid.png) | ![miko-1080](1080/previews/miko.png) | [<NSFW, click to see>](1080/previews/nude.png) | [<NSFW, click to see>](1080/previews/nude2.png) | ![suit-1080](1080/previews/suit.png) | ![yukata-1080](1080/previews/yukata.png) | | 540 | 0.828 | [Download](540/satou_shin_idolmastercinderellagirls.zip) | ![pattern_1-540](540/previews/pattern_1.png) | ![pattern_2-540](540/previews/pattern_2.png) | ![pattern_3-540](540/previews/pattern_3.png) | ![pattern_4-540](540/previews/pattern_4.png) | ![pattern_5-540](540/previews/pattern_5.png) | ![pattern_6-540](540/previews/pattern_6.png) | ![pattern_7-540](540/previews/pattern_7.png) | ![pattern_8-540](540/previews/pattern_8.png) | ![pattern_9-540](540/previews/pattern_9.png) | ![pattern_10-540](540/previews/pattern_10.png) | ![pattern_11-540](540/previews/pattern_11.png) | [<NSFW, click to see>](540/previews/pattern_12.png) | ![pattern_13-540](540/previews/pattern_13.png) | ![pattern_14-540](540/previews/pattern_14.png) | ![pattern_15-540](540/previews/pattern_15.png) | ![pattern_16-540](540/previews/pattern_16.png) | ![bikini-540](540/previews/bikini.png) | [<NSFW, click to see>](540/previews/bondage.png) | [<NSFW, click to see>](540/previews/free.png) | ![maid-540](540/previews/maid.png) | ![miko-540](540/previews/miko.png) | [<NSFW, click to see>](540/previews/nude.png) | [<NSFW, click to see>](540/previews/nude2.png) | ![suit-540](540/previews/suit.png) | ![yukata-540](540/previews/yukata.png) |
sd-dreambooth-library/s-g-data
sd-dreambooth-library
2023-09-17T14:15:05Z
32
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T14:14:17Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### s_g_data on Stable Diffusion via Dreambooth #### model by hosnasn This your the Stable Diffusion model fine-tuned the s_g_data concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<cat-toy> toy** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/s-g-data/resolve/main/concept_images/3.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/s-g-data/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/s-g-data/resolve/main/concept_images/0.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/s-g-data/resolve/main/concept_images/1.jpeg)
salim4n/Reinforce-Cartpole-v1
salim4n
2023-09-17T14:14:39Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T14:02:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
deepachalapathi/parasci_1
deepachalapathi
2023-09-17T14:12:42Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-17T08:54:53Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # whateverweird17/parasci_1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("whateverweird17/parasci_1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Ojas-CoderAI/Reinforce-model
Ojas-CoderAI
2023-09-17T14:06:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T13:32:04Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ys7yoo/sts_nli_klue_roberta_large_lr1e_05_wd1e_03_lr1e-05_wd1e-03_ep5_ckpt
ys7yoo
2023-09-17T13:38:06Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "base_model:ys7yoo/nli_klue_roberta-large_lr1e-05_wd1e-03", "base_model:finetune:ys7yoo/nli_klue_roberta-large_lr1e-05_wd1e-03", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T13:13:11Z
--- base_model: ys7yoo/nli_klue_roberta_large_lr1e-05_wd1e-03 tags: - generated_from_trainer datasets: - klue model-index: - name: sts_nli_klue_roberta_large_lr1e_05_wd1e_03_lr1e-05_wd1e-03_ep5_ckpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sts_nli_klue_roberta_large_lr1e_05_wd1e_03_lr1e-05_wd1e-03_ep5_ckpt This model is a fine-tuned version of [ys7yoo/nli_klue_roberta_large_lr1e-05_wd1e-03](https://huggingface.co/ys7yoo/nli_klue_roberta_large_lr1e-05_wd1e-03) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3169 - Mse: 0.3169 - Mae: 0.4090 - R2: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 1.1893 | 1.0 | 183 | 0.5904 | 0.5904 | 0.5827 | 0.7296 | | 0.1418 | 2.0 | 366 | 0.4095 | 0.4095 | 0.4737 | 0.8125 | | 0.0967 | 3.0 | 549 | 0.3657 | 0.3657 | 0.4383 | 0.8326 | | 0.0752 | 4.0 | 732 | 0.3391 | 0.3391 | 0.4254 | 0.8447 | | 0.06 | 5.0 | 915 | 0.3169 | 0.3169 | 0.4090 | 0.8549 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
reluvie/RVC_v2_Red_Velvet
reluvie
2023-09-17T13:14:55Z
0
0
null
[ "region:us" ]
null
2023-09-17T11:32:01Z
please credit when using!! (@_reluvie on YouTube, TikTok and Discord) SEULGI - mangio-crepe, 500 epochs, 35.5k steps WENDY - rmvpe, 300 epochs, 25.5k steps
Yntec/CitrineDreamMix
Yntec
2023-09-17T12:42:27Z
383
3
diffusers
[ "diffusers", "safetensors", "anime", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T11:33:13Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - anime - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # Critine Dream Mix Original page: https://civitai.com/models/18116?modelVersionId=21839 Samples and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/RQF_rKygxuh0iyj6NlOmp.png) ![iSample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/HWIhfWW5YWtkVjIVvcqPx.png) Anime fine details portrait of joyful cute little girl sleep school class room, bokeh. anime masterpiece by studio ghibli. 8k, sharp high quality classic anime from 1990 in style of hayao miyazaki. Wikipedia. hugging. OIL PAINTING. DOCTOR with short hair in coat BEAUTIFUL girl eyes. she has pigtails
Flifenstein/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
Flifenstein
2023-09-17T12:30:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-17T10:47:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Shishir1807/M10_llama
Shishir1807
2023-09-17T12:13:27Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-17T12:11:52Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/M10_llama", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/M10_llama", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/M10_llama", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/M10_llama" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
sd-dreambooth-library/s-grocery-data
sd-dreambooth-library
2023-09-17T12:02:01Z
34
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T12:00:47Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### s_grocery_data on Stable Diffusion via Dreambooth #### model by hosnasn This your the Stable Diffusion model fine-tuned the s_grocery_data concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<cat-toy> toy** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/3.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/5.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/7.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/6.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/0.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/8.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/9.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/4.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/s-grocery-data/resolve/main/concept_images/1.jpeg)
sparasdya/image_classification
sparasdya
2023-09-17T11:48:58Z
19
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T10:08:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1552 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.6906 | 0.3375 | | No log | 2.0 | 80 | 1.4310 | 0.4062 | | No log | 3.0 | 120 | 1.3517 | 0.4875 | | No log | 4.0 | 160 | 1.2080 | 0.5437 | | No log | 5.0 | 200 | 1.1920 | 0.5437 | | No log | 6.0 | 240 | 1.1123 | 0.575 | | No log | 7.0 | 280 | 1.1533 | 0.575 | | No log | 8.0 | 320 | 1.0971 | 0.5813 | | No log | 9.0 | 360 | 1.1635 | 0.5687 | | No log | 10.0 | 400 | 1.1344 | 0.5875 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
cloudwalkerw/wavlm-base_2
cloudwalkerw
2023-09-17T11:40:53Z
61
0
transformers
[ "transformers", "pytorch", "wavlm", "audio-classification", "generated_from_trainer", "base_model:microsoft/wavlm-base", "base_model:finetune:microsoft/wavlm-base", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-15T16:57:01Z
