modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 18:28:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 18:27:40
card
stringlengths
11
1.01M
jeapaul/wav2vec2-base-torgo-demo-m04-nolm
jeapaul
2022-11-23T00:14:40Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-16T20:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-torgo-demo-m04-nolm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-torgo-demo-m04-nolm This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5735 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.431 | 0.88 | 500 | 4.5567 | 1.0 | | 3.4727 | 1.75 | 1000 | 3.5626 | 1.0 | | 3.3879 | 2.63 | 1500 | 3.9274 | 1.0 | | 3.3513 | 3.5 | 2000 | 3.4813 | 1.0 | | 3.3538 | 4.38 | 2500 | 3.7300 | 1.0 | | 3.3539 | 5.25 | 3000 | 3.5714 | 1.0 | | 3.339 | 6.13 | 3500 | 3.6732 | 1.0 | | 3.3038 | 7.01 | 4000 | 3.6788 | 1.0 | | 3.35 | 7.88 | 4500 | 3.6715 | 1.0 | | 3.338 | 8.76 | 5000 | 3.5161 | 1.0 | | 3.3306 | 9.63 | 5500 | 3.7386 | 1.0 | | 3.3266 | 10.51 | 6000 | 3.4908 | 1.0 | | 3.3184 | 11.38 | 6500 | 3.7669 | 1.0 | | 3.3189 | 12.26 | 7000 | 3.6142 | 1.0 | | 3.331 | 13.13 | 7500 | 3.5619 | 1.0 | | 3.3139 | 14.01 | 8000 | 3.6632 | 1.0 | | 3.3069 | 14.89 | 8500 | 3.6127 | 1.0 | | 3.315 | 15.76 | 9000 | 3.5562 | 1.0 | | 3.3079 | 16.64 | 9500 | 3.7094 | 1.0 | | 3.3077 | 17.51 | 10000 | 3.5412 | 1.0 | | 3.3188 | 18.39 | 10500 | 3.6303 | 1.0 | | 3.3133 | 19.26 | 11000 | 3.5704 | 1.0 | | 3.3428 | 20.14 | 11500 | 3.5662 | 1.0 | | 3.3082 | 21.02 | 12000 | 3.6084 | 1.0 | | 3.3238 | 21.89 | 12500 | 3.6164 | 1.0 | | 3.3119 | 22.77 | 13000 | 3.5787 | 1.0 | | 3.2981 | 23.64 | 13500 | 3.6356 | 1.0 | | 3.3153 | 24.52 | 14000 | 3.5726 | 1.0 | | 3.3065 | 25.39 | 14500 | 3.5908 | 1.0 | | 3.3199 | 26.27 | 15000 | 3.5823 | 1.0 | | 3.306 | 27.15 | 15500 | 3.5658 | 1.0 | | 3.3153 | 28.02 | 16000 | 3.5818 | 1.0 | | 3.2762 | 28.9 | 16500 | 3.5810 | 1.0 | | 3.3196 | 29.77 | 17000 | 3.5735 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.13.2
jacobthebanana/galactica-30b
jacobthebanana
2022-11-22T23:16:04Z
7
1
transformers
[ "transformers", "jax", "opt", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T15:10:33Z
--- license: cc-by-nc-4.0 --- JAX weights converted from Torch checkpoint at `facebook/galactica-30b`. ```python (env) ubuntu@vm:~$ JAX_PLATFORM_NAME=cpu python3 >>> import jax >>> print(jax.devices()) [CpuDevice(id=0)] # Ensure that model weights are loaded into CPU RAM, not accelerator memory. >>> from transformers import FlaxOPTForCausalLM >>> model = FlaxOPTForCausalLM.from_pretrained("facebook/galactica-30b", from_pt=True) >>> model.push_to_hub(hf_model_repo) ``` ## Citation and Attribution Citation from the original repo is reproduced below as per the cc-by-nc-4.0 licsense. ```bibtex @inproceedings{GALACTICA, title={GALACTICA: A Large Language Model for Science}, author={Ross Taylor and Marcin Kardas and Guillem Cucurull and Thomas Scialom and Anthony Hartshorn and Elvis Saravia and Andrew Poulton and Viktor Kerkez and Robert Stojnic}, year={2022} } ``` > Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
unza/xls-r-300m-nyanja-fullset
unza
2022-11-22T23:02:48Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "NyanjaSpeech", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T10:28:07Z
--- license: apache-2.0 tags: - automatic-speech-recognition - NyanjaSpeech - generated_from_trainer metrics: - wer model-index: - name: xls-r-300m-nyanja-fullset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-nyanja-fullset This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NYANJASPEECH - NYA dataset. It achieves the following results on the evaluation set: - Loss: 3.1987 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3815 | 1.58 | 500 | 3.1987 | 1.0 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
warrormac/autotrain-my-train-2209070896
warrormac
2022-11-22T22:30:08Z
79
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "en", "es", "dataset:warrormac/autotrain-data-my-train", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-11-22T21:56:47Z
--- tags: - autotrain - translation language: - en - es datasets: - warrormac/autotrain-data-my-train co2_eq_emissions: emissions: 48.01845367300684 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 2209070896 - CO2 Emissions (in grams): 48.0185 ## Validation Metrics - Loss: 0.940 - SacreBLEU: 37.030 - Gen len: 11.428
monakth/distilbert-base-multilingual-cased-sv2
monakth
2022-11-22T22:26:39Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-22T22:24:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-multilingual-cased-sv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sv2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sacculifer/dimbat_disaster_type_distilbert
sacculifer
2022-11-22T22:07:32Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T19:36:01Z
--- tags: - generated_from_keras_callback model-index: - name: tmpzujlpono results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tweets disaster type classification model This model was trained from part of Disaster Tweet Corpus 2020 (Analysis of Filtering Models for Disaster-Related Tweets, Wiegmann,M. et al, 2020) dataset It achieves the following results on the evaluation set: - Train Loss: 0.0875 - Train Accuracy: 0.8783 - Validation Loss: 0.2980 - Validation Accuracy: 0.8133 - Epoch: 5 ## Model description Labels <br> disease --- 1 <br> earthquake --- 2 <br> flood --- 3 <br> hurricane & tornado --- 4 <br> wildfire --- 5 <br> industrial accident --- 6 <br> societal crime --- 7 <br> transportation accident --- 8 <br> meteor crash --- 9 <br> haze --- 0 ## Intended uses & limitation This model is able to detect 10 different type of disaster (nature and human-made), but it shows problem to detect the type 0 disaster due to the insignificant tweets and similarity to type 5 in the training dataset ### Training hyperparameters The following hyperparameters were used during training: - optimizer: <br> batch_size = 16 <br> num_epochs = 5 <br> batches_per_epoch = len(tokenized_tweet["train"])//batch_size <br> total_train_steps = int(batches_per_epoch * num_epochs) <br> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps) - training_precision: float32 ### Framework versions - Transformers 4.16.2 - TensorFlow 2.9.2 - Datasets 2.4.0 - Tokenizers 0.12.1 ### How to use it from transformers import AutoTokenizer, TFAutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("sacculifer/dimbat_disaster_type_distilbert") model = TFAutoModelForSequenceClassification.from_pretrained("sacculifer/dimbat_disaster_type_distilbert")
manirai91/xlm-roberta-imdb
manirai91
2022-11-22T20:36:34Z
126
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T16:42:44Z
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: xlm-roberta-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-imdb This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2
research-backup
2022-11-22T20:25:41Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:40:00Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.790515873015873 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37967914438502676 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3857566765578635 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5063924402445803 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.646 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4517543859649123 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42824074074074076 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8080458038270304 - name: F1 (macro) type: f1_macro value: 0.7357565896819839 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7894366197183098 - name: F1 (macro) type: f1_macro value: 0.4680529848631216 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5520043336944745 - name: F1 (macro) type: f1_macro value: 0.5647005456999193 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9177157960631565 - name: F1 (macro) type: f1_macro value: 0.7991809595622609 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.770918207458477 - name: F1 (macro) type: f1_macro value: 0.701131895018139 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.37967914438502676 - Accuracy on SAT: 0.3857566765578635 - Accuracy on BATS: 0.5063924402445803 - Accuracy on U2: 0.4517543859649123 - Accuracy on U4: 0.42824074074074076 - Accuracy on Google: 0.646 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8080458038270304 - Micro F1 score on CogALexV: 0.7894366197183098 - Micro F1 score on EVALution: 0.5520043336944745 - Micro F1 score on K&H+N: 0.9177157960631565 - Micro F1 score on ROOT09: 0.770918207458477 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.790515873015873 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2
research-backup
2022-11-22T19:57:35Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:36:40Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8335714285714285 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.38235294117647056 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3798219584569733 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5336297943301834 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.662 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4473684210526316 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4166666666666667 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8625885189091457 - name: F1 (macro) type: f1_macro value: 0.8603027072164148 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8065727699530516 - name: F1 (macro) type: f1_macro value: 0.5506373401584694 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6175514626218852 - name: F1 (macro) type: f1_macro value: 0.6052063445391235 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9263406830354037 - name: F1 (macro) type: f1_macro value: 0.8061025838390545 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8373550611093701 - name: F1 (macro) type: f1_macro value: 0.837629132435287 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.38235294117647056 - Accuracy on SAT: 0.3798219584569733 - Accuracy on BATS: 0.5336297943301834 - Accuracy on U2: 0.4473684210526316 - Accuracy on U4: 0.4166666666666667 - Accuracy on Google: 0.662 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8625885189091457 - Micro F1 score on CogALexV: 0.8065727699530516 - Micro F1 score on EVALution: 0.6175514626218852 - Micro F1 score on K&H+N: 0.9263406830354037 - Micro F1 score on ROOT09: 0.8373550611093701 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8335714285714285 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2
research-backup
2022-11-22T19:43:03Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:34:42Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7143253968253969 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.30213903743315507 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.29673590504451036 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.41078376876042244 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.444 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3508771929824561 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35185185185185186 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8389332529757421 - name: F1 (macro) type: f1_macro value: 0.8320870274406121 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8110328638497653 - name: F1 (macro) type: f1_macro value: 0.558175722976752 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6397616468039004 - name: F1 (macro) type: f1_macro value: 0.6018197960350038 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.936495791889824 - name: F1 (macro) type: f1_macro value: 0.8329891004271437 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8574114697586963 - name: F1 (macro) type: f1_macro value: 0.859031346414651 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.30213903743315507 - Accuracy on SAT: 0.29673590504451036 - Accuracy on BATS: 0.41078376876042244 - Accuracy on U2: 0.3508771929824561 - Accuracy on U4: 0.35185185185185186 - Accuracy on Google: 0.444 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8389332529757421 - Micro F1 score on CogALexV: 0.8110328638497653 - Micro F1 score on EVALution: 0.6397616468039004 - Micro F1 score on K&H+N: 0.936495791889824 - Micro F1 score on ROOT09: 0.8574114697586963 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7143253968253969 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
alryan1478/gpt2-wikitext2
alryan1478
2022-11-22T19:15:47Z
175
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T16:54:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.561 | 1.0 | 2249 | 6.4685 | | 6.1921 | 2.0 | 4498 | 6.1978 | | 6.017 | 3.0 | 6747 | 6.1085 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
masapasa/meddner
masapasa
2022-11-22T19:13:06Z
3
0
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-11-22T19:05:40Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8649613325 - name: NER Recall type: recall value: 0.8892966361 - name: NER F Score type: f_score value: 0.876960193 duplicated_from: kormilitzin/en_core_med7_lg --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_lg` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 87.70 | | `ENTS_P` | 86.50 | | `ENTS_R` | 88.93 | | `TOK2VEC_LOSS` | 226109.53 | | `NER_LOSS` | 302222.55 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2
research-backup
2022-11-22T19:10:57Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:30:50Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.47160714285714284 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34759358288770054 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3590504451038576 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4980544747081712 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.544 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.38596491228070173 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.38657407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.835919843302697 - name: F1 (macro) type: f1_macro value: 0.8291105198617971 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7704225352112676 - name: F1 (macro) type: f1_macro value: 0.4170022869326865 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6121343445287107 - name: F1 (macro) type: f1_macro value: 0.5765221107709003 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9145162412186131 - name: F1 (macro) type: f1_macro value: 0.783440515726974 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8223127546223754 - name: F1 (macro) type: f1_macro value: 0.8219042972063227 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.34759358288770054 - Accuracy on SAT: 0.3590504451038576 - Accuracy on BATS: 0.4980544747081712 - Accuracy on U2: 0.38596491228070173 - Accuracy on U4: 0.38657407407407407 - Accuracy on Google: 0.544 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.835919843302697 - Micro F1 score on CogALexV: 0.7704225352112676 - Micro F1 score on EVALution: 0.6121343445287107 - Micro F1 score on K&H+N: 0.9145162412186131 - Micro F1 score on ROOT09: 0.8223127546223754 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.47160714285714284 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 4 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
HarshitaDiddee/AmericasNLP_Kotiria
HarshitaDiddee
2022-11-22T18:58:36Z
4
0
transformers
[ "transformers", "wav2vec2", "automatic-speech-recognition", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T18:56:28Z
--- license: cc-by-4.0 --- ASR for Kotiria ( Data Source: AmericasNLP Shared Task for Low-Resource ASR)
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2
research-backup
2022-11-22T18:49:15Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:28:58Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.6089087301587301 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43315508021390375 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44510385756676557 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6120066703724292 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.878 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4473684210526316 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49537037037037035 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8796142835618503 - name: F1 (macro) type: f1_macro value: 0.8747731277585521 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8394366197183099 - name: F1 (macro) type: f1_macro value: 0.6300385764057015 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6749729144095341 - name: F1 (macro) type: f1_macro value: 0.6626586846228053 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9191069068651319 - name: F1 (macro) type: f1_macro value: 0.8114897599095089 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8921968035098715 - name: F1 (macro) type: f1_macro value: 0.8854495217016495 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.43315508021390375 - Accuracy on SAT: 0.44510385756676557 - Accuracy on BATS: 0.6120066703724292 - Accuracy on U2: 0.4473684210526316 - Accuracy on U4: 0.49537037037037035 - Accuracy on Google: 0.878 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8796142835618503 - Micro F1 score on CogALexV: 0.8394366197183099 - Micro F1 score on EVALution: 0.6749729144095341 - Micro F1 score on K&H+N: 0.9191069068651319 - Micro F1 score on ROOT09: 0.8921968035098715 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.6089087301587301 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