--- base_model: microsoft/wavlm-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wavlm-base_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-base_2 This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0244 - Accuracy: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 2 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4872 | 0.25 | 100 | 0.2180 | 0.8974 | | 0.1571 | 0.5 | 200 | 0.2582 | 0.9334 | | 0.0644 | 0.76 | 300 | 0.0244 | 0.9966 | | 0.0553 | 1.01 | 400 | 0.1156 | 0.9928 | | 0.1108 | 1.26 | 500 | 0.1576 | 0.9898 | | 0.0849 | 1.51 | 600 | 0.0871 | 0.9947 | | 0.0635 | 1.76 | 700 | 0.1088 | 0.9939 | | 0.0504 | 2.02 | 800 | 0.4074 | 0.9790 | | 0.1075 | 2.27 | 900 | 0.2955 | 0.9814 | | 0.2387 | 2.52 | 1000 | 0.0651 | 0.9956 | | 0.3052 | 2.77 | 1100 | 0.2379 | 0.8974 | | 0.3336 | 3.02 | 1200 | 0.3527 | 0.8974 | | 0.3322 | 3.28 | 1300 | 0.3307 | 0.8974 | | 0.3201 | 3.53 | 1400 | 0.3405 | 0.8974 | | 0.3406 | 3.78 | 1500 | 0.3335 | 0.8974 | | 0.3475 | 4.03 | 1600 | 0.3341 | 0.8974 | | 0.3312 | 4.28 | 1700 | 0.3361 | 0.8974 | | 0.3367 | 4.54 | 1800 | 0.3310 | 0.8974 | | 0.3284 | 4.79 | 1900 | 0.3339 | 0.8974 | | 0.3267 | 5.04 | 2000 | 0.3350 | 0.8974 | | 0.338 | 5.29 | 2100 | 0.3308 | 0.8974 | | 0.3277 | 5.55 | 2200 | 0.3309 | 0.8974 | | 0.3294 | 5.8 | 2300 | 0.3313 | 0.8974 | | 0.3315 | 6.05 | 2400 | 0.3360 | 0.8974 | | 0.3397 | 6.3 | 2500 | 0.3307 | 0.8974 | | 0.3318 | 6.55 | 2600 | 0.3359 | 0.8974 | | 0.3312 | 6.81 | 2700 | 0.3308 | 0.8974 | | 0.3155 | 7.06 | 2800 | 0.3317 | 0.8974 | | 0.3304 | 7.31 | 2900 | 0.3362 | 0.8974 | | 0.338 | 7.56 | 3000 | 0.3342 | 0.8974 | | 0.3241 | 7.81 | 3100 | 0.3310 | 0.8974 | | 0.3325 | 8.07 | 3200 | 0.3326 | 0.8974 | | 0.3202 | 8.32 | 3300 | 0.3345 | 0.8974 | | 0.3315 | 8.57 | 3400 | 0.3335 | 0.8974 | | 0.3288 | 8.82 | 3500 | 0.3312 | 0.8974 | | 0.3371 | 9.07 | 3600 | 0.3401 | 0.8974 | | 0.3409 | 9.33 | 3700 | 0.3330 | 0.8974 | | 0.3236 | 9.58 | 3800 | 0.3330 | 0.8974 | | 0.3224 | 9.83 | 3900 | 0.3321 | 0.8974 | | 0.3439 | 10.08 | 4000 | 0.3326 | 0.8974 | | 0.3382 | 10.33 | 4100 | 0.3310 | 0.8974 | | 0.3307 | 10.59 | 4200 | 0.3382 | 0.8974 | | 0.3231 | 10.84 | 4300 | 0.3325 | 0.8974 | | 0.3095 | 11.09 | 4400 | 0.3348 | 0.8974 | | 0.3442 | 11.34 | 4500 | 0.3327 | 0.8974 | | 0.3269 | 11.59 | 4600 | 0.3326 | 0.8974 | | 0.3323 | 11.85 | 4700 | 0.3308 | 0.8974 | | 0.3313 | 12.1 | 4800 | 0.3308 | 0.8974 | | 0.3283 | 12.35 | 4900 | 0.3314 | 0.8974 | | 0.3331 | 12.6 | 5000 | 0.3307 | 0.8974 | | 0.3317 | 12.85 | 5100 | 0.3344 | 0.8974 | | 0.3283 | 13.11 | 5200 | 0.3320 | 0.8974 | | 0.3263 | 13.36 | 5300 | 0.3311 | 0.8974 | | 0.3421 | 13.61 | 5400 | 0.3307 | 0.8974 | | 0.3164 | 13.86 | 5500 | 0.3318 | 0.8974 | | 0.3315 | 14.11 | 5600 | 0.3335 | 0.8974 | | 0.3415 | 14.37 | 5700 | 0.3315 | 0.8974 | | 0.3325 | 14.62 | 5800 | 0.3307 | 0.8974 | | 0.3264 | 14.87 | 5900 | 0.3330 | 0.8974 | | 0.3223 | 15.12 | 6000 | 0.3307 | 0.8974 | | 0.3289 | 15.37 | 6100 | 0.3329 | 0.8974 | | 0.3353 | 15.63 | 6200 | 0.3311 | 0.8974 | | 0.3246 | 15.88 | 6300 | 0.3311 | 0.8974 | | 0.3425 | 16.13 | 6400 | 0.3307 | 0.8974 | | 0.331 | 16.38 | 6500 | 0.3307 | 0.8974 | | 0.3293 | 16.64 | 6600 | 0.3353 | 0.8974 | | 0.3249 | 16.89 | 6700 | 0.3339 | 0.8974 | | 0.3214 | 17.14 | 6800 | 0.3338 | 0.8974 | | 0.3259 | 17.39 | 6900 | 0.3327 | 0.8974 | | 0.3408 | 17.64 | 7000 | 0.3318 | 0.8974 | | 0.3258 | 17.9 | 7100 | 0.3318 | 0.8974 | | 0.3299 | 18.15 | 7200 | 0.3308 | 0.8974 | | 0.327 | 18.4 | 7300 | 0.3371 | 0.8974 | | 0.3317 | 18.65 | 7400 | 0.3308 | 0.8974 | | 0.3291 | 18.9 | 7500 | 0.3310 | 0.8974 | | 0.3263 | 19.16 | 7600 | 0.3325 | 0.8974 | | 0.3223 | 19.41 | 7700 | 0.3346 | 0.8974 | | 0.3403 | 19.66 | 7800 | 0.3316 | 0.8974 | | 0.3265 | 19.91 | 7900 | 0.3309 | 0.8974 | | 0.33 | 20.16 | 8000 | 0.3318 | 0.8974 | | 0.3488 | 20.42 | 8100 | 0.3313 | 0.8974 | | 0.3293 | 20.67 | 8200 | 0.3335 | 0.8974 | | 0.3095 | 20.92 | 8300 | 0.3356 | 0.8974 | | 0.3366 | 21.17 | 8400 | 0.3332 | 0.8974 | | 0.317 | 21.42 | 8500 | 0.3338 | 0.8974 | | 0.3299 | 21.68 | 8600 | 0.3308 | 0.8974 | | 0.3434 | 21.93 | 8700 | 0.3310 | 0.8974 | | 0.3208 | 22.18 | 8800 | 0.3309 | 0.8974 | | 0.3351 | 22.43 | 8900 | 0.3324 | 0.8974 | | 0.3301 | 22.68 | 9000 | 0.3308 | 0.8974 | | 0.3196 | 22.94 | 9100 | 0.3330 | 0.8974 | | 0.3339 | 23.19 | 9200 | 0.3333 | 0.8974 | | 0.3249 | 23.44 | 9300 | 0.3308 | 0.8974 | | 0.3247 | 23.69 | 9400 | 0.3338 | 0.8974 | | 0.3369 | 23.94 | 9500 | 0.3313 | 0.8974 | | 0.3291 | 24.2 | 9600 | 0.3320 | 0.8974 | | 0.3307 | 24.45 | 9700 | 0.3309 | 0.8974 | | 0.3328 | 24.7 | 9800 | 0.3307 | 0.8974 | | 0.3277 | 24.95 | 9900 | 0.3342 | 0.8974 | | 0.3278 | 25.2 | 10000 | 0.3310 | 0.8974 | | 0.3197 | 25.46 | 10100 | 0.3349 | 0.8974 | | 0.3273 | 25.71 | 10200 | 0.3321 | 0.8974 | | 0.3345 | 25.96 | 10300 | 0.3312 | 0.8974 | | 0.3351 | 26.21 | 10400 | 0.3325 | 0.8974 | | 0.3144 | 26.47 | 10500 | 0.3346 | 0.8974 | | 0.3361 | 26.72 | 10600 | 0.3311 | 0.8974 | | 0.3334 | 26.97 | 10700 | 0.3307 | 0.8974 | | 0.3287 | 27.22 | 10800 | 0.3373 | 0.8974 | | 0.3374 | 27.47 | 10900 | 0.3307 | 0.8974 | | 0.3302 | 27.73 | 11000 | 0.3307 | 0.8974 | | 0.3245 | 27.98 | 11100 | 0.3315 | 0.8974 | | 0.3353 | 28.23 | 11200 | 0.3335 | 0.8974 | | 0.3191 | 28.48 | 11300 | 0.3336 | 0.8974 | | 0.3226 | 28.73 | 11400 | 0.3308 | 0.8974 | | 0.3384 | 28.99 | 11500 | 0.3322 | 0.8974 | | 0.3368 | 29.24 | 11600 | 0.3337 | 0.8974 | | 0.3224 | 29.49 | 11700 | 0.3332 | 0.8974 | | 0.3224 | 29.74 | 11800 | 0.3318 | 0.8974 | | 0.3363 | 29.99 | 11900 | 0.3310 | 0.8974 | | 0.327 | 30.25 | 12000 | 0.3307 | 0.8974 | | 0.3291 | 30.5 | 12100 | 0.3307 | 0.8974 | | 0.3369 | 30.75 | 12200 | 0.3322 | 0.8974 | | 0.3211 | 31.0 | 12300 | 0.3329 | 0.8974 | | 0.329 | 31.25 | 12400 | 0.3321 | 0.8974 | | 0.3206 | 31.51 | 12500 | 0.3309 | 0.8974 | | 0.3339 | 31.76 | 12600 | 0.3332 | 0.8974 | | 0.3323 | 32.01 | 12700 | 0.3316 | 0.8974 | | 0.3273 | 32.26 | 12800 | 0.3323 | 0.8974 | | 0.3362 | 32.51 | 12900 | 0.3307 | 0.8974 | | 0.3387 | 32.77 | 13000 | 0.3309 | 0.8974 | | 0.3173 | 33.02 | 13100 | 0.3311 | 0.8974 | | 0.3291 | 33.27 | 13200 | 0.3309 | 0.8974 | | 0.3316 | 33.52 | 13300 | 0.3315 | 0.8974 | | 0.3366 | 33.77 | 13400 | 0.3332 | 0.8974 | | 0.3115 | 34.03 | 13500 | 0.3383 | 0.8974 | | 0.3275 | 34.28 | 13600 | 0.3324 | 0.8974 | | 0.3373 | 34.53 | 13700 | 0.3315 | 0.8974 | | 0.3247 | 34.78 | 13800 | 0.3313 | 0.8974 | | 0.3349 | 35.03 | 13900 | 0.3325 | 0.8974 | | 0.3223 | 35.29 | 14000 | 0.3312 | 0.8974 | | 0.3321 | 35.54 | 14100 | 0.3308 | 0.8974 | | 0.3304 | 35.79 | 14200 | 0.3316 | 0.8974 | | 0.3262 | 36.04 | 14300 | 0.3320 | 0.8974 | | 0.3239 | 36.29 | 14400 | 0.3317 | 0.8974 | | 0.3325 | 36.55 | 14500 | 0.3308 | 0.8974 | | 0.325 | 36.8 | 14600 | 0.3316 | 0.8974 | | 0.3416 | 37.05 | 14700 | 0.3311 | 0.8974 | | 0.3226 | 37.3 | 14800 | 0.3309 | 0.8974 | | 0.3286 | 37.56 | 14900 | 0.3307 | 0.8974 | | 0.3284 | 37.81 | 15000 | 0.3312 | 0.8974 | | 0.3298 | 38.06 | 15100 | 0.3326 | 0.8974 | | 0.3383 | 38.31 | 15200 | 0.3311 | 0.8974 | | 0.3418 | 38.56 | 15300 | 0.3308 | 0.8974 | | 0.3123 | 38.82 | 15400 | 0.3311 | 0.8974 | | 0.3237 | 39.07 | 15500 | 0.3346 | 0.8974 | | 0.3261 | 39.32 | 15600 | 0.3325 | 0.8974 | | 0.3269 | 39.57 | 15700 | 0.3312 | 0.8974 | | 0.3267 | 39.82 | 15800 | 0.3319 | 0.8974 | | 0.3381 | 40.08 | 15900 | 0.3327 | 0.8974 | | 0.3238 | 40.33 | 16000 | 0.3326 | 0.8974 | | 0.3299 | 40.58 | 16100 | 0.3320 | 0.8974 | | 0.3385 | 40.83 | 16200 | 0.3309 | 0.8974 | | 0.3268 | 41.08 | 16300 | 0.3322 | 0.8974 | | 0.3253 | 41.34 | 16400 | 0.3320 | 0.8974 | | 0.3261 | 41.59 | 16500 | 0.3314 | 0.8974 | | 0.3362 | 41.84 | 16600 | 0.3324 | 0.8974 | | 0.3203 | 42.09 | 16700 | 0.3326 | 0.8974 | | 0.325 | 42.34 | 16800 | 0.3323 | 0.8974 | | 0.3172 | 42.6 | 16900 | 0.3326 | 0.8974 | | 0.3361 | 42.85 | 17000 | 0.3308 | 0.8974 | | 0.3432 | 43.1 | 17100 | 0.3310 | 0.8974 | | 0.3396 | 43.35 | 17200 | 0.3313 | 0.8974 | | 0.3163 | 43.6 | 17300 | 0.3328 | 0.8974 | | 0.3353 | 43.86 | 17400 | 0.3318 | 0.8974 | | 0.3299 | 44.11 | 17500 | 0.3317 | 0.8974 | | 0.3213 | 44.36 | 17600 | 0.3319 | 0.8974 | | 0.3253 | 44.61 | 17700 | 0.3329 | 0.8974 | | 0.3391 | 44.86 | 17800 | 0.3322 | 0.8974 | | 0.3179 | 45.12 | 17900 | 0.3330 | 0.8974 | | 0.3348 | 45.37 | 18000 | 0.3321 | 0.8974 | | 0.3116 | 45.62 | 18100 | 0.3326 | 0.8974 | | 0.3334 | 45.87 | 18200 | 0.3322 | 0.8974 | | 0.3401 | 46.12 | 18300 | 0.3315 | 0.8974 | | 0.3381 | 46.38 | 18400 | 0.3311 | 0.8974 | | 0.3154 | 46.63 | 18500 | 0.3327 | 0.8974 | | 0.3348 | 46.88 | 18600 | 0.3322 | 0.8974 | | 0.3285 | 47.13 | 18700 | 0.3325 | 0.8974 | | 0.3256 | 47.39 | 18800 | 0.3329 | 0.8974 | | 0.3389 | 47.64 | 18900 | 0.3325 | 0.8974 | | 0.3288 | 47.89 | 19000 | 0.3327 | 0.8974 | | 0.3172 | 48.14 | 19100 | 0.3327 | 0.8974 | | 0.3211 | 48.39 | 19200 | 0.3325 | 0.8974 | | 0.3348 | 48.65 | 19300 | 0.3325 | 0.8974 | | 0.3327 | 48.9 | 19400 | 0.3326 | 0.8974 | | 0.3341 | 49.15 | 19500 | 0.3326 | 0.8974 | | 0.3344 | 49.4 | 19600 | 0.3325 | 0.8974 | | 0.3207 | 49.65 | 19700 | 0.3326 | 0.8974 | | 0.3299 | 49.91 | 19800 | 0.3326 | 0.8974 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.0.post302 - Datasets 2.14.5 - Tokenizers 0.13.3
sean202302/ddpm-butterflies-32px
sean202302
2023-09-17T11:37:07Z
3
0
diffusers
[ "diffusers", "safetensors", "pytorch", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2023-09-17T11:16:48Z
--- license: mit tags: - pytorch - diffusers --- #这个模型用于蝴蝶图像的无条件生成 '''python from diffusers import DDPMPipeline pipeline=DDPMPipeline.from_pretrained('sean202302/ddpm-butterflies-32px') image=pipeline().images[0] image
Bingsu/vitB32_bert_ko_small_clip
Bingsu
2023-09-17T11:36:42Z
94
1
transformers
[ "transformers", "pytorch", "safetensors", "vision-text-dual-encoder", "feature-extraction", "clip", "ko", "arxiv:2004.09813", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-08T00:44:39Z
--- tags: - clip language: ko license: mit --- # vitB32_bert_ko_small_clip [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) + [lassl/bert-ko-small](https://huggingface.co/lassl/bert-ko-small) CLIP Model [training code(github)](https://github.com/Bing-su/KoCLIP_training_code) ## Train SBERT의 [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)를 참고하여, `openai/clip-vit-base-patch32` 텍스트 모델의 가중치를 `lassl/bert-ko-small`로 복제하였습니다. 논문과는 달리 mean pooling을 사용하지 않고, huggingface모델의 기본 pooling을 그대로 사용하였습니다. 사용한 데이터: [Aihub 한국어-영어 번역(병렬) 말뭉치](https://aihub.or.kr/aidata/87) ## How to Use #### 1. ```python import requests from PIL import Image from transformers import VisionTextDualEncoderProcessor, VisionTextDualEncoderModel # or Auto... model = VisionTextDualEncoderModel.from_pretrained("Bingsu/vitB32_bert_ko_small_clip") processor = VisionTextDualEncoderProcessor.from_pretrained("Bingsu/vitB32_bert_ko_small_clip") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["고양이 두 마리", "개 두 마리"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) ``` ```pycon >>> probs tensor([[0.9756, 0.0244]], grad_fn=<SoftmaxBackward0>) ``` #### 2. ```python from transformers import AutoModel, AutoProcessor, pipeline model = AutoModel.from_pretrained("Bingsu/vitB32_bert_ko_small_clip") processor = AutoProcessor.from_pretrained("Bingsu/vitB32_bert_ko_small_clip") pipe = pipeline("zero-shot-image-classification", model=model, feature_extractor=processor.feature_extractor, tokenizer=processor.tokenizer) url = "http://images.cocodataset.org/val2017/000000039769.jpg" result = pipe(images=url, candidate_labels=["고양이 한 마리", "고양이 두 마리", "고양이 두 마리와 리모컨 두 개"], hypothesis_template="{}") ``` ```pycon >>> result [{'score': 0.871887743473053, 'label': '고양이 두 마리와 리모컨 두 개'}, {'score': 0.12316706776618958, 'label': '고양이 두 마리'}, {'score': 0.004945191089063883, 'label': '고양이 한 마리'}] ```
Sanyam0605/q-FrozenLake-v1-4x4-noSlippery
Sanyam0605
2023-09-17T11:27:09Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T11:27:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Sanyam0605/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MaxArb/SFStars
MaxArb
2023-09-17T10:54:59Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2023-09-17T10:54:16Z
--- license: cc-by-nc-nd-4.0 ---
ayoubkirouane/Stable-Cats-Generator
ayoubkirouane
2023-09-17T10:44:11Z
37
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-17T09:57:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion language: - en library_name: diffusers pipeline_tag: text-to-image --- # Model Card: Stable-Cats-Generator ## Model Information - **Model Name:** Stable-Cats-Generator - **Model Version:** v1 - **Model Type:** Image Generation - **Based on:** Stable Diffusion v2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6338c06c107c4835a05699f9/0b8P7pCT91aaflI_8s5UK.png) ## Model Description Stable-Cats-Generator is an image generation model fine-tuned for generating white cat images based on text prompts. It is built upon **Stable Diffusion v2** and utilizes a pretrained text encoder (OpenCLIP-ViT/H) for text-to-image generation. **Stable Diffusion v2** is the latest version of the Stable Diffusion text-to-image diffusion model. It was released in 2023 and is based on the same core principles as the original Stable Diffusion model, but it has a number of improvements ## Intended Use - Safe content generation - Artistic and creative processes - Bias and limitation exploration - Educational and creative tools ## Potential Use Cases - Generating cat images for artistic purposes - Investigating biases and limitations of generative models - Creating safe and customizable content - Enhancing educational or creative tools ## Model Capabilities - High-quality white cat image generation - Quick image generation, even on single GPUs - Customizable for specific needs and datasets ## Limitations - May not always produce realistic images - Limited to generating white cat images based on text prompts - Ethical considerations when using generated content ## Ethical Considerations - Ensure generated content is safe and non-harmful - Monitor and mitigate potential biases in generated content - Respect copyright and licensing when using generated images ## Responsible AI - Ongoing monitoring and evaluation of model outputs - Regular updates to address limitations and improve safety - Compliance with ethical guidelines and legal regulations ## Disclaimer This model card serves as a documentation tool and does not constitute legal or ethical guidance. Users of the model are responsible for adhering to ethical and legal standards in their use of the model. ## Usage ``` pip install diffusers==0.11.1 pip install transformers scipy ftfy accelerate ``` ```python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("ayoubkirouane/Stable-Cats-Generator", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "A photo of a picture-perfect white cat." image = pipe(prompt).images[0] # image here is in [PIL format](https://pillow.readthedocs.io/en/stable/) # Now to display an image you can either save it such as: image.save(f"cat.png") # or if you're in a google colab you can directly display it with image ```
c-g/q-FrozenLake-v1-4x4-noSlippery
c-g
2023-09-17T10:35:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T10:35:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="c-g/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Daddy458/dream
Daddy458
2023-09-17T10:29:42Z
3
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:finetune:stabilityai/stable-diffusion-2-1-base", "region:us" ]
text-to-image
2023-09-17T09:48:20Z
--- base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: photo of AJ tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
wanzhenen/sd-class-butterflies-32
wanzhenen
2023-09-17T10:24:48Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-09-17T10:24:44Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('wanzhenen/sd-class-butterflies-32') image = pipeline().images[0] image ```
lsoni/bert-finetuned-ner-synonym-replacement-model
lsoni
2023-09-17T10:24:37Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:lsoni/combined_tweetner7_synonym_replacement_augmented_dataset", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-12T15:43:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-synonym-replacement-model results: [] datasets: - lsoni/combined_tweetner7_synonym_replacement_augmented_dataset --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-synonym-replacement-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021) using synonym replacment technique (lsoni/combined_tweetner7_synonym_replacement_augmented_dataset) and dataset used for evaluation is combined evaluation dataset(tweetner7(validation_2021)+augmented dataset(validation_2021) using synonym replacment technique (lsoni/combined_tweetner7_synonym_replacement_augmented_dataset_eval). It achieves the following results on the evaluation set: - Loss: 0.4484 - Precision: 0.6804 - Recall: 0.6727 - F1: 0.6765 - Accuracy: 0.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5525 | 1.0 | 624 | 0.4142 | 0.7040 | 0.6120 | 0.6548 | 0.8774 | | 0.3293 | 2.0 | 1248 | 0.4101 | 0.7067 | 0.6628 | 0.6841 | 0.8833 | | 0.2536 | 3.0 | 1872 | 0.4484 | 0.6804 | 0.6727 | 0.6765 | 0.8780 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.12.1
s3nh/PY007-TinyLlama-1.1B-Chat-v0.2-GGUF
s3nh
2023-09-17T09:52:54Z
17
7
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-09-17T09:51:58Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.2). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
nikcheerla/amd-model-v5
nikcheerla
2023-09-17T09:39:12Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-17T09:39:02Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # nikcheerla/amd-model-v5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nikcheerla/amd-model-v5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