HarshitaDiddee/AmericasNLP_Bribri
HarshitaDiddee
2022-11-22T18:35:11Z
91
0
transformers
[ "transformers", "wav2vec2", "automatic-speech-recognition", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T18:24:40Z
--- license: cc-by-4.0 --- ASR Model for Bribri ( Source: AmericasNLP Shared Task 2022 )
umairalipathan/finetuning-sentiment-model-surrender-final
umairalipathan
2022-11-22T18:17:49Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T18:08:12Z
--- tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-surrender-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-surrender-final This model is a fine-tuned version of [umairalipathan/autotrain-sisu_surrender-2206370778](https://huggingface.co/umairalipathan/autotrain-sisu_surrender-2206370778) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2072 - eval_accuracy: 0.9556 - eval_f1: 0.9714 - eval_runtime: 8.4 - eval_samples_per_second: 5.357 - eval_steps_per_second: 0.357 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.2
motmono/Modified-Reinforce-PixelCopter
motmono
2022-11-22T18:16:23Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-22T18:13:52Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Modified-Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 16.10 +/- 10.73 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2
research-backup
2022-11-22T18:16:11Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:26:58Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.6346626984126984 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.32887700534759357 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3264094955489614 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.47581989994441354 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.464 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37719298245614036 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.36342592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7761036612927528 - name: F1 (macro) type: f1_macro value: 0.7415561766602355 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7328638497652582 - name: F1 (macro) type: f1_macro value: 0.47573763054929613 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5390032502708559 - name: F1 (macro) type: f1_macro value: 0.49194003623703636 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8753564721430062 - name: F1 (macro) type: f1_macro value: 0.7536524804914483 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8282670009401442 - name: F1 (macro) type: f1_macro value: 0.8236645741563291 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.32887700534759357 - Accuracy on SAT: 0.3264094955489614 - Accuracy on BATS: 0.47581989994441354 - Accuracy on U2: 0.37719298245614036 - Accuracy on U4: 0.36342592592592593 - Accuracy on Google: 0.464 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.7761036612927528 - Micro F1 score on CogALexV: 0.7328638497652582 - Micro F1 score on EVALution: 0.5390032502708559 - Micro F1 score on K&H+N: 0.8753564721430062 - Micro F1 score on ROOT09: 0.8282670009401442 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.6346626984126984 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
julesyego/train
julesyego
2022-11-22T18:04:41Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T12:58:17Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1100 - F1: 0.6074 - Roc Auc: 0.7538 - Accuracy: 0.8966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.2023 | 1.0 | 5261 | 0.1159 | 0.5889 | 0.7525 | 0.8851 | | 0.1663 | 2.0 | 10522 | 0.1100 | 0.6074 | 0.7538 | 0.8966 | | 0.1472 | 3.0 | 15783 | 0.1132 | 0.5736 | 0.7679 | 0.8634 | | 0.1312 | 4.0 | 21044 | 0.1159 | 0.5975 | 0.7462 | 0.8911 | | 0.1175 | 5.0 | 26305 | 0.1289 | 0.5922 | 0.7390 | 0.8936 | | 0.1036 | 6.0 | 31566 | 0.1380 | 0.6062 | 0.7463 | 0.897 | | 0.089 | 7.0 | 36827 | 0.1440 | 0.5927 | 0.7395 | 0.894 | | 0.077 | 8.0 | 42088 | 0.1579 | 0.5998 | 0.7463 | 0.8944 | | 0.0661 | 9.0 | 47349 | 0.1662 | 0.5933 | 0.7382 | 0.8956 | | 0.0584 | 10.0 | 52610 | 0.1665 | 0.5940 | 0.7424 | 0.8922 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
renjithman/finetuning-sentiment-model-3000-samples
renjithman
2022-11-22T17:43:52Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T17:30:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8704318936877077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3099 - Accuracy: 0.87 - F1: 0.8704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
gd1m3y/test_trainer_1
gd1m3y
2022-11-22T17:38:49Z
178
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T17:04:11Z
<<<<<<< HEAD --- tags: - generated_from_trainer datasets: - financial_phrasebank model-index: - name: test_trainer_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer_1 This model is a fine-tuned version of [SALT-NLP/FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5963 - eval_accuracy: 0.9242 - eval_runtime: 4.3354 - eval_samples_per_second: 97.337 - eval_steps_per_second: 12.225 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2 ======= This is a demo model for our reference >>>>>>> 24191373ff05e3799b9c6f359e51b37b642f4865
datasciencemmw/old-beta2
datasciencemmw
2022-11-22T17:37:01Z
101
1
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:LiveEvil/autotrain-data-copuml-la-beta-demo", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T17:35:39Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - LiveEvil/autotrain-data-copuml-la-beta-demo co2_eq_emissions: emissions: 1.2815143214785873 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2205770755 - CO2 Emissions (in grams): 1.2815 ## Validation Metrics - Loss: 1.085 - Accuracy: 0.747 - Macro F1: 0.513 - Micro F1: 0.747 - Weighted F1: 0.715 - Macro Precision: 0.533 - Micro Precision: 0.747 - Weighted Precision: 0.691 - Macro Recall: 0.515 - Micro Recall: 0.747 - Weighted Recall: 0.747 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/LiveEvil/autotrain-copuml-la-beta-demo-2205770755 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("LiveEvil/autotrain-copuml-la-beta-demo-2205770755", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("LiveEvil/autotrain-copuml-la-beta-demo-2205770755", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1
research-backup
2022-11-22T17:34:18Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:40:04Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8018650793650793 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3502673796791444 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35014836795252224 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5202890494719289 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.644 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39035087719298245 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43287037037037035 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8461654361910502 - name: F1 (macro) type: f1_macro value: 0.8411664963735426 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8145539906103286 - name: F1 (macro) type: f1_macro value: 0.5873414064116238 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6505958829902492 - name: F1 (macro) type: f1_macro value: 0.6269958308732405 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9319051262433052 - name: F1 (macro) type: f1_macro value: 0.8393686548194149 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7511751801942964 - name: F1 (macro) type: f1_macro value: 0.6464435364634403 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3502673796791444 - Accuracy on SAT: 0.35014836795252224 - Accuracy on BATS: 0.5202890494719289 - Accuracy on U2: 0.39035087719298245 - Accuracy on U4: 0.43287037037037035 - Accuracy on Google: 0.644 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8461654361910502 - Micro F1 score on CogALexV: 0.8145539906103286 - Micro F1 score on EVALution: 0.6505958829902492 - Micro F1 score on K&H+N: 0.9319051262433052 - Micro F1 score on ROOT09: 0.7511751801942964 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8018650793650793 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2
research-backup
2022-11-22T17:33:29Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:22:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7463293650793651 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34759358288770054 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3590504451038576 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.481378543635353 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.494 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3991228070175439 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35648148148148145 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8610818140726232 - name: F1 (macro) type: f1_macro value: 0.8525458448699613 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8171361502347417 - name: F1 (macro) type: f1_macro value: 0.5610856949320919 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6229685807150596 - name: F1 (macro) type: f1_macro value: 0.6126645128177534 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9215413507685887 - name: F1 (macro) type: f1_macro value: 0.8042276096823726 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.857724851143842 - name: F1 (macro) type: f1_macro value: 0.8472661094927697 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.34759358288770054 - Accuracy on SAT: 0.3590504451038576 - Accuracy on BATS: 0.481378543635353 - Accuracy on U2: 0.3991228070175439 - Accuracy on U4: 0.35648148148148145 - Accuracy on Google: 0.494 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8610818140726232 - Micro F1 score on CogALexV: 0.8171361502347417 - Micro F1 score on EVALution: 0.6229685807150596 - Micro F1 score on K&H+N: 0.9215413507685887 - Micro F1 score on ROOT09: 0.857724851143842 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7463293650793651 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
alanoix/whisper-small-br
alanoix
2022-11-22T17:26:31Z
80
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "br", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T09:51:24Z
--- language: - br license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-br results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: br, split: test' metrics: - name: Wer type: wer value: 49.98168162667155 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-br This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8542 - Wer: 49.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1415 | 3.36 | 1000 | 0.7406 | 54.0117 | | 0.0147 | 6.71 | 2000 | 0.7909 | 51.5479 | | 0.0011 | 10.07 | 3000 | 0.8368 | 49.7710 | | 0.0007 | 13.42 | 4000 | 0.8542 | 49.9817 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
datasciencemmw/old-beta1
datasciencemmw
2022-11-22T17:15:53Z
104
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:LiveEvil/autotrain-data-copuml-production", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T17:14:48Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - LiveEvil/autotrain-data-copuml-production co2_eq_emissions: emissions: 0.9758714074673083 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2205570752 - CO2 Emissions (in grams): 0.9759 ## Validation Metrics - Loss: 1.092 - Accuracy: 0.701 - Macro F1: 0.416 - Micro F1: 0.701 - Weighted F1: 0.670 - Macro Precision: 0.399 - Micro Precision: 0.701 - Weighted Precision: 0.643 - Macro Recall: 0.436 - Micro Recall: 0.701 - Weighted Recall: 0.701 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/LiveEvil/autotrain-copuml-production-2205570752 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("LiveEvil/autotrain-copuml-production-2205570752", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("LiveEvil/autotrain-copuml-production-2205570752", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1
research-backup
2022-11-22T17:13:57Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:30:48Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7387698412698412 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3342245989304813 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34718100890207715 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5441912173429683 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.644 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35526315789473684 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37962962962962965 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8145246346240772 - name: F1 (macro) type: f1_macro value: 0.801802054210856 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7774647887323943 - name: F1 (macro) type: f1_macro value: 0.5026184700694826 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5980498374864572 - name: F1 (macro) type: f1_macro value: 0.5765100456864519 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8878069138206858 - name: F1 (macro) type: f1_macro value: 0.7711282513838499 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.827326856784707 - name: F1 (macro) type: f1_macro value: 0.824410778730745 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3342245989304813 - Accuracy on SAT: 0.34718100890207715 - Accuracy on BATS: 0.5441912173429683 - Accuracy on U2: 0.35526315789473684 - Accuracy on U4: 0.37962962962962965 - Accuracy on Google: 0.644 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8145246346240772 - Micro F1 score on CogALexV: 0.7774647887323943 - Micro F1 score on EVALution: 0.5980498374864572 - Micro F1 score on K&H+N: 0.8878069138206858 - Micro F1 score on ROOT09: 0.827326856784707 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7387698412698412 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1
research-backup
2022-11-22T17:10:39Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:28:59Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7853174603174603 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4197860962566845 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42433234421364985 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5619788771539744 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.744 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43859649122807015 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4351851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8895585354828989 - name: F1 (macro) type: f1_macro value: 0.8809341644131754 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8453051643192488 - name: F1 (macro) type: f1_macro value: 0.624040279392662 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6793066088840737 - name: F1 (macro) type: f1_macro value: 0.6602046108703392 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9344786812269598 - name: F1 (macro) type: f1_macro value: 0.8375382298577612 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8658727671576308 - name: F1 (macro) type: f1_macro value: 0.8645267089284405 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4197860962566845 - Accuracy on SAT: 0.42433234421364985 - Accuracy on BATS: 0.5619788771539744 - Accuracy on U2: 0.43859649122807015 - Accuracy on U4: 0.4351851851851852 - Accuracy on Google: 0.744 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8895585354828989 - Micro F1 score on CogALexV: 0.8453051643192488 - Micro F1 score on EVALution: 0.6793066088840737 - Micro F1 score on K&H+N: 0.9344786812269598 - Micro F1 score on ROOT09: 0.8658727671576308 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7853174603174603 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1
research-backup
2022-11-22T17:00:21Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:22:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8430952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3582887700534759 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3649851632047478 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4280155642023346 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.532 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3101851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8460147657073979 - name: F1 (macro) type: f1_macro value: 0.8315897128108677 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8084507042253521 - name: F1 (macro) type: f1_macro value: 0.5269777075808457 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6424702058504875 - name: F1 (macro) type: f1_macro value: 0.6178608994596904 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.913612019197329 - name: F1 (macro) type: f1_macro value: 0.7738790468743169 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8693199623942337 - name: F1 (macro) type: f1_macro value: 0.864532922094076 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3582887700534759 - Accuracy on SAT: 0.3649851632047478 - Accuracy on BATS: 0.4280155642023346 - Accuracy on U2: 0.3333333333333333 - Accuracy on U4: 0.3101851851851852 - Accuracy on Google: 0.532 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8460147657073979 - Micro F1 score on CogALexV: 0.8084507042253521 - Micro F1 score on EVALution: 0.6424702058504875 - Micro F1 score on K&H+N: 0.913612019197329 - Micro F1 score on ROOT09: 0.8693199623942337 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8430952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
multimodalart/sd-sc
multimodalart
2022-11-22T16:19:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-22T16:05:03Z
--- license: creativeml-openrail-m --- Just the Safety Checker of Stable Diffusion. For the model refer to https://huggingface.co/runwayml/stable-diffusion-v1-5
Dumeng/distilbert-base-uncased-finetuned-emotion
Dumeng
2022-11-22T15:11:40Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T19:49:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/oryxspioenkop
huggingtweets
2022-11-22T15:10:21Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T15:09:05Z
--- language: en thumbnail: http://www.huggingtweets.com/oryxspioenkop/1669129816805/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/929707102083395584/tCWiYbO1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Oryx</div> <div style="text-align: center; font-size: 14px;">@oryxspioenkop</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Oryx. | Data | Oryx | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 2219 | | Short tweets | 266 | | Tweets kept | 761 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qbqfz863/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @oryxspioenkop's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2es3q78b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2es3q78b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/oryxspioenkop') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Dundalia/lfqa_covid
Dundalia
2022-11-22T15:07:37Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T14:39:45Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: lfqa_covid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lfqa_covid This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1028 - Bleu: 0.0 - Gen Len: 19.8564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | 1.5923 | 1.0 | 808 | 0.1028 | 0.0 | 19.8564 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
jjjunyeong/bart-finetuned-squad
jjjunyeong
2022-11-22T14:42:07Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T12:27:04Z
--- tags: - generated_from_trainer datasets: - squad metrics: - rouge model-index: - name: bart-finetuned-squad results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad config: plain_text split: train args: plain_text metrics: - name: Rouge1 type: rouge value: 50.1505 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-squad This model is a fine-tuned version of [p208p2002/bart-squad-qg-hl](https://huggingface.co/p208p2002/bart-squad-qg-hl) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8813 - Rouge1: 50.1505 - Rouge2: 26.8606 - Rougel: 46.0203 - Rougelsum: 46.0242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.5702 | 1.0 | 125 | 1.4266 | 49.7474 | 26.6965 | 46.3227 | 46.342 | | 0.84 | 2.0 | 250 | 1.4845 | 49.8379 | 26.3973 | 45.126 | 45.1791 | | 0.535 | 3.0 | 375 | 1.6037 | 50.1413 | 27.4581 | 46.7795 | 46.8001 | | 0.3621 | 4.0 | 500 | 1.6899 | 49.6087 | 25.9818 | 45.0914 | 45.1004 | | 0.2448 | 5.0 | 625 | 1.7540 | 49.7468 | 26.5312 | 45.5623 | 45.5296 | | 0.1756 | 6.0 | 750 | 1.8287 | 49.4987 | 26.2315 | 45.3515 | 45.4214 | | 0.13 | 7.0 | 875 | 1.8809 | 49.6426 | 26.4688 | 45.5167 | 45.5427 | | 0.1016 | 8.0 | 1000 | 1.8813 | 50.1505 | 26.8606 | 46.0203 | 46.0242 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
bitsanlp/deberta-v3-base_base
bitsanlp
2022-11-22T14:37:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T13:49:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-v3-base_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base_base This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
adrianccy/donut-base-sroie-fine-tuned
adrianccy
2022-11-22T13:41:56Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-22T10:33:43Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie-fine-tuned This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0 - Datasets 2.7.0 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1
research-backup
2022-11-22T13:00:28Z
97
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:34:42Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7449603174603174 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3502673796791444 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3560830860534125 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3468593663146192 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.432 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37719298245614036 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.38425925925925924 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523429260207925 - name: F1 (macro) type: f1_macro value: 0.8411456349485952 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8157276995305164 - name: F1 (macro) type: f1_macro value: 0.5982289168562968 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6386782231852655 - name: F1 (macro) type: f1_macro value: 0.6034154846314037 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.95875356472143 - name: F1 (macro) type: f1_macro value: 0.8723815565345302 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.846443121278596 - name: F1 (macro) type: f1_macro value: 0.8238870756074439 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3502673796791444 - Accuracy on SAT: 0.3560830860534125 - Accuracy on BATS: 0.3468593663146192 - Accuracy on U2: 0.37719298245614036 - Accuracy on U4: 0.38425925925925924 - Accuracy on Google: 0.432 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8523429260207925 - Micro F1 score on CogALexV: 0.8157276995305164 - Micro F1 score on EVALution: 0.6386782231852655 - Micro F1 score on K&H+N: 0.95875356472143 - Micro F1 score on ROOT09: 0.846443121278596 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7449603174603174 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2
research-backup
2022-11-22T12:57:06Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:39:41Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.6670436507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3770053475935829 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37388724035608306 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4802668148971651 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.558 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33771929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34953703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.893174627090553 - name: F1 (macro) type: f1_macro value: 0.8866591988732194 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7863849765258216 - name: F1 (macro) type: f1_macro value: 0.5308624907920565 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5704225352112676 - name: F1 (macro) type: f1_macro value: 0.5510856788391408 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9581275648605412 - name: F1 (macro) type: f1_macro value: 0.8644516035001516 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523973675963648 - name: F1 (macro) type: f1_macro value: 0.8523947470987124 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3770053475935829 - Accuracy on SAT: 0.37388724035608306 - Accuracy on BATS: 0.4802668148971651 - Accuracy on U2: 0.33771929824561403 - Accuracy on U4: 0.34953703703703703 - Accuracy on Google: 0.558 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.893174627090553 - Micro F1 score on CogALexV: 0.7863849765258216 - Micro F1 score on EVALution: 0.5704225352112676 - Micro F1 score on K&H+N: 0.9581275648605412 - Micro F1 score on ROOT09: 0.8523973675963648 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.6670436507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2
research-backup
2022-11-22T12:14:21Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:37:55Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.763452380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4358288770053476 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44510385756676557 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6453585325180656 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.764 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.41228070175438597 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4305555555555556 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.891969263221335 - name: F1 (macro) type: f1_macro value: 0.8861553769138059 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7784037558685445 - name: F1 (macro) type: f1_macro value: 0.5482893350573881 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6121343445287107 - name: F1 (macro) type: f1_macro value: 0.5872535272466797 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9549280100159978 - name: F1 (macro) type: f1_macro value: 0.8679160068348847 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8567847069884049 - name: F1 (macro) type: f1_macro value: 0.8549220771705669 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4358288770053476 - Accuracy on SAT: 0.44510385756676557 - Accuracy on BATS: 0.6453585325180656 - Accuracy on U2: 0.41228070175438597 - Accuracy on U4: 0.4305555555555556 - Accuracy on Google: 0.764 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.891969263221335 - Micro F1 score on CogALexV: 0.7784037558685445 - Micro F1 score on EVALution: 0.6121343445287107 - Micro F1 score on K&H+N: 0.9549280100159978 - Micro F1 score on ROOT09: 0.8567847069884049 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.763452380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1
research-backup
2022-11-22T11:41:54Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:36:44Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7905555555555556 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4625668449197861 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4599406528189911 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.481378543635353 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.708 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4517543859649123 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42824074074074076 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.896790718698207 - name: F1 (macro) type: f1_macro value: 0.8904957973096685 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7983568075117371 - name: F1 (macro) type: f1_macro value: 0.55128776736284 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6072589382448538 - name: F1 (macro) type: f1_macro value: 0.5871638601862589 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9596577867427141 - name: F1 (macro) type: f1_macro value: 0.8808105637743019 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8708868693199624 - name: F1 (macro) type: f1_macro value: 0.8665327123718048 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4625668449197861 - Accuracy on SAT: 0.4599406528189911 - Accuracy on BATS: 0.481378543635353 - Accuracy on U2: 0.4517543859649123 - Accuracy on U4: 0.42824074074074076 - Accuracy on Google: 0.708 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.896790718698207 - Micro F1 score on CogALexV: 0.7983568075117371 - Micro F1 score on EVALution: 0.6072589382448538 - Micro F1 score on K&H+N: 0.9596577867427141 - Micro F1 score on ROOT09: 0.8708868693199624 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7905555555555556 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1
research-backup
2022-11-22T11:10:41Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:34:44Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8926984126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4572192513368984 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4599406528189911 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5369649805447471 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.748 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4298245614035088 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4375 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8945306614434232 - name: F1 (macro) type: f1_macro value: 0.8889050346897381 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7887323943661971 - name: F1 (macro) type: f1_macro value: 0.5429622796506292 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6132177681473456 - name: F1 (macro) type: f1_macro value: 0.5967298388536921 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9580580093204424 - name: F1 (macro) type: f1_macro value: 0.8772669717354012 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8733939204011282 - name: F1 (macro) type: f1_macro value: 0.865464870691388 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4572192513368984 - Accuracy on SAT: 0.4599406528189911 - Accuracy on BATS: 0.5369649805447471 - Accuracy on U2: 0.4298245614035088 - Accuracy on U4: 0.4375 - Accuracy on Google: 0.748 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8945306614434232 - Micro F1 score on CogALexV: 0.7887323943661971 - Micro F1 score on EVALution: 0.6132177681473456 - Micro F1 score on K&H+N: 0.9580580093204424 - Micro F1 score on ROOT09: 0.8733939204011282 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8926984126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
kunalr63/roberta-retrained
kunalr63
2022-11-22T10:54:15Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-22T05:25:30Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-retrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
echarlaix/vit-food101-int8
echarlaix
2022-11-22T10:48:21Z
24
0
transformers
[ "transformers", "openvino", "vit", "image-classification", "int8", "dataset:food101", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-27T16:58:41Z
--- license: apache-2.0 datasets: - food101 tags: - openvino - int8 --- ## [Vision Transformer (ViT)](https://huggingface.co/juliensimon/autotrain-food101-1471154050) quantized and exported to the OpenVINO IR. ## Model Details **Model Description:** This ViT model fine-tuned on Food-101 was statically quantized and exported to the OpenVINO IR using [optimum](https://huggingface.co/docs/optimum/intel/optimization_ov). ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import pipeline, AutoFeatureExtractor from optimum.intel.openvino import OVModelForImageClassification ​ model_id = "echarlaix/vit-food101-int8" model = OVModelForImageClassification.from_pretrained(model_id) feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) pipe = pipeline("image-classification", model=model, feature_extractor=feature_extractor) outputs = pipe("http://farm2.staticflickr.com/1375/1394861946_171ea43524_z.jpg") ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2
research-backup
2022-11-22T10:47:13Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:32:09Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8508333333333333 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4304812834224599 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42729970326409494 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44580322401334077 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.63 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3684210526315789 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4375 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8832303751695043 - name: F1 (macro) type: f1_macro value: 0.8741977324174292 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8166666666666667 - name: F1 (macro) type: f1_macro value: 0.591110337920912 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6240520043336945 - name: F1 (macro) type: f1_macro value: 0.6033252228331162 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9563886763580719 - name: F1 (macro) type: f1_macro value: 0.8721700434002555 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8602319022250078 - name: F1 (macro) type: f1_macro value: 0.8623792536691078 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4304812834224599 - Accuracy on SAT: 0.42729970326409494 - Accuracy on BATS: 0.44580322401334077 - Accuracy on U2: 0.3684210526315789 - Accuracy on U4: 0.4375 - Accuracy on Google: 0.63 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8832303751695043 - Micro F1 score on CogALexV: 0.8166666666666667 - Micro F1 score on EVALution: 0.6240520043336945 - Micro F1 score on K&H+N: 0.9563886763580719 - Micro F1 score on ROOT09: 0.8602319022250078 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8508333333333333 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
echarlaix/distilbert-base-uncased-finetuned-sst-2-english-openvino
echarlaix
2022-11-22T10:42:52Z
20,880
0
transformers
[ "transformers", "openvino", "text-classification", "en", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-11T09:43:26Z
--- language: en license: apache-2.0 datasets: - sst2 - glue tags: - openvino --- ## [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) exported to the OpenVINO IR. ## Model Details **Model Description:** This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set. ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import AutoTokenizer, pipeline from optimum.intel.openvino import OVModelForSequenceClassification model_id = "echarlaix/distilbert-base-uncased-finetuned-sst-2-english-openvino" model = OVModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) cls_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "He's a dreadful magician." outputs = cls_pipe(text) ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1