a2ran/FingerFriend-t5-base
a2ran
2023-09-17T09:36:15Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:eenzeenee/t5-base-korean-summarization", "base_model:finetune:eenzeenee/t5-base-korean-summarization", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-17T09:28:55Z
--- base_model: eenzeenee/t5-base-korean-summarization tags: - generated_from_trainer model-index: - name: FingerFriend-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FingerFriend-t5-base The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.87 | 1.0 | 683 | 0.5576 | | 0.5197 | 2.0 | 1366 | 0.4856 | | 0.4303 | 3.0 | 2049 | 0.4572 | | 0.373 | 4.0 | 2732 | 0.4446 | | 0.332 | 5.0 | 3415 | 0.4330 | | 0.2961 | 6.0 | 4098 | 0.4322 | | 0.2673 | 7.0 | 4781 | 0.4406 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
juniam/alephbertgimmel-finetuned-parashootandHeQ
juniam
2023-09-17T09:10:55Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "he", "dataset:imvladikon/parashoot", "dataset:pig4431/HeQ_v1", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-17T09:03:54Z
--- license: cc-by-4.0 datasets: - imvladikon/parashoot - pig4431/HeQ_v1 language: - he library_name: transformers ---
araffin/ppo-MountainCarContinuous-v0
araffin
2023-09-17T09:06:26Z
5
1
stable-baselines3
[ "stable-baselines3", "MountainCarContinuous-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T09:04:56Z
--- library_name: stable-baselines3 tags: - MountainCarContinuous-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCarContinuous-v0 type: MountainCarContinuous-v0 metrics: - type: mean_reward value: -1.16 +/- 0.05 name: mean_reward verified: false --- # **PPO** Agent playing **MountainCarContinuous-v0** This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env MountainCarContinuous-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga araffin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 0.1), ('ent_coef', 0.00429), ('gae_lambda', 0.9), ('gamma', 0.9999), ('learning_rate', 7.77e-05), ('max_grad_norm', 5), ('n_envs', 1), ('n_epochs', 10), ('n_steps', 8), ('n_timesteps', 20000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'), ('use_sde', True), ('vf_coef', 0.19), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
pittawat/vit-base-letter
pittawat
2023-09-17T09:01:40Z
46
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "en", "dataset:pittawat/letter_recognition", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-20T11:59:23Z
--- language: - en license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - pittawat/letter_recognition metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-base-letter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-letter This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the pittawat/letter_recognition dataset. It achieves the following results on the evaluation set: - Loss: 0.0515 - Accuracy: 0.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5539 | 0.12 | 100 | 0.5576 | 0.9308 | | 0.2688 | 0.25 | 200 | 0.2371 | 0.9665 | | 0.1568 | 0.37 | 300 | 0.1829 | 0.9688 | | 0.1684 | 0.49 | 400 | 0.1611 | 0.9662 | | 0.1584 | 0.62 | 500 | 0.1340 | 0.9673 | | 0.1569 | 0.74 | 600 | 0.1933 | 0.9531 | | 0.0992 | 0.86 | 700 | 0.1031 | 0.9781 | | 0.0573 | 0.98 | 800 | 0.1024 | 0.9781 | | 0.0359 | 1.11 | 900 | 0.0950 | 0.9804 | | 0.0961 | 1.23 | 1000 | 0.1200 | 0.9723 | | 0.0334 | 1.35 | 1100 | 0.0995 | 0.975 | | 0.0855 | 1.48 | 1200 | 0.0791 | 0.9815 | | 0.0902 | 1.6 | 1300 | 0.0981 | 0.9765 | | 0.0583 | 1.72 | 1400 | 0.1192 | 0.9712 | | 0.0683 | 1.85 | 1500 | 0.0692 | 0.9846 | | 0.1188 | 1.97 | 1600 | 0.0931 | 0.9785 | | 0.0366 | 2.09 | 1700 | 0.0919 | 0.9804 | | 0.0276 | 2.21 | 1800 | 0.0667 | 0.9846 | | 0.0309 | 2.34 | 1900 | 0.0599 | 0.9858 | | 0.0183 | 2.46 | 2000 | 0.0892 | 0.9769 | | 0.0431 | 2.58 | 2100 | 0.0663 | 0.985 | | 0.0424 | 2.71 | 2200 | 0.0643 | 0.9862 | | 0.0453 | 2.83 | 2300 | 0.0646 | 0.9862 | | 0.0528 | 2.95 | 2400 | 0.0550 | 0.985 | | 0.0045 | 3.08 | 2500 | 0.0579 | 0.9846 | | 0.007 | 3.2 | 2600 | 0.0517 | 0.9885 | | 0.0048 | 3.32 | 2700 | 0.0584 | 0.9865 | | 0.019 | 3.44 | 2800 | 0.0560 | 0.9873 | | 0.0038 | 3.57 | 2900 | 0.0515 | 0.9881 | | 0.0219 | 3.69 | 3000 | 0.0527 | 0.9881 | | 0.0117 | 3.81 | 3100 | 0.0523 | 0.9888 | | 0.0035 | 3.94 | 3200 | 0.0559 | 0.9865 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
DifeiT/rsna-intracranial-hemorrhage-detection
DifeiT
2023-09-17T08:53:12Z
26
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T03:45:13Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: rsna-intracranial-hemorrhage-detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6151724137931035 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rsna-intracranial-hemorrhage-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2164 - Accuracy: 0.6152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.5655 | 1.0 | 238 | 1.5235 | 0.4039 | | 1.3848 | 2.0 | 477 | 1.3622 | 0.4692 | | 1.2812 | 3.0 | 716 | 1.2811 | 0.5150 | | 1.2039 | 4.0 | 955 | 1.1795 | 0.5556 | | 1.1641 | 5.0 | 1193 | 1.1627 | 0.5534 | | 1.1961 | 6.0 | 1432 | 1.1393 | 0.5705 | | 1.1382 | 7.0 | 1671 | 1.0921 | 0.5804 | | 0.9653 | 8.0 | 1910 | 1.0790 | 0.5876 | | 0.9346 | 9.0 | 2148 | 1.0727 | 0.5931 | | 0.9083 | 10.0 | 2387 | 1.0605 | 0.5994 | | 0.8936 | 11.0 | 2626 | 1.0147 | 0.6146 | | 0.8504 | 12.0 | 2865 | 1.0849 | 0.5818 | | 0.8544 | 13.0 | 3103 | 1.0349 | 0.6052 | | 0.7884 | 14.0 | 3342 | 1.0435 | 0.6074 | | 0.7974 | 15.0 | 3581 | 1.0082 | 0.6127 | | 0.7921 | 16.0 | 3820 | 1.0438 | 0.6017 | | 0.709 | 17.0 | 4058 | 1.0484 | 0.6094 | | 0.6646 | 18.0 | 4297 | 1.0554 | 0.6221 | | 0.6832 | 19.0 | 4536 | 1.0455 | 0.6124 | | 0.7076 | 20.0 | 4775 | 1.0905 | 0.6 | | 0.7442 | 21.0 | 5013 | 1.1094 | 0.6008 | | 0.6332 | 22.0 | 5252 | 1.0777 | 0.6063 | | 0.6417 | 23.0 | 5491 | 1.0765 | 0.6141 | | 0.6267 | 24.0 | 5730 | 1.1057 | 0.6091 | | 0.6082 | 25.0 | 5968 | 1.0962 | 0.6171 | | 0.6191 | 26.0 | 6207 | 1.1178 | 0.6039 | | 0.5654 | 27.0 | 6446 | 1.1386 | 0.5948 | | 0.5776 | 28.0 | 6685 | 1.1121 | 0.6105 | | 0.5531 | 29.0 | 6923 | 1.1497 | 0.6030 | | 0.6275 | 30.0 | 7162 | 1.1796 | 0.6028 | | 0.5373 | 31.0 | 7401 | 1.1306 | 0.6132 | | 0.4775 | 32.0 | 7640 | 1.1523 | 0.6058 | | 0.5469 | 33.0 | 7878 | 1.1634 | 0.6127 | | 0.4934 | 34.0 | 8117 | 1.1853 | 0.616 | | 0.5233 | 35.0 | 8356 | 1.2018 | 0.6055 | | 0.4896 | 36.0 | 8595 | 1.1585 | 0.6108 | | 0.5122 | 37.0 | 8833 | 1.1874 | 0.6146 | | 0.4726 | 38.0 | 9072 | 1.1608 | 0.6193 | | 0.4372 | 39.0 | 9311 | 1.2403 | 0.6132 | | 0.498 | 40.0 | 9550 | 1.1752 | 0.6201 | | 0.4813 | 41.0 | 9788 | 1.2005 | 0.6166 | | 0.4762 | 42.0 | 10027 | 1.2285 | 0.6022 | | 0.4852 | 43.0 | 10266 | 1.2192 | 0.6119 | | 0.4332 | 44.0 | 10505 | 1.2391 | 0.6218 | | 0.3998 | 45.0 | 10743 | 1.1779 | 0.6196 | | 0.4467 | 46.0 | 10982 | 1.2048 | 0.6284 | | 0.4332 | 47.0 | 11221 | 1.2302 | 0.6188 | | 0.4529 | 48.0 | 11460 | 1.2220 | 0.6188 | | 0.4281 | 49.0 | 11698 | 1.2013 | 0.624 | | 0.4199 | 49.84 | 11900 | 1.2164 | 0.6152 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
Yurio27/Clase_02
Yurio27
2023-09-17T08:51:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-17T08:48:51Z
--- license: creativeml-openrail-m ---
a2ran/FingerFriend-t5-small
a2ran
2023-09-17T07:54:16Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-16T14:39:34Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: FingerFriend-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FingerFriend-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6293 | 1.0 | 171 | 1.1671 | | 1.195 | 2.0 | 342 | 1.0246 | | 1.085 | 3.0 | 513 | 0.9553 | | 1.0207 | 4.0 | 684 | 0.9096 | | 0.9631 | 5.0 | 855 | 0.8782 | | 0.9283 | 6.0 | 1026 | 0.8445 | | 0.8987 | 7.0 | 1197 | 0.8352 | | 0.8716 | 8.0 | 1368 | 0.8123 | | 0.8556 | 9.0 | 1539 | 0.7983 | | 0.8375 | 10.0 | 1710 | 0.7923 | | 0.8239 | 11.0 | 1881 | 0.7757 | | 0.8184 | 12.0 | 2052 | 0.7716 | | 0.8053 | 13.0 | 2223 | 0.7642 | | 0.7929 | 14.0 | 2394 | 0.7647 | | 0.7867 | 15.0 | 2565 | 0.7597 | | 0.7817 | 16.0 | 2736 | 0.7529 | | 0.7751 | 17.0 | 2907 | 0.7506 | | 0.7705 | 18.0 | 3078 | 0.7472 | | 0.7657 | 19.0 | 3249 | 0.7467 | | 0.7665 | 20.0 | 3420 | 0.7464 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
mohaq123/setfit-minilm-distilled
mohaq123
2023-09-17T07:47:57Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-17T07:47:53Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # mohaq123/setfit-minilm-distilled This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("mohaq123/setfit-minilm-distilled") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