research-backup
2022-11-22T10:08:40Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:30:53Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.808968253968254 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4839572192513369 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4896142433234421 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6264591439688716 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.748 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.36403508771929827 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43287037037037035 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9186379388277837 - name: F1 (macro) type: f1_macro value: 0.9146569952039126 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8244131455399061 - name: F1 (macro) type: f1_macro value: 0.6192186484290235 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6511375947995667 - name: F1 (macro) type: f1_macro value: 0.6358411811809679 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9683522292550601 - name: F1 (macro) type: f1_macro value: 0.9036902248765999 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8824819805703541 - name: F1 (macro) type: f1_macro value: 0.8801659277988089 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4839572192513369 - Accuracy on SAT: 0.4896142433234421 - Accuracy on BATS: 0.6264591439688716 - Accuracy on U2: 0.36403508771929827 - Accuracy on U4: 0.43287037037037035 - Accuracy on Google: 0.748 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9186379388277837 - Micro F1 score on CogALexV: 0.8244131455399061 - Micro F1 score on EVALution: 0.6511375947995667 - Micro F1 score on K&H+N: 0.9683522292550601 - Micro F1 score on ROOT09: 0.8824819805703541 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.808968253968254 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2
research-backup
2022-11-22T09:45:45Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:28:46Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7883531746031746 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.553475935828877 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5459940652818991 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.725958866036687 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.9 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49122807017543857 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5185185185185185 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9088443573903873 - name: F1 (macro) type: f1_macro value: 0.903210414011203 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8422535211267606 - name: F1 (macro) type: f1_macro value: 0.6636142368492658 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6641386782231853 - name: F1 (macro) type: f1_macro value: 0.6591198888693468 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9522153439521458 - name: F1 (macro) type: f1_macro value: 0.8737588276035191 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8947038545910373 - name: F1 (macro) type: f1_macro value: 0.8939851129279454 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.553475935828877 - Accuracy on SAT: 0.5459940652818991 - Accuracy on BATS: 0.725958866036687 - Accuracy on U2: 0.49122807017543857 - Accuracy on U4: 0.5185185185185185 - Accuracy on Google: 0.9 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9088443573903873 - Micro F1 score on CogALexV: 0.8422535211267606 - Micro F1 score on EVALution: 0.6641386782231853 - Micro F1 score on K&H+N: 0.9522153439521458 - Micro F1 score on ROOT09: 0.8947038545910373 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7883531746031746 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
m-aliabbas/wav2vec2-base-timit-demo-idrak-paperspace1
m-aliabbas
2022-11-22T09:36:03Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T09:17:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-idrak-paperspace1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-idrak-paperspace1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3623 - Wer: 0.3471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1034 | 0.87 | 500 | 0.3623 | 0.3471 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu116 - Datasets 1.18.3 - Tokenizers 0.12.1
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2
research-backup
2022-11-22T09:14:07Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:26:54Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.5858333333333333 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3235294117647059 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3264094955489614 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.40355753196220123 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.454 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3991228070175439 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3680555555555556 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8927226156395962 - name: F1 (macro) type: f1_macro value: 0.8860530490594479 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7772300469483568 - name: F1 (macro) type: f1_macro value: 0.49603297373551636 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5910075839653305 - name: F1 (macro) type: f1_macro value: 0.5855884123582632 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9483897892467135 - name: F1 (macro) type: f1_macro value: 0.8589949863564919 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8614854277655907 - name: F1 (macro) type: f1_macro value: 0.8600976443012404 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3235294117647059 - Accuracy on SAT: 0.3264094955489614 - Accuracy on BATS: 0.40355753196220123 - Accuracy on U2: 0.3991228070175439 - Accuracy on U4: 0.3680555555555556 - Accuracy on Google: 0.454 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8927226156395962 - Micro F1 score on CogALexV: 0.7772300469483568 - Micro F1 score on EVALution: 0.5910075839653305 - Micro F1 score on K&H+N: 0.9483897892467135 - Micro F1 score on ROOT09: 0.8614854277655907 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.5858333333333333 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1
research-backup
2022-11-22T09:00:57Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:27:28Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.919047619047619 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4117647058823529 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.41839762611275966 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.519177320733741 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.72 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3508771929824561 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4074074074074074 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9056802772336899 - name: F1 (macro) type: f1_macro value: 0.9008212802993153 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.839906103286385 - name: F1 (macro) type: f1_macro value: 0.6372689183104334 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6560130010834236 - name: F1 (macro) type: f1_macro value: 0.6454146372683375 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.964804896710023 - name: F1 (macro) type: f1_macro value: 0.8961604291304897 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8884362268881228 - name: F1 (macro) type: f1_macro value: 0.8874462481330262 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4117647058823529 - Accuracy on SAT: 0.41839762611275966 - Accuracy on BATS: 0.519177320733741 - Accuracy on U2: 0.3508771929824561 - Accuracy on U4: 0.4074074074074074 - Accuracy on Google: 0.72 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9056802772336899 - Micro F1 score on CogALexV: 0.839906103286385 - Micro F1 score on EVALution: 0.6560130010834236 - Micro F1 score on K&H+N: 0.964804896710023 - Micro F1 score on ROOT09: 0.8884362268881228 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.919047619047619 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2
research-backup
2022-11-22T08:30:07Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:24:50Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8554365079365079 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4197860962566845 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42136498516320475 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4535853251806559 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.666 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.40789473684210525 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44212962962962965 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9100497212596053 - name: F1 (macro) type: f1_macro value: 0.9093922982791334 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8133802816901409 - name: F1 (macro) type: f1_macro value: 0.6029825137477882 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6375947995666306 - name: F1 (macro) type: f1_macro value: 0.6388590886994098 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9636920080684427 - name: F1 (macro) type: f1_macro value: 0.8892956368301006 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8737073017862739 - name: F1 (macro) type: f1_macro value: 0.8722600157780708 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4197860962566845 - Accuracy on SAT: 0.42136498516320475 - Accuracy on BATS: 0.4535853251806559 - Accuracy on U2: 0.40789473684210525 - Accuracy on U4: 0.44212962962962965 - Accuracy on Google: 0.666 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9100497212596053 - Micro F1 score on CogALexV: 0.8133802816901409 - Micro F1 score on EVALution: 0.6375947995666306 - Micro F1 score on K&H+N: 0.9636920080684427 - Micro F1 score on ROOT09: 0.8737073017862739 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8554365079365079 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
alexziweiwang/combined-MTL9
alexziweiwang
2022-11-22T08:28:47Z
108
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-16T21:30:31Z
--- tags: - generated_from_trainer model-index: - name: combined-MTL9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # combined-MTL9 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3413 - Wer: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 76.4918 | 0.35 | 500 | 3.4171 | 1.0 | | 2.9927 | 0.69 | 1000 | 2.4743 | 1.0667 | | 2.2033 | 1.04 | 1500 | 1.6693 | 1.25 | | 1.6165 | 1.39 | 2000 | 1.5341 | 1.1808 | | 1.4208 | 1.74 | 2500 | 1.3148 | 1.1179 | | 1.2858 | 2.08 | 3000 | 1.2272 | 1.0872 | | 1.1317 | 2.43 | 3500 | 1.0865 | 1.0731 | | 1.0668 | 2.78 | 4000 | 1.0798 | 1.0474 | | 1.0429 | 3.12 | 4500 | 1.4627 | 1.0936 | | 0.9615 | 3.47 | 5000 | 1.2540 | 1.0090 | | 0.975 | 3.82 | 5500 | 0.9936 | 0.9679 | | 0.8517 | 4.17 | 6000 | 1.1039 | 1.0282 | | 0.8281 | 4.51 | 6500 | 1.0609 | 0.9897 | | 0.8413 | 4.86 | 7000 | 0.9513 | 0.9397 | | 0.7618 | 5.21 | 7500 | 1.1656 | 0.9718 | | 0.7173 | 5.56 | 8000 | 1.1974 | 0.9603 | | 0.7449 | 5.9 | 8500 | 1.0144 | 0.9731 | | 0.6762 | 6.25 | 9000 | 1.1774 | 0.9231 | | 0.6749 | 6.6 | 9500 | 1.1823 | 0.9205 | | 0.6776 | 6.94 | 10000 | 0.9167 | 0.9244 | | 0.5937 | 7.29 | 10500 | 1.3344 | 0.9769 | | 0.6488 | 7.64 | 11000 | 1.0245 | 0.9692 | | 0.6116 | 7.99 | 11500 | 0.9444 | 0.9141 | | 0.5497 | 8.33 | 12000 | 0.9499 | 0.9692 | | 0.5937 | 8.68 | 12500 | 1.1087 | 0.9231 | | 0.5268 | 9.03 | 13000 | 1.3408 | 0.9269 | | 0.5078 | 9.38 | 13500 | 1.1737 | 0.9038 | | 0.497 | 9.72 | 14000 | 0.9963 | 0.8987 | | 0.5231 | 10.07 | 14500 | 1.3247 | 0.9590 | | 0.4651 | 10.42 | 15000 | 1.1988 | 0.9308 | | 0.481 | 10.76 | 15500 | 1.0034 | 0.9308 | | 0.481 | 11.11 | 16000 | 1.0040 | 0.8782 | | 0.4751 | 11.46 | 16500 | 0.8824 | 0.8538 | | 0.4554 | 11.81 | 17000 | 0.9741 | 0.8821 | | 0.426 | 12.15 | 17500 | 0.8552 | 0.8615 | | 0.4186 | 12.5 | 18000 | 1.0646 | 0.8833 | | 0.4154 | 12.85 | 18500 | 0.9618 | 0.8936 | | 0.5115 | 13.19 | 19000 | 1.0312 | 0.8910 | | 0.3564 | 13.54 | 19500 | 1.0686 | 0.8769 | | 0.3927 | 13.89 | 20000 | 1.2533 | 0.9103 | | 0.3628 | 14.24 | 20500 | 1.2945 | 0.8872 | | 0.3808 | 14.58 | 21000 | 1.0195 | 0.8538 | | 0.3981 | 14.93 | 21500 | 1.0388 | 0.8808 | | 0.3337 | 15.28 | 22000 | 1.0464 | 0.8923 | | 0.3092 | 15.62 | 22500 | 1.0843 | 0.8705 | | 0.378 | 15.97 | 23000 | 1.0880 | 0.8859 | | 0.3231 | 16.32 | 23500 | 0.9205 | 0.8782 | | 0.3588 | 16.67 | 24000 | 1.0064 | 0.8962 | | 0.3048 | 17.01 | 24500 | 0.9130 | 0.8705 | | 0.3 | 17.36 | 25000 | 1.0100 | 0.9077 | | 0.3045 | 17.71 | 25500 | 1.0559 | 0.9077 | | 0.3024 | 18.06 | 26000 | 1.1225 | 0.9026 | | 0.2614 | 18.4 | 26500 | 1.0911 | 0.8897 | | 0.2755 | 18.75 | 27000 | 1.0872 | 0.8808 | | 0.2798 | 19.1 | 27500 | 1.2911 | 0.9154 | | 0.2455 | 19.44 | 28000 | 1.0646 | 0.8821 | | 0.2524 | 19.79 | 28500 | 1.3356 | 0.9154 | | 0.2435 | 20.14 | 29000 | 1.1257 | 0.8641 | | 0.2458 | 20.49 | 29500 | 1.2221 | 0.8667 | | 0.2216 | 20.83 | 30000 | 1.1364 | 0.8769 | | 0.234 | 21.18 | 30500 | 1.2094 | 0.8808 | | 0.233 | 21.53 | 31000 | 1.1604 | 0.8910 | | 0.2536 | 21.88 | 31500 | 1.0934 | 0.8808 | | 0.1885 | 22.22 | 32000 | 1.2177 | 0.8718 | | 0.2186 | 22.57 | 32500 | 1.0539 | 0.8667 | | 0.1991 | 22.92 | 33000 | 1.2222 | 0.8641 | | 0.2027 | 23.26 | 33500 | 1.3863 | 0.8577 | | 0.193 | 23.61 | 34000 | 1.2293 | 0.8705 | | 0.2054 | 23.96 | 34500 | 1.3398 | 0.8769 | | 0.2197 | 24.31 | 35000 | 1.3138 | 0.8705 | | 0.1898 | 24.65 | 35500 | 1.2897 | 0.8679 | | 0.1933 | 25.0 | 36000 | 1.2666 | 0.8769 | | 0.1632 | 25.35 | 36500 | 1.2758 | 0.8756 | | 0.1869 | 25.69 | 37000 | 1.1811 | 0.8603 | | 0.1731 | 26.04 | 37500 | 1.2511 | 0.8679 | | 0.1821 | 26.39 | 38000 | 1.3391 | 0.8718 | | 0.1648 | 26.74 | 38500 | 1.2505 | 0.8628 | | 0.1909 | 27.08 | 39000 | 1.2984 | 0.85 | | 0.1902 | 27.43 | 39500 | 1.2261 | 0.8487 | | 0.1449 | 27.78 | 40000 | 1.2853 | 0.8487 | | 0.1583 | 28.12 | 40500 | 1.3361 | 0.8628 | | 0.148 | 28.47 | 41000 | 1.3638 | 0.8654 | | 0.1648 | 28.82 | 41500 | 1.3380 | 0.8603 | | 0.1461 | 29.17 | 42000 | 1.3561 | 0.8603 | | 0.1565 | 29.51 | 42500 | 1.3489 | 0.8615 | | 0.16 | 29.86 | 43000 | 1.3413 | 0.8603 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v2
gary109
2022-11-22T07:50:02Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "dataset:ai_light_dance", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T06:05:50Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer datasets: - ai_light_dance metrics: - wer model-index: - name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v2 This model is a fine-tuned version of [gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new](https://huggingface.co/gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new) on the GARY109/AI_LIGHT_DANCE - ONSET-IDMT-SMT-DRUMS-V2+MDBDRUMS dataset. It achieves the following results on the evaluation set: - Loss: 0.5264 - Wer: 0.3635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6468 | 0.98 | 22 | 3.2315 | 1.0 | | 1.5745 | 1.98 | 44 | 3.1603 | 1.0 | | 1.465 | 2.98 | 66 | 2.2551 | 1.0 | | 1.3168 | 3.98 | 88 | 1.8461 | 1.0 | | 1.1359 | 4.98 | 110 | 1.4874 | 0.9797 | | 0.9769 | 5.98 | 132 | 1.7359 | 0.5495 | | 0.9019 | 6.98 | 154 | 1.5833 | 0.5268 | | 0.8057 | 7.98 | 176 | 1.4892 | 0.5304 | | 1.0845 | 8.98 | 198 | 1.3939 | 0.5197 | | 0.7562 | 9.98 | 220 | 1.1238 | 0.5447 | | 0.7259 | 10.98 | 242 | 1.2936 | 0.5006 | | 0.7318 | 11.98 | 264 | 1.2763 | 0.4660 | | 0.6452 | 12.98 | 286 | 1.2947 | 0.4779 | | 0.6353 | 13.98 | 308 | 1.1925 | 0.4517 | | 0.6463 | 14.98 | 330 | 0.8667 | 0.4100 | | 0.5381 | 15.98 | 352 | 1.1243 | 0.3909 | | 0.5637 | 16.98 | 374 | 0.8683 | 0.3754 | | 0.6149 | 17.98 | 396 | 1.1040 | 0.3731 | | 0.6138 | 18.98 | 418 | 1.1068 | 0.3850 | | 0.7381 | 19.98 | 440 | 0.9203 | 0.3623 | | 0.5064 | 20.98 | 462 | 0.8806 | 0.3540 | | 0.4731 | 21.98 | 484 | 0.7259 | 0.3623 | | 0.5232 | 22.98 | 506 | 0.7935 | 0.3516 | | 0.4689 | 23.98 | 528 | 0.7771 | 0.3540 | | 0.4902 | 24.98 | 550 | 0.6897 | 0.3909 | | 0.4079 | 25.98 | 572 | 0.8030 | 0.3552 | | 0.5045 | 26.98 | 594 | 0.6778 | 0.3790 | | 0.4373 | 27.98 | 616 | 0.7456 | 0.3695 | | 0.4366 | 28.98 | 638 | 0.7009 | 0.3433 | | 0.3944 | 29.98 | 660 | 0.6841 | 0.3468 | | 0.4206 | 30.98 | 682 | 0.7093 | 0.3373 | | 0.3949 | 31.98 | 704 | 0.6901 | 0.3576 | | 0.4416 | 32.98 | 726 | 0.6762 | 0.3397 | | 0.4248 | 33.98 | 748 | 0.7196 | 0.3540 | | 0.4214 | 34.98 | 770 | 0.6669 | 0.3254 | | 0.416 | 35.98 | 792 | 0.6422 | 0.3445 | | 0.3687 | 36.98 | 814 | 0.6345 | 0.3504 | | 0.4119 | 37.98 | 836 | 0.6306 | 0.3385 | | 0.359 | 38.98 | 858 | 0.6538 | 0.3576 | | 0.359 | 39.98 | 880 | 0.6613 | 0.3349 | | 0.3488 | 40.98 | 902 | 0.5976 | 0.3468 | | 0.3543 | 41.98 | 924 | 0.6327 | 0.3433 | | 0.3647 | 42.98 | 946 | 0.6208 | 0.3600 | | 0.3529 | 43.98 | 968 | 0.6008 | 0.3492 | | 0.3691 | 44.98 | 990 | 0.6065 | 0.3492 | | 0.329 | 45.98 | 1012 | 0.6288 | 0.3373 | | 0.3357 | 46.98 | 1034 | 0.5760 | 0.3480 | | 0.3318 | 47.98 | 1056 | 0.5637 | 0.3564 | | 0.3181 | 48.98 | 1078 | 0.5560 | 0.3468 | | 0.3313 | 49.98 | 1100 | 0.5905 | 0.3337 | | 0.3059 | 50.98 | 1122 | 0.5443 | 0.3278 | | 0.3375 | 51.98 | 1144 | 0.5695 | 0.3576 | | 0.3191 | 52.98 | 1166 | 0.5874 | 0.3385 | | 0.3115 | 53.98 | 1188 | 0.5264 | 0.3635 | | 0.3044 | 54.98 | 1210 | 0.5480 | 0.3433 | | 0.3256 | 55.98 | 1232 | 0.5677 | 0.3385 | | 0.2938 | 56.98 | 1254 | 0.5597 | 0.3445 | | 0.2853 | 57.98 | 1276 | 0.5942 | 0.3373 | | 0.3348 | 58.98 | 1298 | 0.5733 | 0.3421 | | 0.3024 | 59.98 | 1320 | 0.5604 | 0.3433 | | 0.2655 | 60.98 | 1342 | 0.5348 | 0.3468 | | 0.3029 | 61.98 | 1364 | 0.5752 | 0.3206 | | 0.3435 | 62.98 | 1386 | 0.5489 | 0.3063 | | 0.3125 | 63.98 | 1408 | 0.5736 | 0.3075 | | 0.263 | 64.98 | 1430 | 0.5505 | 0.3206 | | 0.2665 | 65.98 | 1452 | 0.5391 | 0.3230 | | 0.299 | 66.98 | 1474 | 0.5389 | 0.3135 | | 0.2909 | 67.98 | 1496 | 0.5841 | 0.3099 | | 0.2988 | 68.98 | 1518 | 0.5847 | 0.3004 | | 0.2879 | 69.98 | 1540 | 0.5941 | 0.2968 | | 0.2802 | 70.98 | 1562 | 0.6612 | 0.2920 | | 0.2877 | 71.98 | 1584 | 0.5641 | 0.3051 | | 0.2727 | 72.98 | 1606 | 0.6138 | 0.3063 | | 0.2668 | 73.98 | 1628 | 0.6087 | 0.2920 | | 0.2675 | 74.98 | 1650 | 0.5876 | 0.2932 | | 0.264 | 75.98 | 1672 | 0.6043 | 0.2980 | | 0.2352 | 76.98 | 1694 | 0.5829 | 0.2932 | | 0.2494 | 77.98 | 1716 | 0.5775 | 0.3063 | | 0.2621 | 78.98 | 1738 | 0.5676 | 0.2956 | | 0.2788 | 79.98 | 1760 | 0.5864 | 0.2932 | | 0.2615 | 80.98 | 1782 | 0.5754 | 0.3015 | | 0.2542 | 81.98 | 1804 | 0.5651 | 0.3027 | | 0.2641 | 82.98 | 1826 | 0.5731 | 0.3004 | | 0.2532 | 83.98 | 1848 | 0.5782 | 0.2968 | | 0.2645 | 84.98 | 1870 | 0.5718 | 0.3039 | | 0.2296 | 85.98 | 1892 | 0.5628 | 0.3147 | | 0.2394 | 86.98 | 1914 | 0.5920 | 0.3027 | | 0.2636 | 87.98 | 1936 | 0.6085 | 0.2968 | | 0.2371 | 88.98 | 1958 | 0.5809 | 0.3075 | | 0.2364 | 89.98 | 1980 | 0.5927 | 0.3039 | | 0.2812 | 90.98 | 2002 | 0.5713 | 0.3123 | | 0.2141 | 91.98 | 2024 | 0.5743 | 0.3039 | | 0.2919 | 92.98 | 2046 | 0.5837 | 0.3063 | | 0.2288 | 93.98 | 2068 | 0.5860 | 0.3015 | | 0.2585 | 94.98 | 2090 | 0.5776 | 0.3147 | | 0.2529 | 95.98 | 2112 | 0.5625 | 0.3159 | | 0.2343 | 96.98 | 2134 | 0.5700 | 0.3087 | | 0.2567 | 97.98 | 2156 | 0.5729 | 0.3087 | | 0.2448 | 98.98 | 2178 | 0.5728 | 0.3111 | | 0.2501 | 99.98 | 2200 | 0.5744 | 0.3099 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
philschmid/lilt-en-funsd
philschmid
2022-11-22T07:42:39Z
821
3
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T08:27:17Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.6117 - Answer: {'precision': 0.8821428571428571, 'recall': 0.9069767441860465, 'f1': 0.8943874471937237, 'number': 817} - Header: {'precision': 0.6126126126126126, 'recall': 0.5714285714285714, 'f1': 0.591304347826087, 'number': 119} - Question: {'precision': 0.9045045045045045, 'recall': 0.9322191272051996, 'f1': 0.9181527206218564, 'number': 1077} - Overall Precision: 0.8797 - Overall Recall: 0.9006 - Overall F1: 0.8900 - Overall Accuracy: 0.8204 ## Model Usage ```python from transformers import LiltForTokenClassification, LayoutLMv3Processor from PIL import Image, ImageDraw, ImageFont import torch # load model and processor from huggingface hub model = LiltForTokenClassification.from_pretrained("philschmid/lilt-en-funsd") processor = LayoutLMv3Processor.from_pretrained("philschmid/lilt-en-funsd") # helper function to unnormalize bboxes for drawing onto the image def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] label2color = { "B-HEADER": "blue", "B-QUESTION": "red", "B-ANSWER": "green", "I-HEADER": "blue", "I-QUESTION": "red", "I-ANSWER": "green", } # draw results onto the image def draw_boxes(image, boxes, predictions): width, height = image.size normalizes_boxes = [unnormalize_box(box, width, height) for box in boxes] # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(predictions, normalizes_boxes): if prediction == "O": continue draw.rectangle(box, outline="black") draw.rectangle(box, outline=label2color[prediction]) draw.text((box[0] + 10, box[1] - 10), text=prediction, fill=label2color[prediction], font=font) return image # run inference def run_inference(image, model=model, processor=processor, output_image=True): # create model input encoding = processor(image, return_tensors="pt") del encoding["pixel_values"] # run inference outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() # get labels labels = [model.config.id2label[prediction] for prediction in predictions] if output_image: return draw_boxes(image, encoding["bbox"][0], labels) else: return labels run_inference(dataset["test"][34]["image"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0211 | 10.53 | 200 | 1.5528 | {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} | {'precision': 0.5684210526315789, 'recall': 0.453781512605042, 'f1': 0.5046728971962617, 'number': 119} | {'precision': 0.896551724137931, 'recall': 0.89322191272052, 'f1': 0.8948837209302325, 'number': 1077} | 0.8596 | 0.8728 | 0.8662 | 0.8011 | | 0.0132 | 21.05 | 400 | 1.3143 | {'precision': 0.8447058823529412, 'recall': 0.8788249694002448, 'f1': 0.8614277144571085, 'number': 817} | {'precision': 0.6020408163265306, 'recall': 0.4957983193277311, 'f1': 0.543778801843318, 'number': 119} | {'precision': 0.8854262144821264, 'recall': 0.8969359331476323, 'f1': 0.8911439114391144, 'number': 1077} | 0.8548 | 0.8659 | 0.8603 | 0.8095 | | 0.0052 | 31.58 | 600 | 1.5747 | {'precision': 0.8482446206115515, 'recall': 0.9167686658506732, 'f1': 0.8811764705882352, 'number': 817} | {'precision': 0.6283185840707964, 'recall': 0.5966386554621849, 'f1': 0.6120689655172413, 'number': 119} | {'precision': 0.8997161778618732, 'recall': 0.883008356545961, 'f1': 0.8912839737582005, 'number': 1077} | 0.8626 | 0.8798 | 0.8711 | 0.8030 | | 0.0073 | 42.11 | 800 | 1.4848 | {'precision': 0.8487972508591065, 'recall': 0.9069767441860465, 'f1': 0.8769230769230769, 'number': 817} | {'precision': 0.5190839694656488, 'recall': 0.5714285714285714, 'f1': 0.5439999999999999, 'number': 119} | {'precision': 0.8941947565543071, 'recall': 0.8867223769730733, 'f1': 0.8904428904428905, 'number': 1077} | 0.8514 | 0.8763 | 0.8636 | 0.7969 | | 0.0057 | 52.63 | 1000 | 1.3993 | {'precision': 0.8852071005917159, 'recall': 0.9155446756425949, 'f1': 0.9001203369434416, 'number': 817} | {'precision': 0.5454545454545454, 'recall': 0.6050420168067226, 'f1': 0.5737051792828685, 'number': 119} | {'precision': 0.899090909090909, 'recall': 0.9182915506035283, 'f1': 0.9085898024804776, 'number': 1077} | 0.8710 | 0.8987 | 0.8846 | 0.8198 | | 0.0023 | 63.16 | 1200 | 1.6463 | {'precision': 0.8961201501877347, 'recall': 0.8763769889840881, 'f1': 0.886138613861386, 'number': 817} | {'precision': 0.5625, 'recall': 0.5294117647058824, 'f1': 0.5454545454545455, 'number': 119} | {'precision': 0.888, 'recall': 0.9275766016713092, 'f1': 0.9073569482288827, 'number': 1077} | 0.8733 | 0.8833 | 0.8782 | 0.8082 | | 0.001 | 73.68 | 1400 | 1.6476 | {'precision': 0.8676814988290398, 'recall': 0.9069767441860465, 'f1': 0.8868940754039496, 'number': 817} | {'precision': 0.6571428571428571, 'recall': 0.5798319327731093, 'f1': 0.6160714285714286, 'number': 119} | {'precision': 0.908256880733945, 'recall': 0.9192200557103064, 'f1': 0.9137055837563451, 'number': 1077} | 0.8785 | 0.8942 | 0.8863 | 0.8137 | | 0.0014 | 84.21 | 1600 | 1.6493 | {'precision': 0.8814814814814815, 'recall': 0.8739290085679314, 'f1': 0.8776889981561156, 'number': 817} | {'precision': 0.6194690265486725, 'recall': 0.5882352941176471, 'f1': 0.603448275862069, 'number': 119} | {'precision': 0.894404332129964, 'recall': 0.9201485608170845, 'f1': 0.9070938215102976, 'number': 1077} | 0.8740 | 0.8818 | 0.8778 | 0.8041 | | 0.0006 | 94.74 | 1800 | 1.6193 | {'precision': 0.8766467065868263, 'recall': 0.8959608323133414, 'f1': 0.8861985472154963, 'number': 817} | {'precision': 0.6068376068376068, 'recall': 0.5966386554621849, 'f1': 0.6016949152542374, 'number': 119} | {'precision': 0.8946428571428572, 'recall': 0.9303621169916435, 'f1': 0.912152935821575, 'number': 1077} | 0.8711 | 0.8967 | 0.8837 | 0.8137 | | 0.0001 | 105.26 | 2000 | 1.6048 | {'precision': 0.8751472320376914, 'recall': 0.9094247246022031, 'f1': 0.8919567827130852, 'number': 817} | {'precision': 0.6140350877192983, 'recall': 0.5882352941176471, 'f1': 0.6008583690987125, 'number': 119} | {'precision': 0.9062784349408554, 'recall': 0.924791086350975, 'f1': 0.9154411764705882, 'number': 1077} | 0.8773 | 0.8987 | 0.8879 | 0.8194 | | 0.0001 | 115.79 | 2200 | 1.6117 | {'precision': 0.8821428571428571, 'recall': 0.9069767441860465, 'f1': 0.8943874471937237, 'number': 817} | {'precision': 0.6126126126126126, 'recall': 0.5714285714285714, 'f1': 0.591304347826087, 'number': 119} | {'precision': 0.9045045045045045, 'recall': 0.9322191272051996, 'f1': 0.9181527206218564, 'number': 1077} | 0.8797 | 0.9006 | 0.8900 | 0.8204 | | 0.0001 | 126.32 | 2400 | 1.6163 | {'precision': 0.8799048751486326, 'recall': 0.9057527539779682, 'f1': 0.8926417370325694, 'number': 817} | {'precision': 0.6052631578947368, 'recall': 0.5798319327731093, 'f1': 0.5922746781115881, 'number': 119} | {'precision': 0.9062784349408554, 'recall': 0.924791086350975, 'f1': 0.9154411764705882, 'number': 1077} | 0.8788 | 0.8967 | 0.8876 | 0.8192 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.12.1
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0
research-backup
2022-11-22T07:32:05Z
100
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T15:11:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.77375 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3422459893048128 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34421364985163205 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.45969983324068925 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.476 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33771929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34953703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.849630857315052 - name: F1 (macro) type: f1_macro value: 0.8270516141593186 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8122065727699531 - name: F1 (macro) type: f1_macro value: 0.5472113531139201 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.605092091007584 - name: F1 (macro) type: f1_macro value: 0.5327366048438427 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9129164637963414 - name: F1 (macro) type: f1_macro value: 0.7847480560698086 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8270134753995614 - name: F1 (macro) type: f1_macro value: 0.8313563740149 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3422459893048128 - Accuracy on SAT: 0.34421364985163205 - Accuracy on BATS: 0.45969983324068925 - Accuracy on U2: 0.33771929824561403 - Accuracy on U4: 0.34953703703703703 - Accuracy on Google: 0.476 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.849630857315052 - Micro F1 score on CogALexV: 0.8122065727699531 - Micro F1 score on EVALution: 0.605092091007584 - Micro F1 score on K&H+N: 0.9129164637963414 - Micro F1 score on ROOT09: 0.8270134753995614 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.77375 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0
research-backup
2022-11-22T07:30:45Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T15:04:16Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7428373015873015 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3502673796791444 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35311572700296734 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5697609783212896 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.678 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37280701754385964 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4027777777777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8265782733162573 - name: F1 (macro) type: f1_macro value: 0.8097358007943485 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7572769953051643 - name: F1 (macro) type: f1_macro value: 0.44873901164798935 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5211267605633803 - name: F1 (macro) type: f1_macro value: 0.4144470035861812 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8593586979202894 - name: F1 (macro) type: f1_macro value: 0.7164045411277497 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8549044186775305 - name: F1 (macro) type: f1_macro value: 0.852498730871873 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3502673796791444 - Accuracy on SAT: 0.35311572700296734 - Accuracy on BATS: 0.5697609783212896 - Accuracy on U2: 0.37280701754385964 - Accuracy on U4: 0.4027777777777778 - Accuracy on Google: 0.678 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8265782733162573 - Micro F1 score on CogALexV: 0.7572769953051643 - Micro F1 score on EVALution: 0.5211267605633803 - Micro F1 score on K&H+N: 0.8593586979202894 - Micro F1 score on ROOT09: 0.8549044186775305 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7428373015873015 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0
research-backup
2022-11-22T07:30:18Z
97
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T15:02:09Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.6770238095238095 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.32887700534759357 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33827893175074186 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.48360200111172874 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3684210526315789 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35648148148148145 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8271809552508663 - name: F1 (macro) type: f1_macro value: 0.8139940994079059 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7927230046948357 - name: F1 (macro) type: f1_macro value: 0.47757376520100464 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5866738894907909 - name: F1 (macro) type: f1_macro value: 0.5099661171290004 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8843291368157474 - name: F1 (macro) type: f1_macro value: 0.7260666016287155 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8335944844876215 - name: F1 (macro) type: f1_macro value: 0.8285945038843159 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.32887700534759357 - Accuracy on SAT: 0.33827893175074186 - Accuracy on BATS: 0.48360200111172874 - Accuracy on U2: 0.3684210526315789 - Accuracy on U4: 0.35648148148148145 - Accuracy on Google: 0.49 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8271809552508663 - Micro F1 score on CogALexV: 0.7927230046948357 - Micro F1 score on EVALution: 0.5866738894907909 - Micro F1 score on K&H+N: 0.8843291368157474 - Micro F1 score on ROOT09: 0.8335944844876215 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.6770238095238095 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0
research-backup
2022-11-22T07:29:52Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:59:11Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7335515873015873 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3850267379679144 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3857566765578635 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6142301278488049 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.606 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33771929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3541666666666667 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8312490583094772 - name: F1 (macro) type: f1_macro value: 0.8160781730825878 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8084507042253521 - name: F1 (macro) type: f1_macro value: 0.5318915064045434 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6386782231852655 - name: F1 (macro) type: f1_macro value: 0.6037663010095351 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.91242957501565 - name: F1 (macro) type: f1_macro value: 0.7652689334496495 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8793481667188969 - name: F1 (macro) type: f1_macro value: 0.8771620145886178 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3850267379679144 - Accuracy on SAT: 0.3857566765578635 - Accuracy on BATS: 0.6142301278488049 - Accuracy on U2: 0.33771929824561403 - Accuracy on U4: 0.3541666666666667 - Accuracy on Google: 0.606 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8312490583094772 - Micro F1 score on CogALexV: 0.8084507042253521 - Micro F1 score on EVALution: 0.6386782231852655 - Micro F1 score on K&H+N: 0.91242957501565 - Micro F1 score on ROOT09: 0.8793481667188969 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7335515873015873 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0
research-backup