CyberHarem/oikawa_shizuku_idolmastercinderellagirls
CyberHarem
2023-09-17T07:44:20Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/oikawa_shizuku_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-17T07:26:56Z
--- license: mit datasets: - CyberHarem/oikawa_shizuku_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of oikawa_shizuku_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7280, you need to download `7280/oikawa_shizuku_idolmastercinderellagirls.pt` as the embedding and `7280/oikawa_shizuku_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7280**, with the score of 0.680. The trigger words are: 1. `oikawa_shizuku_idolmastercinderellagirls` 2. `short_hair, brown_eyes, brown_hair, breasts, blush, smile, open_mouth, large_breasts, animal_ears, cow_horns, horns, cow_ears, neck_bell` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-----------------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7800 | 0.641 | [Download](7800/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | [<NSFW, click to see>](7800/previews/pattern_2.png) | [<NSFW, click to see>](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | [<NSFW, click to see>](7800/previews/pattern_6.png) | [<NSFW, click to see>](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | [<NSFW, click to see>](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | [<NSFW, click to see>](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | **7280** | **0.680** | [**Download**](7280/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-7280](7280/previews/pattern_1.png) | [<NSFW, click to see>](7280/previews/pattern_2.png) | [<NSFW, click to see>](7280/previews/pattern_3.png) | ![pattern_4-7280](7280/previews/pattern_4.png) | ![pattern_5-7280](7280/previews/pattern_5.png) | [<NSFW, click to see>](7280/previews/pattern_6.png) | [<NSFW, click to see>](7280/previews/pattern_7.png) | ![pattern_8-7280](7280/previews/pattern_8.png) | [<NSFW, click to see>](7280/previews/bikini.png) | [<NSFW, click to see>](7280/previews/bondage.png) | [<NSFW, click to see>](7280/previews/free.png) | ![maid-7280](7280/previews/maid.png) | ![miko-7280](7280/previews/miko.png) | [<NSFW, click to see>](7280/previews/nude.png) | [<NSFW, click to see>](7280/previews/nude2.png) | ![suit-7280](7280/previews/suit.png) | ![yukata-7280](7280/previews/yukata.png) | | 6760 | 0.561 | [Download](6760/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-6760](6760/previews/pattern_1.png) | [<NSFW, click to see>](6760/previews/pattern_2.png) | [<NSFW, click to see>](6760/previews/pattern_3.png) | ![pattern_4-6760](6760/previews/pattern_4.png) | ![pattern_5-6760](6760/previews/pattern_5.png) | [<NSFW, click to see>](6760/previews/pattern_6.png) | [<NSFW, click to see>](6760/previews/pattern_7.png) | ![pattern_8-6760](6760/previews/pattern_8.png) | [<NSFW, click to see>](6760/previews/bikini.png) | [<NSFW, click to see>](6760/previews/bondage.png) | [<NSFW, click to see>](6760/previews/free.png) | ![maid-6760](6760/previews/maid.png) | ![miko-6760](6760/previews/miko.png) | [<NSFW, click to see>](6760/previews/nude.png) | [<NSFW, click to see>](6760/previews/nude2.png) | ![suit-6760](6760/previews/suit.png) | ![yukata-6760](6760/previews/yukata.png) | | 6240 | 0.646 | [Download](6240/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-6240](6240/previews/pattern_1.png) | [<NSFW, click to see>](6240/previews/pattern_2.png) | [<NSFW, click to see>](6240/previews/pattern_3.png) | ![pattern_4-6240](6240/previews/pattern_4.png) | ![pattern_5-6240](6240/previews/pattern_5.png) | [<NSFW, click to see>](6240/previews/pattern_6.png) | [<NSFW, click to see>](6240/previews/pattern_7.png) | ![pattern_8-6240](6240/previews/pattern_8.png) | [<NSFW, click to see>](6240/previews/bikini.png) | [<NSFW, click to see>](6240/previews/bondage.png) | [<NSFW, click to see>](6240/previews/free.png) | ![maid-6240](6240/previews/maid.png) | ![miko-6240](6240/previews/miko.png) | [<NSFW, click to see>](6240/previews/nude.png) | [<NSFW, click to see>](6240/previews/nude2.png) | ![suit-6240](6240/previews/suit.png) | ![yukata-6240](6240/previews/yukata.png) | | 5720 | 0.540 | [Download](5720/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-5720](5720/previews/pattern_1.png) | [<NSFW, click to see>](5720/previews/pattern_2.png) | [<NSFW, click to see>](5720/previews/pattern_3.png) | ![pattern_4-5720](5720/previews/pattern_4.png) | ![pattern_5-5720](5720/previews/pattern_5.png) | [<NSFW, click to see>](5720/previews/pattern_6.png) | [<NSFW, click to see>](5720/previews/pattern_7.png) | ![pattern_8-5720](5720/previews/pattern_8.png) | [<NSFW, click to see>](5720/previews/bikini.png) | [<NSFW, click to see>](5720/previews/bondage.png) | [<NSFW, click to see>](5720/previews/free.png) | ![maid-5720](5720/previews/maid.png) | ![miko-5720](5720/previews/miko.png) | [<NSFW, click to see>](5720/previews/nude.png) | [<NSFW, click to see>](5720/previews/nude2.png) | ![suit-5720](5720/previews/suit.png) | ![yukata-5720](5720/previews/yukata.png) | | 5200 | 0.577 | [Download](5200/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-5200](5200/previews/pattern_1.png) | [<NSFW, click to see>](5200/previews/pattern_2.png) | [<NSFW, click to see>](5200/previews/pattern_3.png) | ![pattern_4-5200](5200/previews/pattern_4.png) | ![pattern_5-5200](5200/previews/pattern_5.png) | [<NSFW, click to see>](5200/previews/pattern_6.png) | [<NSFW, click to see>](5200/previews/pattern_7.png) | ![pattern_8-5200](5200/previews/pattern_8.png) | [<NSFW, click to see>](5200/previews/bikini.png) | [<NSFW, click to see>](5200/previews/bondage.png) | [<NSFW, click to see>](5200/previews/free.png) | ![maid-5200](5200/previews/maid.png) | ![miko-5200](5200/previews/miko.png) | [<NSFW, click to see>](5200/previews/nude.png) | [<NSFW, click to see>](5200/previews/nude2.png) | ![suit-5200](5200/previews/suit.png) | ![yukata-5200](5200/previews/yukata.png) | | 4680 | 0.590 | [Download](4680/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-4680](4680/previews/pattern_1.png) | [<NSFW, click to see>](4680/previews/pattern_2.png) | [<NSFW, click to see>](4680/previews/pattern_3.png) | ![pattern_4-4680](4680/previews/pattern_4.png) | ![pattern_5-4680](4680/previews/pattern_5.png) | [<NSFW, click to see>](4680/previews/pattern_6.png) | [<NSFW, click to see>](4680/previews/pattern_7.png) | ![pattern_8-4680](4680/previews/pattern_8.png) | [<NSFW, click to see>](4680/previews/bikini.png) | [<NSFW, click to see>](4680/previews/bondage.png) | [<NSFW, click to see>](4680/previews/free.png) | ![maid-4680](4680/previews/maid.png) | ![miko-4680](4680/previews/miko.png) | [<NSFW, click to see>](4680/previews/nude.png) | [<NSFW, click to see>](4680/previews/nude2.png) | ![suit-4680](4680/previews/suit.png) | ![yukata-4680](4680/previews/yukata.png) | | 4160 | 0.606 | [Download](4160/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-4160](4160/previews/pattern_1.png) | [<NSFW, click to see>](4160/previews/pattern_2.png) | [<NSFW, click to see>](4160/previews/pattern_3.png) | ![pattern_4-4160](4160/previews/pattern_4.png) | ![pattern_5-4160](4160/previews/pattern_5.png) | [<NSFW, click to see>](4160/previews/pattern_6.png) | [<NSFW, click to see>](4160/previews/pattern_7.png) | ![pattern_8-4160](4160/previews/pattern_8.png) | [<NSFW, click to see>](4160/previews/bikini.png) | [<NSFW, click to see>](4160/previews/bondage.png) | [<NSFW, click to see>](4160/previews/free.png) | ![maid-4160](4160/previews/maid.png) | ![miko-4160](4160/previews/miko.png) | [<NSFW, click to see>](4160/previews/nude.png) | [<NSFW, click to see>](4160/previews/nude2.png) | ![suit-4160](4160/previews/suit.png) | ![yukata-4160](4160/previews/yukata.png) | | 3640 | 0.555 | [Download](3640/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-3640](3640/previews/pattern_1.png) | [<NSFW, click to see>](3640/previews/pattern_2.png) | [<NSFW, click to see>](3640/previews/pattern_3.png) | ![pattern_4-3640](3640/previews/pattern_4.png) | ![pattern_5-3640](3640/previews/pattern_5.png) | [<NSFW, click to see>](3640/previews/pattern_6.png) | [<NSFW, click to see>](3640/previews/pattern_7.png) | ![pattern_8-3640](3640/previews/pattern_8.png) | [<NSFW, click to see>](3640/previews/bikini.png) | [<NSFW, click to see>](3640/previews/bondage.png) | [<NSFW, click to see>](3640/previews/free.png) | ![maid-3640](3640/previews/maid.png) | ![miko-3640](3640/previews/miko.png) | [<NSFW, click