2022-11-22T07:28:59Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:54:36Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8158134920634921 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42245989304812837 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.41543026706231456 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6837131739855475 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.822 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.40350877192982454 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4652777777777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9071869820702124 - name: F1 (macro) type: f1_macro value: 0.9024202874494452 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8255868544600939 - name: F1 (macro) type: f1_macro value: 0.6238359204705145 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6289274106175514 - name: F1 (macro) type: f1_macro value: 0.6173167061017508 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9555540098768867 - name: F1 (macro) type: f1_macro value: 0.871337903489136 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8790347853337511 - name: F1 (macro) type: f1_macro value: 0.8736570441239309 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.42245989304812837 - Accuracy on SAT: 0.41543026706231456 - Accuracy on BATS: 0.6837131739855475 - Accuracy on U2: 0.40350877192982454 - Accuracy on U4: 0.4652777777777778 - Accuracy on Google: 0.822 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9071869820702124 - Micro F1 score on CogALexV: 0.8255868544600939 - Micro F1 score on EVALution: 0.6289274106175514 - Micro F1 score on K&H+N: 0.9555540098768867 - Micro F1 score on ROOT09: 0.8790347853337511 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8158134920634921 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0
research-backup
2022-11-22T07:28:32Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:52:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.796984126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4037433155080214 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3916913946587537 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6859366314619233 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.784 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42105263157894735 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4583333333333333 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9010094922404701 - name: F1 (macro) type: f1_macro value: 0.8947571278975387 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8227699530516432 - name: F1 (macro) type: f1_macro value: 0.6007828127513786 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6164680390032503 - name: F1 (macro) type: f1_macro value: 0.5989494559912151 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9572928983793559 - name: F1 (macro) type: f1_macro value: 0.8821535108627934 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8743340645565655 - name: F1 (macro) type: f1_macro value: 0.8719695915031801 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4037433155080214 - Accuracy on SAT: 0.3916913946587537 - Accuracy on BATS: 0.6859366314619233 - Accuracy on U2: 0.42105263157894735 - Accuracy on U4: 0.4583333333333333 - Accuracy on Google: 0.784 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9010094922404701 - Micro F1 score on CogALexV: 0.8227699530516432 - Micro F1 score on EVALution: 0.6164680390032503 - Micro F1 score on K&H+N: 0.9572928983793559 - Micro F1 score on ROOT09: 0.8743340645565655 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.796984126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 6 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0
research-backup
2022-11-22T07:28:05Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:49:35Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7995436507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4572192513368984 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4599406528189911 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7326292384658143 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.84 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4166666666666667 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4375 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9058309477173422 - name: F1 (macro) type: f1_macro value: 0.89974713256054 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.826056338028169 - name: F1 (macro) type: f1_macro value: 0.6201374746332642 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6457204767063922 - name: F1 (macro) type: f1_macro value: 0.6243022596465048 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9559017875773805 - name: F1 (macro) type: f1_macro value: 0.8816731086105152 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8862425571921027 - name: F1 (macro) type: f1_macro value: 0.8841357906198278 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4572192513368984 - Accuracy on SAT: 0.4599406528189911 - Accuracy on BATS: 0.7326292384658143 - Accuracy on U2: 0.4166666666666667 - Accuracy on U4: 0.4375 - Accuracy on Google: 0.84 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9058309477173422 - Micro F1 score on CogALexV: 0.826056338028169 - Micro F1 score on EVALution: 0.6457204767063922 - Micro F1 score on K&H+N: 0.9559017875773805 - Micro F1 score on ROOT09: 0.8862425571921027 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7995436507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0
research-backup
2022-11-22T07:27:12Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:45:16Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8203769841269841 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49732620320855614 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49554896142433236 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.613118399110617 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.694 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44298245614035087 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4675925925925926 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9080910049721259 - name: F1 (macro) type: f1_macro value: 0.9055495580705791 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8291079812206574 - name: F1 (macro) type: f1_macro value: 0.6322244948930222 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6310942578548212 - name: F1 (macro) type: f1_macro value: 0.6288452835665572 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9536064547541212 - name: F1 (macro) type: f1_macro value: 0.8526202146492776 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8849890316515199 - name: F1 (macro) type: f1_macro value: 0.8856882855922619 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.49732620320855614 - Accuracy on SAT: 0.49554896142433236 - Accuracy on BATS: 0.613118399110617 - Accuracy on U2: 0.44298245614035087 - Accuracy on U4: 0.4675925925925926 - Accuracy on Google: 0.694 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9080910049721259 - Micro F1 score on CogALexV: 0.8291079812206574 - Micro F1 score on EVALution: 0.6310942578548212 - Micro F1 score on K&H+N: 0.9536064547541212 - Micro F1 score on ROOT09: 0.8849890316515199 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8203769841269841 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0
research-backup
2022-11-22T07:25:53Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-21T14:38:42Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8518253968253968 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4679144385026738 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4688427299703264 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7204002223457476 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.85 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39473684210526316 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.48842592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9174325749585657 - name: F1 (macro) type: f1_macro value: 0.9126308463435432 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8429577464788731 - name: F1 (macro) type: f1_macro value: 0.6599099425304438 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6435536294691224 - name: F1 (macro) type: f1_macro value: 0.6405512542694948 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9610488975446895 - name: F1 (macro) type: f1_macro value: 0.8766645353309496 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8943904732058916 - name: F1 (macro) type: f1_macro value: 0.893806087595518 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4679144385026738 - Accuracy on SAT: 0.4688427299703264 - Accuracy on BATS: 0.7204002223457476 - Accuracy on U2: 0.39473684210526316 - Accuracy on U4: 0.48842592592592593 - Accuracy on Google: 0.85 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9174325749585657 - Micro F1 score on CogALexV: 0.8429577464788731 - Micro F1 score on EVALution: 0.6435536294691224 - Micro F1 score on K&H+N: 0.9610488975446895 - Micro F1 score on ROOT09: 0.8943904732058916 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8518253968253968 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 8 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
tomXBE/distilbert-base-uncased-finetuned-squad
tomXBE
2022-11-22T06:11:38Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-22T03:25:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2231 | 1.0 | 5533 | 1.1602 | | 0.9559 | 2.0 | 11066 | 1.1334 | | 0.7571 | 3.0 | 16599 | 1.1564 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
xfreakazoidx/NghtmrFrk
xfreakazoidx
2022-11-22T04:46:17Z
0
1
null
[ "region:us" ]
null
2022-11-21T17:46:49Z
"Nightmare Combined Model" was an attempt at mixing all four of my recent models. Prompt is "NghtmrFrk" It's pretty amazing if you want a bit of all the models in one model instead. It gives you some truly nightmare worthy stuff, be creative with what you type in. Or just have no prompt but NghtmrFrk for random horror! Even though this is a combined model, you may want to try the models I have separately if your are looking for a certain style specifically. CFG keep low, steps can be anything. Same with sampler. ![model 3.png](https://s3.amazonaws.com/moonup/production/uploads/1669092365366-6333e639d58823d613336ee3.png)
valurank/Pegasus_cnn_news_headline_generator
valurank
2022-11-22T04:00:25Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T02:21:20Z
--- tags: - generated_from_trainer model-index: - name: pegasus_cnn_news_article_title_12000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus_cnn_news_article_title_12000 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2874 | 0.65 | 500 | 0.2258 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
COctovianto/bert-finetuned-squad
COctovianto
2022-11-22T03:51:55Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-17T10:07:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: COctovianto/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # COctovianto/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5679 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2701 | 0 | | 0.7799 | 1 | | 0.5679 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
kojima-r/wav2vec2-base-birddb-small
kojima-r
2022-11-22T03:48:56Z
49
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-11-22T00:35:51Z
This is a wav2vec2-base model trained from selected bird songs in a birddb dataset. ``` import librosa import torch from transformers import Wav2Vec2ForPreTraining,Wav2Vec2Processor sound_file = 'sample.wav' sound_data,_ = librosa.load(sound_file, sr=16000) model_id = "kojima-r/wav2vec2-base-birddb-small" model = Wav2Vec2ForPreTraining.from_pretrained(model_id) result=model(torch.tensor([sound_data])) hidden_vecs=result.projected_states ``` ![UMAP](https://huggingface.co/kojima-r/wav2vec2-base-birddb-small/resolve/main/umap.png)
guannan/facial_recognition
guannan
2022-11-22T03:16:05Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-22T03:16:05Z
--- license: bigscience-openrail-m ---
birgermoell/whisper-large-sv
birgermoell
2022-11-22T02:31:07Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-21T16:58:56Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-large-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: train[:1%]+validation[:1%] args: sv-SE metrics: - name: Wer type: wer value: 30.935251798561154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-sv This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5259 - Wer: 30.9353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 4.5521 | 0.04 | 5 | 3.5048 | 48.2014 | | 1.8009 | 0.08 | 10 | 1.5259 | 30.9353 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
danupurnomo/dummy-titanic
danupurnomo
2022-11-22T01:47:22Z
5
0
sklearn
[ "sklearn", "joblib", "tabular-classification", "region:us" ]
tabular-classification
2022-11-21T08:07:40Z
--- tags: - tabular-classification - sklearn dataset: - titanic widget: structuredData: PassengerId: - 1191 Pclass: - 1 Name: - Sherlock Holmes Sex: - male SibSp: - 0 Parch: - 0 Ticket: - C.A.29395 Fare: - 12 Cabin: - F44 Embarked: - S --- ## Titanic (Survived/Not Survived) - Binary Classification ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd import numpy as np from tensorflow.keras.models import load_model REPO_ID = 'danupurnomo/dummy-titanic' PIPELINE_FILENAME = 'final_pipeline.pkl' TF_FILENAME = 'titanic_model.h5' model_pipeline = joblib.load(cached_download( hf_hub_url(REPO_ID, PIPELINE_FILENAME) )) model_seq = load_model(cached_download( hf_hub_url(REPO_ID, TF_FILENAME) )) ``` ### Example A New Data ```python new_data = { 'PassengerId': 1191, 'Pclass': 1, 'Name': 'Sherlock Holmes', 'Sex': 'male', 'Age': 30, 'SibSp': 0, 'Parch': 0, 'Ticket': 'C.A.29395', 'Fare': 12, 'Cabin': 'F44', 'Embarked': 'S' } new_data = pd.DataFrame([new_data]) ``` ### Transform Inference-Set ```python new_data_transform = model_pipeline.transform(new_data) ``` ### Predict using Neural Networks ```python y_pred_inf_single = model_seq.predict(new_data_transform) y_pred_inf_single = np.where(y_pred_inf_single >= 0.5, 1, 0) print('Result : ', y_pred_inf_single) # [[0]] ```
Jellywibble/gptneo125M-rm-on-100-qa-pairs
Jellywibble
2022-11-22T01:46:52Z
88
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T01:28:42Z
WnB run: https://wandb.ai/jellywibble/huggingface/runs/1yo5mgs4?workspace=user-jellywibble
TUMxudashuai/ppo-LunarLander-v2
TUMxudashuai
2022-11-22T01:41:02Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-22T01:40:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 155.33 +/- 58.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Prajwaln/distilbert-base-uncased-finetuned-cola
Prajwaln
2022-11-22T01:15:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T01:09:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
pritoms/gpt2-finetuned-transcriptSteve
pritoms
2022-11-22T00:38:27Z
102
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-21T20:06:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-transcriptSteve results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-transcriptSteve This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 18 | 2.6415 | | No log | 2.0 | 36 | 2.6353 | | No log | 3.0 | 54 | 2.6308 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Tonjk/NEW_OCR_10_8wangchanberta-base-att-spm-uncased
Tonjk
2022-11-21T23:28:55Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-21T11:02:19Z
--- tags: - generated_from_trainer model-index: - name: NEW_OCR_10_8wangchanberta-base-att-spm-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NEW_OCR_10_8wangchanberta-base-att-spm-uncased This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.108 | 1.0 | 10701 | 0.0167 | | 0.0161 | 2.0 | 21402 | 0.0140 | | 0.0126 | 3.0 | 32103 | 0.0130 | | 0.0105 | 4.0 | 42804 | 0.0125 | | 0.009 | 5.0 | 53505 | 0.0135 | | 0.008 | 6.0 | 64206 | 0.0137 | | 0.0074 | 7.0 | 74907 | 0.0139 | | 0.0064 | 8.0 | 85608 | 0.0143 | | 0.0058 | 9.0 | 96309 | 0.0147 | | 0.0054 | 10.0 | 107010 | 0.0147 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
consciousAI/question-answering-roberta-base-s
consciousAI
2022-11-21T22:11:48Z
146
3
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "Question Answering", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-18T19:36:48Z
--- license: apache-2.0 tags: - Question Answering metrics: - squad model-index: - name: question-answering-roberta-base-s results: [] --- # Question Answering The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text, answer span & confidence score.<br> Model is encoder-only (roberta-base) with QuestionAnswering LM Head, fine-tuned on SQUADx dataset with **exact_match:** 86.14 & **f1:** 92.330 performance scores. [Live Demo: Question Answering Encoders vs Generative](https://huggingface.co/spaces/consciousAI/question_answering) Please follow this link for [Encoder based Question Answering V2](https://huggingface.co/consciousAI/question-answering-roberta-base-s-v2/) <br>Please follow this link for [Generative Question Answering](https://huggingface.co/consciousAI/question-answering-generative-t5-v1-base-s-q-c/) Example code: ``` from transformers import pipeline model_checkpoint = "consciousAI/question-answering-roberta-base-s" context = """ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. """ question = "Which deep learning libraries back 🤗 Transformers?" question_answerer = pipeline("question-answering", model=model_checkpoint) question_answerer(question=question, context=context) ``` ## Training and evaluation data SQUAD Split ## Training procedure Preprocessing: 1. SQUAD Data longer chunks were sub-chunked with input context max-length 384 tokens and stride as 128 tokens. 2. Target answers readjusted for sub-chunks, sub-chunks with no-answers or partial answers were set to target answer span as (0,0) Metrics: 1. Adjusted accordingly to handle sub-chunking. 2. n best = 20 3. skip answers with length zero or higher than max answer length (30) ### Training hyperparameters Custom Training Loop: The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Epoch | F1 | Exact Match | |:-----:|:--------:|:-----------:| | 1.0 | 91.3085 | 84.5412 | | 2.0 | 92.3304 | 86.1400 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0
xfreakazoidx/NightmareWormWetWorms
xfreakazoidx
2022-11-21T21:12:26Z
0
1
null
[ "region:us" ]
null
2022-11-21T19:06:08Z
Third model is Nightmare Wet Worms. Prompt being "NghtmrWrmFrk". It's more based on my models that are full of tentacles, worms, maggots, wet looking, drippy....etc. This model isn't perfect and alot of words don't seem to matter as much, but you can still get some amazing results if your into this type of look. Heck, just type a bunch of random words and you get weird images! Keep the CFG low, steps at any amount though. Samples can be anything. ![MODEL 4.png](https://s3.amazonaws.com/moonup/production/uploads/1669065138906-6333e639d58823d613336ee3.png)
huggingtweets/big___oven-raspberryl0ver
huggingtweets
2022-11-21T20:59:11Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T18:28:16Z
--- language: en thumbnail: http://www.huggingtweets.com/big___oven-raspberryl0ver/1669064347124/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1571653458972794884/eaxhUsib_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1552729971956727808/zVaFH3ex_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">oskcar & 🌞</div> <div style="text-align: center; font-size: 14px;">@big___oven-raspberryl0ver</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from oskcar & 🌞. | Data | oskcar | 🌞 | | --- | --- | --- | | Tweets downloaded | 2755 | 1689 | | Retweets | 667 | 385 | | Short tweets | 317 | 192 | | Tweets kept | 1771 | 1112 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36yboi59/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @big___oven-raspberryl0ver's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3orysshx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3orysshx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/big___oven-raspberryl0ver') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/adamscochran-fehrsam-taschalabs
huggingtweets
2022-11-21T20:20:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-21T20:17:36Z
--- language: en thumbnail: http://www.huggingtweets.com/adamscochran-fehrsam-taschalabs/1669062033978/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504547300416364550/rFebXP9K_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513406762904612866/-haRj3pk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1593745112844144641/Q2zhPcdt_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tascha & Fred Ehrsam & Adam Cochran (adamscochran.eth)</div> <div style="text-align: center; font-size: 14px;">@adamscochran-fehrsam-taschalabs</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tascha & Fred Ehrsam & Adam Cochran (adamscochran.eth). | Data | Tascha | Fred Ehrsam | Adam Cochran (adamscochran.eth) | | --- | --- | --- | --- | | Tweets downloaded | 3244 | 1674 | 3242 | | Retweets | 215 | 188 | 555 | | Short tweets | 210 | 150 | 150 | | Tweets kept | 2819 | 1336 | 2537 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35tvoqtp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adamscochran-fehrsam-taschalabs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fv0c31k5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fv0c31k5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adamscochran-fehrsam-taschalabs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
prajjwal1/ctrl_discovery_3
prajjwal1
2022-11-21T20:04:09Z
4
0
transformers
[ "transformers", "pytorch", "ctrl", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Please refer to this repository (https://github.com/prajjwal1/discosense) for usage instructions. --- language: - en tags: - conditional - text - generation license: "mit" datasets: - discofuse - discovery metrics: - perplexity - ppl ---
prajjwal1/ctrl_discovery_2
prajjwal1
2022-11-21T20:03:46Z
4
0
transformers
[ "transformers", "pytorch", "ctrl", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Please refer to this repository (https://github.com/prajjwal1/discosense) for usage instructions. --- language: - en tags: - conditional - text - generation license: "mit" datasets: - discofuse - discovery metrics: - perplexity - ppl ---
dung1308/phobert-base-finetuned-vbert
dung1308
2022-11-21T20:03:21Z
70
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-21T14:35:38Z
--- tags: - generated_from_keras_callback model-index: - name: dung1308/phobert-base-finetuned-vbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dung1308/phobert-base-finetuned-vbert This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.3312 - Validation Loss: 3.8888 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.3312 | 3.8888 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.7.0 - Tokenizers 0.11.0
nubby/dconway-artstyle
nubby
2022-11-21T19:52:50Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-21T19:37:03Z
--- license: creativeml-openrail-m --- Anything-V3.0 based StableDiffusion model with Dreambooth training based on the general artstyle of Daniel Conway. Trained for 2,400 steps using 30 total training images. ## Usage Can be used in StableDiffusion, including the extremely popular Web UI by Automatic1111, like any other model by placing the .CKPT file in the correct directory. Please consult the documentation for your installation of StableDiffusion for more specific instructions. Use the following tokens in your prompt to achieve the desired output. Token: ```"dconway"``` Class: ```"illustration style"``` I have generally found the best results from using the token and class together at the beginning of the prompt. You can also try using one or the other or mixing them in other ways to achieve different outputs. Example Prompt 1: ```"dconway illustration style, 1girl, pink hair, blue eyes, french braid, hair bun, single sidelock, adjusting hair, light smile, parted lips, looking at viewer, head tilt, atrium, bird cage, water, potted plant, clock, fountain, dappled sunlight, sunbeam, light rays, caustics, bloom, extremely detailed, intricate, masterpiece, best quality"``` Example Prompt 2: ```"dconway illustration style, a beautiful landscape with a river rushing towards a mountain range in the distance with clouds above, glacier, flower"``` For a more anime style try adding ```"3d model"``` to your negative prompt. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
bnriiitb/whisper-small-hi
bnriiitb
2022-11-21T19:33:33Z
81
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-20T08:39:57Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Naga Budigam results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 42.69448912215356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Naga Budigam This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Wer: 42.6945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5719 | 0.06 | 100 | 0.6811 | 79.3913 | | 0.4096 | 0.12 | 200 | 0.4827 | 62.2492 | | 0.3104 | 0.18 | 300 | 0.3839 | 44.1167 | | 0.2728 | 0.24 | 400 | 0.3620 | 42.6945 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
gngpostalsrvc/BERiT_2000_2_layers_40_epochs
gngpostalsrvc
2022-11-21T19:24:36Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-21T18:29:10Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_2_layers_40_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_2_layers_40_epochs This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - label_smoothing_factor: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 15.0851 | 0.19 | 500 | 8.5468 | | 7.8971 | 0.39 | 1000 | 7.3376 | | 7.3108 | 0.58 | 1500 | 7.1632 | | 7.134 | 0.77 | 2000 | 7.0700 | | 7.0956 | 0.97 | 2500 | 7.0723 | | 7.0511 | 1.16 | 3000 | 6.9560 | | 7.0313 | 1.36 | 3500 | 6.9492 | | 7.0028 | 1.55 | 4000 | 6.9048 | | 6.9563 | 1.74 | 4500 | 6.8456 | | 6.9214 | 1.94 | 5000 | 6.8019 | | 11.1596 | 2.13 | 5500 | 7.5882 | | 7.5824 | 2.32 | 6000 | 7.1291 | | 7.2581 | 2.52 | 6500 | 7.1123 | | 7.2232 | 2.71 | 7000 | 7.1059 | | 7.1734 | 2.9 | 7500 | 7.1120 | | 7.1504 | 3.1 | 8000 | 7.0946 | | 7.1314 | 3.29 | 8500 | 7.0799 | | 7.1236 | 3.49 | 9000 | 7.1175 | | 7.1275 | 3.68 | 9500 | 7.0905 | | 7.1087 | 3.87 | 10000 | 7.0839 | | 7.1212 | 4.07 | 10500 | 7.0822 | | 7.1136 | 4.26 | 11000 | 7.0703 | | 7.1025 | 4.45 | 11500 | 7.1035 | | 7.0931 | 4.65 | 12000 | 7.0759 | | 7.0899 | 4.84 | 12500 | 7.0883 | | 7.0834 | 5.03 | 13000 | 7.1307 | | 7.0761 | 5.23 | 13500 | 7.0642 | | 7.0706 | 5.42 | 14000 | 7.0324 | | 7.0678 | 5.62 | 14500 | 7.0704 | | 7.0614 | 5.81 | 15000 | 7.0317 | | 7.0569 | 6.0 | 15500 | 7.0421 | | 7.057 | 6.2 | 16000 | 7.0250 | | 7.0503 | 6.39 | 16500 | 7.0129 | | 7.0529 | 6.58 | 17000 | 7.0316 | | 7.0453 | 6.78 | 17500 | 7.0436 | | 7.0218 | 6.97 | 18000 | 7.0064 | | 7.0415 | 7.16 | 18500 | 7.0385 | | 7.0338 | 7.36 | 19000 | 6.9756 | | 7.0488 | 7.55 | 19500 | 7.0054 | | 7.0347 | 7.75 | 20000 | 6.9946 | | 7.0464 | 7.94 | 20500 | 7.0055 | | 7.017 | 8.13 | 21000 | 7.0158 | | 7.0159 | 8.33 | 21500 | 7.0052 | | 7.0223 | 8.52 | 22000 | 6.9925 | | 6.9989 | 8.71 | 22500 | 7.0307 | | 7.0218 | 8.91 | 23000 | 6.9767 | | 6.9998 | 9.1 | 23500 | 7.0096 | | 7.01 | 9.3 | 24000 | 6.9599 | | 6.9964 | 9.49 | 24500 | 6.9896 | | 6.9906 | 9.68 | 25000 | 6.9903 | | 7.0336 | 9.88 | 25500 | 6.9807 | | 7.0053 | 10.07 | 26000 | 6.9776 | | 6.9826 | 10.26 | 26500 | 6.9836 | | 6.9897 | 10.46 | 27000 | 6.9886 | | 6.9829 | 10.65 | 27500 | 6.9991 | | 6.9849 | 10.84 | 28000 | 6.9651 | | 6.9901 | 11.04 | 28500 | 6.9822 | | 6.9852 | 11.23 | 29000 | 6.9921 | | 6.9757 | 11.43 | 29500 | 6.9636 | | 6.991 | 11.62 | 30000 | 6.9952 | | 6.9818 | 11.81 | 30500 | 6.9799 | | 6.9911 | 12.01 | 31000 | 6.9725 | | 6.9423 | 12.2 | 31500 | 6.9540 | | 6.9885 | 12.39 | 32000 | 6.9771 | | 6.9636 | 12.59 | 32500 | 6.9475 | | 6.9567 | 12.78 | 33000 | 6.9653 | | 6.9749 | 12.97 | 33500 | 6.9711 | | 6.9739 | 13.17 | 34000 | 6.9691 | | 6.9651 | 13.36 | 34500 | 6.9569 | | 6.9599 | 13.56 | 35000 | 6.9608 | | 6.957 | 13.75 | 35500 | 6.9531 | | 6.9539 | 13.94 | 36000 | 6.9704 | | 6.958 | 14.14 | 36500 | 6.9478 | | 6.9597 | 14.33 | 37000 | 6.9510 | | 6.9466 | 14.52 | 37500 | 6.9625 | | 6.9518 | 14.72 | 38000 | 6.9787 | | 6.9509 | 14.91 | 38500 | 6.9391 | | 6.9505 | 15.1 | 39000 | 6.9694 | | 6.9311 | 15.3 | 39500 | 6.9440 | | 6.9513 | 15.49 | 40000 | 6.9425 | | 6.9268 | 15.69 | 40500 | 6.9223 | | 6.9415 | 15.88 | 41000 | 6.9435 | | 6.9308 | 16.07 | 41500 | 6.9281 | | 6.9216 | 16.27 | 42000 | 6.9415 | | 6.9265 | 16.46 | 42500 | 6.9164 | | 6.9023 | 16.65 | 43000 | 6.9237 | | 6.9407 | 16.85 | 43500 | 6.9100 | | 6.9211 | 17.04 | 44000 | 6.9295 | | 6.9147 | 17.23 | 44500 | 6.9131 | | 6.9224 | 17.43 | 45000 | 6.9188 | | 6.9215 | 17.62 | 45500 | 6.9077 | | 6.915 | 17.82 | 46000 | 6.9371 | | 6.906 | 18.01 | 46500 | 6.8932 | | 6.91 | 18.2 | 47000 | 6.9100 | | 6.8999 | 18.4 | 47500 | 6.9251 | | 6.9113 | 18.59 | 48000 | 6.9078 | | 6.9197 | 18.78 | 48500 | 6.9099 | | 6.8985 | 18.98 | 49000 | 6.9074 | | 6.9009 | 19.17 | 49500 | 6.8971 | | 6.8937 | 19.36 | 50000 | 6.8982 | | 6.9094 | 19.56 | 50500 | 6.9077 | | 6.9069 | 19.75 | 51000 | 6.9006 | | 6.8991 | 19.95 | 51500 | 6.8912 | | 6.8924 | 20.14 | 52000 | 6.8881 | | 6.899 | 20.33 | 52500 | 6.8899 | | 6.9028 | 20.53 | 53000 | 6.8938 | | 6.8997 | 20.72 | 53500 | 6.8822 | | 6.8943 | 20.91 | 54000 | 6.9005 | | 6.8804 | 21.11 | 54500 | 6.9048 | | 6.8848 | 21.3 | 55000 | 6.9062 | | 6.9072 | 21.49 | 55500 | 6.9104 | | 6.8783 | 21.69 | 56000 | 6.9069 | | 6.8879 | 21.88 | 56500 | 6.8938 | | 6.8922 | 22.08 | 57000 | 6.8797 | | 6.8892 | 22.27 | 57500 | 6.9168 | | 6.8863 | 22.46 | 58000 | 6.8820 | | 6.8822 | 22.66 | 58500 | 6.9130 | | 6.8752 | 22.85 | 59000 | 6.8973 | | 6.8823 | 23.04 | 59500 | 6.8933 | | 6.8813 | 23.24 | 60000 | 6.8919 | | 6.8787 | 23.43 | 60500 | 6.8855 | | 6.8886 | 23.63 | 61000 | 6.8956 | | 6.8744 | 23.82 | 61500 | 6.9092 | | 6.8799 | 24.01 | 62000 | 6.8944 | | 6.879 | 24.21 | 62500 | 6.8850 | | 6.8797 | 24.4 | 63000 | 6.8782 | | 6.8724 | 24.59 | 63500 | 6.8691 | | 6.8803 | 24.79 | 64000 | 6.8965 | | 6.8899 | 24.98 | 64500 | 6.8986 | | 6.8873 | 25.17 | 65000 | 6.9034 | | 6.8777 | 25.37 | 65500 | 6.8658 | | 6.8784 | 25.56 | 66000 | 6.8803 | | 6.8791 | 25.76 | 66500 | 6.8727 | | 6.8736 | 25.95 | 67000 | 6.8832 | | 6.8865 | 26.14 | 67500 | 6.8811 | | 6.8668 | 26.34 | 68000 | 6.8817 | | 6.8709 | 26.53 | 68500 | 6.8945 | | 6.8755 | 26.72 | 69000 | 6.8777 | | 6.8635 | 26.92 | 69500 | 6.8747 | | 6.8752 | 27.11 | 70000 | 6.8875 | | 6.8729 | 27.3 | 70500 | 6.8696 | | 6.8728 | 27.5 | 71000 | 6.8659 | | 6.8692 | 27.69 | 71500 | 6.8856 | | 6.868 | 27.89 | 72000 | 6.8689 | | 6.8668 | 28.08 | 72500 | 6.8877 | | 6.8576 | 28.27 | 73000 | 6.8783 | | 6.8633 | 28.47 | 73500 | 6.8828 | | 6.8737 | 28.66 | 74000 | 6.8717 | | 6.8702 | 28.85 | 74500 | 6.8485 | | 6.8785 | 29.05 | 75000 | 6.8771 | | 6.8818 | 29.24 | 75500 | 6.8815 | | 6.8647 | 29.43 | 76000 | 6.8877 | | 6.8574 | 29.63 | 76500 | 6.8920 | | 6.8474 | 29.82 | 77000 | 6.8936 | | 6.8558 | 30.02 | 77500 | 6.8768 | | 6.8645 | 30.21 | 78000 | 6.8921 | | 6.8786 | 30.4 | 78500 | 6.8604 | | 6.8693 | 30.6 | 79000 | 6.8603 | | 6.855 | 30.79 | 79500 | 6.8559 | | 6.8429 | 30.98 | 80000 | 6.8746 | | 6.8688 | 31.18 | 80500 | 6.8774 | | 6.8735 | 31.37 | 81000 | 6.8643 | | 6.8541 | 31.56 | 81500 | 6.8767 | | 6.8695 | 31.76 | 82000 | 6.8804 | | 6.8607 | 31.95 | 82500 | 6.8674 | | 6.8538 | 32.15 | 83000 | 6.8572 | | 6.8472 | 32.34 | 83500 | 6.8683 | | 6.8763 | 32.53 | 84000 | 6.8758 | | 6.8405 | 32.73 | 84500 | 6.8764 | | 6.8658 | 32.92 | 85000 | 6.8614 | | 6.8834 | 33.11 | 85500 | 6.8641 | | 6.8554 | 33.31 | 86000 | 6.8787 | | 6.8738 | 33.5 | 86500 | 6.8747 | | 6.848 | 33.69 | 87000 | 6.8699 | | 6.8621 | 33.89 | 87500 | 6.8654 | | 6.8543 | 34.08 | 88000 | 6.8639 | | 6.8606 | 34.28 | 88500 | 6.8852 | | 6.8666 | 34.47 | 89000 | 6.8840 | | 6.8717 | 34.66 | 89500 | 6.8773 | | 6.854 | 34.86 | 90000 | 6.8671 | | 6.8526 | 35.05 | 90500 | 6.8762 | | 6.8592 | 35.24 | 91000 | 6.8644 | | 6.8641 | 35.44 | 91500 | 6.8599 | | 6.8655 | 35.63 | 92000 | 6.8622 | | 6.8557 | 35.82 | 92500 | 6.8671 | | 6.8546 | 36.02 | 93000 | 6.8573 | | 6.853 | 36.21 | 93500 | 6.8542 | | 6.8597 | 36.41 | 94000 | 6.8518 | | 6.8576 | 36.6 | 94500 | 6.8700 | | 6.8549 | 36.79 | 95000 | 6.8628 | | 6.8576 | 36.99 | 95500 | 6.8695 | | 6.8505 | 37.18 | 96000 | 6.8870 | | 6.8564 | 37.37 | 96500 | 6.8898 | | 6.8627 | 37.57 | 97000 | 6.8619 | | 6.8502 | 37.76 | 97500 | 6.8696 | | 6.8548 | 37.96 | 98000 | 6.8663 | | 6.8512 | 38.15 | 98500 | 6.8683 | | 6.8484 | 38.34 | 99000 | 6.8605 | | 6.8581 | 38.54 | 99500 | 6.8749 | | 6.8525 | 38.73 | 100000 | 6.8849 | | 6.8375 | 38.92 | 100500 | 6.8712 | | 6.8423 | 39.12 | 101000 | 6.8905 | | 6.8559 | 39.31 | 101500 | 6.8574 | | 6.8441 | 39.5 | 102000 | 6.8722 | | 6.8467 | 39.7 | 102500 | 6.8550 | | 6.8389 | 39.89 | 103000 | 6.8375 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
shikhartuli/flexibert-mini
shikhartuli
2022-11-21T18:38:59Z
45
2
transformers
[ "transformers", "pytorch", "flexibert", "dataset:bookcorpus", "dataset:wikipedia", "dataset:openwebtext", "arxiv:2205.11656", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2022-11-21T17:59:15Z
--- license: bsd-3-clause datasets: - bookcorpus - wikipedia - openwebtext --- # FlexiBERT-Mini model Pretrained model on the English language using a macked language modeling (MLM) objective. It was found by executing a neural architecture search (NAS) over a design space of ~3.32 billion *flexible* and *heterogeneous* transformer architectures in [this paper](https://arxiv.org/abs/2205.11656). The model is case sensitive. # Model description The model consists of diverse attention heads including the traditional self-attention and the discrete cosine transform (DCT). The design space also supports weighted multiplicative attention (WMA), discrete Fourier transform (DFT), and convolution operations in the same transformer model along with different hidden dimensions for each encoder layer. # How to use This model should be finetuned on a downstream task. Other models within the FlexiBERT design space can be generated using a model dicsiontary. See this [github repo](https://github.com/JHA-Lab/txf_design-space) for more details. To instantiate a fresh FlexiBERT-Mini model (for pre-trainining using the MLM objective): ```python from transformers import FlexiBERTConfig, FlexiBERTModel, FlexiBERTForMaskedLM config = FlexiBERTConfig() model_dict = {'l': 4, 'o': ['sa', 'sa', 'l', 'l'], 'h': [256, 256, 128, 128], 'n': [2, 2, 4, 4], 'f': [[512, 512, 512], [512, 512, 512], [1024], [1024]], 'p': ['sdp', 'sdp', 'dct', 'dct']} config.from_model_dict(model_dict) model = FlexiBERTForMaskedLM(config) ``` # Developer [Shikhar Tuli](https://github.com/shikhartuli). For any questions, comments or suggestions, please reach me at [stuli@princeton.edu](mailto:stuli@princeton.edu). # Cite this work Cite our work using the following bitex entry: ``` @article{tuli2022jair, title={{FlexiBERT}: Are Current Transformer Architectures too Homogeneous and Rigid?}, author={Tuli, Shikhar and Dedhia, Bhishma and Tuli, Shreshth and Jha, Niraj K.}, year={2022}, eprint={2205.11656}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` # License BSD-3-Clause. Copyright (c) 2022, Shikhar Tuli and Jha Lab. All rights reserved. See License file for more details.