to see>](3640/previews/nude.png) | [<NSFW, click to see>](3640/previews/nude2.png) | ![suit-3640](3640/previews/suit.png) | ![yukata-3640](3640/previews/yukata.png) | | 3120 | 0.618 | [Download](3120/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-3120](3120/previews/pattern_1.png) | [<NSFW, click to see>](3120/previews/pattern_2.png) | [<NSFW, click to see>](3120/previews/pattern_3.png) | ![pattern_4-3120](3120/previews/pattern_4.png) | ![pattern_5-3120](3120/previews/pattern_5.png) | [<NSFW, click to see>](3120/previews/pattern_6.png) | [<NSFW, click to see>](3120/previews/pattern_7.png) | ![pattern_8-3120](3120/previews/pattern_8.png) | [<NSFW, click to see>](3120/previews/bikini.png) | [<NSFW, click to see>](3120/previews/bondage.png) | [<NSFW, click to see>](3120/previews/free.png) | ![maid-3120](3120/previews/maid.png) | ![miko-3120](3120/previews/miko.png) | [<NSFW, click to see>](3120/previews/nude.png) | [<NSFW, click to see>](3120/previews/nude2.png) | ![suit-3120](3120/previews/suit.png) | ![yukata-3120](3120/previews/yukata.png) | | 2600 | 0.579 | [Download](2600/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-2600](2600/previews/pattern_1.png) | [<NSFW, click to see>](2600/previews/pattern_2.png) | [<NSFW, click to see>](2600/previews/pattern_3.png) | ![pattern_4-2600](2600/previews/pattern_4.png) | ![pattern_5-2600](2600/previews/pattern_5.png) | [<NSFW, click to see>](2600/previews/pattern_6.png) | [<NSFW, click to see>](2600/previews/pattern_7.png) | ![pattern_8-2600](2600/previews/pattern_8.png) | [<NSFW, click to see>](2600/previews/bikini.png) | [<NSFW, click to see>](2600/previews/bondage.png) | [<NSFW, click to see>](2600/previews/free.png) | ![maid-2600](2600/previews/maid.png) | ![miko-2600](2600/previews/miko.png) | [<NSFW, click to see>](2600/previews/nude.png) | [<NSFW, click to see>](2600/previews/nude2.png) | ![suit-2600](2600/previews/suit.png) | ![yukata-2600](2600/previews/yukata.png) | | 2080 | 0.533 | [Download](2080/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-2080](2080/previews/pattern_1.png) | [<NSFW, click to see>](2080/previews/pattern_2.png) | [<NSFW, click to see>](2080/previews/pattern_3.png) | ![pattern_4-2080](2080/previews/pattern_4.png) | ![pattern_5-2080](2080/previews/pattern_5.png) | [<NSFW, click to see>](2080/previews/pattern_6.png) | [<NSFW, click to see>](2080/previews/pattern_7.png) | ![pattern_8-2080](2080/previews/pattern_8.png) | [<NSFW, click to see>](2080/previews/bikini.png) | [<NSFW, click to see>](2080/previews/bondage.png) | [<NSFW, click to see>](2080/previews/free.png) | ![maid-2080](2080/previews/maid.png) | ![miko-2080](2080/previews/miko.png) | [<NSFW, click to see>](2080/previews/nude.png) | [<NSFW, click to see>](2080/previews/nude2.png) | ![suit-2080](2080/previews/suit.png) | ![yukata-2080](2080/previews/yukata.png) | | 1560 | 0.447 | [Download](1560/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-1560](1560/previews/pattern_1.png) | [<NSFW, click to see>](1560/previews/pattern_2.png) | [<NSFW, click to see>](1560/previews/pattern_3.png) | ![pattern_4-1560](1560/previews/pattern_4.png) | ![pattern_5-1560](1560/previews/pattern_5.png) | [<NSFW, click to see>](1560/previews/pattern_6.png) | [<NSFW, click to see>](1560/previews/pattern_7.png) | ![pattern_8-1560](1560/previews/pattern_8.png) | [<NSFW, click to see>](1560/previews/bikini.png) | [<NSFW, click to see>](1560/previews/bondage.png) | [<NSFW, click to see>](1560/previews/free.png) | ![maid-1560](1560/previews/maid.png) | ![miko-1560](1560/previews/miko.png) | [<NSFW, click to see>](1560/previews/nude.png) | [<NSFW, click to see>](1560/previews/nude2.png) | ![suit-1560](1560/previews/suit.png) | ![yukata-1560](1560/previews/yukata.png) | | 1040 | 0.464 | [Download](1040/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-1040](1040/previews/pattern_1.png) | [<NSFW, click to see>](1040/previews/pattern_2.png) | [<NSFW, click to see>](1040/previews/pattern_3.png) | ![pattern_4-1040](1040/previews/pattern_4.png) | ![pattern_5-1040](1040/previews/pattern_5.png) | [<NSFW, click to see>](1040/previews/pattern_6.png) | [<NSFW, click to see>](1040/previews/pattern_7.png) | ![pattern_8-1040](1040/previews/pattern_8.png) | [<NSFW, click to see>](1040/previews/bikini.png) | [<NSFW, click to see>](1040/previews/bondage.png) | [<NSFW, click to see>](1040/previews/free.png) | ![maid-1040](1040/previews/maid.png) | ![miko-1040](1040/previews/miko.png) | [<NSFW, click to see>](1040/previews/nude.png) | [<NSFW, click to see>](1040/previews/nude2.png) | ![suit-1040](1040/previews/suit.png) | ![yukata-1040](1040/previews/yukata.png) | | 520 | 0.293 | [Download](520/oikawa_shizuku_idolmastercinderellagirls.zip) | ![pattern_1-520](520/previews/pattern_1.png) | [<NSFW, click to see>](520/previews/pattern_2.png) | [<NSFW, click to see>](520/previews/pattern_3.png) | ![pattern_4-520](520/previews/pattern_4.png) | ![pattern_5-520](520/previews/pattern_5.png) | [<NSFW, click to see>](520/previews/pattern_6.png) | [<NSFW, click to see>](520/previews/pattern_7.png) | ![pattern_8-520](520/previews/pattern_8.png) | [<NSFW, click to see>](520/previews/bikini.png) | [<NSFW, click to see>](520/previews/bondage.png) | [<NSFW, click to see>](520/previews/free.png) | ![maid-520](520/previews/maid.png) | ![miko-520](520/previews/miko.png) | [<NSFW, click to see>](520/previews/nude.png) | [<NSFW, click to see>](520/previews/nude2.png) | ![suit-520](520/previews/suit.png) | ![yukata-520](520/previews/yukata.png) |
Yntec/aPhotographicTrend
Yntec
2023-09-17T07:37:08Z
681
3
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Ciro_Negrogni", "MagicArt35", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-16T12:13:13Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Ciro_Negrogni - MagicArt35 --- # A Photographic Trend AmovieX by MagicArt35 with the Photographic Trend LoRA by Ciro_Negrogni baked in. First version of three. Second version with AmovieX's compositions: https://huggingface.co/Yntec/aMovieTrend Third version with Photographic Trend's compositions: https://huggingface.co/Yntec/Trending Samples and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/ZSFDOlnL1OYytmw3igxHi.png) Photo Pretty Cute Girl, highly detailed, trending on ArtStation, sitting, fantasy, beautiful detailed streetwear, gorgeous detailed hair, hat, Magazine ad, iconic, 1943, from the movie, sharp focus. Detailed masterpiece, ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/TILBM1wzJXsi-m7gRqDfe.png) Cartoon CUTE LITTLE baby, CHIBI, gorgeous detailed hair, looking, cute socks, holding pillow, skirt, Magazine ad, iconic, 1940, sharp focus. pencil art By KlaysMoji and Clay Mann and and leyendecker and Dave Rapoza. Original pages: https://civitai.com/models/98543 (Photographic Trend) https://civitai.com/models/94687/photo-movie-x (AmovieX) # Recipe - Merge Photographic Trend LoRA to checkpoint 1.0 Model A: AmovieX OutPut: PhotographicTrendAmovieX - SuperMerger Weight sum Train Difference use MBW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1 Model A: PhotographicTrendAmovieX Model B: AmovieX OutPut: aPhotographicTrend
wooii/DQN-SpaceInvadersNoFrameskip-v4
wooii
2023-09-17T07:37:04Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T06:14:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 587.00 +/- 118.37 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wooii -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wooii -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga wooii ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
hrtnisri2016/image_classification
hrtnisri2016
2023-09-17T07:25:05Z
217
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T02:10:18Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.46875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5771 - Accuracy: 0.4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9643 | 0.3438 | | No log | 2.0 | 40 | 1.7819 | 0.4125 | | No log | 3.0 | 60 | 1.6521 | 0.4562 | | No log | 4.0 | 80 | 1.6034 | 0.4938 | | No log | 5.0 | 100 | 1.5769 | 0.5062 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Daniil-plotnikov/Russian-Vision-V5.2
Daniil-plotnikov
2023-09-17T07:14:29Z
41
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "ru", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-30T13:40:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion language: - ru - en --- ### Данная модель лучшая на данный момент! Понимает русский и английский.