xfreakazoidx/NightmareMrBeanBabysToilet
xfreakazoidx
2022-11-21T17:45:04Z
0
0
null
[ "region:us" ]
null
2022-11-21T16:38:13Z
Nightmare Mr. Bean Babys Toilet. Prompt being " NghtmrBbyFrk". This one was requested after my pictures, so I delivered. The results will really just give you Mr. Bean Baby and his toilet. The model is semi-limited. So lets say you put "cat", the baby will likely have some cat features like cat ears. Or you can say things like "blue baby" to make him blue. It's not the greatest model. Steps can be anything, in this case just more detail with more steps as per normal. CFG needs to be between 3-7. Any sampler. thumbnail ![Model 2.png](https://s3.amazonaws.com/moonup/production/uploads/1669052699240-6333e639d58823d613336ee3.png)
GDJ1978/akudamadrive
GDJ1978
2022-11-21T17:02:43Z
0
0
null
[ "region:us" ]
null
2022-11-21T13:31:09Z
the trigger word in automatic is the embedding name eg akudamadrivestyle-500 Its my first attempt, its good looking but nothing spectacular 0.05 training rate, 500 steps, 5 images of average quality
statworx/bert-base-german-cased-finetuned-swiss
statworx
2022-11-21T16:37:35Z
109
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "swiss", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-17T08:39:06Z
--- language: de license: apache-2.0 tags: - bert - swiss --- # Model Card for Bert-base-german-cased-finetuned-swiss Bert-base-german-cased model fine-tuned on a corpus of German-Swiss. # Model Details ## Model Description Bert-base-german-cased model fine-tuned on a corpus of German-Swiss. Fine-tuning was done on the Swiss German data of the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download/) and [SwissCrawl](https://icosys.ch/swisscrawl). For testing purposes, the model was evaluated on the [Swiss Dialect Classification dataset](https://huggingface.co/datasets/statworx/swiss-dialects) as down-stream task. It outperformed its parent model ([bert-base-german-cased](https://huggingface.co/bert-base-german-cased)) by approx. 5% accuracy. - **Developed by:** Fabian Müller - **Model type:** Language model - **Language(s) (NLP):** de - **License:** apache-2.0 - **Parent Model:** [bert-base-german-cased](https://huggingface.co/bert-base-german-cased)
RajaSi/sd-prompt-generator-gpt-neo-gn
RajaSi
2022-11-21T16:35:06Z
100
2
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-21T11:07:13Z
hey friends welcome in this applied NLP tutorial we're going to learn how to fine tune a text generation model one second how to push the text generated like the fine-tuned model into hugging face model Hub and in this process we are also going to explore the stable diffusion part of it so this is a combination of a lot of different things. the model is uploaded to hugging face model Hub and the model I'm calling it SD prompt generator GPT Neo because this is a prompt generator for stable diffusion so if you want to create something using stable division the AI are generated so you ideally need to give a very detailed prompt. ideally is as you can see from the name it says SD prompt generator GPT Neo so we're going to use GPT Neo model to fine tune our prompts so that we have created a text generation model where we can give a prompt text and that will generate new prompt or a new extended prompt better prompt for us so what are we going to do we are going to take a set of existing stable diffusion prompts and we have got a 124 in 124 million stay GPT Neo model and we are going to fine tune that model based on this data and then we are going to finally save that model and then push the model into hugging phase model Hub
Wheatley961/Raw_3_no_1_Test_3_new.model
Wheatley961
2022-11-21T16:23:53Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-21T16:23:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 24 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 6.474612215184842e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 24, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
EP9/bert2bert_shared-spanish-finetuned-summarization-finetuned-xsum
EP9
2022-11-21T16:12:27Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-20T23:09:59Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: bert2bert_shared-spanish-finetuned-summarization-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert2bert_shared-spanish-finetuned-summarization-finetuned-xsum This model is a fine-tuned version of [mrm8488/bert2bert_shared-spanish-finetuned-summarization](https://huggingface.co/mrm8488/bert2bert_shared-spanish-finetuned-summarization) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3690 - Rouge1: 50.02 - Rouge2: 35.706 - Rougel: 46.6253 - Rougelsum: 46.6412 - Gen Len: 22.1176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.5969 | 1.0 | 3090 | 2.4559 | 49.4282 | 35.2705 | 46.095 | 46.0994 | 22.5422 | | 2.3318 | 2.0 | 6180 | 2.3690 | 50.02 | 35.706 | 46.6253 | 46.6412 | 22.1176 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
alexziweiwang/base-on-torgo0003
alexziweiwang
2022-11-21T16:07:25Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-21T11:45:06Z
--- tags: - generated_from_trainer model-index: - name: base-on-torgo0003 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-on-torgo0003 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6579 - Wer: 0.7547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 28.1611 | 0.46 | 500 | 3.4550 | 1.0163 | | 3.2238 | 0.92 | 1000 | 2.8781 | 1.0411 | | 2.8617 | 1.39 | 1500 | 2.9896 | 1.0028 | | 2.5841 | 1.85 | 2000 | 2.3744 | 1.2896 | | 2.2029 | 2.31 | 2500 | 1.8598 | 1.2722 | | 1.9976 | 2.77 | 3000 | 1.6505 | 1.2513 | | 1.7817 | 3.23 | 3500 | 1.5291 | 1.2294 | | 1.6484 | 3.69 | 4000 | 1.4635 | 1.2106 | | 1.56 | 4.16 | 4500 | 1.4251 | 1.1989 | | 1.417 | 4.62 | 5000 | 1.4040 | 1.1904 | | 1.2884 | 5.08 | 5500 | 1.2734 | 1.1568 | | 1.2788 | 5.54 | 6000 | 1.2242 | 1.1384 | | 1.2159 | 6.0 | 6500 | 1.0561 | 1.1349 | | 1.1125 | 6.46 | 7000 | 1.1001 | 1.1175 | | 1.1495 | 6.93 | 7500 | 1.0409 | 1.1112 | | 1.0222 | 7.39 | 8000 | 1.0525 | 1.0952 | | 1.0104 | 7.85 | 8500 | 1.0184 | 1.1048 | | 0.9956 | 8.31 | 9000 | 1.0438 | 1.1196 | | 0.8747 | 8.77 | 9500 | 1.0736 | 1.1005 | | 0.8437 | 9.23 | 10000 | 1.0041 | 1.0768 | | 0.861 | 9.7 | 10500 | 0.9407 | 1.0496 | | 0.8238 | 10.16 | 11000 | 0.9237 | 1.0697 | | 0.7806 | 10.62 | 11500 | 0.8706 | 1.0343 | | 0.7475 | 11.08 | 12000 | 0.9576 | 1.0407 | | 0.6963 | 11.54 | 12500 | 0.9195 | 1.0159 | | 0.7624 | 12.0 | 13000 | 0.8102 | 1.0060 | | 0.6311 | 12.47 | 13500 | 0.8208 | 0.9897 | | 0.6649 | 12.93 | 14000 | 0.7699 | 0.9968 | | 0.6025 | 13.39 | 14500 | 0.7834 | 0.9547 | | 0.5691 | 13.85 | 15000 | 0.7414 | 0.9632 | | 0.532 | 14.31 | 15500 | 0.7056 | 0.9473 | | 0.5572 | 14.77 | 16000 | 0.8136 | 0.9929 | | 0.5455 | 15.24 | 16500 | 0.7355 | 0.9264 | | 0.5369 | 15.7 | 17000 | 0.7531 | 0.9352 | | 0.4771 | 16.16 | 17500 | 0.7527 | 0.9228 | | 0.4778 | 16.62 | 18000 | 0.7312 | 0.9218 | | 0.4384 | 17.08 | 18500 | 0.6774 | 0.8913 | | 0.4619 | 17.54 | 19000 | 0.6888 | 0.8896 | | 0.4341 | 18.01 | 19500 | 0.7068 | 0.9030 | | 0.4164 | 18.47 | 20000 | 0.6484 | 0.8754 | | 0.3883 | 18.93 | 20500 | 0.6388 | 0.8676 | | 0.4135 | 19.39 | 21000 | 0.6732 | 0.8683 | | 0.4121 | 19.85 | 21500 | 0.6354 | 0.8591 | | 0.3694 | 20.31 | 22000 | 0.6751 | 0.8581 | | 0.367 | 20.78 | 22500 | 0.6487 | 0.8411 | | 0.3798 | 21.24 | 23000 | 0.5955 | 0.8312 | | 0.3249 | 21.7 | 23500 | 0.6209 | 0.8230 | | 0.3182 | 22.16 | 24000 | 0.7341 | 0.8212 | | 0.3196 | 22.62 | 24500 | 0.6533 | 0.8106 | | 0.297 | 23.08 | 25000 | 0.7163 | 0.8177 | | 0.3021 | 23.55 | 25500 | 0.7209 | 0.8149 | | 0.3248 | 24.01 | 26000 | 0.6268 | 0.8018 | | 0.3013 | 24.47 | 26500 | 0.7014 | 0.7915 | | 0.2986 | 24.93 | 27000 | 0.7306 | 0.8028 | | 0.2913 | 25.39 | 27500 | 0.6866 | 0.7912 | | 0.2706 | 25.85 | 28000 | 0.6860 | 0.7851 | | 0.2572 | 26.32 | 28500 | 0.6478 | 0.7752 | | 0.2794 | 26.78 | 29000 | 0.6308 | 0.7703 | | 0.2796 | 27.24 | 29500 | 0.6302 | 0.7653 | | 0.2604 | 27.7 | 30000 | 0.6638 | 0.7621 | | 0.2367 | 28.16 | 30500 | 0.6492 | 0.7593 | | 0.2383 | 28.62 | 31000 | 0.6560 | 0.7614 | | 0.2495 | 29.09 | 31500 | 0.6577 | 0.7593 | | 0.2513 | 29.55 | 32000 | 0.6579 | 0.7547 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
christofid/dapscibert
christofid
2022-11-21T16:05:11Z
106
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-21T16:02:30Z
--- license: mit --- ### dapSciBERT DapSciBERT is a BERT-like model trained based on the domain adaptive pretraining method ([Gururangan et al.](https://aclanthology.org/2020.acl-main.740/)) for the patent domain. Allenai/scibert_scivocab_uncased is used as base for the training. The training dataset used consists of a corpus of 10,000,000 patent abstracts that have been filed between 1998-2020 in US and European patent offices as well as the World Intellectual Property Organization.
christofid/dapbert
christofid
2022-11-21T16:01:15Z
117
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-21T15:43:44Z
--- license: mit --- ### dapBERT DapBERT is a BERT-like model trained based on the domain adaptive pretraining method ([Gururangan et al.](https://aclanthology.org/2020.acl-main.740/)) for the patent domain. Bert-base-uncased is used as base for the training. The training dataset used consists of a corpus of 10,000,000 patent abstracts that have been filed between 1998-2020 in US and European patent offices as well as the World Intellectual Property Organization.
zugp/ddpm-butterflies-128
zugp
2022-11-21T14:16:57Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/few-shot-universe", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-07T02:55:42Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/few-shot-universe metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/few-shot-universe` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/zugp/ddpm-butterflies-128/tensorboard?#scalars)
GDJ1978/psychedelicdoodles
GDJ1978
2022-11-21T14:15:39Z
0
0
null
[ "region:us" ]
null
2022-11-21T13:56:15Z
just an experimental embedding on a doodle that was put through img2img psychedelic is the prompt trigger, or psy 1000 steps on 3 images, 0.05 training rate
Harrier/a2c-AntBulletEnv-v0
Harrier
2022-11-21T14:05:17Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-21T14:03:57Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1596.00 +/- 357.12 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```