BBBBirdIsTheWord/ppo-LunarLander-v2
BBBBirdIsTheWord
2023-09-17T07:11:56Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-17T03:10:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 293.55 +/- 23.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nguyenthanhdo/dolphin_noprob
nguyenthanhdo
2023-09-17T06:56:57Z
0
0
null
[ "region:us" ]
null
2023-09-13T18:59:24Z
## This model is tailored for question answering with context. How to use: --- ```py import torch import os from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig from transformers import GenerationConfig, TextStreamer from peft import PeftModel from axolotl.prompters import AlpacaPrompter, PromptStyle ### Load model torch_dtype = torch.bfloat16 device_map = {"": int(os.environ.get("CUDA_DEVICE") or 0)} # model_id = "nguyenthanhdo/noprob_model" # you may try this model_id = "NousResearch/Llama-2-7b-hf" peft_id = "nguyenthanhdo/dolphin_noprob" tokenizer = LlamaTokenizer.from_pretrained(model_id) model = LlamaForCausalLM.from_pretrained( model_id, config=LlamaConfig.from_pretrained(model_id), device_map=device_map, torch_dtype=torch_dtype ) model = PeftModel.from_pretrained(model, peft_id) model = model.merge_and_unload() ### Build prompt prompter = AlpacaPrompter(prompt_style=PromptStyle.INSTRUCT.value) # instruction = "Provide short and concise answer. The answer should be straight and only provides explanation when needed." # Another instruction to test instruction = 'You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand the answer.' question = input() context = input() input = f"""Dựa vào bài viết dưới đây, trả lời câu hỏi phía dưới:\n{context}\n\nCâu hỏi: {question}""" prompt = prompter.build_prompt(instruction=instruction, input=input, output="").__next__() ### Generate answer input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) model.eval() with torch.no_grad(): generation_config = GenerationConfig( repetition_penalty=1.13, max_new_tokens=max_new_tokens, temperature=0.2, top_p=0.95, top_k=20, pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) streamer = TextStreamer(tokenizer, skip_prompt=True) generated = model.generate( inputs=input_ids, generation_config=generation_config, streamer=streamer, ) ``` --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
nailashfrni/emotion_classification
nailashfrni
2023-09-17T06:42:39Z
196
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T06:35:03Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.51875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4178 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.3316 | 0.4562 | | No log | 2.0 | 80 | 1.3601 | 0.5 | | No log | 3.0 | 120 | 1.2794 | 0.5563 | | No log | 4.0 | 160 | 1.3851 | 0.5 | | No log | 5.0 | 200 | 1.4786 | 0.4625 | | No log | 6.0 | 240 | 1.4805 | 0.4875 | | No log | 7.0 | 280 | 1.4581 | 0.4813 | | No log | 8.0 | 320 | 1.4258 | 0.525 | | No log | 9.0 | 360 | 1.5452 | 0.5 | | No log | 10.0 | 400 | 1.3624 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
nailashfrni/image_classification
nailashfrni
2023-09-17T06:27:34Z
195
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T05:26:41Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9420289855072463 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1728 - Accuracy: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.2885 | 0.9179 | | No log | 2.0 | 104 | 0.1829 | 0.9469 | | No log | 3.0 | 156 | 0.1789 | 0.9565 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
okaris/autotrain-hate-speech-3k-89642143970
okaris
2023-09-17T06:23:59Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "text-regression", "en", "dataset:okaris/autotrain-data-hate-speech-3k", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T06:21:33Z
--- tags: - autotrain - text-regression language: - en widget: - text: "I love AutoTrain" datasets: - okaris/autotrain-data-hate-speech-3k co2_eq_emissions: emissions: 0.023898445665108296 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 89642143970 - CO2 Emissions (in grams): 0.0239 ## Validation Metrics - Loss: 1.768 - MSE: 1.768 - MAE: 1.007 - R2: 0.604 - RMSE: 1.330 - Explained Variance: 0.614 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/okaris/autotrain-hate-speech-3k-89642143970 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("okaris/autotrain-hate-speech-3k-89642143970", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("okaris/autotrain-hate-speech-3k-89642143970", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ikeus/xlm-roberta-base-finetuned-panx-de-fr
ikeus
2023-09-17T06:17:17Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-17T05:50:48Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1658 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2889 | 1.0 | 715 | 0.1777 | 0.8220 | | 0.1479 | 2.0 | 1430 | 0.1630 | 0.8451 | | 0.0948 | 3.0 | 2145 | 0.1658 | 0.8593 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
MaX0214/classification
MaX0214
2023-09-17T06:11:41Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T03:54:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
Jiuzhouh/flan-t5-xxl-lora-copasse-new
Jiuzhouh
2023-09-17T05:58:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-17T05:57:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
BBBBirdIsTheWord/ppo-Huggy
BBBBirdIsTheWord
2023-09-17T05:56:59Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-17T05:56:53Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: BBBBirdIsTheWord/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AeraX-Valley/crash_detection_resnet-50
AeraX-Valley
2023-09-17T05:35:35Z
0
0
null
[ "region:us" ]
null
2023-09-17T05:22:41Z
# accilanews-detection ## our first detection model ### architecture: resnet50
m-aliabbas1/fine_tune_bert_output
m-aliabbas1
2023-09-17T05:26:49Z
104
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:prajjwal1/bert-tiny", "base_model:finetune:prajjwal1/bert-tiny", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-17T05:22:48Z
--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer model-index: - name: fine_tune_bert_output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tune_bert_output This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - Overall Precision: 0.9722 - Overall Recall: 0.9722 - Overall F1: 0.9722 - Overall Accuracy: 0.9963 - Number Of Employees F1: 0.9722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Number Of Employees F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:----------------------:| | 0.0011 | 50.0 | 1000 | 0.0046 | 0.9722 | 0.9722 | 0.9722 | 0.9963 | 0.9722 | | 0.0003 | 100.0 | 2000 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0002 | 150.0 | 3000 | 0.0094 | 0.9722 | 0.9722 | 0.9722 | 0.9963 | 0.9722 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3 ### Labels IDs - {0: 'O', 1: 'B-number_of_employees', 2: 'I-number_of_employees'}
CyberHarem/akagi_miria_idolmastercinderellagirls
CyberHarem
2023-09-17T05:20:46Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/akagi_miria_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-17T05:05:57Z
--- license: mit datasets: - CyberHarem/akagi_miria_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of akagi_miria_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6480, you need to download `6480/akagi_miria_idolmastercinderellagirls.pt` as the embedding and `6480/akagi_miria_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6480**, with the score of 0.978. The trigger words are: 1. `akagi_miria_idolmastercinderellagirls` 2. `short_hair, brown_eyes, two_side_up, blush, smile, black_hair, open_mouth, brown_hair, :d, bangs, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-----------------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 8100 | 0.977 | [Download](8100/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-8100](8100/previews/pattern_1.png) | ![pattern_2-8100](8100/previews/pattern_2.png) | ![pattern_3-8100](8100/previews/pattern_3.png) | ![pattern_4-8100](8100/previews/pattern_4.png) | ![pattern_5-8100](8100/previews/pattern_5.png) | ![pattern_6-8100](8100/previews/pattern_6.png) | [<NSFW, click to see>](8100/previews/bikini.png) | [<NSFW, click to see>](8100/previews/bondage.png) | [<NSFW, click to see>](8100/previews/free.png) | ![maid-8100](8100/previews/maid.png) | ![miko-8100](8100/previews/miko.png) | [<NSFW, click to see>](8100/previews/nude.png) | [<NSFW, click to see>](8100/previews/nude2.png) | ![suit-8100](8100/previews/suit.png) | ![yukata-8100](8100/previews/yukata.png) | | 7560 | 0.974 | [Download](7560/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-7560](7560/previews/pattern_1.png) | ![pattern_2-7560](7560/previews/pattern_2.png) | ![pattern_3-7560](7560/previews/pattern_3.png) | ![pattern_4-7560](7560/previews/pattern_4.png) | ![pattern_5-7560](7560/previews/pattern_5.png) | ![pattern_6-7560](7560/previews/pattern_6.png) | [<NSFW, click to see>](7560/previews/bikini.png) | [<NSFW, click to see>](7560/previews/bondage.png) | [<NSFW, click to see>](7560/previews/free.png) | ![maid-7560](7560/previews/maid.png) | ![miko-7560](7560/previews/miko.png) | [<NSFW, click to see>](7560/previews/nude.png) | [<NSFW, click to see>](7560/previews/nude2.png) | ![suit-7560](7560/previews/suit.png) | ![yukata-7560](7560/previews/yukata.png) | | 7020 | 0.978 | [Download](7020/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-7020](7020/previews/pattern_1.png) | ![pattern_2-7020](7020/previews/pattern_2.png) | ![pattern_3-7020](7020/previews/pattern_3.png) | ![pattern_4-7020](7020/previews/pattern_4.png) | ![pattern_5-7020](7020/previews/pattern_5.png) | ![pattern_6-7020](7020/previews/pattern_6.png) | [<NSFW, click to see>](7020/previews/bikini.png) | [<NSFW, click to see>](7020/previews/bondage.png) | [<NSFW, click to see>](7020/previews/free.png) | ![maid-7020](7020/previews/maid.png) | ![miko-7020](7020/previews/miko.png) | [<NSFW, click to see>](7020/previews/nude.png) | [<NSFW, click to see>](7020/previews/nude2.png) | ![suit-7020](7020/previews/suit.png) | ![yukata-7020](7020/previews/yukata.png) | | **6480** | **0.978** | [**Download**](6480/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-6480](6480/previews/pattern_1.png) | ![pattern_2-6480](6480/previews/pattern_2.png) | ![pattern_3-6480](6480/previews/pattern_3.png) | ![pattern_4-6480](6480/previews/pattern_4.png) | ![pattern_5-6480](6480/previews/pattern_5.png) | ![pattern_6-6480](6480/previews/pattern_6.png) | [<NSFW, click to see>](6480/previews/bikini.png) | [<NSFW, click to see>](6480/previews/bondage.png) | [<NSFW, click to see>](6480/previews/free.png) | ![maid-6480](6480/previews/maid.png) | ![miko-6480](6480/previews/miko.png) | [<NSFW, click to see>](6480/previews/nude.png) | [<NSFW, click to see>](6480/previews/nude2.png) | ![suit-6480](6480/previews/suit.png) | ![yukata-6480](6480/previews/yukata.png) | | 5940 | 0.970 | [Download](5940/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | [<NSFW, click to see>](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | [<NSFW, click to see>](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5400 | 0.976 | [Download](5400/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | [<NSFW, click to see>](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | [<NSFW, click to see>](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4860 | 0.958 | [Download](4860/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-4860](4860/previews/pattern_1.png) | ![pattern_2-4860](4860/previews/pattern_2.png) | ![pattern_3-4860](4860/previews/pattern_3.png) | ![pattern_4-4860](4860/previews/pattern_4.png) | ![pattern_5-4860](4860/previews/pattern_5.png) | ![pattern_6-4860](4860/previews/pattern_6.png) | [<NSFW, click to see>](4860/previews/bikini.png) | [<NSFW, click to see>](4860/previews/bondage.png) | [<NSFW, click to see>](4860/previews/free.png) | ![maid-4860](4860/previews/maid.png) | ![miko-4860](4860/previews/miko.png) | [<NSFW, click to see>](4860/previews/nude.png) | [<NSFW, click to see>](4860/previews/nude2.png) | ![suit-4860](4860/previews/suit.png) | ![yukata-4860](4860/previews/yukata.png) | | 4320 | 0.968 | [Download](4320/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-4320](4320/previews/pattern_1.png) | ![pattern_2-4320](4320/previews/pattern_2.png) | ![pattern_3-4320](4320/previews/pattern_3.png) | ![pattern_4-4320](4320/previews/pattern_4.png) | ![pattern_5-4320](4320/previews/pattern_5.png) | ![pattern_6-4320](4320/previews/pattern_6.png) | [<NSFW, click to see>](4320/previews/bikini.png) | [<NSFW, click to see>](4320/previews/bondage.png) | [<NSFW, click to see>](4320/previews/free.png) | ![maid-4320](4320/previews/maid.png) | ![miko-4320](4320/previews/miko.png) | [<NSFW, click to see>](4320/previews/nude.png) | [<NSFW, click to see>](4320/previews/nude2.png) | ![suit-4320](4320/previews/suit.png) | ![yukata-4320](4320/previews/yukata.png) | | 3780 | 0.970 | [Download](3780/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-3780](3780/previews/pattern_1.png) | ![pattern_2-3780](3780/previews/pattern_2.png) | ![pattern_3-3780](3780/previews/pattern_3.png) | ![pattern_4-3780](3780/previews/pattern_4.png) | ![pattern_5-3780](3780/previews/pattern_5.png) | ![pattern_6-3780](3780/previews/pattern_6.png) | [<NSFW, click to see>](3780/previews/bikini.png) | [<NSFW, click to see>](3780/previews/bondage.png) | [<NSFW, click to see>](3780/previews/free.png) | ![maid-3780](3780/previews/maid.png) | ![miko-3780](3780/previews/miko.png) | [<NSFW, click to see>](3780/previews/nude.png) | [<NSFW, click to see>](3780/previews/nude2.png) | ![suit-3780](3780/previews/suit.png) | ![yukata-3780](3780/previews/yukata.png) | | 3240 | 0.969 | [Download](3240/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-3240](3240/previews/pattern_1.png) | ![pattern_2-3240](3240/previews/pattern_2.png) | ![pattern_3-3240](3240/previews/pattern_3.png) | ![pattern_4-3240](3240/previews/pattern_4.png) | ![pattern_5-3240](3240/previews/pattern_5.png) | ![pattern_6-3240](3240/previews/pattern_6.png) | [<NSFW, click to see>](3240/previews/bikini.png) | [<NSFW, click to see>](3240/previews/bondage.png) | [<NSFW, click to see>](3240/previews/free.png) | ![maid-3240](3240/previews/maid.png) | ![miko-3240](3240/previews/miko.png) | [<NSFW, click to see>](3240/previews/nude.png) | [<NSFW, click to see>](3240/previews/nude2.png) | ![suit-3240](3240/previews/suit.png) | ![yukata-3240](3240/previews/yukata.png) | | 2700 | 0.969 | [Download](2700/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-2700](2700/previews/pattern_1.png) | ![pattern_2-2700](2700/previews/pattern_2.png) | ![pattern_3-2700](2700/previews/pattern_3.png) | ![pattern_4-2700](2700/previews/pattern_4.png) | ![pattern_5-2700](2700/previews/pattern_5.png) | ![pattern_6-2700](2700/previews/pattern_6.png) | [<NSFW, click to see>](2700/previews/bikini.png) | [<NSFW, click to see>](2700/previews/bondage.png) | [<NSFW, click to see>](2700/previews/free.png) | ![maid-2700](2700/previews/maid.png) | ![miko-2700](2700/previews/miko.png) | [<NSFW, click to see>](2700/previews/nude.png) | [<NSFW, click to see>](2700/previews/nude2.png) | ![suit-2700](2700/previews/suit.png) | ![yukata-2700](2700/previews/yukata.png) | | 2160 | 0.956 | [Download](2160/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-2160](2160/previews/pattern_1.png) | ![pattern_2-2160](2160/previews/pattern_2.png) | ![pattern_3-2160](2160/previews/pattern_3.png) | ![pattern_4-2160](2160/previews/pattern_4.png) | ![pattern_5-2160](2160/previews/pattern_5.png) | ![pattern_6-2160](2160/previews/pattern_6.png) | [<NSFW, click to see>](2160/previews/bikini.png) | [<NSFW, click to see>](2160/previews/bondage.png) | [<NSFW, click to see>](2160/previews/free.png) | ![maid-2160](2160/previews/maid.png) | ![miko-2160](2160/previews/miko.png) | [<NSFW, click to see>](2160/previews/nude.png) | [<NSFW, click to see>](2160/previews/nude2.png) | ![suit-2160](2160/previews/suit.png) | ![yukata-2160](2160/previews/yukata.png) | | 1620 | 0.926 | [Download](1620/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-1620](1620/previews/pattern_1.png) | ![pattern_2-1620](1620/previews/pattern_2.png) | ![pattern_3-1620](1620/previews/pattern_3.png) | ![pattern_4-1620](1620/previews/pattern_4.png) | ![pattern_5-1620](1620/previews/pattern_5.png) | ![pattern_6-1620](1620/previews/pattern_6.png) | [<NSFW, click to see>](1620/previews/bikini.png) | [<NSFW, click to see>](1620/previews/bondage.png) | [<NSFW, click to see>](1620/previews/free.png) | ![maid-1620](1620/previews/maid.png) | ![miko-1620](1620/previews/miko.png) | [<NSFW, click to see>](1620/previews/nude.png) | [<NSFW, click to see>](1620/previews/nude2.png) | ![suit-1620](1620/previews/suit.png) | ![yukata-1620](1620/previews/yukata.png) | | 1080 | 0.941 | [Download](1080/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-1080](1080/previews/pattern_1.png) | ![pattern_2-1080](1080/previews/pattern_2.png) | ![pattern_3-1080](1080/previews/pattern_3.png) | ![pattern_4-1080](1080/previews/pattern_4.png) | ![pattern_5-1080](1080/previews/pattern_5.png) | ![pattern_6-1080](1080/previews/pattern_6.png) | [<NSFW, click to see>](1080/previews/bikini.png) | [<NSFW, click to see>](1080/previews/bondage.png) | [<NSFW, click to see>](1080/previews/free.png) | ![maid-1080](1080/previews/maid.png) | ![miko-1080](1080/previews/miko.png) | [<NSFW, click to see>](1080/previews/nude.png) | [<NSFW, click to see>](1080/previews/nude2.png) | ![suit-1080](1080/previews/suit.png) | ![yukata-1080](1080/previews/yukata.png) | | 540 | 0.940 | [Download](540/akagi_miria_idolmastercinderellagirls.zip) | ![pattern_1-540](540/previews/pattern_1.png) | ![pattern_2-540](540/previews/pattern_2.png) | ![pattern_3-540](540/previews/pattern_3.png) | ![pattern_4-540](540/previews/pattern_4.png) | ![pattern_5-540](540/previews/pattern_5.png) | ![pattern_6-540](540/previews/pattern_6.png) | [<NSFW, click to see>](540/previews/bikini.png) | [<NSFW, click to see>](540/previews/bondage.png) | [<NSFW, click to see>](540/previews/free.png) | ![maid-540](540/previews/maid.png) | ![miko-540](540/previews/miko.png) | [<NSFW, click to see>](540/previews/nude.png) | [<NSFW, click to see>](540/previews/nude2.png) | ![suit-540](540/previews/suit.png) | ![yukata-540](540/previews/yukata.png) |
Darojat/Darojat
Darojat
2023-09-17T05:12:46Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-17T05:12:16Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
swaroopajit/git-base-next-temp
swaroopajit
2023-09-17T04:57:27Z
63
0
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "generated_from_trainer", "base_model:microsoft/git-base", "base_model:finetune:microsoft/git-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-17T04:53:53Z
--- license: mit base_model: microsoft/git-base tags: - generated_from_trainer model-index: - name: git-base-next-temp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-next-temp This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
Alex14005/model-Dementia-classification-Alejandro-Arroyo
Alex14005
2023-09-17T04:47:44Z
197
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-17T02:28:13Z
--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy widget: - src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/Mild-demented.jpg example_title: Mild Demented - src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/No-demented.jpg example_title: Healthy model-index: - name: model-Dementia-classification-Alejandro-Arroyo results: - task: name: Image Classification type: image-classification dataset: name: RiniPL/Dementia_Dataset type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9230769230769231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-Dementia-classification-Alejandro-Arroyo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the RiniPL/Dementia_Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
SiberiaSoft/SiberianPersonaFredLarge-2
SiberiaSoft
2023-09-17T04:45:23Z
142
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "dataset:SiberiaSoft/SiberianPersonaChat-2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-17T04:41:25Z
--- license: mit datasets: - SiberiaSoft/SiberianPersonaChat-2 language: - ru pipeline_tag: text2text-generation widget: - text: '<SC6>Я парень, консультант по разным вопросам. Я очень умный. Я люблю помогать собеседнику. Недавно, у меня был следующий диалог:\nТы: Почему трава зеленая?\nЯ: <extra_id_0>' - text: '<SC6>Я очень умная девушка, и хочу помочь своему другу полезными советами. Недавно, у меня был следующий диалог:\nТы: Ты знаешь, я недавно посетил природный парк, и это было просто невероятно!\nЯ: Настоящая красота природных парков и заповедников никогда не перестанет меня поражать.\nТы: Согласен, я был ошеломлен разнообразием животных и растительности.\nЯ: <extra_id_0>' - text: '<SC6>Вопрос: Как вывести воду из организма для похудения быстро?\nОтвет: <extra_id_0>' --- ### SiberiaSoft/SiberianPersonaFred Данная модель предназначена для имитации личности в диалоге. Подробнее [тут](https://huggingface.co/datasets/SiberiaSoft/SiberianPersonaChat-2). Модель основана на [FRED-T5-LARGE](https://huggingface.co/ai-forever/FRED-T5-large) ## Формат описаний личности 1. Я очень умная девушка, и хочу помочь своему другу полезными советами. 2. Я парень, консультант по разным вопросам. Я очень умный. Люблю помогать собеседнику. Также в промпт можно подставлять факты о личности: ФИО, возраст и т.д 1. Я девушка 18 лет. Я учусь в институте. Живу с родителями. У меня есть кот. Я ищу парня для семьи. Статья на habr: [ссылка](https://habr.com/ru/articles/751580/) ### Пример кода инференса ```python import torch import transformers use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") t5_tokenizer = transformers.GPT2Tokenizer.from_pretrained("SiberiaSoft/SiberianPersonaFred-2") t5_model = transformers.T5ForConditionalGeneration.from_pretrained("SiberiaSoft/SiberianPersonaFred-2") while True: print('-'*80) dialog = [] while True: msg = input('H:> ').strip() if len(msg) == 0: break msg = msg[0].upper() + msg[1:] dialog.append('Ты: ' + msg) # В начале ставится промпт персонажа. prompt = '<SC6>Я парень, консультант по разным вопросам. Я очень умный. Я люблю помогать собеседнику. Недавно, у меня был следующий диалог:' + '\n'.join(dialog) + '\nЯ: <extra_id_0>' input_ids = t5_tokenizer(prompt, return_tensors='pt').input_ids out_ids = t5_model.generate(input_ids=input_ids.to(device), do_sample=True, temperature=0.9, max_new_tokens=512, top_p=0.85, top_k=2, repetition_penalty=1.2) t5_output = t5_tokenizer.decode(out_ids[0][1:]) if '</s>' in t5_output: t5_output = t5_output[:t5_output.find('</s>')].strip() t5_output = t5_output.replace('<extra_id_0>', '').strip() t5_output = t5_output.split('Собеседник')[0].strip() print('B:> {}'.format(t5_output)) dialog.append('Я: ' + t5_output) ```